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Algebraic theories
An algebraic theory

〈G | R〉
consists of
1. G : operations with given arities
2. R: equations between terms generated by operations

Example

I the theory of groups is given by m : 2, e : 0, i : 1 and

m(m(x1, x2), x3) = m(x1,m(x2, x3))

m(e, x1) = x1 m(x1, e) = x1

m(i(x1), x1) = e m(x1, i(x1)) = e

I rings, fields, etc.
I (semi)lattices, booleans algebras, etc.
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Models

A model of an algebraic theory consists of
I a set X ,
I an interpretation Jf K : X n → X

for each operation f of arity n,
I such that the axioms are satisfied.

Example
Models of the theory of groups are groups.
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Equivalence between theories
Two theories are equivalent when they have the same models.

Example
Consider the theory of groups, given by m : 2, e : 0, i : 1 and

m(m(x1, x2), x3) = m(x1,m(x2, x3))

m(e, x1) = x1 m(x1, e) = x1

m(i(x1), x1) = e m(x1, i(x1)) = e

The equations in red are derivable from the other.

xe = (ex)e = ((x−−x−)x)e = (x−−(x−x))e = (x−−e)e

= x−−(ee) = x−−e = x−−(x−x) = (x−−x−)x = ex = x
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Equivalence between theories
Two theories are equivalent iff one can transform the first into
the second using Tietze transformations:

1. add a definable generator

〈G | R〉  〈G , f : n | R, f (x1, . . . , xn) = t〉

2. remove a definable generator
3. add a derivable relation

〈G | R〉  
〈
G
∣∣ R, t = t ′

〉
4. remove a definable relation
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Finding small axiomatizations

Can we find minimal (or small) axiomatizations for theories?
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One relation for (abelian) groups

In 1938, Tarski observed that the theory of abelian groups can be
axiomatized with two operations d : 2, a : 0 and one relation

d(x1, d(x2, d(x3, d(x1, x2)))) = x3

where a ensure that the model is not empty.

A one-based theory is a theory which can be axiomatized with
only one axiom.
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Remarks
Note that obtaining the axiom

d(x1, d(x2, d(x3, d(x1, x2)))) = x3

is not easy
I one has to think of using division instead of multiplication

(there is no unique axiom with multiplication and unit)
I one has to show that this axiom is derivable and the other

can be derived from it
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Remarks

In fact the story is not entirely exact:
I the models of

〈m : 2, i : 1, e : 0 | ...〉

and
〈d : 2, a : 0 | one relation〉

are the “same”,

I but morphisms are not (they have to preserve the arbitrary
element a in the second case),

I so they are not equivalent in the earlier sense,

but you get the idea...
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The quest for one-based theories

There is an interesting line of efforts to find one-based theories:
I 1938: abelian groups is one-based
I 1952: groups is one-based
I 1965: semi-lattices is not one-based
I 1970: distributive lattices is not one-based

lattices is one-based (300 000 sym. / 34 var.)
I 1973: boolean algebras is one-based (≥ 40 000 000 symb.)
I 2002: boolean algebras is one-based (12 symb.)
I 2003: lattices is one-based (29 symb. / 8 var.)
I . . .
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AXIOMS FOR SEMI-JLATTICES 

D. H. Potts 

-A semi- la t t ice (Birkhoff, JLattice Theory, p. 18, Ex. 1) 
is an algebra <A, .> with a single binary operation satisfying: 
(1) x = xx , (2) x y = y x , and (3) (xy)z = x(yz). In this note 
we show that the three identities may be reduced to two but 
cannot be reduced to one. 

It is easy to see that (2), (3) imply (4) (uv)((wx)(yz)) 
= ((vu)(xw))(zy). Setting w = y = u and x = z = v in (4) and 
using (1) we get uv = vu. Setting v = u, x = w, and z =y in 
(4) and using (1) we get u(wy) = (uw)y. And so (1) and (4) imply 
(2) and (3). 

If a single identity is sufficient to define the notion of 
semi- la t t ice it must be of form x = . . . . Any identity not of 
that form, is satisfied by, e. g. the algebra <{ 0, 1} , .> where 
00 = 01 =10 = 1 1 = 0 , which is not a semi- la t t ice . 

Now suppose we have a semi- la t t ice with two distinct 
elements a , b . Let c = ab. Either c # a or c ^ b. We 
suppose the la t te r . Then bb = b and be = cb = cc = c . Thus 
any identity holding in a semi- la t t ice with at leas t two elements 
must have the same var iables occurr ing on each side of the 
equality sign. For suppose Ifxff occurs on the left but not on 
the right. Setting x = c and al l other var iables equal to b 
yields the contradiction c = b. 

Thus a single sufficing identity would have to be of form 
x = f(x). Clearly such an identity will not imply (2), for the 
algebra < { 0 , l } , . > where 0 0 = 0 1 = 0 and 1 0 = 1 1 = 1 satisfies 
x = f(x> for any f but is not commutative. 

University of California, Berkeley 

519 
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Axioms for semi-lattices
A semi-lattice is a set equipped with a multiplication such that

(xy)z = x(yz) xy = yx xx = x

1. any axiom should be of the form x = t otherwise the
non-semi-lattice

· 0 1
0 0 0
1 0 0

would be a model

2. any axiom t = u should have FV(t) = FV(u)

3. the axiom cannot be of the form x = t(x)

4. we can also show that any other choice of generators suffers
from the same problem!
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Not one-based theories

We are interested in showing that theories are not one-based:
I existing proofs are tricky and specific to particular theories
I they rely on finding counter-examples using some models

Here, instead
I we provide a method which is entirely automatic
I but it does not provide an answer in every case
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The general method
Algorithm

1. start from a theory T ,

2. orient it so that you get a terminating and confluent
rewriting system,

3. feed it to the computer and compute

H2(T ) ∈ N

4. we know that we need at least H2(T ) relations.

Note that:
I the theory might not be orientable as a convergent rs,
I we might compute H2(T ) = 0,
I we have examples where it works though :)
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Good!
Let’s switch to something else.
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Suppose that you have a space (e.g. a simplicial complex) and
you want to compute the number of “holes” in it. There is a very
efficient way of doing this:

homology

ab

c

−a
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Homology
Suppose that our space looks like this:

y
g

��
⇑α

x

f
@@

h
// z i // z ′

I we allow taking linear combinations of “building blocks”
I we define the boundary of a block as target - source:

∂(f ) = y − x ∂(α) = f + g − h

I “potential holes” can be detected as those with empty
boundary:

∂(f + g − h) = ∂(f ) + ∂(g)− ∂(h)

= (y − x) + (z − y)− (z − x) = 0

I we have to remove those that are boundaries

∂(α) = f + g − h

17 / 49
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Homology
Formally, given our space X :

y
g

��
⇑α

x

f
@@

h
// z i // z ′

we consider the chain complex

. . .
∂2 // k {α} ∂1 // k {f , g, h, i} ∂0 // k {x , y , z , z ′}

C2

=

C1
=

C0

=

18 / 49



Homology
Formally, given our space X :

y
g

��
⇑α

x

f
@@

h
// z i // z ′

we consider the chain complex

. . .
∂2 // k {α} ∂1 // k {f , g, h, i} ∂0 // k {x , y , z , z ′}
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which means that
I the Ci are k-vector spaces,
I the ∂i : Ci+1 → Ci are linear maps,
I we have ∂i−1 ◦ ∂i = 0 and thus im ∂i ⊆ ker ∂i−1.
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∂2 // k {α} ∂1 // k {f , g, h, i} ∂0 // k {x , y , z , z ′}
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=
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and we can compute i-th homology groups:

Hi(X ) = ker ∂i−1/ im ∂i

The intuition is that the rank of Hi(X ) counts the number of holes
in dimension i . 18 / 49



Homology

The i-th homology group is defined by

Hi(X ) = ker ∂i−1/ im ∂i

with
∂i : Ci+1 → Ci

In particular, we have that

dim(Ci) ≥ dim(Hi(X ))

i.e.
Ci = k {x1, . . . , xn}

with
n ≥ dim(Hi(X ))
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A theory as a space
Suppose that we can see a theory T as a “space” with
I points: N
I edges: operations
I surfaces: relations
I volumes: relations between relations (e.g. critical pairs)

2

m(x1,m(i(x2),x2))

""

=

m(x1,e) //

=
e

<< 1

then
dim(H2(T ))

is a lower bound on the number of relations!

NB: in practice, we will consider a chain complex as a space...
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An example

Consider the term rewriting system with a generators

f : 2 g : 2 a : 0 b : 0 c : 0

together with rules

A : f (a, x1)⇒ g(a, x1) A′ : f (x1, a)⇒ g(x1, a)

B : f (b, b)⇒ g(b, b) C : f (c , c)⇒ g(c , c)

It is terminating with one confluent critical pair

f (a, a)

Aa
#+

A′a

3;

V

Φ g(a, a)
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An example
Note that all the rules

A : f (a, x1)⇒ g(a, x1) A′ : f (x1, a)⇒ g(x1, a)

B : f (b, b)⇒ g(b, b) C : f (c , c)⇒ g(c , c)

have the same “balance”:

∂1(A) = g + a − f − a = g − f

= ∂1(A′) = ∂1(B) = ∂1(C )

so that we have

∂1(A′ − A) = ∂1(A′)− ∂1(A) = 0

∂1(B − A) = ∂1(B)− ∂1(A) = 0

∂1(C − A) = ∂1(C )− ∂1(A) = 0

i.e. there are 3 “potential holes”.
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An example
Similarly, the “balance” of the critical pair

f (a, a)

Aa
#+

A′a

3;

V

Φ g(a, a)

is
∂2(Φ) = A′ − A

Therefore, we have in fact two holes:

���
�XXXXA′ − A B − A C − A

The vector space generated by these two holes is a subspace of
the one generated by rules

H2(T ) ⊆ C2

and therefore we need at least to rules to present the theory.
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An example

For “technical” reasons, we will need to first recall the contexts
when computing the balance. With

A : f (a, x1)⇒ g(a, x1)

we first compute

∂1(A) = g(a, x1) + g(a, x1)− f (a, x1)− f (a, x1)

and then deduce

∂1(A) = g + a − f − a = g − f

24 / 49



Invariance under axiomatization

Why do we need to use such tools?

I A fundamental property of homology is that

homology is invariant under weak equivalences

(= deformations of spaces)

I In the setting of theories, this will translate as

homology is invariant under Tietze transformations

i.e. we have bounds on any axiomatization of the theory

I This is where we need the assumption that we have a
convergent rewriting system!
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The balance of rules

Note that reductions can duplicate (or erase) other, e.g. with

F : f (x)⇒ g(x , x) A : a⇒ b

we have two equal paths

f (a)

F
��

A +3

≡

f (b)

F
��

g(a, a)
A
+3 g(b, a)

A
+3 g(b, b)

So, we cannot simply “count” the number of uses of each rule.
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HOMOLOGY
OF

LAWVERE
THEORIES
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Lawvere theories
All the operations described by a Lawvere theory can be encoded
into a category called a Lawvere theory:
I objects: natural numbers
I morphisms m → n: n-uples of terms with variables

in {x1, . . . , xm} up to the relations
I composition: substitution

Example
In the theory of groups, we have the morphism

〈 m(i(x3), x3) , m(x1, x2) 〉 : 3→ 2

x1 x2 x3

m

i

m
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Lawvere theories
All the operations described by a Lawvere theory can be encoded
into a category called a Lawvere theory:
I objects: natural numbers
I morphisms m → n: n-uples of terms with variables

in {x1, . . . , xm} up to the relations
I composition: substitution

Remark
The notion of equivalence can be changed from
I having the same models

to
I generating the same Lawvere theory
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Lawvere theories

Definition
A Lawvere theory is a category
I whose objects are natural numbers
I cartesian with product given by addition

We write Theories for their category.

So, the question is, given T ∈ Theories, how do we define Hi(T )?
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Homology of categories
To any category C one can associate its nerve NC:
I points: objects
I edges: morphisms
I triangles:

y

⇓
g

��
x

f
??

g◦f
// z

I etc.

Problem
Since a Lawvere theory C has a terminal object, we always have

Hi(NC) = 0

for i > 0.
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Contexts

A context C is a term which contains exactly one instance of the
“variable” �.

For instance,
f (g(x1, x2),�)
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Contexts
A bicontext is a term with one “inside hole”.

For instance f (f (a, x2), •(x2, f (x1, x3)))

x1 x2 x3

a f

f

f

of type
2 → 3

We write K for the category of bicontexts.
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Contexts
A bicontext (C , u) consists of a context C and a morphism u:

x1 x2 x3

a f

f

f

is decomposed as

f (f (a, x2),�) , 〈x2, f (x1, x3)〉

a context a substitution
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The ringoid of bicontexts

A ringoid R is a category enriched in Ab:
I each C(A,B) has a structure of group
I the expected compatibility laws hold:

(g + g′) ◦ (f + f ′) = g ◦ f + g ◦ f ′ + g′ ◦ f + g′ ◦ f ′

0 ◦ f = 0

f ◦ 0 = 0

(a ringoid with one object is a ring)

We write ZK: the free ringoid over bicontexts, modulo the rules.

(there is a subtlety here since rules are not necessarily linear)
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Contexts from terms
Given a term t, we write κi(t) for the formal sum of contexts
obtained from t by replacing one instance of xi with �.

For instance,

κ1(f (g(x1, x2), x1)) = f (g(�, x2), x1) + f (g(x1, x2),�)

and
κ3(f (g(x1, x2), x1)) = 0

Formally,

κi(xi) = � κi(xj) = 0 κi(u ◦ t) =
∑

j∈FV(u)

(κj(u)t)[κi(tj)]

where C [t] is C with � replaced by t.
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The ringoid of bicontexts

In a bicontext (C , u), we consider C modulo

κi(t)− κi(u)

and u modulo t − u for each rule R : t ⇒ u.

For instance, the relation f (x1)⇒ g(x1, x1) induces the relation

g(�, x1) + g(x1,�)− f (�)

on contexts.
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The ringoid of bicontexts

Lemma
ZK only depends on the theory T (not the presentation).
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Modules

A module over ZK is an Ab-enriched functor

M : ZK → Ab

This means that we have things that
I we can add
I we can put into a bicontext

Given (C , u) : m → n and t ∈M(m), we write

C [t]u = (M(C , u))(t)
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Free modules

Given a family (Xn)n∈N of sets, whose elements are “n-ary
things”, we can form the free ZK-module ZKXn.

For instance, we have

x1 x2 x3

a f

f φ

f

with φ ∈ X2.
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The trivial module
We also have a trivial ZK-module Z.

This is the quotient of the free ZK-module generated by one
operation ?n in each arity n by∑

i

κi(v)?1ui = ?n

for each term v ◦ u of arity n.
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This is the quotient of the free ZK-module generated by one
operation ?n in each arity n by∑

i

κi(v)?1ui = ?n

for each term v ◦ u of arity n.

For instance, with f of arity 2, f ◦ id2 = id1 ◦ f implies

f (�, x2)?1x1 + f (x1,�)?1x2 = ?2 = �?1f (x1, x2)
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The trivial module
We also have a trivial ZK-module Z.

This is the quotient of the free ZK-module generated by one
operation ?n in each arity n by∑

i

κi(v)?1ui = ?n

for each term v ◦ u of arity n.

Note that for every ZK-moduleM we have

∂−1 : M → Z

defined by ε(t) = ?n for t ∈Mn.
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Resolutions

Suppose given a theory T presented by a convergent algebraic
theory (= term rewriting system) with
I P1 as rules
I P2 as relations
I P3 as critical pairs

Theorem
We have a partial free resolution, i.e. a complex

ZKP3
∂2 // ZKP2

∂1 // ZKP1
∂0 // ZK1

∂−1 // Z // 0

of Z by ZK-modules where
I the ∂i are ZK-linear maps defined from source and target
I im ∂i = ker ∂i−1
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Face maps

The face maps ∂i : ZKPi+1 → ZKPi are defined by

“target” − “source”

e.g. for each rule R : t ⇒ u we have

∂1(R) = u − t
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Homology

We define the homology (with trivial coefficients) of the
theory T as the homology of the deduced chain complex obtained
by “erasing” ZK:

P3
∂′2 // P2

∂′1 // P1
∂′0 // 1

which means
Hi(T ) = ker ∂i−1/ im ∂i
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Invariance

Theorem
The homology only depends on T : if we started from another
presentation we would have obtained the same homology.

Proof.
Between any two resolutions there is essentially one morphisms.
Therefore any two deduced chain complexes (by “erasing” ZK) are
isomorphic and in particular the homologies are isomorphic.
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Face maps (detailed)
The face maps ∂i : ZKPi+1 → ZKPi are defined by
I for each t ∈ P1, we have

∂0(t) =

(∑
i

κi(t)1 〈xi〉

)
− 1t

I for each rule R : t ⇒ u we have

∂1(R) = u − t

with u ◦ t = ut +
∑n

i=1 κi(u)tti
I for each critical pair

∂2



t
C1[R1]u1

z�

C2[R2]u2

�$
t1

S1 �$

t2

S2z�
w


= C2R2u2 +S2−C1R1u1−S1

with S · R = S + R and C [R]u = CRu
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An example

I for f of arity 2, we have

∂0(f ) = f (�, x2)1 + f (x1,�)1− 1f (x1, x2)

I for a rule A : f (a, x1)⇒ g(a, x1), we have

∂1(A) = g 〈a, x1〉+ g(�, x1)a − f 〈a, x1〉 − f (�, x1)a

I for the critical pair f (a, a)

Aa
#+

A′a

3;

V
Φ g(a, a) , we have

∂2(Φ) = A′a − Aa
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About coefficients
How do we know that ZK is a “good” choice for coefficients?

I a theory T is an object in the category Theories of Lawvere
theories

I Beck discovered that coefficients should be taken in

Ab(Theories/T )

I Jibladze-Pirashvily showed that this is equivalent to the
category of cartesian natural systems in T

I the category of factorizations of T is

A

f
��

h1 // B

g
��

A′
h2

// B ′

and natural systems are functors from it to Ab
I I presented a particular case of this
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CONCLUSION
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Conclusion

I we presented a generic method to compute lower bounds on
generators / relations of a presentation of an algebraic theory

I it can serve to generate simple counter-examples
I it suggests considering higher-dimensional invariants
I most of the “usual” theories are out of reach for now

(Hi(T ) = 0, commutativity, etc.)
I it suggests new research tracks in algebraic topology
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