Non-Alternating Innocence

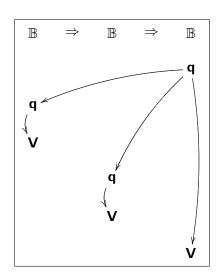
Samuel Mimram

PPS, CNRS, Université Paris VII

GEOCAL - February 24, 2006

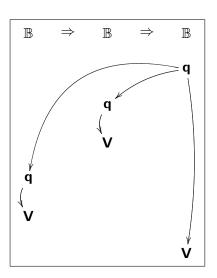
(joint work with Paul-André Melliès)

Alternating game semantics



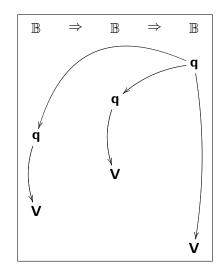
Left and

Alternating game semantics

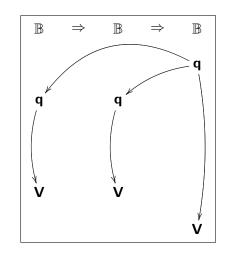


Right and

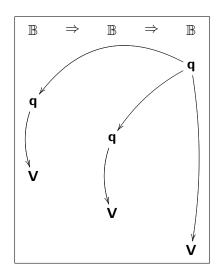
Non-alternating game semantics



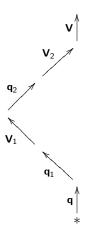
Non-alternating game semantics



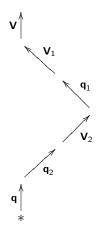
Non-alternating game semantics

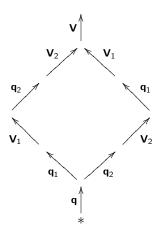


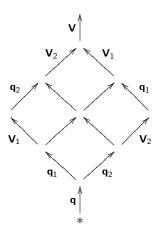
Left and

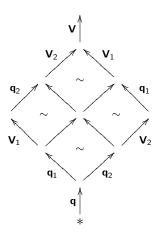


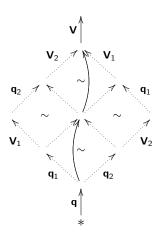
Right and



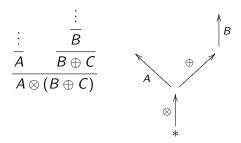








Formulas are inherently non-alternating



Each connective \otimes and \oplus is performed by a Player move

Part I

What is innocence [in alternating games]?

Innocent strategies are partial orders

In alternating games:

```
arena = formula = partial order
```

innocent strategy = Böhm tree = partial order

Every Böhm tree refines its formula

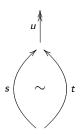
Innocent strategies are positional

In alternating games:

Positionality of Innocence [Melliès 2004]

Suppose that σ is innocent, and that $s \in \sigma$ and $t \in \sigma$,

 $s \sim t$ and $s \cdot u \in \sigma$ implies $t \cdot u \in \sigma$



Innocent strategies are relational

In alternating games:

The set of halting positions of a strategy σ is defined as

$$\sigma^{\circ} = \{x \mid \exists s \in \sigma, \quad s : * \longrightarrow x\}$$

Relationality of Innocence [Melliès 2004]

Every innocent strategy σ is characterized by the set σ° .

Innocent strategies are relational

A strong monoidal functor $(-)^{\circ}$ from games to relations.

Games
$$\rightarrow$$
 Rel $A \mapsto A^{\circ}$ $\sigma \mapsto \sigma^{\circ}$ strategies σ

$$(\sigma \otimes \tau)^{\circ} = \sigma^{\circ} \otimes \tau^{\circ}$$

Positions as relations

To every strategy $\sigma: A \multimap B$, we associate a relation on $A^{\circ} \multimap B^{\circ}$

$$\sigma^{\circ} = \{(x,y) \in A^{\circ} \times B^{\circ} \mid \exists s : * \longrightarrow (x,y) \in \sigma\}$$

Functoriality

$$\left(\sigma;\tau\right)^\circ \ = \ \sigma^\circ;\tau^\circ$$
 dynamic composition static composition

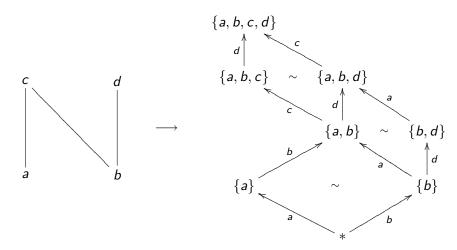
The aim of this talk

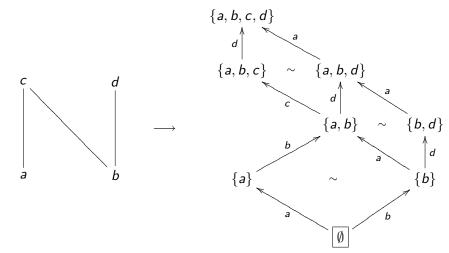
A tentative definition of innocence in non-alternating games

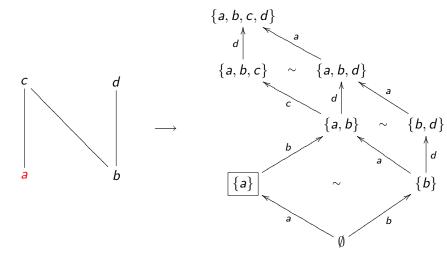
Methodology: extend the three properties by diagrammatic methods.

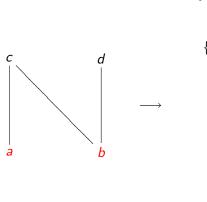
Part II

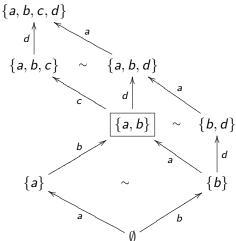
Homotopy classes are partial orders

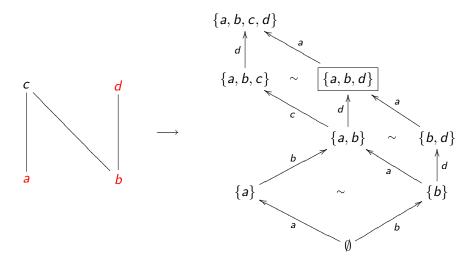


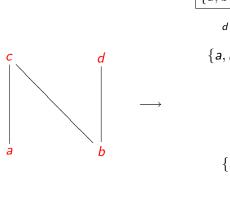


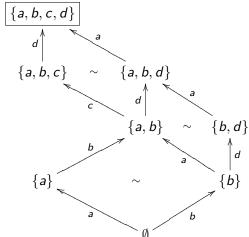




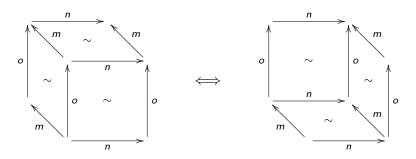




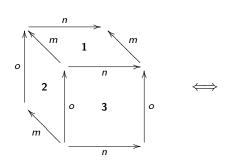


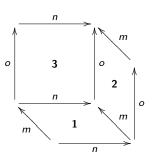


The Cube Property



The Cube Property





1: m||n

2: *m*||*o*

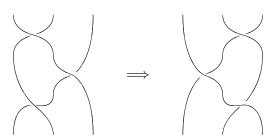
3: *n*∥*o*

Conversely...

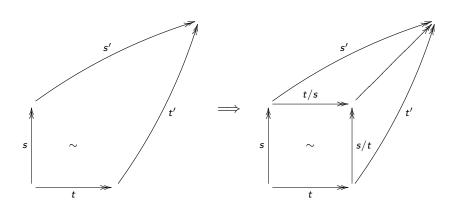
Let us consider a 2-graph satisfying the Cube Property.

Poincaré Duality: from Cubes to Braids

Yang-Baxter equations as a confluent 3-dimensional Rewriting System



Unions and intersections as normal forms



Structure of the prefixes

Consequence

The prefixes of a path f modulo homotopy form a distributive lattice.

Every homotopy class is a partial order

Every path f generates a partial order $[\![f]\!]$ on its set of moves, such that

$$g \sim f \iff g \text{ is a linearization of } \llbracket f \rrbracket.$$

An embarassingly simple notion of homotopy!

Part III

From sequentiality to positionality

Definition of asynchronous game

An asynchronous game is a 2-graph satisfying the Cube Property.

A vertex * is chosen as initial position of the game.

The sequential definition of a strategy

A strategy is a set of paths

$$* \xrightarrow{m_1} x_1 \xrightarrow{m_2} x_2 \cdots x_{k-1} \xrightarrow{m_k} x_k$$

which is

- non-empty,
- closed under prefix.

The traditional definition of a strategy in game semantics.

Positionality

Definition

A strategy is positional when it is the set of paths

$$* \xrightarrow{m_1} x_1 \xrightarrow{m_2} x_2 \cdots x_{k-1} \xrightarrow{m_k} x_k$$

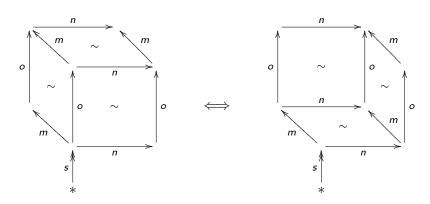
of a subgraph of the 2-graph.

Same definition as previously.

From sequentiality to positionality

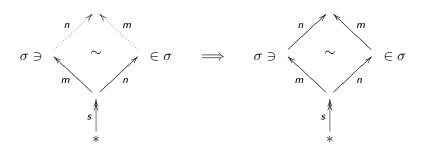
When is a sequential strategy positional?

Three properties: The Cube



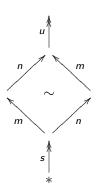
Three properties: Preservation of Compatibility

Preservation of compatibility



Three properties: Extension

Extension property



$$s \cdot m \cdot n \in \sigma$$

$$s \cdot n \cdot m \in \sigma$$

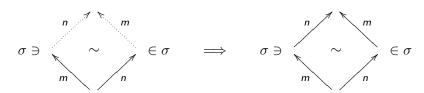
$$s \cdot m \cdot n \cdot u \in \sigma$$

$$s \cdot n \cdot m \cdot u \in \sigma$$

Dynamic positionality

Theorem

An innocent strategy is a subgraph of the graph of the game which satisfies



and

Part IV

From positionality to relationality

Halting positions

The set of halting positions of a strategy σ is defined as

$$\sigma^{\circ} = \{x \mid \forall s : * \longrightarrow x \in \sigma, \forall m \in M, s \cdot m \in \sigma \Rightarrow \lambda(m) = P\}$$

halting position = the strategy has nothing left to play

Relationality

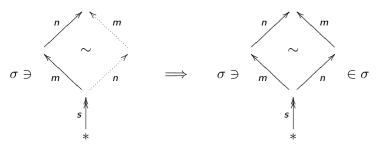
Relationality

Strategies are characterized by their halting positions: we can recover σ from σ° .

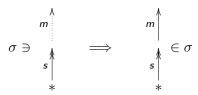
 $\mathsf{strategy} \quad = \quad \mathsf{closure} \,\, \mathsf{operator}$

Definition of asynchronous strategy

• Courteous: for every Player move m,

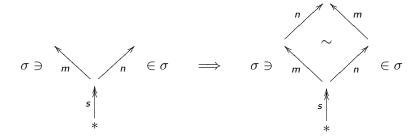


• Receptive: for every Opponent move m



Definition of deterministic strategy

• for every Player move m



Functoriality of relationality

Functoriality:

$$(\sigma; \tau)^{\circ} = \sigma^{\circ}; \tau^{\circ}$$

Livelocks/deadlocks avoided by adding payoff on paths.

We get a faithful strong monoidal functor from Games to Rel.

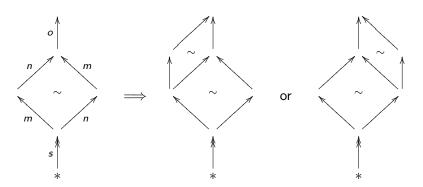
Part V

Further work

Recovering alternating innocence

The subcategory of alternating innocent strategies:

- games are alternating
- for every Opponent moves m and n, and Player move o,



Summary

Four interactive paradigms:

- 1 small steps (sequential)
- 2 big steps (sequential by clusters of moves)
- 3 dynamic positionality (closure operators)
- 4 static positionality (halting positions)

What's next?

 Construct a model of Linear Logic in which every connective is interpreted by a move, based on a lax and unbiased monoidal category with n-ary tensor products:

$$(A_1 \otimes \cdots \otimes A_n)$$

and a 2-categorical notion of cartesian product.

Reconstruct semantically focalization and correctness criteria.

$$(A_1 \otimes \cdots \otimes A_k) \otimes (A_{k+1} \otimes \cdots \otimes A_n) \quad \mapsto \quad (A_1 \otimes \cdots \otimes A_n)$$

• Exhibit truly concurrent models of concurrent languages.