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I'm presenting here a joint work with PAM. We are building a game semantic
model of linear logic where both games and strategies are possibly non-
alternating. In contrast to mainstream game semantics which is usually
alternating. The main difficulty here is to provide a satisfactory notion
of innocence in this new framework. The usual notion of innocence relies
on the notion of view which requires alternating plays to work (in its usual
formulation). The first point we should address is: what is a satisfactory
notion of innocence?

Implementations of conjunction

Let’s first briefly recall what is the usual (HO-style) alternating model and
why the wish to explore a non-alternating setting arises naturally. Here,
formulas are interpreted by arenas, which are trees corresponding to the
syntax of the formula and proofs are interpreted as strategies which are
made of plays — that is explorations of the tree of the formula starting from
the root. Usually, plays are represented as pointed strings. ['ve figured here
a play in one possible implementation of the conjuction function which
computes its result by first looking at its first argument and then its second
argument.

Describe the example: environment — query the arguments

Similarly, right conjuction.



However, we would like to have a continuum between those two im-
plementation i.e. have a strategy whose behaviour is in between those im-
plementations. And actually, the parallel implementation of the conjuction
arises naturally in computer science. The parallel implementation would
query both its arguments, then wait for both answers and then give the re-
sult. This play is non-alternating! Here since we want to consider only
sequences of atomic moves, we represent the situtation where both argu-
ments are queried at the same time by the two stratgies ¢; - ¢2 / g2 - ¢1 and
the information that we can have “everything in between” (that is we can
“deform” one play into the other within the strategy).

...in transition system

Let us shift from this presentation (which is particular to game semantics) to
the more usual presentation in transition systems. Arenas will be presented
as a graph with an initial position and strategies will be set of plays — that
is set of paths in those graphs starting from the initial position. Here, by
position we mean a vertex of the graph of the game.

Describe the plays.

The parallel implementation of the conjuction can query its arguments in
both orders (left-right / right-left) and even simultaneously. The point is
that the environment is asynchronous and thus does not make a difference.
So from an interactive point of view, they are like the strategy which would
ask really simultaneously the value of both of its arguments. It is interesting
to distinguish between a strategy that can incidently play both ¢; - g2 and
¢2 - 1 and the strategy which can really play the moves ¢; and ¢y in parallel.
We therefore add a 2-dimensional information: we represent the case q1/|qo
by adding an homotopy tile. Our graphs will be equipped with an equiv-
alence relation between paths and two paths will be homotopic if intuitively
one can be obtained from the other by permuting independent moves. This
enables us to imagine a connection between our work and the study of geo-
metric properties of spaces modulo homotopy [Eric Goubalt, Marco Grandis,
Emmanuel Haucourt] (geometry of concurrency). mdeed, playing two moves a and b in
parallel can be represented as playing a - b or b - a (the extremal sequentializations) or “something in between”. This

“something is between” can be thought as the ability to deform continuously a - b into b - a within the strategy.



Non-alternation in LL

Formulas in linear logic are alternating only after focalization. For instance,
this formula contains two positive connectives and a proof of it will start
with two Player moves corresponding to the two connectives (it won’t be
alternating). We are interested in studying semantically the process of
focalization. Thus, we need to consider at the same time alternating and
non-alternating games.

1 What is innocence?

In order to propose a definition of innocence in our non-alternating setting,
it is good to think about what is innocence in the usual alternating setting.
We select here three properties of innocence in alternating games which
we believe are the fundamental properties of innocence: they characterize
the interactive behaviour of proofs. Then later on, we will try to keep those
three fundamental properties in our non-alternating games.

Order

An arena is a tree and is threfore a partial order on the moves. By full
abstraction, innocent strategies correspond to Bohm trees and therefore to
partial orders too. As a partial order, they refine the order of their type
(they are more sequential).

Positionality

Ezplain. Two plays with homotopic histories (modulo permutation of
independent moves) have the same future.

Relationality

Explain halting positions. We can recover innocent strategies from their sets
of halting positions.

The operation which to a game associates its positions (the vertices of
the graph) and to an innocent strategy associates its set of halting position
can be extended as a functor from the game model of innocent strategies to
the relational model of linar logic. Commutative diagram. Functoriality has



first been achieved [Martin Hyland, Andrea Schalk] but the novelty here is
that the functor is striong monoidal.

If o is a strategy on A — B, a position of ¢ is a pair made of a position
of A and a position of B. The set of halting positions of ¢ can therefore
be seen as a relation between the positions of A and the positions of B.
Functoriality of the operation (—)° tells us that dynamic composition (the
usual composition of strategies) corresponds to the static composition (the
relational composition on positions).

Aim

We now propose a tentative definition of innocence in our non-alternating
setting, capturing the behaviours of proofs as non-alternating strategies.
Our definition is based on a series of diagrammatic axioms — that is, we

impose some local commutation of moves in the strategies — from which we
deduce the three fundamental properties of innocence.

2 The Cube Property

Describe the order. Every partial order, generates a graph, the positional
graph, whose nodes are the downward closed subsets of the order. We go
from a position x to a position y by adding an element a to . Paths starting
from * are linearizations of the order. If we think of the order as an arena,
the positional graph will be the graph of the underlying game. If we think
of the order as a Bohm tree, the paths in the graph starting from % will be
the plays in the innocent strategy.

Observation: the Cube Property is satisfied in such graphs. Intuition:
the three moves are pairwise independents.

The converse is also true: to every pointed graph satisfying the Cube
Property, we can associate an order which generates the graph by the method
we described.

Braids

By Poincaré duality [John Baez] we get Yang-Baxter (braids). Draw the
duality. If we orient this equation in one way or the other, we get a confluent
rewriting system [Yves Lafont].



Union

Suppose that s-s’ and t-t' are two homotopic paths. We can go from s- s’ to
t-t' by a “chaotic” sequence of permutation tiles. If we apply our rewriting
system the we obtain a plane square making the whole diagram looking like
a “big version of the cube”. This computes in fact the pushout of s and ¢ (in
the category of prefixes of s - s’ modulo homotopy).

In fact, the prefixes of a path f modulo homotopy are a partial order. The
construction that we have just shown, enables us to compute the union of
two paths (and dually we can compute the intersection of two paths) in this
category. Moreover, this order category can be shown to be a distributive
lattice.

By Birkhoff theorem, it is therefore generated by an order on its prime
elements, which in that case are the moves. Any homotopy class [f] is char-
acterized by a partial order on the moves. A path g is homotopic to f if and
only if it is a linearization of this order.

3 From sequentiality to positionality

By sequentiality here, we mean the definition of a strategy as a set of
sequences.

Let us recap our setting. Games = 2-dimentional graphs (that is graphs
equipped with an equivalence relation on paths) + an initial position. The
graphs are required to satisfy the Cube Property: they are locally generated
by a partial order which corresponds to a generalized syntax for formulas. A
strategy is, as usual, a non-empty set of plays which is closed under prefix.
We now show how to impose further properties on those strategies in order for
them to satisfy the three properties mentionned before, which characterize
innocence.

We want our strategies to be positional which means that they should be
the set of paths starting from the initial from position of some subgraph of
the game. We moreover want this subgraph to be somehow characterized by
a partial order on the moves. We therefore impose some further properties
on our graphs.

e The Cube Property (now expressed on set of plays instead of graphs).

e Two moves compatible in a game are compatible inside the strategy



(in terms of rewriting theory, a strategy is as locally confluent as the
underlying game).

e Extension property: if s-m-n is a path in o that I can extent by a path
u and the path s-n-m (obtained from s-m - n by permutation of the
independent moves m and n) is still in o, then I can also extend the
path s-n-m by u and the result is still in o. The future of a strategy
depends on its past but modulo homotopy (that is modulo permutation
of independent moves).

We can show that strategies statisfying those three diagrammatic condi-
tions are positional. They are the sets of plays of a subgraph of the game
and we can even characterize the subgraphs generating those strategies: the
subgraphs satisfying the two dual conditions of preservation of compatibility.

4 From positionality to relationality

The previous conditions enables us to extend the two first properties of inno-
cence to non-alternating strategies. Now we would like to recover relational-
ity.

The halting positions are the positions where the strategy has noting
to play (it is either waiting for an Opponent move or cannot play anything at
all anymore). Relationality means that innocent strategies should be charac-
terized by those complete positions (we should be able to recover an innocent
strategy from its set of halting positions). Another way to see this is that in-
nocent strategies are closure operators which to a position x associates the
least halting position containing x. When two strategies are interacting, they
start from the initial position * and alternatively complete the position until
they reach an agreement. This is reminiscent of previous work [Paul-André
Mellies, Samson Abramsky].

In order for this to be possible, our strategies should have some étiquette.
That is they should behave well according to basic principles of asynchrony
in order for the composition to be possible.

e Courtesy: a strategy should be willing to delay what is has to play in
order to let the other strategy play during an interaction. = let the
other people go through the door before yourself.

e Receptivity: a strategy is always listening to its environment.
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e As usual in games semantics, our strategies should also be determin-
istic. In our asynchronous setting, this is expressed by the fact that
Player move should be compatible with other moves: a Player move
cannot change the current slice (in LL terms).

We can define a notion of composition on our strategies as usual by
parallel composition and hiding. Relationality also says that this “dynamic”
composition should correspond to the “static” composition (the relational
composition on halting positions). It can be observed that it does not im-
mediately works. The composition can go wrong for two reasons: there can
either be a livelock (the strategies start an infinite chattering) or a deadlock
(“please go first — no you please go first — ...”). This is solved by adding
payoffs on paths [Martin Hyland, Luke Ong, 92, fairness]. You either win
or loose at a position. By payoff on infinite positions we can avoid livelocks
and by payoff on finite positions, we can force a player to play something
and thus avoid deadlocks. With those conditions, the operation which to
an innocent strategy associates its set of halting positions becomes a strong
monoidal functor between our game model of non-alternating games and
strategies and the usual relational model of LL.

5 Further work

One reassuring fact is that we can recover the usual alternating game model
of innocent strategies as a subcategory of our model by restricting to alter-
nating games and strategies which satisfy some properties (a Player move is
justified by at most one Opponent move).

We can construct a game model in which every connective is interpreted
as a move. A categorical structure arises naturally: it is a lax and unbiased
category. This means that you have n-ary tensors. We can therefore represent
interaction by clusters of moves. This gives therefore a framework to study
focalization.

Generalize this work to concurrent languages (m-calculus, concurrent
algol /ML, etc.).



