Asynchronous innocence

Samuel Mimram

Équipe PPS, CNRS, Université Paris 7 (joint work with Paul-André Melliès)

GEOCAL, 20th June 2005

Game theoretical semantics

- We study logic from a dynamic point of view: interaction
- We try to recover the syntax from the semantics
- We want our model to be
 - general
 - concurrent
 - natural / elegant
- Disclaimer: this is a work in progress

Main features

- Games played on graphs (Mazurkiewicz traces)
- A diagrammatic characterization of innocence
- A positional characterization of innocent strategies
- A general model of interaction

Road map

- 1 Pointer games
- 2 Asynchronous games + sequential strategies
- **3** Asynchronous games + concurrent strategies

Usual (pointer) games

• A strategy is a set of plays

Innocence

Towards a more general framework Games on event structures

• Games are now played event structures: (M, \preceq)

Figure: $\mathbb{B} \otimes \mathbb{B}$: trees vs dags

• + a polarization function: $\lambda : M \rightarrow \{-1, +1\}$

Towards a more general framework Positions

- Position: finite compatible downward closed subset of M
- Positional graph G(M):
 - positions: *x*, *y*, ... of *M*
 - arrows: $x \xrightarrow{m} x + \{m\}$

Diagrammatic innocence: backward consistency

Diagrammatic innocence: forward consistency

Positionality

A strategy is positional when for every two plays $s_1, s_2 : * \twoheadrightarrow x$

 $s_1 \in \sigma \text{ and } s_2 \in \sigma \text{ and } s_1 \cdot t \in \sigma \quad \Rightarrow \quad s_2 \cdot t \in \sigma$

Innocent strategies are positional

- A strategy σ is characterized by σ°
- Composition can be seen as a relational composition on positions:

$$(\sigma; \tau)^\circ = \sigma^\circ; \tau^\circ$$

 $(\rightarrow \text{monoïdal functor to } Rel)$

Our work

- We now play on asynchronous graphs (instead of event structures).
- No more O/P alternation.
- We seek connections with existing models.

Asynchronous graphs

Let *M* be a set of *moves*.

Definition

An *asynchronous graph* is a graph whose edges are labeled by moves and which satisfies:

- *linearity*: at most one occurrence of a move in a path
- determinism:

(and the dual)

Towards true concurrency: homotopy

Towards true concurrency: homotopy

What is really meaningful is not the precise order of the moves but what moves were played in the path.

 We will work with [G] which is the free category generated by G whose arrows are quotiented by ~G.

A diagrammatical characterization of innocence

Definition

An asynchronous graph is called *innocent* when it is:

• *stable / costable* (cube property):

Residual techniques

• Arrows in $[\mathcal{G}]$ are epi and mono

$$h_1 \cdot f \cdot h_2 \sim_{\mathcal{G}} h_1 \cdot g \cdot h_2 \Rightarrow f \sim_{\mathcal{G}} g$$

The lattice of factorizations of a path

• A factorization of a path:

• The catergory of factorizations:

- Ordering factorizations: $(f_1, f_2) \preceq (g_1, g_2)$ iff f_1 is a prefix of g_1 modulo $\sim_{\mathcal{G}}$
- Property: $f \leq g$ iff every move in f is also a move in g
- Property: the factorizations of a path is a distributive lattice

The lattice of factorizations of a path

• Intersection of two paths

The lattice of factorizations of a path

• Intersection of two paths

 ⇒ structure of *distributive lattice* of the prefixes of a paths (ordered by inclusion of the set of moves)

Strategies

Take one distinguished vertex * in a costable asynchronous graph. Definition

A strategy is a set of paths starting from *, closed under prefix.

Definition

An *innocent strategy* is a strategy which is:

• deterministic

closed under local union

• stable / costable

Positionality

• An innocent strategy σ is a subgraph of \mathcal{G} which is innocent.

Polarizing games!

- Now, we polarize the moves: $\lambda: M \to \{-1, +1\}$
- A game: $A = (M_A, \mathcal{G}_A, \lambda_A)$
- Some more conditions are now required to hold for innocent strategies

 \approx every O-move points to the preceding move in a view

Complete positions

- A position is said to be *complete* when no more player move can be played.
- σ° : complete positions

Positionality

- An innocent strategy σ is characterized by its complete positions σ°
- If we add a payoff condition on strategies, we then have

$$(\sigma; \tau)^\circ = \sigma^\circ; \tau^\circ$$

(\approx acyclicity criterion on nets?)

• And now, two innocent strategies compose

Recovering other game models

What's next

- Characterizing the usual game models in our framework: sequential games, L-nets, ...
- Full completeness
- Pinch holes in the homotopy to have models of concurrent languages: CCS, π-calculus, ...