
Algebraic Tools in Game Semantics

Samuel Mimram

CEA LIST

Groupe de Travail Jeux
26 October 2010

1 / 34

Game Semantics

Lorenzen: a formula can be seen as a game such that

a formula is provable
⇔

there exists a winning strategy

2 / 34

Game Semantics

Lorenzen: a formula can be seen as a game such that

a formula is provable
⇔

there exists a winning strategy

∀x . ∃y . y = x

2 / 34

Game Semantics

Lorenzen: a formula can be seen as a game such that

a formula is provable
⇔

there exists a winning strategy

∀x . (x 6= 0 ⇒ (∃y . x = y + 1))

2 / 34

Proofs, programs and strategies

The Curry-Howard correspondence indicates that

proof ∼= typed programs

So, the question: is the following formula provable?

int list ⇒ int sorted_list

should rather be: what are the proofs of the formula?

What are the winning strategies?

3 / 34

Proofs, programs and strategies

The Curry-Howard correspondence indicates that

proof ∼= typed programs

So, the question: is the following formula provable?

int list ⇒ int sorted_list

should rather be: what are the proofs of the formula?

What are the winning strategies?

3 / 34

Proofs, programs and strategies

The Curry-Howard correspondence indicates that

proof ∼= typed programs

So, the question: is the following formula provable?

int list ⇒ int sorted_list

should rather be: what are the proofs of the formula?

What are the winning strategies?

3 / 34

Denotational Semantics
Proofs (or programs) are naturally organized in categories

• objects: formulas A,B, . . .

• morphisms: π : A→ B are proofs π : A⇒ B

• composition ρ ◦ π : A→ C of π : A→ B and ρ : B → C :

π

A ` B

ρ

B ` C

A ` C
(Cut)

• identities idA : A→ A:

A ` A
(Ax)

Similarly, one can often build categories whose objects are game
and morphisms are strategies.

4 / 34

Denotational Semantics
Proofs (or programs) are naturally organized in categories

• objects: formulas A,B, . . .

• morphisms: π : A→ B are proofs π : A⇒ B

• composition ρ ◦ π : A→ C of π : A→ B and ρ : B → C :

π

A ` B

ρ

B ` C

A ` C
(Cut)

• identities idA : A→ A:

A ` A
(Ax)

Similarly, one can often build categories whose objects are game
and morphisms are strategies.

4 / 34

Denotational Semantics

A game semantics is given by a functor

F : Proofs → Games

i.e.

• a formula A is interpreted by a game F (A),

• a proof π : A→ B is interpreted as a strategy
F (π) : F (A)→ F (B)

such that composition and identities are preserved by the
interpretation.

A semantics is fully complete when the functor is surjective.

5 / 34

Denotational Semantics

A game semantics is given by a functor

F : Proofs → Games

i.e.

• a formula A is interpreted by a game F (A),

• a proof π : A→ B is interpreted as a strategy
F (π) : F (A)→ F (B)

such that composition and identities are preserved by the
interpretation.

A semantics is fully complete when the functor is surjective.

5 / 34

The structure of logics

What is the causality induced by first-order connectives?

1 we introduce a game semantics
(formula = game, proof = strategy)

2 we define a presentation of the category of games

6 / 34

7 / 34

Unifying points of view

Logics
invariants

of computationOO

��

Game Semantics
dynamics

of computation

vv

66mmmmmmmmmmmmmm
Algebra
structure

of computation

((

hhQQQQQQQQQQQQQQ

8 / 34

First-order propositional logic

• Formulas:

A ::= ∃x .A | ∀x .A | A ∧ A | A ∨ A | . . .

• Rules:

Γ ` P,∆

Γ ` ∀x .P,∆(∀)
Γ ` P[t/x],∆

Γ ` ∃x .P,∆ (∃)

(with x 6∈ FV(Γ,∆))

Γ ` A,∆ Γ ` B,∆

Γ ` A ∧ B,∆
(∧)

Γ ` A,B,∆

Γ ` A ∨ B,∆
(∨)

...

9 / 34

First-order propositional logic

• Formulas:

A ::= ∃x .A | ∀x .A | A ∧ A | A ∨ A | . . .

• Rules:

Γ ` P,∆

Γ ` ∀x .P,∆(∀)
Γ ` P[t/x],∆

Γ ` ∃x .P,∆ (∃)

(with x 6∈ FV(Γ,∆))

Γ ` A,∆ Γ ` B,∆

Γ ` A ∧ B,∆
(∧)

Γ ` A,B,∆

Γ ` A ∨ B,∆
(∨)

...

9 / 34

Causality in proofs

π

Γ ` A,B,∆

Γ ` A, ∀y .B,∆(∀)

Γ ` ∀x .A, ∀y .B,∆ (∀)

π

Γ ` A,B,∆

Γ ` ∀x .A,B,∆(∀)

Γ ` ∀x .A,∀y .B,∆ (∀)

If x 6∈ FV(t)!

10 / 34

Causality in proofs

π

Γ ` A,B,∆

Γ ` A, ∀y .B,∆(∀)

Γ ` ∀x .A, ∀y .B,∆ (∀)

π

Γ ` A,B,∆

Γ ` ∀x .A,B,∆(∀)

Γ ` ∀x .A, ∀y .B,∆ (∀)

If x 6∈ FV(t)!

10 / 34

Causality in proofs

π

Γ ` A[t/x],B[t ′/y],∆

Γ ` A[t/x], ∃y .B,∆ (∃)

Γ ` ∃x .A,∃y .B,∆ (∃)

π

Γ ` A[t/x],B[t ′/y],∆

Γ ` ∃x .A,B[t ′/y],∆
(∃)

Γ ` ∃x .A, ∃y .B,∆ (∃)

If x 6∈ FV(t)!

10 / 34

Causality in proofs

π

Γ ` A[t/x],B,∆

Γ ` A[t/x], ∀y .B,∆(∀)

Γ ` ∃x .A,∀y .B,∆ (∃)

π

Γ ` A[t/x],B,∆

Γ ` ∃x .A,B,∆ (∃)

Γ ` ∃x .A, ∀y .B,∆ (∀)

If x 6∈ FV(t)!

10 / 34

Causality in proofs

π

Γ ` A,B[t/y],∆

Γ ` A, ∃y .B,∆ (∃)

Γ ` ∀x .A, ∃y .B,∆ (∀)

π

Γ ` A,B[t/y],∆

Γ ` ∀x .A,B[t/y],∆
(∀)

Γ ` ∀x .A,∃y .B,∆ (∃)

If x 6∈ FV(t)!

10 / 34

Causality in proofs

π

Γ ` A,B[t/y],∆

Γ ` A, ∃y .B,∆ (∃)

Γ ` ∀x .A, ∃y .B,∆ (∀)

π

Γ ` A,B[t/y],∆

Γ ` ∀x .A,B[t/y],∆
(∀)

Γ ` ∀x .A,∃y .B,∆ (∃)

If x 6∈ FV(t)!

10 / 34

Causality in proofs

Dependencies induced by proofs are of the form

∀x ++ ∃y

where the witness t given for y has x as free variable.

11 / 34

Games

Formulas

A = ∃x .A | ∀x .A | A ∧ A | A ∨ A | . . .

will be interpreted as games (M, λ,≤):

• a set M of moves,

• a partial order ≤ on M called causality,

• a function λ : M → {∀, ∃} indicating polarity
(∀: Opponent, ∃: Player)

12 / 34

Games

Formulas

A = ∃x .A | ∀x .A | A ∧ A | A ∨ A | . . .

∀x .∀y .(∀z .P ∨ ∃z ′.Q)

∀ ∃

∀

^^ @@

∀

OO

12 / 34

Games

Formulas

A = ∃x .A | ∀x .A | A ∧ A | A ∨ A | . . .

∀x .∀y .(∀z .P ∨ ∃z ′.Q)

∀ ∃

∀

^^ @@

∀

OO

12 / 34

Strategies

strategy = dependency relation on the moves of the game

` P,Q[t/z ′]

` P,∃z ′.Q (∃)

` ∀z .P,∃z ′.Q (∀)

` ∀y .(∀z .P ∨ ∃z ′.Q)
(∀)

` ∀x .∀y .(∀z .P ∨ ∃z ′.Q)

(∀)

∀ ∃

∀

^^ @@

∀

OO

13 / 34

Strategies

strategy = dependency relation on the moves of the game

` P,Q[t/z ′]

` P,∃z ′.Q (∃)

` ∀z .P,∃z ′.Q (∀)

` ∀y .(∀z .P ∨ ∃z ′.Q)

(∀)

` ∀x .∀y .(∀z .P ∨ ∃z ′.Q)
(∀)

∀ ∃

∀

^^ @@

∀

OO

13 / 34

Strategies

strategy = dependency relation on the moves of the game

` P,Q[t/z ′]

` P,∃z ′.Q (∃)

` ∀z .P, ∃z ′.Q

(∀)

` ∀y .(∀z .P ∨ ∃z ′.Q)
(∀)

` ∀x .∀y .(∀z .P ∨ ∃z ′.Q)
(∀)

∀ ∃

∀

^^ @@

∀

OO

13 / 34

Strategies

strategy = dependency relation on the moves of the game

` P,Q[t/z ′]

` P, ∃z ′.Q

(∃)

` ∀z .P, ∃z ′.Q (∀)

` ∀y .(∀z .P ∨ ∃z ′.Q)
(∀)

` ∀x .∀y .(∀z .P ∨ ∃z ′.Q)
(∀)

∀

∃

∀

^^ @@

∀

OO

13 / 34

Strategies

strategy = dependency relation on the moves of the game

` P,Q[t/z ′]

` P, ∃z ′.Q (∃)

` ∀z .P, ∃z ′.Q (∀)

` ∀y .(∀z .P ∨ ∃z ′.Q)
(∀)

` ∀x .∀y .(∀z .P ∨ ∃z ′.Q)
(∀)

∀ ∃

∀

^^ @@

∀

OO

13 / 34

Strategies

strategy = dependency relation on the moves of the game

` P,Q[t/z ′]

` P, ∃z ′.Q (∃)

` ∀z .P, ∃z ′.Q (∀)

` ∀y .(∀z .P ∨ ∃z ′.Q)
(∀)

` ∀x .∀y .(∀z .P ∨ ∃z ′.Q)
(∀)

∀ ++ ∃

∀

^^ @@

∀

OO

LL

Free variables of t: {x , z}

13 / 34

Strategies

strategy = dependency relation on the moves of the game

` P,Q[t/z ′]

` P, ∃z ′.Q (∃)

` ∀z .P, ∃z ′.Q (∀)

` ∀y .(∀z .P ∨ ∃z ′.Q)
(∀)

` ∀x .∀y .(∀z .P ∨ ∃z ′.Q)
(∀)

∀ ∃

∀

^^ @@ HH

∀

OO

Free variables of t: {y}

13 / 34

Strategies

strategy = dependency relation on the moves of the game

` P,Q[t/z ′]

` P, ∃z ′.Q (∃)

` ∀z .P, ∃z ′.Q (∀)

` ∀y .(∀z .P ∨ ∃z ′.Q)
(∀)

` ∀x .∀y .(∀z .P ∨ ∃z ′.Q)
(∀)

∀ ∃

∀

^^ @@

∀

OO

Free variables of t: ∅

13 / 34

Strategies

game A = partial order on the moves
strategy σ = relation on the moves

A strategy σ : A should moreover satisfy the following properties

1 Polarity: if m σ n then m opponent and n player move

2 Acyclicity: the relation ≤A ∪ σ is acyclic

Forbids:

14 / 34

Strategies

game A = partial order on the moves
strategy σ = relation on the moves

A strategy σ : A should moreover satisfy the following properties

1 Polarity: if m σ n then m opponent and n player move

2 Acyclicity: the relation ≤A ∪ σ is acyclic

Forbids:

14 / 34

Strategies

game A = partial order on the moves
strategy σ = relation on the moves

A strategy σ : A should moreover satisfy the following properties

1 Polarity: if m σ n then m opponent and n player move

2 Acyclicity: the relation ≤A ∪ σ is acyclic

Forbids:

∀

∃

OO UU

14 / 34

Strategies

game A = partial order on the moves
strategy σ = relation on the moves

A strategy σ : A should moreover satisfy the following properties

1 Polarity: if m σ n then m opponent and n player move

2 Acyclicity: the relation ≤A ∪ σ is acyclic

Forbids:

∀

		
∃

OO

and

∀

��>>>>>>> ∀

���������

∃

OO

∃

OO

but not

∃ ∃

∀

OO @@�������
∀

^^>>>>>>>

OO

14 / 34

Strategies

game A = partial order on the moves
strategy σ = relation on the moves

A strategy σ : A should moreover satisfy the following properties

1 Polarity: if m σ n then m opponent and n player move

2 Acyclicity: the relation ≤A ∪ σ is acyclic

Forbids:

∀

		
∃

OO

and

∀

��>>>>>>> ∀

���������

∃

OO

∃

OO

but not

∃ ∃

∀

OO @@�������
∀

^^>>>>>>>

OO

14 / 34

A first step
We handle the case where connectives in formulas occur in leaves:

∀x1.∀x2.∃x3.∀x4.∀x5. ... P(xi1 , . . . , xik)

so games will be filiform (= total orders)

...

∀

OO

∀

OO

∃

OO

∀

OO

∀

OO

15 / 34

Interpreting proofs
A formula

A

is interpreted by a game
JAK

Example

The formula
∀x .∀y .P

is interpreted by the game
∀

∀

OO

16 / 34

Interpreting proofs
A sequent

A ` B

is interpreted by a game

JAK∗ ` JBK

Example

The sequent
∀x .∀y .P ` ∀z .P

is interpreted by the game

∃

∃

OO

∀
16 / 34

Interpreting proofs
A proof

...

A ` B

is interpreted by a strategy σ on the game

JAK∗ ` JBK
Example

The proof is interpreted by the strategy

z = z ` z = z

∀y .z = y ` z = z

∀x .∀y .x = y ` z = z

∀x .∀y .x = y ` ∀z .z = z

∃

∃

OO

∀oo

^^>>>>>>>

16 / 34

A monoidal category of games

We thus build a monoidal category Games whose

• objects A are filiform games

• morphisms σ : A→ B are strategies on A∗ ` B

Remark
It is not obvious that the acyclicity condition of strategies is
preserved by composition.

17 / 34

A monoidal category of games

We thus build a monoidal category Games whose

• objects A are filiform games

• morphisms σ : A→ B are strategies on A∗ ` B

Remark
It is not obvious that the acyclicity condition of strategies is
preserved by composition.

17 / 34

So what?

This semantics is nice but

• why do strategies compose?

• what does it tell us about the structure of dependencies?

• are all the strategies definable (i.e. come from proofs)?

We need algebraic tools!

18 / 34

Presenting monoids

A finite description of a monoid can be given using a presentation:

M ∼= 〈G | R〉

with

• G : generators

• R ⊆ G ∗ × G ∗: relations

meaning that
M ∼= G ∗/ ≡

Example

N× N ∼= 〈a, b | ba = ab〉

19 / 34

Presenting monoidal categories

Similarly, we can give presentations of monoidal categories using
polygraphs [Street76, Power90, Burroni93].

We construct a polygraph presenting the category Games.

20 / 34

The simplicial category

The simplicial category ∆ is the category whose

• objects are sets [n] = {0, 1, . . . , n − 1} with n ∈ N,

• morphisms are increasing functions

21 / 34

The simplicial category

The simplicial category ∆ is the category whose

• objects are sets [n] = {0, 1, . . . , n − 1} with n ∈ N,

• morphisms are increasing functions

It is a category: horizontal composition (◦)

3

@@@@@@@

2
OOOOOO

1 1 : [4]→ [2]

0 0

21 / 34

The simplicial category

The simplicial category ∆ is the category whose

• objects are sets [n] = {0, 1, . . . , n − 1} with n ∈ N,

• morphisms are increasing functions

It is a category: horizontal composition (◦)

3

@@@@@@@

2
OOOOOO 2

1 1 1

oooooo
1 : [4]→ [2]→ [3]

0 0 0 0

21 / 34

The simplicial category

The simplicial category ∆ is the category whose

• objects are sets [n] = {0, 1, . . . , n − 1} with n ∈ N,

• morphisms are increasing functions

It is a category: horizontal composition (◦)

3
ZZZZZZZZZZZZZZZZZZ

2 2

1

eeeeeeeeeeeeeeeeee 1 : [4]→ [3]

0 0

21 / 34

The simplicial category

The simplicial category ∆ is the category whose

• objects are sets [n] = {0, 1, . . . , n − 1} with n ∈ N,

• morphisms are increasing functions

This category is monoidal: vertical composition (⊗)

1

0

⊗

3

CCCCCCCC

2
PPPPPPP

1 1 : [4]→ [2]

0 0

21 / 34

The simplicial category

The simplicial category ∆ is the category whose

• objects are sets [n] = {0, 1, . . . , n − 1} with n ∈ N,

• morphisms are increasing functions

This category is monoidal: vertical composition (⊗)

1

0

nnnnnn
0 : [1]→ [2]

⊗ ⊗
3

CCCCCCCC

2
PPPPPP

1 1 : [4]→ [2]

0 0

21 / 34

The simplicial category

The simplicial category ∆ is the category whose

• objects are sets [n] = {0, 1, . . . , n − 1} with n ∈ N,

• morphisms are increasing functions

This category is monoidal: vertical composition (⊗)

1

1

4
QQQQQQ

3

??????? 3

2
OOOOOO 2 : [5]→ [4]

1 1

0 0

21 / 34

A theory of monoids
The category ∆ contains two generating morphisms:

µ : [2]→ [1] and η : [0]→ [1]

1

0

0

0

satisfying

=

µ ◦ (id[1] ⊗ µ) = µ ◦ (µ⊗ id[1])

and

= =

µ ◦ (η ⊗ id[1]) = id[1] = µ ◦ (id[1] ⊗ η)

22 / 34

A theory of monoids
The category ∆ contains two generating morphisms:

µ : [2]→ [1] and η : [0]→ [1]

1

0

0

0

satisfying

=

µ ◦ (id[1] ⊗ µ) = µ ◦ (µ⊗ id[1])

and

= =

µ ◦ (η ⊗ id[1]) = id[1] = µ ◦ (id[1] ⊗ η)

22 / 34

A theory of monoids
The category ∆ contains two generating morphisms:

µ : [2]→ [1] and η : [0]→ [1]

1

0

0

0

satisfying

=

µ ◦ (id[1] ⊗ µ) = µ ◦ (µ⊗ id[1])

and

= =

µ ◦ (η ⊗ id[1]) = id[1] = µ ◦ (id[1] ⊗ η)
22 / 34

A theory of monoids

µ and η generate ∆

4
QQQQQQ

3

BBBBBBB 3

2
QQQQQQ 2

1 1

0 0

4

3 3

2

2 1

1 0

0

23 / 34

A theory of monoids

µ and η generate ∆

4
QQQQQQ

3

BBBBBBB 3

2
QQQQQQ 2

1 1

0 0

4

3 3

2

2 1

1 0

0

23 / 34

A presentation of the category ∆
The category ∆ is monoidally isomorphic to the free monoidal
category on the two generators

µ : [2]→ [1] and η : [0]→ [1]

1

0

0

0

quotiented by the relations

=

and

= =
24 / 34

The game theory

strict monoidal functor ∆→ C
=

monoid in C

Mon(C) ∼= StrMonCat(∆, C)

25 / 34

The game theory

strict monoidal functor Games→ C
=

?????

25 / 34

The game theory

strict monoidal functor Games→ C
=

?????

The corresponding theory is a polarized variant of
bicommutative bialgebras

25 / 34

Presentations
The theory of monoids

The simplicial category ∆: increasing functions.

• Generators:

and

• Relations:

=

= =

26 / 34

Presentations
The theory of symmetries

The category Bij: bijections.

• Generators:

• Relations:

=

=

26 / 34

Presentations
The theory of commutative monoids

The category F: functions.

• Generators:

• Relations: monoid + symmetry +

=

. . .

26 / 34

Presentations
The theory of commutative comonoids

The category Fop: “cofunctions”.

• Generators:

• Relations:

. . .

26 / 34

Presentations
The theory of bicommutative bialgebras

The category Mat(N): N-valued matrices.

• Generators:

• Relations: commutative monoid + commutative comonoid +

= =

= =

26 / 34

Presentations
The theory of relations

The category FRel: relations

• Generators:

• Relations: bicommutative bialgebra which is qualitative:

=

26 / 34

The category Games

The category Games is the category whose

• objects are integers

[n] = {0, 1, 2, . . . , n − 1}
together with a polarization function

λ : [n]→ {∃,∀}

• morphisms are strategies.

3

∀

2

OO

∃

1

OO

∃

0

OO

∀

27 / 34

The category Games

The category Games is the category whose

• objects are integers

[n] = {0, 1, 2, . . . , n − 1}
together with a polarization function

λ : [n]→ {∃,∀}

• morphisms are strategies.

∀

∀

∃

∃

∀

∃

∃

∀

27 / 34

The category Games

The category Games is the category whose

• objects are integers

[n] = {0, 1, 2, . . . , n − 1}
together with a polarization function

λ : [n]→ {∃,∀}

• morphisms are strategies.

∀ ∀

∃ ∃

∀ ∃

∃ ∀

27 / 34

The category Games

The category Games is the category whose

• objects are integers

[n] = {0, 1, 2, . . . , n − 1}
together with a polarization function

λ : [n]→ {∃,∀}
• morphisms are strategies.

∀ ∀

∃

VV

// ∃

∀ ∃

∃

77oooooooooo

??�������������
∀

ggOOOOOOOOOO

27 / 34

The structure of wires

∀ ∀

∃

VV

// ∃

∀ ∃

∃

77oooooooooo

??�������������
∀

ggOOOOOOOOOO

∀ ∀

∃ ∃

∀ ∃

∃ ∀

28 / 34

The structure of wires

∀ ∀

∃

VV

// ∃

∀ ∃

∃

77oooooooooo

??�������������
∀

ggOOOOOOOOOO

∀ ∀

∃ ∃

∀ ∃

∃ ∀

28 / 34

The presentation of Games
Two objects ∃ and ∀ with
• five generators

∃
∃

∃
∃

∃ ∃

∃ ∃

∃
∃

∃
∃

inducing a structure of qualitative bicommutative bialgebra,

• a duality ∃ a ∀:

∃

∀
and

∀

∃
such that

∃

∀

∃

= ∃ ∃ and

∀

∃

∀

= ∀ ∀

(the axioms for adjunctions)

29 / 34

The presentation of Games
Two objects ∃ and ∀ with

• five generators

• a duality ∃ a ∀:

∃

∀
and

∀

∃

such that

∃

∀

∃

= ∃ ∃ and

∀

∃

∀

= ∀ ∀

(the axioms for adjunctions)

29 / 34

The theory Games

That’s it!

strict monoidal functor Games→ C
=

dual pair of bicommutative qualitative bialgebras

Games(C) ∼= StrMonCat(Games, C)

30 / 34

Technical byproducts

From this presentation we deduce that

• strategies do compose
(the acyclicity condition is preserved by composition)

• strategies are definable
(i.e. are the interpretations of proofs)

31 / 34

Abstract methodology

We have replaced an external definition of the category Games:

• category of relations which satisfy conditions
(polarity + acyclicity)

• restricting

• global correctness

by an internal definition:

• presentation of the category

• generating

• local correctness

32 / 34

Next steps

• extend to formulas with connectives

• links with synthesis of electric circuits

• tools for computer assisted semantic analysis of programs

• . . .

33 / 34

Thanks!

Any question?

34 / 34

