(F;%INTS OF VIEW
ASYNCHRONOUS
COMPUTABILITY

Eric Goubault
Samuel Mimram
Christine Tasson
Ecole Polytechnique / IRIF

Journées du GDR Topologie Algébrique
2 décembre 2016

Asynchronous computability

| want to explain here our formulation of the major results
obtained by Herlihy et al. in the 90s on asynchronous
computability.
» What can a bunch of processes computing in parallel can
compute in the presence of failures?

» For instance, they show that the consensus cannot be solved.

» Their proofs uses geometric arguments, they construct a
simplicial complex encoding the possible states and
» characterize those which can occur and their properties
» obtain impossibility results from the fact that some maps
should preserve (n-)connectivity

» The devil lies in the details.

N

Unifying points of view
We unify different points of view on executions:

t

to

protocol complex geometric semantics
[Herlihy, .. .] [Goubault, ...]
X1 yl
(uj,si | uiuy = ujuj, sis; = sjsi)] / T
X0 e
partially commutative traces interval orders

3/86

ASYNCHRONOUS
PROTOCOLS
AND
TASKS

Asynchronous protocols
We consider here a model with n processes P;:
» each process has a local memory cell
» there is a global memory with n cells

local mem.

global mem.

Asynchronous protocols
We consider here a model with n processes P;:
» each process has a local memory cell
» there is a global memory with n cells

local mem.

global mem.

» each process alternatively does “rounds” made of
» update: write in its global memory cell
» scan: read the whole global memory and update its local cell
(immediate snapshot)

Asynchronous protocols
We consider here a model with n processes P;:
» each process has a local memory cell
» there is a global memory with n cells

local mem.

global mem.

» each process alternatively does “rounds” made of
» update: write in its global memory cell
» scan: read the whole global memory and update its local cell
(immediate snapshot)
» at any instant a process might die

Asynchronous protocols
We consider here a model with n processes P;:
» each process has a local memory cell
» there is a global memory with n cells

local mem.

global mem.

» each process alternatively does “rounds” made of
» update: write in its global memory cell
» scan: read the whole global memory and update its local cell
(immediate snapshot)
» at any instant a process might die
» and the question is: what we can compute in such a model?
(for this question we are only interested in local memories)

Asynchronous protocols

Note that
» we do not know how the processes will be scheduled

Asynchronous protocols

Note that
» we do not know how the processes will be scheduled

» they might die: we cannot tell if a process is late or dead

Asynchronous protocols

Note that
» we do not know how the processes will be scheduled
» they might die: we cannot tell if a process is late or dead

» the local memory of each process is a partial information
about the computation (called its view)

Asynchronous protocols

Note that
» we do not know how the processes will be scheduled
» they might die: we cannot tell if a process is late or dead

» the local memory of each process is a partial information
about the computation (called its view)

> we are mostly interested in local memory: it contains the
input and output values

Asynchronous protocols

Note that
» we do not know how the processes will be scheduled
» they might die: we cannot tell if a process is late or dead

» the local memory of each process is a partial information
about the computation (called its view)

> we are mostly interested in local memory: it contains the
input and output values

» the initial value for global memory is L in every cell

Coherence between views

Aset X C{(/,x) | i€ N,x €V} of local memories (= views)
(/,x) € NxV is coherent when

X = {(ih)]ielCN}

such that there is an execution leading to a local memory /.

We thus have a simplicial complex with
> vertices: views

» simplices: coherent views (result from a particular execution)

Coherence between views

Aset X C{(/,x) | i€ N,x €V} of local memories (= views)
(/,x) € NxV is coherent when

X = {(ih)]ielCN}

such that there is an execution leading to a local memory /.

We thus have a simplicial complex with
> vertices: views

» simplices: coherent views (result from a particular execution)

Each vertex has a color / € N and simplices have vertices of
different colors.

Coherence between views

With 3 processes executing one round (update then scan), we
typically obtain the following simplicial complex:

0,0LL

2,112 1,112

Notice that it is simply connected. 8,86

States

Formally, we suppose fixed a number n € N of processes and a
set V of values with

» 7 CV: input values
» O CV: output values
» | € ZNO: the undefined value / a non-participating process

9/86

States

Formally, we suppose fixed a number n € N of processes and a
set V of values with

» 7 CV: input values
» O CV: output values
» | € ZNO: the undefined value / a non-participating process

A state consists of
> | € V" the local memories
» m e V" the global memories

(always in this order)

9/86

States

Formally, we suppose fixed a number n € N of processes and a
set V of values with

» 7 CV: input values
» O CV: output values
» | € ZNO: the undefined value / a non-participating process

A state consists of
> | € V" the local memories
» m e V" the global memories

(always in this order)

The standard initial state has /; =/ and m; = L.

9/86

Protocols

A protocol 7 consists of, for 0 </ < n,
>y V=V
the values it will write in its global memory cell depending on
its local memory
> s VXV =V
the values it will write in its local memory depending on the
values of its local memory and all the global memory cells
such that

> 75, (x,m) = x for x € O
once we decide an output we don't change our mind

10 /86

Execution traces

The set of possible actions is

A = {U,‘,S/,d/|0§/<l’l}

11/86

Execution traces

The set of possible actions is
A = {U,‘,S/,d/|0§/<l’l}

The monoid A* acts on states V" x V" as follows.

11/86

Execution traces

The set of possible actions is

A = {U,‘,S/,d/|0§/<l’l}

An execution trace is a word in A* which is well-bracketed:

proji(T) € (uisi)" (e + uid))

11/86

Execution traces

The set of possible actions is

A = {U,‘,S/,d/|0§/<l’l}

An execution trace is a word in A* which is well-bracketed:

proji(T) € (usi)*(e + uid))
Given a protocol 7, its semantics
[T]r: V" x V"= V" x V"

is defined on a trace T € A* by
> [uila(l,m) = (I, mli < 7, (;)])
> [silx(/, m) = (I[i <= 7s,(f;, m)]. m)
> [di]x (1, m) = (I, m)

11/86

Execution traces

The set of possible actions is

A = {LI,‘,S,‘ |O§/<I’l}

An execution trace is a word in A* which is well-bracketed:

proji(T) € (usi)*(e + uid))
Given a protocol 7, its semantics
[T]r: V" x V"= V" x V"

is defined on a trace T € A* by
> [uila(l,m) = (I, mli < 7, (;)])
> [silx(/, m) = (I[i <= 7s,(f;, m)]. m)

11/86

Execution traces

With two processes executing one round each there are
“essentially” three traces:
> LUpSoU1Sy:
» Py does not see what Py has written
» P; sees what Py has written

12

/ 86

Execution traces

With two processes executing one round each there are
“essentially” three traces:
> LUpSoU1Sy:
» Py does not see what Py has written
» Py sees what Py has written

> U1S1UpSo:
» Py sees what P; has written
» P; does not see what Py has written

12 /86

Execution traces

With two processes executing one round each there are
“essentially” three traces:
> LUpSoU1Sy:
» Py does not see what Py has written
» Py sees what Py has written
> U1S1UpSo:
» Py sees what P; has written
» P; does not see what Py has written
> UglSpS1 / Upl1S1S0 / U1ligSoSt / UiligS1S0:
» Py sees what P; has written
» P sees what Py has written

12 /86

Execution traces

These execution traces can be represented geometrically by

Py

Uy .

P
Up S0

lpSo U151

Py

Uy .

0
g S0

lpl15051

We'll get back to this representation later

Py

Uy .

Py
Uy S0

t1 51 UpSo

on.

13 /86

Execution traces

These execution traces can be represented geometrically by

| | |
1,01 0,01

toSo 1Sy to 15051 u1s1UoSo

0,0L

1,11

We'll get back to this representation later on.

Tasks

A task 4 is a relation 8 C Z" x O" such that for every [,/ € ©
» li=_Lifand only if [/ = L,
» there exists /" € O" such that (/,/”) € © and
(I[i <= L], I"[i + L]) € ©.
We write dom © for the possible input values and codom © for
the possible output values.

14 /86

The binary consensus

In the binary consensus problem each process
» starts with a value in {0, 1}

» end with the same value, among the initial values of the alive
processes.

For instance, with n = 2, we have

© = {(bL, bL),(Lb, Lb), (bt bb), (b'b,bb)| b, b €{0,1}}

The binary consensus

In the binary consensus problem each process
» starts with a value in {0, 1}

» end with the same value, among the initial values of the alive
processes.

For instance, with n = 2, we have

© = {(bL, bL),(Lb, Lb), (bt bb), (b'b,bb)| b, b €{0,1}}

The binary quasi-consensus

In the case n = 2, we can also consider the binary
quasi-consensus, which is similar but restricts the output so that
it cannot happen that P; decides 0 and Py decide 1 at the same
time:

The way we draw tasks
Note that
» if | € dom © (the possible input values) then
I[i < L] also belongs to dom©
dom © can thus be pictured as a simplicial complex called the
input complex:

111
Vouw
0L 112
012

i.e. roughly a space made of triangles, tetrahedra, etc.
(and similarly codom © gives rise to the output complex)

The way we draw tasks
Note that
» if | € dom © (the possible input values) then
I[i < L] also belongs to dom©
dom © can thus be pictured as a simplicial complex called the
input complex:

111
Vouw
0L 112
012

i.e. roughly a space made of triangles, tetrahedra, etc.
(and similarly codom © gives rise to the output complex)

Note also that the vertices are colored by 0 </ < n:
the only active process

Tasks

A task 6 is a relation 6 C Z" x O" such that for every /,/' € ©
1. =Lifandonly if Il = L,
2. there exists I” € O" such that (/,/") € © and
(Ili <= L], I"[i « L]) € ©.
which means
1. n-simplices are in relation with n-simplices

2. the relation is compatible with faces

18/86

Solving tasks

A protocol 7 solves a task © when
» for every initial local memory / € dom®©
» for every long enough and fair execution trace T

we have /" € codom ©, where

() = [T, LL...1)

19/86

Solving tasks

A protocol 7 solves a task © when
» for every initial local memory / € dom®©
» for every long enough and fair execution trace T

we have /" € codom ©, where

() = [T, LL...1)

For instance,
» the consensus cannot be solved
» the quasi-consensus can be solved

Let's understand why.

19/86

Solving tasks
A protocol 7 solves a task © when
» for every initial local memory / € dom®©
» for every long enough and fair execution trace T
we have /' € codom ©, where

() = [T, LL...1)

For simplicity, we will suppose that /; = i initially (standard state)
and thus write [T]x instead of [T]r(01...(n—1), LL...1).

For instance,
» the consensus cannot be solved
» the quasi-consensus can be solved

Let's understand why.

19/86

A more manageable setting

In order to study tasks which can be solved by protocols we
should simplify as much as possible what we consider as

» protocols

» execution traces

20 /86

Restricting executions

It can be shown that we can, without loss of generality, restrict to
traces which are

» well-bracketed:

UglU1S1U2S0S» but not Ug Lo S1S0

21 /86

Restricting executions

It can be shown that we can, without loss of generality, restrict to
traces which are

» well-bracketed:
UglU1S1U2S0S» but not Ug Lo S1S0

» Jayered:. a process does not start a round before all other
have finished their or died

LgSo U1 S1 U1 UpSp ST but not Lig U1 Sq UpS1S0

In particular, we have a notion of round.

21 /86

Restricting executions

It can be shown that we can, without loss of generality, restrict to
traces which are

» well-bracketed:
UglU1S1U2S0S» but not Ug Lo S1S0

» Jayered:. a process does not start a round before all other
have finished their or died

LgSo U1 S1 U1 UpSp ST but not Lig U1 Sq UpS1S0

In particular, we have a notion of round.

» immediate snapshot:

Ug U1 5150 U252 but not UgU1SpU25152

21/86

Full-information protocols

A protocol is full-information when

Ty = idv

!

We can restrict to those without loss of generality (and we will).

]

A category of protocols
A morphism ¢ : m — 7’ between protocols consists of functions
> ¢; : V — V translating memory
such that
> ¢i(x) =xforxel
> ¢i(x) € O forx e O
» and
Vx
&ixIT; ¢)il \Ld)f
Y x Pn = 1%

We say that «’ simulates .

A category of protocols
A morphism ¢ : m — 7’ between protocols consists of functions
> ¢; : V — V translating memory
such that
> ¢i(x) =xforxel
> ¢i(x) € O forx e O
» and
s,
Yx P —-Yy
&ixIT; ¢)il \Ld)f
Y x Pn = 1%

We say that «’ simulates .

Actually, we only require ¢; to be defined on reachable values for
a given task.

The view protocol

Theorem (GMT)
The category of protocols admits an initial object w<.

Morally, the space of executions of 7<% is the “universal cover’ of
the space of executions of any process m: every execution of T
corresponds to a unique execution of <.

24 /86

The view protocol

We suppose that V is countable so that we have an encoding
(x,y) of pairs (and uples).

The view protocol

We suppose that V is countable so that we have an encoding
(x,y) of pairs (and uples).

The initial object m< is called the view protocol and is defined by
> 7 (x) = x for x € V (full-information),

> o (x, m) = (x, (m)) for (x,m) € Y x V".

The view protocol

We suppose that V is countable so that we have an encoding
(x,y) of pairs (and uples).

The initial object m< is called the view protocol and is defined by
> 7 (x) = x for x € V (full-information),

> o (x, m) = (x, (m)) for (x,m) € Y x V".

Given a trace T, the local memory of i-th process after executing
the trace T is called its view.

The view protocol

Theorem (GMT)

The category of protocols admits an initial object w< with
o (x, m) = (x, (m)).

Proof.
Suppose given a reachable memory

x =1 with (1,m)=[T]r=
Because of the definition of morphisms, we are forced to define
di(x) =1 with (I, m')=[T]x

It only remains to check that this definition is well-defined, i.e. it
does not depend on the chosen trace T... L]

26 /86

THE
PROTOCOL
COMPLEX

The protocol complex

Given a number r of rounds for each process, the protocol
complex x"(©) is the abstract simplicial complex whose

» vertices are x € V such that x is the view (= local memory)
of i-th process after executing a trace with 7

» simplices are sets of vertices occurring together after a same
execution.

The protocol complex

Suppose that we have 2 processes and the input is the standard
one:
0 1

The protocol complex x!(©) for 1 round s as follows:

The protocol complex

Suppose that we have 2 processes and the input is the standard
one:
0 1

The protocol complex x!(©) for 1 round s as follows:

0,0L——1,01

After executing 1 round for each process, we have the executions

> LUpSoU1S7:

01£>01500,0L1
1L 0L 0 | L

m | 0,0L]|1]s |0,0L]1,01
— =

The protocol complex

Suppose that we have 2 processes and the input is the standard

one:
0 1

The protocol complex x!(©) for 1 round s as follows:

0,0L——1,01 0,01 ——1, 11

After executing 1 round for each process, we have the executions

> U1S1UpS):
O|1|w |01 EN 011,11
1L 11 1 1
w | 01,11 EN 0,01 1,11
0 1 0 1

The protocol complex

Suppose that we have 2 processes and the input is the standard
one:
0 1

The protocol complex x!(©) for 1 round s as follows:

0,0L——101——001——1,11

After executing 1 round for each process, we have the executions

> U1U150S7:

% 0011} |001]1,01
= =

The protocol complex

Suppose that we have 2 processes and the input is the standard
one:

0 1
The protocol complex x!(©) for 1 round s as follows:
0,0L 1,01

1,11 0,01

The protocol complex

Suppose that we have 2 processes and the input is the standard
one:

The protocol conC:pIex x2(©) for 2 rounds is as finows:
0,(0L)1 ——1,(0L)(01) —— 0, (0L)(01) 1,0(01)
0, (01)(01)
1,(01)(01)
1,0(11) 0,0(L1) 1,(01)(L1) 0, (01)1

The protocol complex
Suppose that we have 2 processes and the input is the standard
one:

0 1
1, ((0(01))(01))
The protocol complex x?(©) for 2 rounds is as follows: N

(AN
0o 1
0,((0(01))(01))

0. ((09)((0)1))

0=1

0—1 J“?’/i 0=1 0=1 01 0=1 f AN
1t 22| 0% 11 5 X4 11 BRI
051 RN 051 0=1 051 0%
0, ((0.))) —————1,((0)((0)1)) 0,((0)1) 1,((0)(01)) 0,((0-)(01)) 1,(0(01))
% AT F o
e | 0 1
0, ((01)(01))
/ 01
e
e | 0 1
1,((01)(01))
/ 0=1
T T D v
1 () —— 0 ((0(1))(1)) 1,(0(_1)) 0, ((01)(1)) 1 ((01) (1)) t 0,((01)1)

i

0=1
0=1 0 +
0" 1

1 -1
Xt =/l 1 Xt B
0= I A
IR P
1, ((01)((01)1))

0, ((01)((01)1))

1,((0(_1))(-1))

29 /86

The protocol complex

With 3 processes and 1 one round, starting from the input
complex

30/86

The protocol complex

With 3 processes and 1 one round, starting from the input
complex we obtain the protocol complex

0,0LL

30/86

The protocol complex

With 3 processes and 1 one round, starting from the input
complex we obtain the protocol complex

0,011

2,112 1,112 2,112 1,110

Notice that this is a particular subdivision of the original complex. e

The chromatic subdivision
In general, the protocol complex on r rounds is obtained by
» starting from the input complex
» performing a chromatic subdivision of it r times

and this subdivision can be defined and studied independently.

The chromatic subdivision
In general, the protocol complex on r rounds is obtained by
» starting from the input complex
» performing a chromatic subdivision of it r times
and this subdivision can be defined and studied independently.

Theorem (Herliy-Shavit, GMT, Koszlov)
If the input complex is contractible then the protocol complex is.

> > >
\

31/86

Solvability
Suppose that a task © can be solved by a protocol :

» it can be solved in r rounds

32/86

Solvability
Suppose that a task © can be solved by a protocol :
» it can be solved in r rounds

» there is a map ¢ : m% — 7 such that, for every trace T,

¢([Thx<) = [Tlx

32/86

Solvability
Suppose that a task © can be solved by a protocol :
» it can be solved in r rounds

» there is a map ¢ : m% — 7 such that, for every trace T,
o([Tle<) = [T«

> in particular, when the trace T has r rounds [T] € O

32/86

Solvability
Suppose that a task © can be solved by a protocol :
» it can be solved in r rounds

» there is a map ¢ : m% — 7 such that, for every trace T,
o([Tle<) = [T«

> in particular, when the trace T has r rounds [T] € O

» [...] therefore there is a simplicial map from the r-iterated
protocol complex to the output complex:

Theorem
If a task can be solved then there is r and a simplicial map from
X" (©) to codom© (and, in fact, conversely).

32/86

Solvability
Suppose that a task © can be solved by a protocol :
» it can be solved in r rounds

» there is a map ¢ : m% — 7 such that, for every trace T,
o([Tle<) = [T«

> in particular, when the trace T has r rounds [T] € O

» [...] therefore there is a simplicial map from the r-iterated
protocol complex to the output complex:

Theorem
If a task can be solved then there is r and a simplicial map from
X" (©) to codom© (and, in fact, conversely).

NB: simplicial maps preserve contractibility!

32/86

The binary consensus

Consider again the binary consensus task:

There can be no protocol solving it (even after some rounds).

The binary quasi-consensus

Consider the binary quasi-consensus:

0.0 Lo

L1l—0.1

-1,0

~0,1

The binary quasi-consensus

Consider the binary quasi-consensus:

0.0.-100-0,00—1,10 00— 210
1,‘01 0,‘10
0,‘01 1,‘10
1,11-0,11—1,11-0,11 L1

0,1
7

CONTRACTIBILITY
OF THE
PROTOCOL
COMPLEX

Simplicial complex

Definition
A simplicial complex K consists of

» a set K of vertices,

» a set K of finite subsets of K called simplices,
such that

» K is non-empty,

» for every x € K, we have {x} € K,

» for every 0 € K and 7 C 0 we have 7 € K.

36 /86

Simplicial complex

Definition
A simplicial complex K consists of

» a set K of vertices,

» a set K of finite subsets of K called simplices,
such that

» K is non-empty,

» for every x € K, we have {x} € K,

» for every 0 € K and 7 C 0 we have 7 € K.

Example
The standard simplicial complex A" has {0, ..., n} as vertices
and all possible simplices.)

1

A% = /)/o 2\2\

0 2

02

36 /86

Simplicial complex

Definition
A simplicial complex K consists of

» a set K of vertices,

» a set K of finite subsets of K called simplices,
such that

» K is non-empty,

» for every x € K, we have {x} € K,

» for every 0 € K and 7 C 0 we have 7 € K.

A morphism
f:K—=K

is a function f : K — K’ which
» preserves simplices: for o € K, we have f(o) € K’,

> is locally injective: for o € K, f restricted to o is injective.

36 /86

Towards the standard chromatic
subdivision

Before defining the standard chromatic subdivision, we will first
recall the barycentric subdivision.

For this, we need to introduce:
» the graph of elements of a simplicial complex,
> the nerve of a graph,

» the chromatic variants of these notions.

The graph of elements

Definition

A graph G = (V/, E) consists here of
> aset V of vertices,
» aset £E C V x V of edges,

such that (x,y) € E implies x # y.

38/86

The graph of elements

Definition

A graph G = (V/, E) consists here of
> aset V of vertices,
» aset £E C V x V of edges,

such that (x,y) € E implies x # y.

Definition
The graph of elements EI(K) of a simplicial complex has
» the non-empty simplices of K as vertices,

» an edge 7 — o whenever T C 0.

38/86

The graph of elements

Example
For Al
0——o01—1

the graph of elements is

0——01<~—1

39 /86

The graph of elements

Example
For A2
1
/012\1
SN

02

0

the graph of elements is

2

012

]

40/ 86

The nerve of a graph
Definition
The nerve N(G) of a graph G = (V, E) has
» the elements of G as vertices,

» simplices are sets {xg, ..., xn} € G such that there is an edge
Xj — Xj

for every i < J.

41 /86

The nerve of a graph
Definition
The nerve N(G) of a graph G = (V, E) has
» the elements of G as vertices,

» simplices are sets {xg, ..., xn} € G such that there is an edge
Xj — Xj
for every i < J.

Example
The nerve of the graph

0——01-—1

0——01—-1

41 /86

The barycentric subdivision

Definition
The barycentric subdivision of a simplicial complex is

X = NoEl

N

The barycentric subdivision

Example
For Al
0——o01—1

the barycentric subdivision is

0——01—7-1

The barycentric subdivision

Example
For A2
1
/012\1
SN

02

0

the barycentric subdivision is

/O\
01 —— 012 ——02

N

1 12

2

44 / 86

Colored complexes

Definition
The category of colored simplicial complexes is

SC/!N

where I'N has N as vertices and all finite subsets as simplices.

Remark

» The coloring of a simplicial complex K is uniquely determined
by a coloring of vertices:

{ : K —- N

» In a simplex, every vertex has a different color.

45 /86

Colored graphs
We write I N for the graph with

» N as vertices,

» pairs (x,y) € N x N with x # y as edges.

46 / 86

Colored graphs

We write I N for the graph with
» N as vertices,

» pairs (x,y) € N x N with x # y as edges.

Definition
The category of colored graphs is

Graph/ !N

We thus color vertices by natural numbers in a way such that two
vertices of an edge have a distinct color.

46 /86

The chromatic graph of elements

Definition
The functor

El : SC/IN — Graph/!N

associates to each colored simplicial complex (K, £) the graph
where
» vertices are (o, /) with 0 € K and / € {(0)
» there is an edge (7, /) — (0, /) whenever
1 i#]
2. 1Co
3. T=o0o0rj&T)

47 / 86

The chromatic graph of elements

Example
For Al

0 01 1
the chromatic graph of elements is

01,1 01,0

7 AN

0,0 1,1

48 / 86

The chromatic graph of elements

Example
For A?

; /) /00122\1 K

the chromatic graph of elements is

012,2=——————=012,1=————=012,0

| 7 7|

01,1=01,0x02,2 ——=02,0 122»121

| N0 AN

0,0 1,1 2,2

49/

86

The chromatic nerve
Definition
The functor
N : Graph/!N — SC/IN

associates to a colored graph (G = (V, E), £) the simplicial
complex with

» the elements of G as vertices, colored by £,

» simplices are sets {xo, ..., Xn} € G such that there is an edge

X,'—>XJ'

for every 1 <.

50 /86

The standard chromatic subdivision

Definition
The standard chromatic subdivision is

X = NoEl

The standard chromatic subdivision

Example
For Al
0——o1——1

the standard chromatic subdivision is

0,0——01,1——01,0——1,1

5
R

The standard chromatic subdivision

Example
For A2
1
/)/012\12\

0 02

the standard chromatic subdivision is

/O,O\
01,1 / \ 02,2
RN PN

01,0 012,2 012,1 02,0

1,1

2

537 86

Contractibility

We want to show that x"(K) is n-connected when K is.
This will be deduced from the fact that x(A") is contractible.

Which we prove by showing that x(A”") is collapsible.

Collapsibility

From now on, we consider simplicial complexes K of finite
dimension.

Definition

A simplex T is a free face of a simplex ¢ when
1. TCoand 7 # 0,
2. o is a maximal simplex of K,

3. no other maximal simplex of K contains 7.

o
5

o)

Collapsibility

From now on, we consider simplicial complexes K of finite
dimension.

Definition

A simplex T is a free face of a simplex ¢ when
1. 7Coand T #£ 0,
2. o is a maximal simplex of K,
3. no other maximal simplex of K contains 7.

In this case, the monomorphism
K <+ K\T

is called a collapse step.

o
o

)

Collapsibility

From now on, we consider simplicial complexes K of finite
dimension.

Definition

A simplex T is a free face of a simplex ¢ when
1. 7Coand T #£ 0,
2. o is a maximal simplex of K,
3. no other maximal simplex of K contains 7.

In this case, the monomorphism
K <+ K\T

is called a collapse step. A collapse is a composite of collapse
steps.

o
o

)

Collapsibility

From now on, we consider simplicial complexes K of finite
dimension.

Definition

A simplex T is a free face of a simplex ¢ when
1. 7Coand T #£ 0,
2. o is a maximal simplex of K,
3. no other maximal simplex of K contains 7.

In this case, the monomorphism
K <+ K\T

is called a collapse step. A collapse is a composite of collapse
steps. K is collapsible if it can be collapsed to AP.

o
o

Collapsibility

Example
The simplex A2 is collapsible:

/)/ 012\1K — /)/
0 02 2 0 02

2

Example

The simplex A2 is collapsible:

/0/012\1&

0——o02 2

Collapsibility

56 /86

Collapsibility

Theorem (Whitehead)
A collapsible simplicial complex is contractible.

Collapsibility

Theorem (Whitehead)
A collapsible simplicial complex is contractible.

The converse is not true, e.g. Bing's house with two rooms:

i

Y

=7
AY

A simpler example
Instead of showing that x(A") is collapsible

We are going to show the result on OA™ x A™:
0f

/OIQ/ 012\0|1\

|1 021 02|

/1|02 02 '012 1017510, \
/ 12|0 \

58 /86

The join

Definition
Given simplicial complexes K and L, their join K x L is the
complex with

> vertices
KxlL = KWL
» simplices
KxL = {ocCKWL|oNKeK and onLel}

A simplex in K = L is thus of the form o|T with 0 € K and 7 € L.

Example
AM % AN =AML

59/86

The colored join

Definition
Given colored simplicial complexes K and L, their colored join
K * L is the complex with

> vertices
KxlL = KWL
» simplices
KxL = {o|lte KxL|k(o)nL(T)=0}

60 /86

The basic chromatic subdivision

Definition
The basic chromatic subdivision of A” is

OA" x A"

61/8

The basic chromatic subdivision

Definition
The basic chromatic subdivision of A” is

OA" x A"
Example
For A2, we have:
/012\
01|2 |2 —_ 1 |1 02|1 02|

1|02 ‘02 |012 |01 2\01

/ \
y % 12/0 &

12|

The basic chromatic subdivision

Definition
The basic chromatic subdivision of A” is

OA" x A"

Its simplices are of the form |7 with

61/86

. Collapsibility of the basic subdivision
Proposition

The canonical inclusion
A A <A =K/
o = o

is a collapse, thus the basic chromatlc subdivision is collapsible.

0|2 0\12

01l 012 \2 — 12 |1 02|1 02|

/1|02 102 |012 ‘01 2\01
\ 2/1

12|

2|

Proof: remove o|() with dim(c) decreasing. 62/86

Collapsibility of the basic subdivision

We consider the following sequence of collapse steps:

0f
021,011
Ol 012 |2 ——(12—— |1 02/1 92
/
1|02W02\|012J01 2/01
12 - — |0\ 2|1
%”0 12]0 2‘0§
1] 12| 2|

63 /86

Collapsibility of the basic subdivision
We consider the following sequence of collapse steps:

0l

/ \

012 1115 0|1

/N

|2 —I12— |1

/
/1|02W°2\'°12J°1 2\01\

12 21

%uo/ ° \20§

1] 2|

63 /86

Collapsibility of the basic subdivision

We consider the following sequence of collapse steps:

|2 —I12— |1
W02\|012J01
|0

Collapsibility of the basic subdivision

Note that other sequences could have been used in order to show
collapsibility:

0f
012 01,011
Ol 012 |2 ——(12—— |1 02/1 92
/
1|02W02\|012J01 2/01
12 - — |O\ 2|1
%”0 12/0 2\0&
1] 12| 2|

64 /86

Collapsibility of the basic subdivision

Note that other sequences could have been used in order to show

collapsibility:
0|2 12\

01f o12 |2 —J12— |1 02|1 02
1|02W02|012J01 2\01

0
%”"/ T N

1] 2|

64 /86

Collapsibility of the basic subdivision

Note that other sequences could have been used in order to show
collapsibility:

0l

0|2 1

012°
Ol 012 |2 ——(12—— |1 02/1 92
012 |07
Woz\l Joi

1|2 |0 2|1

1] 2|

64 /86

Collapsibility of the basic subdivision

Note that other sequences could have been used in order to show
collapsibility:

0l

0|2 1

012°
Ol 012 |2 ——(12—— |1 02/1 92

12 21

1] 2|

64 /86

Collapsibility of the basic subdivision

Note that other sequences could have been used in order to show
collapsibility:

0]
02 o1
0Ll 0112 |2 |1 021 02
12 2]1

1] 2|

64 /86

Collapsibility of the basic subdivision

Note that other sequences could have been used in order to show
collapsibility:

0l

01 02

1] 2|

Collapsibility of the basic subdivision

Note that other sequences could have been used in order to show
collapsibility:

0l

Collapsibility of the chromatic subdivision

Comparing the basic chromatic subdivision
0f

/Olz/ 012\0|1\

012 |2 - — |1 021 02|

/ 12|o \

and the standard chromatic subd|V|S|on
/ OY 0 \
1 / \ 02 2
~ ~
01,0 012, 2 12 1 02 0

12 2
we see that some A2 are replaced by 6A1 * AO

Collapsibility of the chromatic subdivision

Theorem
Xx(A") is collapsible and thus contractible.

Proof.
Show a bunch of lemmas showing that collapsing is compatible
with join and simulate the previous sequence of collapse

steps.

(]

66 /86

The iterated subdivision

In order to show that the iterated subdivision is contractible, it is
simpler to work with (colored) presimplicial sets:

> every elementary collapse step K < L can be obtained as a

pushout
AN ——K
|
A" > L

» the image of x is characterized by its action on
representables

x(K) = colim(EI(K) 5 A 5 A% A)

67 /86

The iterated subdivision

In order to show that the iterated subdivision is contractible, it is
simpler to work with (colored) presimplicial sets:

> every elementary collapse step K < L can be obtained as a

pushout
AN ——K
|
A" > L

» the image of x is characterized by its action on
representables

x(K) = colim(EI(K) 5 A 5 A% A)

Theorem
X (A") is collapsible and thus contractible.

67 /86

EQUIVALENCE
BETWEEN
TRACES

Execution traces
The (well-bracketed) execution traces in {u;, s;}* are semantically
invariant under the congruence =~ generated by

ujuj = u;ju; 55| &= 5;S;
which means that
T~T implies [Tle=1Tx

Execution traces
The (well-bracketed) execution traces in {u;, s;}* are semantically
invariant under the congruence =~ generated by

ujuj = u;ju; 55| &= 5;S;
which means that
T~T implies [Tle=1Tx

X0 X1 S Xn—1 local mem.

Po\ FP1 Pn—1

global mem.

e.g.

Execution traces
The (well-bracketed) execution traces in {u;, s;}* are semantically
invariant under the congruence =~ generated by

ujuj = u;ju; 55| &= 5;S;
which means that
T~T implies [Tle=1Tx

X0 X1 S Xn—1 local mem.

Po\ FP1 Pn—1

Xy e global mem.

e.g. U

Execution traces
The (well-bracketed) execution traces in {u;, s;}* are semantically
invariant under the congruence =~ generated by

ujuj = u;ju; 55| &= 5;S;
which means that
T~T implies [Tle=1Tx

X0 X1 S Xn—1 local mem.

Po\ FP1 Pn—1

X | X1 e global mem.

€.g. upln

Execution traces
The (well-bracketed) execution traces in {u;, s;}* are semantically
invariant under the congruence =~ generated by

ujuj = u;ju; 55| &= 5;S;
which means that
T~T implies [Tle=1Tx

X0 X1 Xn—1| local mem.
A

Po\ P1 Pn-1
X1 global mem.

€.g. Upg Uy =~ uy

Execution traces
The (well-bracketed) execution traces in {u;, s;}* are semantically
invariant under the congruence =~ generated by

UjUi ~ LI,'LIJ' SJ‘S,' ~ S,'SJ'
which means that
T~T implies [Tle=1Tx
X0 X1 Xn—1| local mem.
A
Po\ FP1 Pn-1
x5 | X global mem.
€.g. uplua ~ Uy U

Interval orders
In a well-bracketed trace, the u; and s; form intervals:

up 52
Uy S1 1 S1
Upg U1 U2S51S0S2U71 51 ~ -
Uo 50

70/86

Interval orders
In a well-bracketed trace, the u; and s; form intervals:

up 52
Uy S1 1 S1
Upg U1 U2S51S0S2U71 51 ~ -
Uo 50

~ SN

An interval order (X, <) is a poset such that there exists a
function / : X — p(RR) associating an interval I, to each x in such
a way that

X<y if and only if Vsel,Vtel, s<t

70/ 8

Interval orders
In a well-bracketed trace, the u; and s; form intervals:

up 52
Uy S1 1 S1
Upg U1 U2S51S0S2U71 51 ~ -
Uo 50

~ SN

An interval order (X, <) is a poset such that there exists a
function / : X — p(RR) associating an interval I, to each x in such
a way that

X<y if and only if Vsel,Vtel, s<t

There is a colored variant with £ : X — N such that £(x) = £(y)
implies that x and y are comparable.

70/ 8

Interval orders

Remark (Fishburn)
A poset is an interval order if it is “(2 + 2)-free™

b d d b d
o w

T T implies T or T T

a c c a c

YQ—>T

71/86

Interval orders

Theorem
Well-bracketed traces up to equivalence are in bijection with
colored interval orders.

/

X1
Ug U1 UpS1S50S2 U1 S1 e / ¢ \
Xo X1 X2

72 /86

Views of interval orders

Suppose given two elements x; and x; of an interval order. We
have the following possible situations:

Xj Xi
X; Xj

which correspond to the following traces:

ujsiu;s; ujl;s;s; ujsju;s;

Views of interval orders

Suppose given two elements x; and x; of an interval order. We
have the following possible situations:

Xj Xi
X; Xj

which correspond to the following traces:
ujsiu;s; ujl;s;s; ujsju;s;

In the two first cases, s; sees u;.

Views of interval orders

This suggests defining the i-view of a colored interval
order (X, X) by
1. restricting to elements which are below or independent from

the maximum element x,-k labeled by /

2. remove dependencies from x*

Views of interval orders

This suggests defining the i-view of a colored interval
order (X, X) by

1. restricting to elements which are below or independent from
the maximum element x,-k labeled by /

2. remove dependencies from x*

Theorem

» an interval order can be reconstructed from all the i-views

» the execution of the i-th process in the view protocol < is
uniquely determined by the i-view

74 /86

Views of interval orders

For instance, with two processes, consider uguqS1U1S051UQSy:

» it corresponds to the colored interval order

1 1

(RN
0 0

X X1

75/ 86

Views of interval orders

For instance, with two processes, consider uguqS1U1S051UQSy:

» it corresponds to the colored interval order

X& <*X%
AN
x5 X
» the views are
Xg < X{ X5
(N (AN
x5 X x5 X

Views of interval orders

For instance, with two processes, consider uguqS1U1S051UQSy:

((1,01),0(1,01))

(1,01)

((1,01),0(1,01))

(1,01)
((1,01),0(1,01))

{1,01)

e
— |
oo
—~ Tl T
— iz
O |~
L —~
~ —~
—
OOnUy
— O
S~
|2
(@)
~
— |
oo %%
|~
u1\ﬁ — [
oo
— ||
ool el

,

(0,0(1,01))

(0,0(1,01))
(0,0(1,01))

s,

U
Lo,

((0,0(1,01)),(0,0(1,01)) (1,01))

(0,0(1,01))

2,

Views of interval orders

For instance, with two processes, consider uguqS1U1S051UQSy:

» we have a correspondence:

X <X X
PNt PN
X X7 X5 XD

((0,0(1,01)), (0,0(1,01)) (1,01)) ((1,01),0(1,01))

Completeness results

From this we deduce:

Theorem
The equivalence is complete: given two traces t and t’

t~t iff [the = [t]ra

Theorem
7<% s actually initial in the category of protocols.

76 /86

The interval order complex

Definition
The interval order complex is the simplicial complex whose
» vertices are (i, V;) where Vj is an i-view
» maximal simplices are {(0, Vo), ..., (n, V;,)} such that there
is an interval order (X, <) (with given number of rounds)
whose j-view is V.

Theorem
The interval order complex is isomorphic to the protocol complex.

DIRECTED
GEOMETRIC
SEMANTICS

Directed geometric semantics

The idea of geometric semantics is to formalize the dictionary:

program & topological space
state & point of the space
execution trace & path
equivalent traces & homotopic paths

so that we can import tools from (algebraic) topology in order to
study concurrent programs.

We actually need to use spaces equipped with a notion of
direction in order to take in account irreversible time.

An example

Consider two processes executing one round of update/scan, i.e.
Up.So || ui.s1

The geometric semantics of this program will be

l.e. a square [0, 1] x [0, 1] minus two holes, which is directed
componentwise.

80/86

An example

Consider two processes executing one round of update/scan, i.e.
Up.So || ui.s1

The geometric semantics of this program will be

l.e. a square [0, 1] x [0, 1] minus two holes, which is directed
componentwise.

directed path : U1 UpSoS1

80/ 8

e

An example

Consider two processes executing one round of update/scan, i.e.
Up.So || ui.s1

The geometric semantics of this program will be

l.e. a square [0, 1] x [0, 1] minus two holes, which is directed
componentwise.

non directed path : 77

80/86

An example

Consider two processes executing one round of update/scan, i.e.

Up.So || ui.s1

The geometric semantics of this program will be

l.e. a square [0, 1] x [0, 1] minus two holes, which is directed
componentwise.

homotopy between paths : U1 UpSoS1 ~ Ugl1SpS1

80/86

An example

Consider two processes executing one round of update/scan, i.e.

Up.So || ui.s1

The geometric semantics of this program will be

l.e. a square [0, 1] x [0, 1] minus two holes, which is directed
componentwise.

some paths are not homotopic

80/86

More examples

This generalizes to more rounds:
consider two processes executing 2 and 4 rounds of update/scan,

Ug.So.Up.So || w1.S1.U1.S1.U1.51.U1.51

The geometric semantics of this program will be

to
52

U2

S2

81/86

More examples

This generalizes to more processes:
consider three processes executing one round of update/scan,

Up.So H ui.51 “ U>.Sp

The geometric semantics of this program will be

t

to

NB: we will illustrate in dimension 2, where things are simpler

81/86

Directed spaces

Formally,

Definition
A pospace (X, <) consists of a topological space X equipped
with a partial order < C X x X, which is closed.

A dipath p is a continuous non-decreasing map p: [0, 1] — X.

A dihomotopy H from a path p to a path g is a continuous map
H : [0, 1] x [0, 1] = X such that

H(O, t) = p(t) for every t
H(1,t) = q(t) for every t
t — H(s, t) is a dipath for every s

vV v.v Vv

s+ H(s,0) and s — H(s, 1) are constant

82/86

Directed paths vs traces

Theorem

Fixing a number of rounds for each process, there is a bijection
between

(i) directed paths up to directed homotopy in the geometric
semantics

(iil) execution traces up to =~

=4 U1 UgSpS1 ~ UglU1SpS1

83/86

Directed paths vs traces

Theorem
Fixing a number of rounds for each process, there is a bijection
between

(i) directed paths up to directed homotopy in the geometric
semantics

(ii) colored interval orders

(iil) execution traces up to =~

ty t1 t1
si| | SN | si|/ @
uy [] up [] uy []
ti t t
o So 0 Up So 0 Uo So 0

[to, so] =< [u1, s1] [to. so] II [, s1] [uo, so] > [u1, s1]

83/86

From geometry to the complex

One can notice in the last example that edges are in bijection
with directed paths up to homotopy (and with interval orders):

0,0L o1 1,01 01 0,01 o1 1,11

(more generally maximal simplices are in bijection with maximal
directed paths up to homotopy).

L ((0(01))(01))
0, ((0(01))(01))

From geometry to the complex

0,((0-)(01))

1,((0)(01))

This is still true for 2 processes and 2 rounds:

0,((01)(01))
1,((01)(01))
0,((01)1)

L, ((01)((01)1))
0. ((01)((01)1))

L, ((01)(-1))

0,((01)(-1))

0, ((0(1))(-1)

Thanks!

