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Asynchronous computability

I want to explain here our formulation of the major results
obtained by Herlihy et al. in the 90s on asynchronous
computability.
I What can a bunch of processes computing in parallel can

compute in the presence of failures?
I For instance, they show that the consensus cannot be solved.
I Their proofs uses geometric arguments, they construct a

simplicial complex encoding the possible states and
I characterize those which can occur and their properties
I obtain impossibility results from the fact that some maps
should preserve (n-)connectivity

I The devil lies in the details.
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Unifying points of view
We unify different points of view on executions:
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ASYNCHRONOUS
PROTOCOLS

AND
TASKS
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Asynchronous protocols
We consider here a model with n processes Pi :
I each process has a local memory cell
I there is a global memory with n cells

. . .

. . .

P0 P1 Pn−1

local mem.

global mem.

I each process alternatively does “rounds” made of
I update: write in its global memory cell
I scan: read the whole global memory and update its local cell

(immediate snapshot)
I at any instant a process might die
I and the question is: what we can compute in such a model?

(for this question we are only interested in local memories)
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Asynchronous protocols

Note that
I we do not know how the processes will be scheduled

I they might die: we cannot tell if a process is late or dead
I the local memory of each process is a partial information

about the computation (called its view)
I we are mostly interested in local memory: it contains the

input and output values
I the initial value for global memory is ⊥ in every cell
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Coherence between views

A set X ⊆ {(i , x) | i ∈ N, x ∈ V} of local memories (= views)
(i , x) ∈ N× V is coherent when

X = {(i , li) | i ∈ I ⊆ N}

such that there is an execution leading to a local memory l .

We thus have a simplicial complex with
I vertices: views
I simplices: coherent views (result from a particular execution)

Each vertex has a color i ∈ N and simplices have vertices of
different colors.
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Coherence between views
With 3 processes executing one round (update then scan), we
typically obtain the following simplicial complex:

0, 0⊥⊥

1,⊥1⊥2,⊥⊥2

1, 012

0, 012

2, 012

2, 0⊥2

0, 0⊥2

1,⊥12 2,⊥12

0, 01⊥

1, 01⊥

Notice that it is simply connected. 8 / 86



States

Formally, we suppose fixed a number n ∈ N of processes and a
set V of values with
I I ⊆ V: input values
I O ⊆ V: output values
I ⊥ ∈ I ∩O: the undefined value / a non-participating process

A state consists of
I l ∈ Vn: the local memories
I m ∈ Vn: the global memories

(always in this order)

The standard initial state has li = i and mi = ⊥.
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Protocols

A protocol π consists of, for 0 ≤ i < n,
I πui : V → V

the values it will write in its global memory cell depending on
its local memory

I πsi : V × Vn → V
the values it will write in its local memory depending on the
values of its local memory and all the global memory cells

such that
I πsi (x ,m) = x for x ∈ O

once we decide an output we don’t change our mind

10 / 86



Execution traces
The set of possible actions is

A = {ui , si , di | 0 ≤ i < n}

Given a protocol π, its semantics

JT Kπ : Vn × Vn → Vn × Vn

is defined on a trace T ∈ A∗ by
I JuiKπ(l ,m) = (l ,m[i ← πui (li)])

I JsiKπ(l ,m) = (l [i ← πsi (li ,m)],m)

I JdiKπ(l ,m) = (l ,m)
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Execution traces

With two processes executing one round each there are
“essentially” three traces:
I u0s0u1s1:

I P0 does not see what P1 has written
I P1 sees what P0 has written

I u1s1u0s0:
I P0 sees what P1 has written
I P1 does not see what P0 has written

I u0u1s0s1 / u0u1s1s0 / u1u0s0s1 / u1u0s1s0:
I P0 sees what P1 has written
I P1 sees what P0 has written
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Execution traces

These execution traces can be represented geometrically by

P0

P1

u0 s0

u1

s1

P0

P1

u0 s0

u1

s1

P0

P1

u0 s0

u1

s1

u0s0u1s1 u0u1s0s1 u1s1u0s0

We’ll get back to this representation later on.
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Execution traces

These execution traces can be represented geometrically by

0, 0⊥ u0s0u1s1
1, 01 u0u1s0s1

0, 01 u1s1u0s0
1,⊥1

We’ll get back to this representation later on.
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Tasks

A task θ is a relation θ ⊆ In ×On such that for every l , l ′ ∈ Θ

I li = ⊥ if and only if l ′i = ⊥,
I there exists l ′′ ∈ On such that (l , l ′′) ∈ Θ and

(l [i ← ⊥], l ′′[i ← ⊥]) ∈ Θ.

We write domΘ for the possible input values and codomΘ for
the possible output values.
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The binary consensus

In the binary consensus problem each process
I starts with a value in {0, 1}
I end with the same value, among the initial values of the alive

processes.

For instance, with n = 2, we have

Θ =
{

(b⊥, b⊥), (⊥b,⊥b), (bb′, bb), (b′b, bb)
∣∣ b, b′ ∈ {0, 1}}

0⊥
01

00 %% $$⊥0
10

%%
0⊥ 00 ⊥0

**

44

((

66

⊥1
11 99 ::1⊥ 99⊥1

11
1⊥
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The binary quasi-consensus

In the case n = 2, we can also consider the binary
quasi-consensus, which is similar but restricts the output so that
it cannot happen that P1 decides 0 and P0 decide 1 at the same
time:

0⊥
01

00 %% $$⊥0
10

%%
0⊥ 00 ⊥0

**

44

,,

((

66

44

⊥1
11 99 ::1⊥ 99⊥1

11
1⊥

16 / 86



The way we draw tasks
Note that
I if l ∈ domΘ (the possible input values) then

l [i ← ⊥] also belongs to domΘ

domΘ can thus be pictured as a simplicial complex called the
input complex:

⊥1⊥
01⊥

012
⊥12

0⊥
0⊥2

⊥⊥2

i.e. roughly a space made of triangles, tetrahedra, etc.
(and similarly codomΘ gives rise to the output complex)

Note also that the vertices are colored by 0 ≤ i < n:
the only active process
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Tasks

A task θ is a relation θ ⊆ In ×On such that for every l , l ′ ∈ Θ

1. li = ⊥ if and only if l ′i = ⊥,
2. there exists l ′′ ∈ On such that (l , l ′′) ∈ Θ and

(l [i ← ⊥], l ′′[i ← ⊥]) ∈ Θ.

which means

1. n-simplices are in relation with n-simplices

2. the relation is compatible with faces
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Solving tasks
A protocol π solves a task Θ when
I for every initial local memory l ∈ domΘ

I for every long enough and fair execution trace T

we have l ′ ∈ codomΘ, where

(l ′,m′) = JT Kπ(l ,⊥⊥ . . .⊥)

For simplicity, we will suppose that li = i initially (standard state)
and thus write JT Kπ instead of JT Kπ(01 . . . (n − 1),⊥⊥ . . .⊥).

For instance,
I the consensus cannot be solved
I the quasi-consensus can be solved

Let’s understand why.

19 / 86



Solving tasks
A protocol π solves a task Θ when
I for every initial local memory l ∈ domΘ

I for every long enough and fair execution trace T

we have l ′ ∈ codomΘ, where

(l ′,m′) = JT Kπ(l ,⊥⊥ . . .⊥)

For simplicity, we will suppose that li = i initially (standard state)
and thus write JT Kπ instead of JT Kπ(01 . . . (n − 1),⊥⊥ . . .⊥).

For instance,
I the consensus cannot be solved
I the quasi-consensus can be solved

Let’s understand why.

19 / 86



Solving tasks
A protocol π solves a task Θ when
I for every initial local memory l ∈ domΘ

I for every long enough and fair execution trace T

we have l ′ ∈ codomΘ, where

(l ′,m′) = JT Kπ(l ,⊥⊥ . . .⊥)

For simplicity, we will suppose that li = i initially (standard state)
and thus write JT Kπ instead of JT Kπ(01 . . . (n − 1),⊥⊥ . . .⊥).

For instance,
I the consensus cannot be solved
I the quasi-consensus can be solved

Let’s understand why.

19 / 86



A more manageable setting

In order to study tasks which can be solved by protocols we
should simplify as much as possible what we consider as
I protocols
I execution traces

20 / 86



Restricting executions
It can be shown that we can, without loss of generality, restrict to
traces which are
I well-bracketed:

u0u1s1u2s0s2 but not u0u0s1s0

I layered: a process does not start a round before all other
have finished their or died

u0s0u1s1u1u0s0s1 but not u0u1s0u0s1s0

In particular, we have a notion of round.
I immediate snapshot:

u0u1s1s0u2s2 but not u0u1s0u2s1s2
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Full-information protocols

A protocol is full-information when

πui = idV

We can restrict to those without loss of generality (and we will).
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A category of protocols
A morphism φ : π → π′ between protocols consists of functions
I φi : V → V translating memory

such that
I φi(x) = x for x ∈ I
I φi(x) ∈ O for x ∈ O
I and

V × Vn

φi×
∏

i φi
��

πsi // V
φi
��

V × Vn
πsi

// V

We say that π′ simulates π.

Actually, we only require φi to be defined on reachable values for
a given task.
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The view protocol
Theorem (GMT)
The category of protocols admits an initial object π^.

Morally, the space of executions of π^ is the “universal cover” of
the space of executions of any process π: every execution of π
corresponds to a unique execution of π^.

π^

↓

π

24 / 86



The view protocol

We suppose that V is countable so that we have an encoding
〈x , y〉 of pairs (and uples).

The initial object π^ is called the view protocol and is defined by
I π^ui

(x) = x for x ∈ V (full-information),
I π^si

(x ,m) = 〈x , 〈m〉〉 for (x ,m) ∈ V × Vn.

Given a trace T , the local memory of i-th process after executing
the trace T is called its view.
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The view protocol

Theorem (GMT)
The category of protocols admits an initial object π^ with
π^si

(x ,m) = 〈x , 〈m〉〉.

Proof.
Suppose given a reachable memory

x = li with (l ,m) = JT Kπ^

Because of the definition of morphisms, we are forced to define

φi(x) = l ′i with (l ′,m′) = JT Kπ

It only remains to check that this definition is well-defined, i.e. it
does not depend on the chosen trace T . . .

26 / 86



THE
PROTOCOL
COMPLEX
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The protocol complex

Given a number r of rounds for each process, the protocol
complex χr (Θ) is the abstract simplicial complex whose
I vertices are x ∈ V such that x is the view (= local memory)

of i-th process after executing a trace with π^

I simplices are sets of vertices occurring together after a same
execution.
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The protocol complex
Suppose that we have 2 processes and the input is the standard
one:

0 1

The protocol complex χ1(Θ) for 1 round

s

is as follows:

0, 0⊥ 1, 01 0, 01 1,⊥1

After executing 1 round for each process, we have the executions

29 / 86



The protocol complex
Suppose that we have 2 processes and the input is the standard
one:

0 1

The protocol complex χ1(Θ) for 1 round

s

is as follows:

0, 0⊥ 1, 01

0, 01 1,⊥1

After executing 1 round for each process, we have the executions

I u0s0u1s1:

0 1
⊥ ⊥

u0−→ 0 1
0 ⊥

s0−→ 0, 0⊥ 1
0 ⊥

u1−→ 0, 0⊥ 1
0 1

s1−→ 0, 0⊥ 1, 01
0 1

29 / 86



The protocol complex
Suppose that we have 2 processes and the input is the standard
one:

0 1

The protocol complex χ1(Θ) for 1 round

s

is as follows:

0, 0⊥ 1, 01 0, 01 1,⊥1

After executing 1 round for each process, we have the executions

I u1s1u0s0:

0 1
⊥ ⊥

u1−→ 0 1
⊥ 1

s1−→ 0 1,⊥1
⊥ 1

u0−→ 0 1,⊥1
0 1

s0−→ 0, 01 1,⊥1
0 1

29 / 86



The protocol complex
Suppose that we have 2 processes and the input is the standard
one:

0 1

The protocol complex χ1(Θ) for 1 round

s

is as follows:

0, 0⊥ 1, 01 0, 01 1,⊥1

After executing 1 round for each process, we have the executions

I u1u1s0s1:

0 1
⊥ ⊥

u0−→ 0 1
0 ⊥

u1−→ 0 1
0 1

s0−→ 0, 01 1
0 1

s1−→ 0, 01 1, 01
0 1

29 / 86



The protocol complex
Suppose that we have 2 processes and the input is the standard
one:

0 1

The protocol complex χ1(Θ) for 1 round

s

is as follows:

0, 0⊥ 1, 01

1,⊥1 0, 01

After executing 1 round for each process, we have the executions

29 / 86



The protocol complex
Suppose that we have 2 processes and the input is the standard
one:

0 1

The protocol complex χ2(Θ) for 2 rounds is as follows:
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0
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0
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0
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0
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1
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0 1

0
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1
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The protocol complex
With 3 processes and 1 one round, starting from the input
complex

we obtain the protocol complex

0

12

Notice that this is a particular subdivision of the original complex.
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The chromatic subdivision
In general, the protocol complex on r rounds is obtained by
I starting from the input complex
I performing a chromatic subdivision of it r times

and this subdivision can be defined and studied independently.

Theorem (Herliy-Shavit, GMT, Koszlov)
If the input complex is contractible then the protocol complex is.

←↩ ←↩ ←↩
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Solvability
Suppose that a task Θ can be solved by a protocol π:
I it can be solved in r rounds

I there is a map φ : π^ → π such that, for every trace T ,

φ(JT Kπ^) = JT Kπ

I in particular, when the trace T has r rounds JT K ∈ O
I [...] therefore there is a simplicial map from the r -iterated

protocol complex to the output complex:

Theorem
If a task can be solved then there is r and a simplicial map from
χr (Θ) to codomΘ (and, in fact, conversely).

NB: simplicial maps preserve contractibility!
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The binary consensus

Consider again the binary consensus task:

0, 0
&&

1, 0
&&

0, 0 1, 0

1, 1 880, 1 881, 1 0, 1

There can be no protocol solving it (even after some rounds).
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The binary quasi-consensus

Consider the binary quasi-consensus:

0, 0
**

1, 0
**

0, 0 1, 0

1, 1 440, 1 441, 1 0, 1
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The binary quasi-consensus

Consider the binary quasi-consensus:

0, 0⊥ **
1, 00 0, 00 1,⊥0

((
0, 0 1, 0

1, 01 0, 10

0, 01 1, 10

1,⊥1 440, 11 1, 11 0, 1⊥ 661, 1 0, 1

34 / 86



CONTRACTIBILITY
OF THE

PROTOCOL
COMPLEX
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Simplicial complex
Definition
A simplicial complex K consists of
I a set K of vertices,
I a set K of finite subsets of K called simplices,

such that
I K is non-empty,
I for every x ∈ K , we have {x} ∈ K ,
I for every σ ∈ K and τ ⊆ σ we have τ ∈ K .

36 / 86



Simplicial complex
Definition
A simplicial complex K consists of
I a set K of vertices,
I a set K of finite subsets of K called simplices,

such that
I K is non-empty,
I for every x ∈ K , we have {x} ∈ K ,
I for every σ ∈ K and τ ⊆ σ we have τ ∈ K .

Example
The standard simplicial complex ∆n has {0, . . . , n} as vertices
and all possible simplices.

∆2 =

1

12012

0

01

02 2
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Simplicial complex
Definition
A simplicial complex K consists of
I a set K of vertices,
I a set K of finite subsets of K called simplices,

such that
I K is non-empty,
I for every x ∈ K , we have {x} ∈ K ,
I for every σ ∈ K and τ ⊆ σ we have τ ∈ K .

A morphism
f : K → K ′

is a function f : K → K ′ which
I preserves simplices: for σ ∈ K , we have f (σ) ∈ K ′,
I is locally injective: for σ ∈ K , f restricted to σ is injective.
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Towards the standard chromatic
subdivision

Before defining the standard chromatic subdivision, we will first
recall the barycentric subdivision.

For this, we need to introduce:
I the graph of elements of a simplicial complex,
I the nerve of a graph,
I the chromatic variants of these notions.
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The graph of elements

Definition
A graph G = (V ,E ) consists here of
I a set V of vertices,
I a set E ⊆ V × V of edges,

such that (x , y) ∈ E implies x 6= y .

Definition
The graph of elements El(K ) of a simplicial complex has
I the non-empty simplices of K as vertices,
I an edge τ → σ whenever τ ( σ.
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The graph of elements

Example
For ∆1

0 01 1

the graph of elements is

0 // 01 1oo
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The graph of elements

Example
For ∆2

1

12012

0

01

02 2

the graph of elements is

012

01

<<

02

OO

12

bb

0

OO <<

EE

1

KK

bb <<

2

YY

bb OO
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The nerve of a graph
Definition
The nerve N(G ) of a graph G = (V ,E ) has
I the elements of G as vertices,
I simplices are sets {x0, . . . , xn} ⊆ G such that there is an edge

xi → xj

for every i < j .

Example
The nerve of the graph

0 // 01 1oo

is
0 01 1
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The barycentric subdivision

Definition
The barycentric subdivision of a simplicial complex is

χ = N ◦ El
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The barycentric subdivision

Example
For ∆1

0 01 1

the barycentric subdivision is

0 01 1
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The barycentric subdivision

Example
For ∆2

1

12012

0

01

02 2

the barycentric subdivision is

0

01 012 02

1 12 2
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Colored complexes

Definition
The category of colored simplicial complexes is

SC/ !N

where !N has N as vertices and all finite subsets as simplices.

Remark

I The coloring of a simplicial complex K is uniquely determined
by a coloring of vertices:

` : K → N

I In a simplex, every vertex has a different color.
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Colored graphs

We write !N for the graph with
I N as vertices,
I pairs (x , y) ∈ N× N with x 6= y as edges.

Definition
The category of colored graphs is

Graph/ !N

We thus color vertices by natural numbers in a way such that two
vertices of an edge have a distinct color.
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The chromatic graph of elements

Definition
The functor

El : SC/ !N → Graph/ !N

associates to each colored simplicial complex (K , `) the graph
where
I vertices are (σ, i) with σ ∈ K and i ∈ `(σ)

I there is an edge (τ, i)→ (σ, j) whenever
1. i 6= j
2. τ ⊆ σ
3. τ = σ or j 6∈ `(τ)
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The chromatic graph of elements

Example
For ∆1

0 01 1

the chromatic graph of elements is

01, 1
,,
01, 0ll

0, 0

;;

1, 1

cc
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The chromatic graph of elements
Example
For ∆2

1

12012

0

01

02 2

the chromatic graph of elements is

012, 2 --tt ((
012, 1oo -- 012, 0oo

01, 1

OO

// 01, 0mm

^^

02, 2

@@

// 02, 0ll

^^

12, 2

@@

// 12, 1mm

OO

0, 0

DD

OO 88

;;

1, 1

ff

cc

88

;;

2, 2

ff

cc

OO

ZZ
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The chromatic nerve

Definition
The functor

N : Graph/ !N → SC/ !N

associates to a colored graph (G = (V ,E ), `) the simplicial
complex with
I the elements of G as vertices, colored by `,
I simplices are sets {x0, . . . , xn} ⊆ G such that there is an edge

xi → xj

for every i < j .
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The standard chromatic subdivision

Definition
The standard chromatic subdivision is

χ = N ◦ El
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The standard chromatic subdivision

Example
For ∆1

0 01 1

the standard chromatic subdivision is

0, 0 01, 1 01, 0 1, 1
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The standard chromatic subdivision
Example
For ∆2

1

12012

0

01

02 2

the standard chromatic subdivision is

0, 0

01, 1 02, 2

01, 0 012, 2 012, 1 02, 0

012, 0

1, 1 12, 2 12, 1 2, 253 / 86



Contractibility

We want to show that χr (K ) is n-connected when K is.

This will be deduced from the fact that χ(∆n) is contractible.

Which we prove by showing that χ(∆n) is collapsible.
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Collapsibility

From now on, we consider simplicial complexes K of finite
dimension.

Definition
A simplex τ is a free face of a simplex σ when

1. τ ⊆ σ and τ 6= σ,

2. σ is a maximal simplex of K ,

3. no other maximal simplex of K contains τ .

In this case, the monomorphism

K ←↩ K \ τ

is called a collapse step.

A collapse is a composite of collapse
steps. K is collapsible if it can be collapsed to ∆0.
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Collapsibility

Example
The simplex ∆2 is collapsible:

1

12012

0

01

02 2

←↩
1

0

01

02 2

←↩
1

0

01

2

←↩
1

0 2
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Collapsibility

Example
The simplex ∆2 is collapsible:
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01
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0

01
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←↩
1

0

01

2

←↩
1
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Collapsibility

Theorem (Whitehead)
A collapsible simplicial complex is contractible.

The converse is not true, e.g. Bing’s house with two rooms:
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A simpler example
Instead of showing that χ(∆n) is collapsible

0, 0

01, 1 02, 2

01, 0 012, 2 012, 1 02, 0

012, 0

1, 1 12, 2 12, 1 2, 2
we are going to show the result on ∂∆n ?∆n:

0|

01|

0|2 0|12 0|1

02||201|2 |12

1|02
|012

|1
2|01

02|1

|0
|02 |01

12|0
1|

1|2
1|0

12| 2|
2|0

2|1
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The join

Definition
Given simplicial complexes K and L, their join K ? L is the
complex with
I vertices

K ? L = K ] L

I simplices

K ? L = {σ ⊆ K ] L | σ ∩ K ∈ K and σ ∩ L ∈ L}

A simplex in K ? L is thus of the form σ|τ with σ ∈ K and τ ∈ L.

Example
∆m ?∆n = ∆m+n+1.
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The colored join

Definition
Given colored simplicial complexes K and L, their colored join
K ? L is the complex with
I vertices

K ? L = K ] L

I simplices

K ? L = {σ|τ ∈ K × L | `K (σ) ∩ `L(τ) = ∅}

60 / 86



The basic chromatic subdivision
Definition
The basic chromatic subdivision of ∆n is

∂∆n ?∆n
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The basic chromatic subdivision
Definition
The basic chromatic subdivision of ∆n is

∂∆n ?∆n

Example
For ∆2, we have: 0|

01|

0|2 0|12 0|1

02||201|2 |12

1|02
|012

|1
2|01

02|1

|0
|02 |01

12|0
1|

1|2
1|0

12| 2|
2|0

2|1
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The basic chromatic subdivision
Definition
The basic chromatic subdivision of ∆n is

∂∆n ?∆n

Its simplices are of the form σ|τ with
I σ, τ ⊆ {0, . . . , n}
I σ 6= {0, . . . , n}
I σ ∩ τ = ∅
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Collapsibility of the basic subdivision
Proposition
The canonical inclusion

∆I ↪→ ∂∆I ?∆I = K I

σ 7→ ∅|σ

is a collapse, thus the basic chromatic subdivision is collapsible.
0|

01|

0|2 0|12 0|1

02||201|2 |12

1|02
|012

|1
2|01

02|1

|0
|02 |01

12|0
1|

1|2
1|0

12| 2|
2|0

2|1

Proof: remove σ|∅ with dim(σ) decreasing. 62 / 86



Collapsibility of the basic subdivision

We consider the following sequence of collapse steps:

0|

01|

0|2 0|12 0|1

02||201|2 |12

1|02
|012

|1
2|01

02|1

|0
|02 |01

12|0
1|

1|2
1|0

12| 2|
2|0

2|1
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1|02
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Collapsibility of the basic subdivision

We consider the following sequence of collapse steps:

0|

|2 |12
|012

|1

|0
|02 |01

1| 2|
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Collapsibility of the basic subdivision

Note that other sequences could have been used in order to show
collapsibility:

0|

01|

0|2 0|12 0|1

02||201|2 |12

1|02
|012

|1
2|01

02|1

|0
|02 |01

12|0
1|

1|2
1|0

12| 2|
2|0

2|1
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Collapsibility of the basic subdivision

Note that other sequences could have been used in order to show
collapsibility:

0|
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Collapsibility of the chromatic subdivision
Comparing the basic chromatic subdivision

0|

01|

0|2 0|12 0|1

02||201|2 |12

1|02
|012

|1
2|01

02|1

|0
|02 |01

12|0
1|

1|2
1|0

12| 2|
2|0

2|1

and the standard chromatic subdivision
0, 0

01, 1 02, 2

01, 0 012, 2 012, 1 02, 0

012, 0

1, 1 12, 2 12, 1 2, 2
we see that some ∆2 are replaced by ∂∆1 ?∆0. 65 / 86



Collapsibility of the chromatic subdivision

Theorem
χ(∆n) is collapsible and thus contractible.

Proof.
Show a bunch of lemmas showing that collapsing is compatible
with join and simulate the previous sequence of collapse
steps.
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The iterated subdivision
In order to show that the iterated subdivision is contractible, it is
simpler to work with (colored) presimplicial sets:
I every elementary collapse step K ↪→ L can be obtained as a

pushout
Λn

i

��

// K

��
∆n // L

I the image of χ is characterized by its action on
representables

χ(K ) = colim(El(K )
π−→ ∆

Y−→ ∆̂
χ−→ ∆̂)

Theorem
χr (∆n) is collapsible and thus contractible.
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EQUIVALENCE
BETWEEN
TRACES
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Execution traces
The (well-bracketed) execution traces in {ui , si}∗ are semantically
invariant under the congruence ≈ generated by

ujui ≈ uiuj sjsi ≈ sisj

which means that

T ≈ T ′ implies JT Kπ = JT ′Kπ

. . .

x ′0 x ′1

x0 x1 . . . xn−1

P0 P1 Pn−1

local mem.

global mem.

e.g.

u0u1 ≈ u1u0
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Execution traces
The (well-bracketed) execution traces in {ui , si}∗ are semantically
invariant under the congruence ≈ generated by

ujui ≈ uiuj sjsi ≈ sisj

which means that

T ≈ T ′ implies JT Kπ = JT ′Kπ
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local mem.

global mem.
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Interval orders
In a well-bracketed trace, the ui and si form intervals:

u0u1u2s1s0s2u1s1  
u0 s0

u1 s1
u2 s2

u1 s1

 
x ′1

x0

??

x1

OO

x2

``

An interval order (X ,�) is a poset such that there exists a
function I : X → ℘(R) associating an interval Ix to each x in such
a way that

x ≺ y if and only if ∀s ∈ Ix ,∀t ∈ Iy , s < t

There is a colored variant with ` : X → N such that `(x) = `(y)
implies that x and y are comparable.
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implies that x and y are comparable.

70 / 86



Interval orders

Remark (Fishburn)
A poset is an interval order if it is “(2 + 2)-free”:

b d

a

OO

c

OO

implies

b d

a

OO ??

c

OO

or

b d

a

OO

c

__ OO
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Interval orders

Theorem
Well-bracketed traces up to equivalence are in bijection with
colored interval orders.

u0u1u2s1s0s2u1s1  
x ′1

x0

??

x1

OO

x2

``
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Views of interval orders

Suppose given two elements xi and xj of an interval order. We
have the following possible situations:

xj

xi

OO
xi xj

xi

xj

OO

which correspond to the following traces:

uisiujsj uiujsisj ujsjuisi

In the two first cases, sj sees ui .
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Views of interval orders

This suggests defining the i-view of a colored interval
order (X ,�) by

1. restricting to elements which are below or independent from
the maximum element xk

i labeled by i

2. remove dependencies from xk
i

Theorem

I an interval order can be reconstructed from all the i-views
I the execution of the i-th process in the view protocol π^ is

uniquely determined by the i-view
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This suggests defining the i-view of a colored interval
order (X ,�) by

1. restricting to elements which are below or independent from
the maximum element xk

i labeled by i

2. remove dependencies from xk
i

Theorem

I an interval order can be reconstructed from all the i-views
I the execution of the i-th process in the view protocol π^ is

uniquely determined by the i-view
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Views of interval orders

For instance, with two processes, consider u0u1s1u1s0s1u0s0:

I it corresponds to the colored interval order

x1
0 x1

1
oo

x0
0

OO

x0
1

^^ OO

I the views are

x1
0 x1

1
oo

x0
0

OO

x0
1

^^ OO
x1
0

x0
0

OO

x0
1

^^
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Views of interval orders

For instance, with two processes, consider u0u1s1u1s0s1u0s0:

0 1
⊥ ⊥

u0−→ 0 1
0 ⊥

u1−→ 0 1
0 1

s1−→ 0 〈1, 01〉
0 1

u1−→ 0 〈1, 01〉
0 〈1, 01〉

s0−→ 〈0, 0〈1, 01〉〉 〈1, 01〉
0 〈1, 01〉

s1−→ 〈0, 0〈1, 01〉〉 〈〈1, 01〉 , 0〈1, 01〉〉
0 〈1, 01〉

u0−→ 〈0, 0〈1, 01〉〉 〈〈1, 01〉 , 0〈1, 01〉〉
〈0, 0〈1, 01〉〉 〈1, 01〉

s0−→ 〈〈0, 0〈1, 01〉〉 , 〈0, 0〈1, 01〉〉 〈1, 01〉〉 〈〈1, 01〉 , 0〈1, 01〉〉
〈0, 0〈1, 01〉〉 〈1, 01〉
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Views of interval orders

For instance, with two processes, consider u0u1s1u1s0s1u0s0:

I we have a correspondence:

x1
0 x1

1
oo

x0
0

OO

x0
1

^^ OO
x1
0

x0
0

OO

x0
1

^^

〈〈0, 0〈1, 01〉〉 , 〈0, 0〈1, 01〉〉 〈1, 01〉〉 〈〈1, 01〉 , 0〈1, 01〉〉
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Completeness results

From this we deduce:

Theorem
The equivalence is complete: given two traces t and t ′

t ≈ t ′ iff JtKπ^ = Jt ′Kπ^

Theorem
π^ is actually initial in the category of protocols.
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The interval order complex

Definition
The interval order complex is the simplicial complex whose
I vertices are (i ,Vi) where Vi is an i-view
I maximal simplices are {(0,V0), . . . , (n,Vn)} such that there

is an interval order (X ,≺) (with given number of rounds)
whose i-view is Vi .

Theorem
The interval order complex is isomorphic to the protocol complex.
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DIRECTED
GEOMETRIC
SEMANTICS
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Directed geometric semantics

The idea of geometric semantics is to formalize the dictionary:

program ⇔ topological space
state ⇔ point of the space

execution trace ⇔ path
equivalent traces ⇔ homotopic paths

so that we can import tools from (algebraic) topology in order to
study concurrent programs.

We actually need to use spaces equipped with a notion of
direction in order to take in account irreversible time.
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An example
Consider two processes executing one round of update/scan, i.e.

u0.s0 ‖ u1.s1

The geometric semantics of this program will be

u0 s0

u1

s1

t0

t1

i.e. a square [0, 1]× [0, 1] minus two holes, which is directed
componentwise.
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The geometric semantics of this program will be

u0 s0

u1

s1

t0

t1

i.e. a square [0, 1]× [0, 1] minus two holes, which is directed
componentwise.

directed path : u1u0s0s1
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An example
Consider two processes executing one round of update/scan, i.e.

u0.s0 ‖ u1.s1

The geometric semantics of this program will be

u0 s0

u1

s1

t0

t1

i.e. a square [0, 1]× [0, 1] minus two holes, which is directed
componentwise.

non directed path : ???
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An example
Consider two processes executing one round of update/scan, i.e.

u0.s0 ‖ u1.s1

The geometric semantics of this program will be

u0 s0

u1

s1

t0

t1

i.e. a square [0, 1]× [0, 1] minus two holes, which is directed
componentwise.

homotopy between paths : u1u0s0s1 ≈ u0u1s0s1
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An example
Consider two processes executing one round of update/scan, i.e.

u0.s0 ‖ u1.s1

The geometric semantics of this program will be

u0 s0

u1

s1

t0

t1

i.e. a square [0, 1]× [0, 1] minus two holes, which is directed
componentwise.

some paths are not homotopic
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More examples
This generalizes to more rounds:
consider two processes executing 2 and 4 rounds of update/scan,

u0.s0.u0.s0 ‖ u1.s1.u1.s1.u1.s1.u1.s1

The geometric semantics of this program will be

t2

t1

u2

s2

u2

s2

u1 s1 u1 s1 u1 s1 u1 s1

NB: we will illustrate in dimension 2, where things are simpler

81 / 86



More examples
This generalizes to more processes:
consider three processes executing one round of update/scan,

u0.s0 ‖ u1.s1 ‖ u2.s2

The geometric semantics of this program will be

t0

t1

t2

NB: we will illustrate in dimension 2, where things are simpler
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Directed spaces

Formally,

Definition
A pospace (X ,≤) consists of a topological space X equipped
with a partial order ≤ ⊆ X × X , which is closed.

A dipath p is a continuous non-decreasing map p : [0, 1]→ X .

A dihomotopy H from a path p to a path q is a continuous map
H : [0, 1]× [0, 1]→ X such that
I H(0, t) = p(t) for every t
I H(1, t) = q(t) for every t
I t 7→ H(s, t) is a dipath for every s
I s 7→ H(s, 0) and s 7→ H(s, 1) are constant
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Directed paths vs traces

Theorem
Fixing a number of rounds for each process, there is a bijection
between

(i) directed paths up to directed homotopy in the geometric
semantics

(ii) colored interval orders

(iii) execution traces up to ≈

u1 s1

u2

s1

t0

t1

⇔ u1u0s0s1 ≈ u0u1s0s1
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Directed paths vs traces

Theorem
Fixing a number of rounds for each process, there is a bijection
between

(i) directed paths up to directed homotopy in the geometric
semantics

(ii) colored interval orders

(iii) execution traces up to ≈

u0 s0

u1

s1

t0

t1

u0 s0

u1

s1

t0

t1

u0 s0

u1

s1

t0

t1

[u0, s0] ≺ [u1, s1] [u0, s0] ‖ [u1, s1] [u0, s0] � [u1, s1]
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From geometry to the complex

One can notice in the last example that edges are in bijection
with directed paths up to homotopy (and with interval orders):

0, 0⊥
0≺1

1, 01
0 1

0, 01
0�1

1,⊥1

(more generally maximal simplices are in bijection with maximal
directed paths up to homotopy).
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From geometry to the complex
This is still true for 2 processes and 2 rounds: 1, ((0(01))(01))

0 1

0

OO

1

^^ OO

0, ((0 )((0 )1)) 0, ((0(01))(01))

0, ((0 ) )

0

��

// 1

0

OO @@

// 1

OO

1, ((0 )((0 )1))

0 1

0

OO @@

// 1

OO
0 // 1

0

OO

//

@@

1

OO

0, ((0 )1)

0 // 1

0

OO @@

// 1

OO^^

1, ((0 )(01))

0 1

0

OO @@

// 1

^^ OO

0, ((0 )(01))

0 1oo

0 //

@@OO

1

^^ OO

1, (0(01))

0 1oo

0

OO

1

^^ OO

0 1oo

0

OO @@

1

^^ OO

0, ((01)(01))

0 1

0

OO @@

1

^^ OO

1, ((01)(01))

0 // 1

0

OO @@

1

^^ OO

1, ( ( 1)) 0, ((0( 1))( 1))
0 1

��

oo

0

OO

1oo

^^ OO
0 1

0

OO

1oo

^^ OO

1, (0( 1))
0 1oo

0

OO

1oo

^^ OO
0, ((01)( 1))

0 1oo

0

OO @@

1oo

^^ OO
1, ((01)( 1))

0 1

0

OO @@

1oo

^^ OO
0, ((01)1)

0 // 1

0

OO @@

1oo

^^ OO
0 // 1

0

OO @@

1

OO

1, ((0( 1))( 1)) 1, ((01)((01)1))

0, ((01)((01)1))

0 1

0

OO @@

1

OO
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Thanks!
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