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This is a small survey on the use of symmetry in:
I algebra: Galois theory
I geometry: deck transformations
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Starting point
We want to find the roots of the following polynomial in Q[X ]:

X 4 − 4X 2 − 5 = (X 2 + 1)(X 2 − 5)

Its four roots are

a = i b = −i c =
√
5 d = −

√
5

Any equation involving those, with coefficients in Q, is still valid if we permute a with
b, or c with d :

a2 + 1 = 0 a + b = 0 ac = bd . . .

Otherwise said, we have two automorphisms of Q(i ,
√
5) fixing Q:

i 7→ −i√
5 7→

√
5

i 7→ i√
5 7→ −

√
5
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Intermediate fields

A field extension L/K consist of a field L and a subfield K ⊆ L
(or more generally a mono K ↪→ L).

Note: in the category Field every morphism is mono and
morphisms are between fields of same characteristic
(we will be mostly interested in characteristic 0).

Given a field extension L/K , we write

L//K

for the poset of intermediate extensions K ⊆ M ⊆ L, the order being ⊆.
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Classical Galois theory
Given a field K , Aut(K ) is the group of automorphisms of K .

Given a field extension L/K , i.e. K ⊆ L, the Galois group

Aut(L/K )

is the subgroup of Aut(L) of automorphisms f fixing K , i.e.

∀x ∈ K , f (x) = x

Example: Aut(C/R) = Z/2Z (i sent to either i or −i).

We also have a poset
Aut(L//K )

of subgroups of Aut(L/K ) ordered by ⊆.

6 / 77



Classical Galois theory
Given a field K , Aut(K ) is the group of automorphisms of K .

Given a field extension L/K , i.e. K ⊆ L, the Galois group

Aut(L/K )

is the subgroup of Aut(L) of automorphisms f fixing K , i.e.

∀x ∈ K , f (x) = x

Example: Aut(C/R) = Z/2Z (i sent to either i or −i).

We also have a poset
Aut(L//K )

of subgroups of Aut(L/K ) ordered by ⊆.

6 / 77



Classical Galois theory
Given a field K , Aut(K ) is the group of automorphisms of K .

Given a field extension L/K , i.e. K ⊆ L, the Galois group

Aut(L/K )

is the subgroup of Aut(L) of automorphisms f fixing K , i.e.

∀x ∈ K , f (x) = x

Example: Aut(C/R) = Z/2Z (i sent to either i or −i).

We also have a poset
Aut(L//K )

of subgroups of Aut(L/K ) ordered by ⊆.

6 / 77



Classical Galois theory
Given a field K , Aut(K ) is the group of automorphisms of K .

Given a field extension L/K , i.e. K ⊆ L, the Galois group

Aut(L/K )

is the subgroup of Aut(L) of automorphisms f fixing K , i.e.

∀x ∈ K , f (x) = x

Example: Aut(C/R) = Z/2Z (i sent to either i or −i).

We also have a poset
Aut(L//K )

of subgroups of Aut(L/K ) ordered by ⊆.
6 / 77



The Galois correspondence
Theorem
Given a field extension L/K, there is an adjunction

Aut(L//K ) ⊥ (L//K )op
F

G

I G takes K ⊆ M ⊆ L to the subgroup of Aut(L/K ):

GM = {f : L→ L | f fixes M}
I F takes a subgroup A ⊆ Aut(L/K ) to

FA = {x ∈ K | A fixes x}

We can check that they are functors such that

FA ⊇ B

A ⊆ GB
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Galois correspondences
An adjunction between two posets

P ⊥ Q

F

G

is called a Galois correspondence.
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Galois correspondences
An adjunction between two posets

P ⊥ Q

F

G

is called a Galois correspondence.

In this case T = G ◦ F is a closure operator:
I extensive: x ≤ T (x)

I increasing: x ≤ y implies T (x) ≤ T (y)

I idempotent: T (T (x)) = T (x)
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Galois correspondences
An adjunction between two posets

P ⊥ Q

F

G

is called a Galois correspondence.

We write P∗ ⊆ P for the set of its fixpoints:

P∗ = {x ∈ P | G ◦ F (x) = x}

and similarly for Q∗ ⊆ Q.
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Galois correspondences
An adjunction between two posets

P ⊥ Q

F

G

is called a Galois correspondence.

Proposition
We have an induced bijection

P∗ Q∗

F

G
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Generality

Note that up to now, the fact that we consider fields was used nowhere: it would
equally work with groups, rings, or whatever you like...
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The fundamental theorem

In the case of

Aut(L//K ) ⊥ (L//K )op

F

G

the correspondence is a bijection if (and only if) L/K is an extension which is finite,
separable and normal.

In the general case, F is injective and G is surjective.
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Dimension

Any extension L/K can be seen as a K -vector field.

Its dimension is written [L : K ] and called the degree of L/K .

L/K is finite when [L : K ] is.

Given K ⊆ L ⊆ M,
[M : K ] = [M : L]× [L : K ]

Example

[Q(
√
2,
√
3) : Q] = [Q(

√
2)(
√
3) : Q(

√
2)]× [Q(

√
2) : Q]

= 2× 2 = 4
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Galois extension

An extension L/K is
I algebraic when every element of L is algebraic over K ,

i.e. is the root of some P ∈ K [X ] with P 6= 0,

I separable when the minimal polynomial of every element in L over K is
separable, i.e. has no repeated root in the algebraic closure over K ,

I normal when every irreducible polynomial P in K [X ] which has one root in L has
all roots in L (it splits in L),

I Galois when algebraic, normal and separable.
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Why we need normal
Consider the intermediate field Q( 3

√
2) of R/Q.

The minimal polynomial of 3
√
2 is X 3 − 2 whose roots are

3
√
2 j 3

√
2 − j 3

√
2

Thus Q( 3
√
2) is not normal.

An element f ∈ Aut(Q( 3
√
2)/Q) has to satisfy

f (
3
√
2)3 = f ((

3
√
2)3) = f (2) = 2

and therefore f ( 3
√
2) = 3

√
2.

We have
G ◦ F (Q(

3
√
2)) = G ◦ F (Q)
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Let’s go through this slowly...
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Generated extensions

Given an extension L/K and A ⊆ L a subset, we write K (A) for the extension
generated by A, which can be described as
I the intersection of all extensions of K containing A,
I the subfield of L whose elements are of the form

(P/Q)(a1, . . . , an)

where P/Q is a rational fraction in K (X1, . . . ,Xn).
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Simple extensions
A simple extension in L/K is one of the form K (a) for a ∈ L.

Ex: Q(
√
2,
√
3) = Q(

√
2 +
√
3) in R/Q.

Proposition
A simple extension K (a) is either of the form
I K (X ) if a is transcendental over K ,
I K [X ]/I if a is algebraic over K where I is the ideal

I = {P ∈ K [X ] | P(a) = 0}

Remark
I is the kernel of the evaluation at a (therefore an ideal) whose target is the field K ,
therefore it is a maximal ideal and K [X ]/I is a field.
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Simple extensions

In fact, extensions are usually simple:

Theorem (Primitive element theorem)
If L/K is a separable extension of finite degree then it is simple.
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Simple extensions
The ring K [X ] is always a PID, therefore

I = {P ∈ K [X ] | P(a) = 0} = (P)

i.e. if a is a root of a polynomial over K then there is a minimal polynomial P with
this property.

Proposition
Given K (a)/K a simple extension one has
I [K (a) : K ] =∞ if a is transcendental,
I [K (a) : K ] = deg(P) where P is the minimal polynomial of a otherwise.

In fact, a basis of K (a)/K consists of the ai with 0 ≤ i < deg(P).
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Finite extensions

Lemma
An extension L/K is finite (i.e. [L : K ] finite) if and only if L is algebraic over K and
L = L(a1, . . . , an).

Remark
Every finite extension is algebraic, but an algebraic extension can be infinite. For
instance, the set A of algebraic numbers, i.e. those which are algebraic over Q:

A = {x ∈ C | P(x) = 0 for some P ∈ Q[X ]}
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Ruler and compass

Consider the points you can construct in R2, starting from two points, by

1. drawing a straight line through two points,

2. drawing circles centered at a point and going through another point,

and taking points at intersections of those.

We write pi = (xi , yi) for the sequence of constructed points, K0 = R and
Ki+1 = Ki(xi , yi).

Proposition
The elements xi+1 and yi+1 are zeros of polynomials of degree one or two in Ki .
Therefore, [Ki : K ] is a power of two.
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Trisecting the angle

Can we trisect an angle with ruler and compass?

I We begin with p0 = (0, 0) and p1 = (1, 0).
I Trisecting is equivalent to constructing (cos(π/9), 0), and therefore (a, 0) with

a = 2 cos(π/9).
I Setting θ = π/9 in cos(3θ) = 4 cos3(θ)− 3 cos(θ) we have

a3 − 3a − 1 = 0

I The polynomial is irreducible over Q, i.e. [Q(a) : Q] = 3.
I Contradiction.
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a = 2 cos(π/9).
I Setting θ = π/9 in cos(3θ) = 4 cos3(θ)− 3 cos(θ) we have

a3 − 3a − 1 = 0

I The polynomial is irreducible over Q, i.e. [Q(a) : Q] = 3.
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Squaring the circle

Can we square the circle?

I We begin with p0 = (0, 0) and p1 = (1, 0).
I We should be able to construct (

√
π, 0) and therefore (π, 0).

I This would imply that [Q(π) : Q] is a power of two, but we know that π is not
algebraic over Q.

I Contradiction.
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For the rest, we should rely on subtler invariants than size...

We should take symmetries in account!
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General idea

Suppose that we want to make a simple algebraic extension K (a)/K , where P is the
minimal polynomial of a.

We may not be able to distinguish between a and another root of P: more precisely,
there will be an action of the Galois group.
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Splitting fields

A polynomial P splits over K when P = a(X − a1) . . . (X − an).

The splitting field L of P over K is the smallest extension L/K such that P splits
over L.

Lemma
For any P ∈ K [X ], the splitting field exists and is unique up to isomorphism.

Proof.
Iteratively formally add roots of irreducible factors Q of P to K , i.e. take K [x ]/(Q),
until P splits.
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Separable extensions

An irreducible polynomial is separable over K if it has only simple roots in a splitting
field.

A polynomial is separable when all its irreducible factors are.
An algebraic extension is separable when the minimal polynomial over every element
is.

Lemma
a is a multiple root of P 6= 0 if and only if P(a) = 0 and P ′(a) = 0.

Lemma
In characteristic 0, every irreducible polynomial is separable.
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Normal extensions
An extension L/K is normal if every irreducible polynomial with at least one zero in L
splits over L.

The normal closure of an algebraic extension L/K is the smallest normal algebraic
extension of L.

Two elements are conjugate if they are roots of the same minimal polynomial.

Proposition
With K separable, the normal closure of K (a1, . . . , an), a finite extension of K , can
be obtained by adding all conjugate of the ai .
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Two elements are conjugate if they are roots of the same minimal polynomial.

Proposition
With K separable, the normal closure of K (a1, . . . , an), a finite extension of K , can
be obtained by adding all conjugate of the ai .

Proposition
When K is separable, a finite extension L/K is normal if and only if L is the splitting
field for some polynomial over K .
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An extension L/K is normal if every irreducible polynomial with at least one zero in L
splits over L.

The normal closure of an algebraic extension L/K is the smallest normal algebraic
extension of L.

Two elements are conjugate if they are roots of the same minimal polynomial.

Proposition
With K separable, the normal closure of K (a1, . . . , an), a finite extension of K , can
be obtained by adding all conjugate of the ai .

Proposition
A finite extension L/K is normal iff the action of Aut(L/K ) on the conjuguates of an
element of K is transitive.
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Normal extensions
An extension L/K is normal if every irreducible polynomial with at least one zero in L
splits over L.

The normal closure of an algebraic extension L/K is the smallest normal algebraic
extension of L.

Two elements are conjugate if they are roots of the same minimal polynomial.

Proposition
With K separable, the normal closure of K (a1, . . . , an), a finite extension of K , can
be obtained by adding all conjugate of the ai .

Proposition (???)
A finite extension L/K is separated iff the action of Aut(L/K ) on the conjuguates of
an element of K is faithful.
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The fundamental theorem

Theorem (Galois)
When L/K is a finite, separable and normal extension, we have an isomorphism

Aut(L//K ) ⊥ (L//K )op

F

G
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Back to Galois

Given a polynomial P over K with splitting field L, its Galois group is Aut(L/K ).

Given f ∈ Aut(L/K ), and a such that P(a) = 0, we have

f (P(a)) = P(f (a)) = 0

so that f permutes the zeros of P: i.e. exchanges conjugate elements. Conversely,
since L is generated by roots of P such a permutation determines an element
of Aut(L/K ).

The group Aut(L/K ) can thus be seen as a group of permutation of roots of P (this
was Galois’ original definition).
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An example
Consider P = X 4 − 2 over Q, and consider its splitting field K/Q.

In C, we have

P = (X − 4
√
2)(X +

4
√
2)(X − i 4

√
2)(X + i 4

√
2)

Therefore
K = Q(

4
√
2, i)

Since we are in characteristic 0, K is separable.
This is a splitting field, thus a normal extension.

Its degree is

[K : Q] = [Q(
4
√
2, i) : Q(

4
√
2)][Q(

4
√
2) : Q] = 2× 4 = 8

(minimal polynomials are respectively, X 2 − 1 and X 4 − 2).
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An example

The elements f ∈ Aut(K/Q) have to satisfy

f (i) ∈ {i ,−i} f (
4
√
2) ∈

{
4
√
2, i 4
√
2,− 4
√
2,−i 4

√
2
}

and all possible combinations are suitable.

We can even work out a presentation with generators r , s

r(i) = i r(
4
√
2) = i 4

√
2 s(i) = −i s(

4
√
2) =

4
√
2

namely
Aut(K/Q) = 〈r , s | r4 = 1, s2 = 1, srsr = 1〉 = D4
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An example

The subgroups of Aut(K/Q) = D4 are

D4

〈s, r2s〉 〈r〉 〈rs, r3s〉

〈s〉 〈r2s〉 〈r2〉 〈rs〉 〈r3s〉

1
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An example

The intermediate extensions of K/Q are

Q(i , 4
√
2)

Q(
√
2) Q(i) Q(i

√
2)

Q( 4
√
2) Q(i 4

√
2) Q(i ,

√
2) Q(...) Q(...)

Q
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Radical extensions

An extension L/K is radical when L = K (a1, . . . , ak) with

ani
i ∈ K (a1, . . . , ai−1)

for some ni ∈ N, i.e. L can be obtained from K by adjoining a sequence of ni -th roots.

[Characteristic 0 from now on.]

A polynomial P ∈ K [X ] is solvable by radicals when its splitting field is an
intermediate field of a radical extension L/K .

Theorem
An separable extension L/K is radical if and only if Aut(L/K ) is solvable.
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Solvable groups
A group G is solvable if there exists subgroups

1 = G0 ⊆ G1 ⊆ . . . ⊆ Gn = G

such that
I Gi is a normal subgroup of Gi+1,
I Gi+1/Gi is abelian

(when G is finite Gi+1/Gi simple abelian iff cyclic of prime order).

Remark
The relation “being a normal subgroup” is not transitive.

Proposition
The symmetric groups Sn are solvable only for n < 5.
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Idea of the proof

Lemma
Write L for the splitting field of P = X p − 1 with p prime.
The Galois group Aut(L/K ) is abelian.

Proof.
I Since P ′ = pX p−1, P and P ′ have not zeros in common, therefore P has only

simple zeros.
I Thus the group of roots of P is cyclic of order p.
I Writing a for a root, L = K (a) and f ∈ Aut(L/K ) is determined by f (a) which

should be in
{
ai
}
.

I Writing fi for the automorphism such that fi(a) = ai , we have
fj ◦ fi(a) = fi ◦ fj(a) = aij and therefore any two elements of Aut(L/K )
commute.
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Idea of the proof

Lemma
Given a field K in which X n − 1 splits, a ∈ K, and L the splitting field for X n − a
over K, then Aut(L/K ) is abelian.

Proof.
I Given b such that bn = a, the roots of X n − a are of the form uib with u a root

of X n − 1.
I Automorphisms are of the form fi with fi(b) = uib and

fj ◦ fi(b) = ui+jb

they thus commute.
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Idea of the proof

Theorem
If a separable extension L/K is radical then Aut(L/K ) is solvable.

Proof.
Given a radical extension L/K :
I we can suppose that we only take roots of prime powers,
I we take the normal closure of L,
I the splitting field of X n − a splits X n − 1,
I we apply previous lemmas.
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An insoluble polynomial

Consider P = X 5 − 6X + 3 over Q.

Its Galois group is S5, which is not solvable.

Therefore, P is not solvable by radicals.

38 / 77



An insoluble polynomial

Consider P = X 5 − 6X + 3 over Q.

Its Galois group is S5, which is not solvable.

Therefore, P is not solvable by radicals.

38 / 77



An insoluble polynomial

Consider P = X 5 − 6X + 3 over Q.

Its Galois group is S5, which is not solvable.

Therefore, P is not solvable by radicals.

38 / 77



Primitives

Note that this result is really due to the fact that our primitive for computing are
radicals, i.e. roots of

X n − a

For instance, an ultraradical is the real solution of

X 5 + X − a

Every quintic is solvable with radicals and ultraradicals.
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Can we use symmetry to show that
some tasks cannot be implemented?
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The Galois task

A task is a polynomial P for which we want to find a root.

A process is a program consisting of a loop which iteratively
I computes some new values from previously computed ones using + and ×,
I calls an external procedure which computes a y such that yn = x ,

and outputs a value after a number of iterations.

Can every task be solved by a process?
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Where can we find symmetries?

Sources of symmetry:
I high-level programming languages can manipulate memory locations, but the

implementation guarantees that the behavior will not depend on the chosen
locations:

invariance under action of the symmetric group on memory!

I there can be a symmetry between the various inputs of a programs.
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COVERING
SPACES
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Covering maps

A continuous map p : E → B between topological spaces is covering when every
point x ∈ B has an neighborhood U such that

p−1(U) ∼=
∐
i∈I

U

for some set I .

The set p−1(x) is called the fiber over x .
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Pointed covers

A pointed space (X , x) is a space X together with x ∈ X .

A pointed morphism f : (X , x)→ (Y , y) is a morphism f : X → Y such that
f (x) = y .

We write Top• for the resulting category.

A pointed covering is a pointed morphism which is also covering.
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The universal cover

Given a pointed space (B, b), consider the full subcategory of

Top•/(B, b)

whose objects are pointed covering p : (E , e)→ (B, b).

A universal cover is an initial object in this category.

Remark
It is not hard to show that morphisms of the above category are covering.
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The universal cover

When B is “reasonable” (connected, locally path-connected and semilocally simply
connected) the universal cover exists and can be described as the space whose points
are homotopy classes of paths in B originating in b.

−→

This construction does not depend on the choice of b in its connected component.

It can be characterized as the simply connected pointed cover of (B, b).
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The universal cover

When B is connected, the universal cover does not depend on the base point b.

We will be in this case in the following and forget about the base point (otherwise
consider connected components).

We will also suppose that covering spaces we consider are connected.
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Deck transformations

A deck transformation of a covering p : E → B is a homeomorphism f : E → E
such that

p ◦ f = p

This means that f permutes points within fibers.

We write Aut(p) for the deck group.
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The fundamental theorem

Given an universal cover p : (X̃ , x̃)→ (X , x), there is an isomorphism

π1(X , x) ∼= Aut(p)

There is a bijective correspondence between
I subgroups of π1(X , x),
I coverings of (X , x).

Aut(p) (Cov(X ))op

F

G
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Let’s detail this...
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The fundamental groupoid
Given a space X , its fundamental groupoid Π1(X ) is the category whose objects are
points in X and morphisms

f : x � y

are paths up to homotopy.

For every object x , the endomorphisms form a group

π1(X , x) = Π1(X )(x , x)

X being connected, for every points x , y , there exists a morphism f : x � y . It
induces a group isomorphism

π1(X , x) → π1(X , y)

g 7→ f ◦ g ◦ f −1
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X being connected, for every points x , y , there exists a morphism f : x � y . It
induces a group isomorphism

π1(X , x) → π1(X , y)

g 7→ f ◦ g ◦ f −1
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The fundamental groupoid

This construction is functorial

Top → Gpd

A continuous function
f : X → Y

induces a functor
f∗ : Π1(X ) → Π1(Y )

and thus a group morphism

f∗ : π1(X , x) → π1(Y , f (x))
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The homotopy lifting property
Proposition
Given a covering p : E → B, a homotopy f : X × I → B and a lifting f̃0 : X → E ,
there exists a homotopy f̃ : X × I → E such that

X E

X × I B

id×0

f̃0

p

f

f̃

For instance,
I with X = {∗}, we get the path lifting property.
I with X = I , we can lift homotopies between paths,
I etc.
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Faithfulness

The induced functor is always faithful:

p∗ : Π1(E ) → Π1(B)

We can thus see π1(E , e) as a subgroup of π1(B, b).
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The action of π1(X )

By the path lifting property, every path

f : x � y

induces a function
p−1(x) → p−1(y)

sending x̃ ∈ p−1(x) to the endpoint ỹ of the path

f̃ : x̃ � ỹ

lifting f from x̃ .

By the homotopy lifting property, two homotopic paths give rise to the same function.
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The action of π1(X )

We thus get a functor
p∗ : Π1(X ) → Set

such that
p∗(x) = p−1(x)

and for f : x � y the function

p∗(f ) : p∗(x) → p∗(y)

is the previously described one.

Since X is connected, we obtain for instance that any two fibers are isomorphic: their
cardinal is called the degree of the cover.
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Lifting morphisms

An automorphism g ∈ Aut(p) gives rise to an isomorphism on the set p−1(x), i.e. we
have a group morphism

Aut(p) → Iso(p−1(x))

Which isomorphisms come from such an automorphism?

In fact, we will see that such an automorphism is determined by the image of one
element of p−1(x).
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Lifting morphisms
Theorem
Given a covering p : E → B, a continuous f : X → B, x ∈ X and e ∈ p−1(f (x)),

E

X B

pg

f

there exists g such that p ◦ g = f and g(x) = e if and only if

f∗(π1(X , x)) ⊆ p∗(π1(E , e))

and in this case g is unique.
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Given a covering p : E → B, a continuous f : X → B, x ∈ X and e ∈ p−1(f (x)),

E

X B

pg

f

there exists g such that p ◦ g = f and g(x) = e if and only if

f∗(π1(X , x)) ⊆ p∗(π1(E , e))

and in this case g is unique.

Proof.
Given a path x � y in X , its image by f has a lifting x̃ � ỹ under p and we set
g(x) = ỹ . The condition ensure that this does not depend on the path. 59 / 77



Lifting morphisms
Theorem
Given a covering p : E → B, a continuous f : X → B, x ∈ X and e ∈ p−1(f (x)),

E

X B

pg

f

there exists g such that p ◦ g = f and g(x) = e if and only if

f∗(π1(X , x)) ⊆ p∗(π1(E , e))

and in this case g is unique.

Remark
When X is simply connected, the condition is always satisfied!
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Lifting morphisms

We can apply the theorem to
E

E B

pg

p

and deduce that, given x ∈ E , a p-automorphism g is uniquely determined by the
image g(x), and any y ∈ E such that

p∗(π1(E , x)) = p∗(π1(E , y))

is possible as value for g(x).
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Automorphisms of the universal covering

In particular, if p : E → B is the universal covering,

I a point y ∈ E such that p(y) = p(x) corresponds to an element of π1(X , x),
I π1(E , y) = 0.

We thus have
Aut(p) ∼= π1(X , x)
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Galois theory

Theorem
There is a bijective correspondence between
I subgroups of π1(X , x),
I coverings of (X , x).

Aut(p) ∼= (Cov(X ))op

Proof.
To a subgroup of G ⊆ Aut(p), we associate the covering

p/G : X̃/G → X

where p : X̃ → X is the universal covering.

To a covering q : Y → X , we associate q∗(π1(Y , y)) for some y ∈ p−1(x).
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Degree and index

The index |G : H| of a subgroup H ⊆ G is the number of cosets gH of H in G :

I when G is finite |G : H| = |G |/|H|,
I when H is normal |G : H| = |G/H|.

Proposition
The degree of a covering is the index of the corresponding subgroup in π1(X , x).
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Normal covering

A covering p : (X̃ , x̃)→ (X , x) is normal if its action on the fiber p−1(x) is transitive:

∀y , z ∈ p−1(x),∃f ∈ Aut(p), y · f = z

Proposition
A normal covering p corresponds to a normal subgroup G of π1(X , x) and we have

Aut(p) ∼= π1(X , x)/G

The intuition of a normal covering: a given loop gets unfolded a given number of
time, uniformly.
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Separated covering

A covering is separated when the action is free...

...which is always the case (as we have seen).
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An example

Consider the space X = S1 ∨ S1:

b a

Its fundamental group is
π1(X ) = 〈a, b | 〉
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Some fundamental groups
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Some fundamental groups
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Let’s try to drop
connectedness assumptions

(on E and on B)
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Subgroups vs transitive actions

We have seen that

connected covering spaces
of B

∼=
subgroups
of π1(B)

This can be reformulated as

connected covering spaces
of B with fiber F

∼=
transitive actions
of π1(B) on F
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Subgroups vs transitive actions

The two points of view are the same on connected coverings:
I given H ⊆ π1(B), we define

F = π1(B)/H

I given an action π1(B)× F → F , we define

H = Stab(x) = {y ∈ π1(B) | y · x = x}

for some x ∈ F .
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Non-connected covering spaces

We have seen that

connected covering spaces
of B with fiber F

∼=
transitive actions
of π1(B) on F
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More categorically
In fact, this has mostly nothing to do with topology: everything can be done at the
level of the fundamental groupoid π1(X ).

A functor F : E → B between groupoids is covering, or a discrete opfibration, when
for every f : x → y in B and x̃ ∈ E with p(x̃) = x , there exists a unique f̃ : x̃ → ỹ
such that F (f̃ ) = f .

x̃ ỹ

x y

f̃

f

Typical example: when p : E → B is a covering map,

p∗ : π1(E )→ π1(B)

is a covering functor.
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Covering functors
All previous theorem can be shown in this setting.

Theorem
There is an equivalence between the categories of
I discrete opfibrations over B
I covariant presheaves over B

This means that a covering functor

E → B

is the same as a functor
B → Set

Bonus: this works even when B is a category (not a groupoid)!
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RELATING
THOSE
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Duality between geometry and algebra

Fix a field K .

To any space X , one can associate the commutative algebra

O(X ) = X ⇒ K

For instance:
(f + g)(x) = f (x) + g(x)
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