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Part I

Tietze transformations in group theory
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Presentations of groups

In mathematics, one often uses a presentation ⟨X | R⟩ to describe a group:

G = X∗/ ≈R

with R ⊆ X∗ × X∗.

For instance

· Z = ⟨a | ⟩
· Z× Z = ⟨a,b | ab = ba⟩
· S3 = ⟨s, t | s2 = 1, t2 = 1, sts = tst⟩
· D3 = ⟨r, s | s2 = 1, r3 = 1, rsrs = 1⟩
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Transforming presentations of groups

The presentation of a group is not unique

⟨s, t | s2 = 1, t2 = 1, sts = tst⟩ = S3 = D3 = ⟨r, s | s2 = 1, r3 = 1, rsrs = 1⟩

In order to show such an isomorphism on can either use a

· semantic approach:
compute the presented group and construct an isomorphism

· syntactic approach:
transform one presentation into the other in a way which preserves the
presented group
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Tietze transformations

The Tietze transformations are
(T0) add a definable generator:

⟨X | R⟩ ⇝ ⟨X,a | R,a = u⟩

(T1) add a derivable relation:

⟨X | R⟩ ⇝ ⟨X | R,u = v⟩

with u ≈R v.

Theorem (Tietze, 1908)
The transformations are

· correct: they preserve the presented group,
· complete: two finite presentations of the same group are related by

transformations.
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Tietze transformations: an example

Starting from S3 = ⟨s, t | s2 = 1, t2 = 1, sts = tst⟩

(TO) ⟨s, t, r | s2 = 1, t2 = 1, sts = tst, r = ts⟩
(T1) ⟨s, t, r | s2 = 1, t2 = 1, sts = tst, r = ts, r3 = 1⟩

(because r3 = tststs = ttstts = ss = 1)
(T1) ⟨s, t, r | s2 = 1, t2 = 1, sts = tst, r = ts, r3 = 1, rsrs = 1⟩
(T1) ⟨s, t, r | s2 = 1, t2 = 1, sts = tst, r = ts, r3 = 1, rsrs = 1, t = rs⟩
(T1-) ⟨s, t, r | s2 = 1, t2 = 1, sts = tst, r3 = 1, rsrs = 1, t = rs⟩
(T1-) ⟨s, t, r | s2 = 1, sts = tst, r3 = 1, rsrs = 1, t = rs⟩
(T1-) ⟨s, t, r | s2 = 1, r3 = 1, rsrs = 1, t = rs⟩
(T0-) ⟨s, r | s2 = 1, r3 = 1, rsrs = 1⟩

which is D3.
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Part II

Polygraphs in homotopy type theory
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Higher inductive types

The main idea of homotopy type theory:

type = space

(and equality = path).

In order to construct types corresponding to interesting spaces,
we have higher inductive types:
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point : Circle

loop : point = point point

loop
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Higher inductive types: delooping

In particular, when we have a group presentation

Z× Z = ⟨a,b | ab = ba⟩

we can define a higher inductive type

data BG : Type where

* : BG

a : * = *

b : * = *

A : a · b = b · a

gpd : isGroupoid(BG)

a b

a a

b

b

AProposition
We have π1(BG) = ∥* = *∥0 = Z× Z.
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Groups in homotopy type theory

We see that higher inductive types play the role of presentations of types.

Can we develop Tietze transformations for those?

· Problem: we cannot manipulate the constructors internally.
· Solution: the polygraphs will be internal descriptions of HITs.

Those have been studied extensively for strict ω-categories,
and used recently in HoTT by Kraus and von Raummer
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Part III

1-polygraphs in homotopy type theory
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Presenting sets

In order to simplify things, we consider here presentations of sets

⟨X | R⟩

with R ⊆ X × X. The presented set is

A = X/R

For instance,
Z2 = ⟨Z | i = i+ 2⟩

This is akin abstract rewriting systems vs string/term rewriting systems.

Claim: all the developments should generalize in higher dimensions.
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1-polygraphs

A 1-polygraph is a pair consisting of
· a type P′ : U of 0-generators,
· a family P : Σ((x, y) : P′ × P′) → U of 1-generators.

The generated type P is the coequalizer

Σ((x, y) : P′ × P′).P(x, y) P′ P

The presented type is ∥P∥0.

Example

We have a polygraph with P′ ≡ Z and P(x, y) ≡ (|y − x| = 2).

NB: we never suppose that our types are sets in polygraphs!
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Σ((x, y) : P′ × P′).P(x, y) P′ P

The presented type is ∥P∥0.

Example

We have a polygraph with P′ ≡ Z and P(x, y) ≡ (|y − x| = 2).
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1-polygraphs: paths

A 1-polygraph is nothing but a type-theoretic graph.

We write P∗(x, y) or x ∗→ y for the type of non-directed paths
(composable sequences of possibly reversed 1-generators)

x1 x3 xn−1

x0 x2 . . . xn

13 / 20



Tietze transformations for 1-polygraphs

The Tietze transformations for a 1-polygraph P are
(T0) given a type X and a function ∂ : X → P′, we define P↑0∂ by

(P↑0∂)′ ≡ P′ ⊔ X (P↑0∂)(x, y) ≡


P(x, y) if x : P′ and y : P′

x = ∂(y) if x : P′ and y : X
⊥ otherwise

(T1) given a function ∂ : P′ × P′ → U and a family of functions
∂x,y : ∂(x, y) → (x ∗→ y), we define P↑1∂ by

(P↑1∂)′ ≡ P′ (P↑1∂)(x, y) ≡ P(x, y) ⊔ ∂(x, y)

y (T0)
⇝ y xτx
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Tietze transformations for 1-polygraphs

Example

We have the following series of Tietze transformations:

y

x z

(T1)
⇝

y

x z

(T1)⇝

y

x z

(T0)⇝

y

x

(T0)⇝

x

15 / 20



Tietze transformations: correctness

Theorem
Given two Tietze equivalent 1-polygraphs P and Q we have ∥P∥0 = ∥Q∥0.

Proof.
We have to show that this is the case for all elementary Tietze transformations,
which can be done by constructing an equivalence.

Example

The following types are equivalent:

y

x

(T0)
⇝

y

x z

16 / 20



Tietze transformations: an application of correctness

Consider the space

X = S2 ∨S2 = ⋆a b

We want to show that this space has fundamental group F2 = {a,b}∗.

We define a map

F : X → U
⋆ 7→ F2

and we want to show that its total space ΣX.F is contractible. This space is

1 aa

b

b

= colim

·

↪→ ↪→ ↪→ ↪→ . . .
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Tietze transformations: completeness

Theorem
Two 1-polygraphs P and Q with ∥P∥0 = ∥Q∥0 are Tietze equivalent.

Supposing that our polygraphs have sets of 0- and 1-generators (which is the in-
teresting case), we have

(P′,P) ∼ (∥P∥0, ∅) ∼ (∥Q∥0, ∅) ∼ (Q′,Q)

For instance,

• • •

∼ • • ∼ • • • ∼

• • •

Limitation: this approach will not generalize to higher-dimensional polygraphs!
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Tietze transformations: completeness

Theorem
Two 1-polygraphs P and Q with ∥P∥0 = ∥Q∥0 are Tietze equivalent.

The working idea is rather to take the “union” of the two polygraphs:

• • •

∼
• • •

• • •
∼

• • •
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Part IV

Coherent Tietze transformations
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Questions ?
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