Trace Spaces: an Efficient New Technique for
State-Space Reduction

L. Fajstrup®’ E. Goubault?> E. Haucourt?
S. Mimram? M. Raussen!

LAalborg University
2CEA, LIST

March 26, 2012
ESOP'12

34

Goal

When verifying a concurrent program,
there is a priori a large number of possible interleavings to check
(exponential in the number of processes)

N

34

Goal

When verifying a concurrent program,
there is a priori a large number of possible interleavings to check
(exponential in the number of processes)

Many executions are equivalent:
we want here to provide a minimal number of execution traces
which describe all the possible cases
by adopting a geometric point of view

N

34

Programs generate trace spaces

Consider the program

x:=1;y:=2 | y:=3

It can be scheduled in three different ways:

y:=3;x:=1;y:=2

x:=1;y:=3;y:=2 x:=1;y:=2;y:=3

Giving rise to the following graph of traces:

34

Programs generate trace spaces

Consider the program

x:=1;y:=2 | y:=3
It can be scheduled in three different ways:
y:=3;x:=1;y:=2 x:=1;y:=3;y:=2

(x,y) =(1,2) (x,y)=(1,2)

Giving rise to the following graph of traces:

homotopy: commutation / filled square

34

Mutexes

Concurrent access to shared variables should be protected
using mutexes a, b, .. .:

e P.: lock the mutex a

e V,: unlock the mutex a

34

Mutexes

Concurrent access to shared variables should be protected
using mutexes a, b, .. .:

e P.: lock the mutex a

e V,: unlock the mutex a

x:=1;y:=2 | y:=3

34

Mutexes

Concurrent access to shared variables should be protected
using mutexes a, b, .. .:

e P.: lock the mutex a

e V,: unlock the mutex a

Ppix:=1;Vp; Pasy:=2; Vo | Payy:=3;V,

34

Mutexes

Concurrent access to shared variables should be protected
using mutexes a, b, .. .:

e P.: lock the mutex a

e V,: unlock the mutex a

Py.Vy.PaV, | P,V

34

Let’s adopt a geometric point of view!

5/34

Geometric semantics
A program will be interpreted as a directed space:
o Pb.Vb.Pa.Va

6 /34

Geometric semantics
A program will be interpreted as a directed space:
o Pb.Vb.Pa.Va

e PV,

6

34

Geometric semantics
A program will be interpreted as a directed space:
o Pb.Vb.Pa.Va

e PV,

o Po.Vp.PoV, | P..V,

6

34

Geometric semantics
A program will be interpreted as a directed space:
o Py Vy.P,.V,

e PV,

o PoVu.PoV, | PV,

P,.Py.Vs.Vy.Ps.V,

6

34

Geometric semantics
A program will be interpreted as a directed space:
o Py Vy.P,.V,

e PV,
H—H
P, V,
o Pp.Vp.P.V, | P,.V, Homotopy
Vst
Pt

P,.Py.Vs.Vy.Ps.V,

6

34

Geometric semantics

A program will be interpreted as a directed space:
o Py VPV,

e PV,

o PoVu.PoV, | PV,

Pp.Vp.Py.P3.V,. Vs Forbidden region

Trace
A trace is the homotopy class of a path.

7/34

Trace
A trace is the homotopy class of a path.

We want to compute a path in every trace

/34

Trace
A trace is the homotopy class of a path.

We want to compute a path in every trace

We do this by testing possible ways to go around forbidden regions:

W y
Pat Pat

Pb Vb Pa Va Pb Vb 'Da Va

7/34

The Swiss flag

P..Py.Vy.Vs | Pp.PsVsVi

A forbidden region

8/34

The Swiss flag

P..Py.Vy.Vs | Pp.PsVsVi

Pa Pb Vb Va

A path: Pp.P,.V3.P3.Vy.Pp. V.V,

8/34

The Swiss flag

P..Py.Vy.Vs | Pp.PsVsVi

A deadlock: Pp.P;

8/34

The Swiss flag

P..Py.Vy.Vs | Pp.PsVsVi

An unreachable region
8/34

The Swiss flag

P,.Ppy.Vp.Vy | Pp.P,.V,aVy

FZ F% V% b;

Here we are interested in maximal paths modulo homotopy
8/34

@ Trace semantics of programs
® Geometric semantics of programs

©® Computation of the trace space

Plan

34

Programs

We consider programs of the form:

p = 1 | Po| Vol pp | plp | ptp | p

10/34

Programs

We consider programs of the form:

p = 1| Po | Vo pp | plp

We omit non-deterministic choice, loops

10/34

Programs

We consider programs of the form:

p = 1| Po | Vo pp | plp

We omit non-deterministic choice, loops and thread creation:

A = P, | V, actions
t = At | 1 threads
p = tt|...|t programs

10/34

Trace semantics

The trace semantics of a program will be an asynchronous graph:

e a graph G = (V, E) labeled by actions

e with an independence relation |

relating paths of length 2

11 /34

Trace semantics

The trace semantics of a program will be an asynchronous graph:

e a graph G = (V, E) labeled by actions

e with an independence relation |

relating paths of length 2

11 /34

Trace semantics

The trace semantics of a program will be an asynchronous graph:

e a graph G = (V, E) labeled by actions

e with an independence relation |

relating paths of length 2

Homotopy is the smallest congruence on paths containing /.

11 /34

Trace semantics

The trace semantics of a program will be an asynchronous graph:

e a graph G = (V, E) labeled by actions

e with an independence relation |

relating paths of length 2
e together with a beginning and an end vertex

Homotopy is the smallest congruence on paths containing /.

11 /34

Trace semantics
To every program p we associate (Up, by, €,) defined by:
e U;: terminal graph
° UPa: bPa L ep, UVa: bPa A ey,
o Upg:
bp

J is the “cartesian product” of U, and Ug:

plg
(x,y) —2= (<, y) when x A,/ €U,
(va/)i>(x7y,) when y4B>y/ < Uq

(v, x') —2=(v,¥')

12 /34

Trace semantics
Example:

Pp. V. PV, | P,.V,

34

Trace semantics
Example:

Py.Vp.Po Vs | Py.V,

The resource function r, associates to every vertex x:

number of releases of a - number locks of a

34

Trace semantics
Example:

Py.Vp.Po Vs | Py.V,

Va ~ oV, Voo, o~ TVQ

—Pp—=> —Vp> X —P;> —V,—>
SIS PR
P Pb Vb Pa Va

The resource function r, associates to every vertex x:

number of releases of a - number locks of a

Ex: ra(x) = —1, rp(x) =0

34

Trace semantics

Example:
Pp.Vp.P,.V, | PaV,

Va ~ oV, Voo, o~ Va

—Pp—= —Vp> —P,> Y —V,—>

ST

P Pb Vb Pa Va

The resource function r, associates to every vertex x:

number of releases of a - number locks of a

Ex: ra(y) = -2, n(y) =0 o

34

Trace semantics
Trace semantics Tp:
Up where we remove vertices x which do not satisfy

—1<r(x) <0

Example:
Pp.Vp.P,.V, | PV,

Py Vi P, Va
Va ~ \I}a ~ \¢a Tva

pl ~ A~ I

Py Vi P, Va

14 /34

Geometric semantics

The trace semantics is difficult to use to build intuitions. ..

In a similar way, one can define a geometric semantics where
programs are interpreted by directed spaces.

15 /34

Geometric semantics
A path in a topological space X is a continuous map / = [0,1] — X.

Definition
A d-space (X, dX) consists of
e a topological space X
e a set dX of paths in X, called directed paths, such that

e constant paths. every constant path is directed,

e reparametrization: dX is closed under precomposition with
increasing maps | — I, which are called reparametrizations,

e concatenation: dX is closed under concatenation.

16 /34

Geometric semantics
A path in a topological space X is a continuous map / = [0,1] — X.

Definition
A d-space (X, dX) consists of
e a topological space X
e a set dX of paths in X, called directed paths, such that

e constant paths. every constant path is directed,

e reparametrization: dX is closed under precomposition with
increasing maps | — I, which are called reparametrizations,

e concatenation: dX is closed under concatenation.

Example
(X, <) space with a partial order, dX = {increasing maps | — X}

I: d-space induced by [0, 1]

16 /34

Geometric semantics
A path in a topological space X is a continuous map / = [0,1] — X.

Definition
A d-space (X, dX) consists of
e a topological space X
e a set dX of paths in X, called directed paths, such that

e constant paths. every constant path is directed,

e reparametrization: dX is closed under precomposition with
increasing maps | — I, which are called reparametrizations,

e concatenation: dX is closed under concatenation.

Example
St={eil0<h<2r @
dS*: p(t) = eif(t) for some increasing function f : | — R

16 /34

Geometric semantics
To each program p we associate a d-space (Hp, bp, €p):
o Hyi: o
L4 HPa = 7 H\/‘a = 7
* Hpg:

by

* Hpigt Hp x Hq, bpjg = (bp, bg), €pq = (&p, &q)

17 /34

Geometric semantics
To each program p we associate a d-space (Hp, bp, €p):
o Hyi: o
° HPa = 7 H\/‘a = 7
* Hpg:

by

® Hypjq: Hp X Hq, bpjq = (bp, bg). €jq = (€p, &)

Resource function: r,(x) € Z for each a € R and point x

17 /34

Geometric semantics
To each program p we associate a d-space (Hp, bp, €p):
o Hyi: o
° HPa = 7 H\/‘a = 7
* Hpg:

by

* Hpjg: Hp X Hq. bpjq = (bp, bq). €pjq = (& &)
Resource function: r,(x) € Z for each a € R and point x

Forbidden region:
Fp={x€H,/3a, ri(x)<-1 or ryx)>0}

17 /34

Geometric semantics
To each program p we associate a d-space (Hp, bp, €p):
o Hyi: o
° HPa = 7 H\/‘a = 7
* Hpg:

by

* Hpjg: Hp X Hq. bpjq = (bp, bq). €pjq = (& &)
Resource function: r,(x) € Z for each a € R and point x

Forbidden region:
Fp={x€H,/3a, ri(x)<-1 or ryx)>0}

Geometric semantics: G, = H, \ Fp,

17 /34

P,.V4|P,.V,

Examples of geometric semantics

18 /34

P,.V4|P,.V,

Examples of geometric semantics

Pa.Py. Vo Vs|Pp.Py. Vs Vi

Ep

+

18/34

P,.V4|P,.V,

Examples of geometric semantics

Pa.Py. Vo Vs|Pp.Py. Vs Vi

Ep

+

P,.(V4.P.)*|P,.V,

0,

18 /34

Examples of geometric semantics

P3.V4|P,.V,| Py V, P3.V4|P,.V,| Py V,
(ka=1) (ka=2)

t1 t

to .

to to

to

19/34

Geometric realization

The two semantics are “essentially the same”: the geometric
semantics is the geometric realization of a cubical set

neld 5
G, = / To(n) - T"

Proposition

Given a program p, with T, as trace semantics and G, as
geometric semantics,

e every pathm: b — e in T, induces a path: b — e in Gp,
e m~pin T, impliesT~pin Gy

e every path p of Gy, is homotopic to a path T (m path in Gp)

20 /34

Computing the trace space

Goal
Given a program p, we describe an algorithm to compute a trace in
each equivalence class of traces m : b, — e, up to homotopy in Gp.

21/34

The algorithm

Suppose given a program

p = polpl---[pn-1

with n threads.

22 /34

The algorithm

Suppose given a program

p = polpl---[pn-1
with n threads.

Under mild assumptions, the geometric semantics is of the form

G, = 1"\ U R'
where R — H] y
jr7j

are | open rectangles.

to 22 /34

The algorithm

Under mild assumptions, the geometric semantics is of the form

-1
G = I"\ U R
where R — H] y
= Lyl
are | open rectangles.
Example Py V. Py V| Pb.Vi.Pa.V,

0.0 .1 .1
Xo Yo X0 Yo

22 /34

The algorithm

The main idea of the algorithm is to extend the forbidden cubes
downwards in various directions and look whether there is a path
from b to e in the resulting space.

t1 t1 ty
| | |
| | |

to to to

By combining those information, we will be able to compute traces
modulo homotopy.

23 /34

The algorithm

The main idea of the algorithm is to extend the forbidden cubes
downwards in various directions and look whether there is a path
from b to e in the resulting space.

t1 t1 ty
| | |
| | |

to to to

By combining those information, we will be able to compute traces
modulo homotopy.

The directions in which to extend the holes will be coded by
boolean matrices M.

23 /34

The index poset

M, p: boolean matrices with / rows and n columns.

24 /34

Min

Xm:

The index poset

: boolean matrices with / rows and n columns.

space obtained by extending
for every (i, /) such that M(i,j) =1
the forbidden cube i downwards
in every direction other than j

24 /34

The index poset

M, p: boolean matrices with / rows and n columns.

space obtained by extending
for every (i, j) such that M(i,j) =1
the forbidden cube i downwards
in every direction other than j

Xm:

t1 t1 t1
0 0 0
| | |
to to to

o) o) (o]

24 /34

The index poset

M, p: boolean matrices with / rows and n columns.

space obtained by extending

Xw: for every (i, j) such that M(i,j) =1
the forbidden cube i downwards
in every direction other than j
t1 t1

t
0 0 0
|] |
to to to

o)

01
10
VM ,—{0,1}:

e WU(M) =0 if there is a path b — e: M is alive
e W(M) =1 if there is no path b — e: M is dead

10
01

24 /34

P,.V,.Pp. Vi

The index poset

P.VaPyVy | PyVaPy.Vi

o =
o o
= O

to to

to

R
= O
o O
o =
~_
R
= O
= O

)

alive dead

25 /34

The index poset

M, is equipped with the pointwise ordering
WV is increasing: more 1 = more obstructions
MF:# matrices with non-null rows

ME : matrices with unit column vectors

26

34

The index poset

M, is equipped with the pointwise ordering
e U is increasing: more 1 = more obstructions
MF:# matrices with non-null rows

ME : matrices with unit column vectors

Definition
The index poset C(X) = {M ¢ Mf,, / V(M) =0}
(the alive matrices).

26 /34

The index poset

M, is equipped with the pointwise ordering
e U is increasing: more 1 = more obstructions
MF:# matrices with non-null rows

ME : matrices with unit column vectors

Definition
The index poset C(X) = {M ¢ Mf,, / V(M) =0}
(the alive matrices).

Definition
The dead poset D(X) = {M € Mf, / W(M)=1}.

26

34

The index poset

M, is equipped with the pointwise ordering
e U is increasing: more 1 = more obstructions
MF:# matrices with non-null rows

ME : matrices with unit column vectors

Definition
The index poset C(X) = {M ¢ .Mf:,, / V(M) =0}
(the alive matrices).

Definition
The dead poset D(X) = {M € Mf, / W(M)=1}.

D(X) ~ C(X) ~ homotopy classes of traces

26

34

The dead poset

Proposition
A matrix M € M,Cm is in D(X) iff it satisfies
V(i,j) € [0: I[x][0: nl, M(i,j)=1 = xj < min yj-"/

i"eR(M)

where R(M): indexes of non-null rows of M.

27 /34

The dead poset
Proposition
A matrix M € an is in D(X) iff it satisfies

V(i,j) € [0: I[x][0: nl, M(i,j)=1 = xj < min yjﬂ

i"€R(M)

where R(M): indexes of non-null rows of M.

Example

M is dead:

t1

i

xi - Y, <0 1) X =1<2=min(y?, y})
0 = 1 in(vO 1

Y 10 Xy =2 <3 =min(y;,
L 0 (%0 %0)

X1

0o.,1,0,1
Xo X0 Yo Yo 27 /34

The index poset

Proposition
A matrix M is in C(X) iff for every N € D(X), N £ M.

28 /34

The index poset

Proposition
A matrix M is in C(X) iff for every N € D(X), N £ M.

Remark
N £ M: there exists (i,j) s.t. N(i,j) =1 and M(i,j) = 0.

Remark
Since C(X) is downward closed it will be enough to compute the
set Cmax(X) of maximal alive matrices.

28 /34

Connected components

M A N: pointwise min of M and N

Definition
Two matrices M and N are connected when M A N does not
contain any null row.

Proposition
The connected components of C(X) are in bijection with homotopy
classes of traces b — e in X.

29 /34

Dining philosophers

n processes py in parallel: t

to

Pk = Pak Pak+1 Vs Vak+1 fo

n | sched. | ALCOOL (s) | ALCOOL (MB) | sPIN (s) | sPIN (MB)
8 254 0.1 0.8 0.3 12
9 510 0.8 1.4 1.5 41
10 1022 5 4 8 179
11 2046 32 9 42 816
12 | 4094 227 26 313 3508
13| 8190 1681 58 00 00
14 | 16382 13105 143 00 00

30/34

Handling programs with loops

Consider the following program:

p = (Pa.Va)'|(Ps.Va)*

31/34

Handling programs with loops

Consider the following program:
p = (Pa.Va)*|(Ps.Va)*

Its trace space is

to

31/34

Handling programs with loops

Consider the following program:
p = (Pa.Va)*|(Ps.Va)*

Its trace space is

to

31/34

Handling programs with loops

Consider the following program:
p = (Pa.Va)*|(Ps.Va)*

Its trace space is

to

31/34

Handling programs with loops

Consider the following program:
p = (Pa.Va)*|(Ps.Va)*

Its trace space is

to

31/34

Handling programs with loops

Consider the following program:
p = (Pa.Va)*|(Ps.Va)*

Its trace space is

to

31/34

Handling programs with loops

Consider the following program:
p = (Pa.Va)*|(Ps.Va)*

Its trace space is

to

31/34

Handling programs with loops

Consider the following program:
p = (Pa.Va)*|(Ps.Va)*

Its trace space is

to

31/34

Handling programs with loops

Consider the following program:
p = (Pa.Va)*|(Ps.Va)*

Its trace space can be described by the following automaton:

bl

ll ;
0, — 0,
-

1|LCE ILDOJL

(which can be reduced a bit more)

31/34

Summary

e The computation of trace space through boolean matrices is
quite efficient

e We compute a “most reduced CFG" which can be then be
analyzed through usual techniques (abstract interpretation,
model checking, etc.)

e Geometric semantics can be useful in order to reason about
concurrency

32/34

Future works

Interface with static analyzers
Speed and implementation improvements (algorithms, GPU)

Precise relation with partial-order reduction
(joint work with T. Heindel)

Lots of work remain to be done on the theoretical side in
order to really understand the geometry of concurrency

33/34

Thanks!

Questions?

34 /34

