
Trace Spaces: an Efficient New Technique for
State-Space Reduction

L. Fajstrup1 É. Goubault2 E. Haucourt2
S. Mimram2 M. Raussen1

1Aalborg University
2CEA, LIST

March 26, 2012
ESOP’12

1 / 34

Goal

When verifying a concurrent program,
there is a priori a large number of possible interleavings to check

(exponential in the number of processes)

Many executions are equivalent:
we want here to provide a minimal number of execution traces

which describe all the possible cases
by adopting a geometric point of view

2 / 34

Goal

When verifying a concurrent program,
there is a priori a large number of possible interleavings to check

(exponential in the number of processes)

Many executions are equivalent:
we want here to provide a minimal number of execution traces

which describe all the possible cases
by adopting a geometric point of view

2 / 34

Programs generate trace spaces
Consider the program

x:=1;y:=2 | y:=3

It can be scheduled in three different ways:

y:=3;x:=1;y:=2 x:=1;y:=3;y:=2 x:=1;y:=2;y:=3

(x , y) = (1, 2) (x , y) = (1, 2) (x , y) = (1, 3)

Giving rise to the following graph of traces:

x:=1 // y:=2 //

y:=3

OO

x:=1
//

y:=3

OO

y:=2
//

y:=3

OO

homotopy: commutation / filled square

3 / 34

Programs generate trace spaces
Consider the program

x:=1;y:=2 | y:=3

It can be scheduled in three different ways:

y:=3;x:=1;y:=2 x:=1;y:=3;y:=2 x:=1;y:=2;y:=3
(x , y) = (1, 2) (x , y) = (1, 2) (x , y) = (1, 3)

Giving rise to the following graph of traces:

x:=1 // y:=2 //

y:=3

OO

x:=1
//

∼ y:=3

OO

y:=2
//

y:=3

OO

homotopy: commutation / filled square
3 / 34

Mutexes

Concurrent access to shared variables should be protected
using mutexes a, b, . . .:

• Pa: lock the mutex a
• Va: unlock the mutex a

4 / 34

Mutexes

Concurrent access to shared variables should be protected
using mutexes a, b, . . .:

• Pa: lock the mutex a
• Va: unlock the mutex a

x:=1;y:=2 | y:=3

4 / 34

Mutexes

Concurrent access to shared variables should be protected
using mutexes a, b, . . .:

• Pa: lock the mutex a
• Va: unlock the mutex a

Pb;x:=1;Vb;Pa;y:=2;Va | Pa;y:=3;Va

4 / 34

Mutexes

Concurrent access to shared variables should be protected
using mutexes a, b, . . .:

• Pa: lock the mutex a
• Va: unlock the mutex a

Pb.Vb.Pa.Va | Pa.Va

4 / 34

Let’s adopt a geometric point of view!

5 / 34

Geometric semantics
A program will be interpreted as a directed space:

• Pb.Vb.Pa.Va

Pb Vb Pa Va

• Pa.Va

Pa Va

• Pb.Vb.Pa.Va | Pa.Va

Pb Vb Pa Va

Pa

Va

Pb.Vb.Pa.Pa.Va.Va Forbidden region

6 / 34

Geometric semantics
A program will be interpreted as a directed space:

• Pb.Vb.Pa.Va

Pb Vb Pa Va

• Pa.Va

Pa Va

• Pb.Vb.Pa.Va | Pa.Va

Pb Vb Pa Va

Pa

Va

Pb.Vb.Pa.Pa.Va.Va Forbidden region

6 / 34

Geometric semantics
A program will be interpreted as a directed space:

• Pb.Vb.Pa.Va

Pb Vb Pa Va

• Pa.Va

Pa Va

• Pb.Vb.Pa.Va | Pa.Va

Pb Vb Pa Va

Pa

Va

Pb.Vb.Pa.Pa.Va.Va Forbidden region

6 / 34

Geometric semantics
A program will be interpreted as a directed space:

• Pb.Vb.Pa.Va

Pb Vb Pa Va

• Pa.Va

Pa Va

• Pb.Vb.Pa.Va | Pa.Va

Pb Vb Pa Va

Pa

Va

Pa.Pb.Va.Vb.Pa.Va

Forbidden region

6 / 34

Geometric semantics
A program will be interpreted as a directed space:

• Pb.Vb.Pa.Va

Pb Vb Pa Va

• Pa.Va

Pa Va

• Pb.Vb.Pa.Va | Pa.Va Homotopy

Pb Vb Pa Va

Pa

Va

Pa.Pb.Va.Vb.Pa.Va

Forbidden region

6 / 34

Geometric semantics
A program will be interpreted as a directed space:

• Pb.Vb.Pa.Va

Pb Vb Pa Va

• Pa.Va

Pa Va

• Pb.Vb.Pa.Va | Pa.Va

Pb Vb Pa Va

Pa

Va

Pb.Vb.Pa.Pa.Va.Va Forbidden region
6 / 34

Trace
A trace is the homotopy class of a path.

Pb Vb Pa Va

Pa

Va

We want to compute a path in every trace

We do this by testing possible ways to go around forbidden regions:

Pb Vb Pa Va

Pa

Va

Pb Vb Pa Va

Pa

Va

7 / 34

Trace
A trace is the homotopy class of a path.

Pb Vb Pa Va

Pa

Va

We want to compute a path in every trace

We do this by testing possible ways to go around forbidden regions:

Pb Vb Pa Va

Pa

Va

Pb Vb Pa Va

Pa

Va

7 / 34

Trace
A trace is the homotopy class of a path.

Pb Vb Pa Va

Pa

Va

We want to compute a path in every trace

We do this by testing possible ways to go around forbidden regions:

Pb Vb Pa Va

Pa

Va

Pb Vb Pa Va

Pa

Va

7 / 34

The Swiss flag

Pa.Pb.Vb.Va | Pb.Pa.Va.Vb

Pa Pb Vb Va

Pb

Pa

Va

Vb

A forbidden region
8 / 34

The Swiss flag

Pa.Pb.Vb.Va | Pb.Pa.Va.Vb

Pa Pb Vb Va

Pb

Pa

Va

Vb

A path: Pb.Pa.Va.Pa.Vb.Pb.Vb.Va
8 / 34

The Swiss flag

Pa.Pb.Vb.Va | Pb.Pa.Va.Vb

Pa Pb Vb Va

Pb

Pa

Va

Vb

A deadlock: Pb.Pa
8 / 34

The Swiss flag

Pa.Pb.Vb.Va | Pb.Pa.Va.Vb

Pa Pb Vb Va

Pb

Pa

Va

Vb

An unreachable region
8 / 34

The Swiss flag

Pa.Pb.Vb.Va | Pb.Pa.Va.Vb

Pa Pb Vb Va

Pb

Pa

Va

Vb

Here we are interested in maximal paths modulo homotopy
8 / 34

Plan

1 Trace semantics of programs
2 Geometric semantics of programs
3 Computation of the trace space

9 / 34

Programs

We consider programs of the form:

p ::= 1 | Pa | Va | p.p | p|p | p+p | p∗

We omit non-deterministic choice, loops

and thread creation:

A ::= Pa | Va actions
t ::= A.t | 1 threads
p ::= t|t| . . . |t programs

10 / 34

Programs

We consider programs of the form:

p ::= 1 | Pa | Va | p.p | p|p

| p+p | p∗

We omit non-deterministic choice, loops

and thread creation:

A ::= Pa | Va actions
t ::= A.t | 1 threads
p ::= t|t| . . . |t programs

10 / 34

Programs

We consider programs of the form:

p ::= 1 | Pa | Va | p.p | p|p

| p+p | p∗

We omit non-deterministic choice, loops and thread creation:

A ::= Pa | Va actions
t ::= A.t | 1 threads
p ::= t|t| . . . |t programs

10 / 34

Trace semantics

The trace semantics of a program will be an asynchronous graph:

• a graph G = (V ,E) labeled by actions
• with an independence relation I

y1
B // z

x
A

OO

B
// y2

A

OO

relating paths of length 2

• together with a beginning and an end vertex

Homotopy is the smallest congruence on paths containing I.

11 / 34

Trace semantics

The trace semantics of a program will be an asynchronous graph:

• a graph G = (V ,E) labeled by actions
• with an independence relation I

y1
B //

∼

z

x
A

OO

B
// y2

A

OO

relating paths of length 2

• together with a beginning and an end vertex

Homotopy is the smallest congruence on paths containing I.

11 / 34

Trace semantics

The trace semantics of a program will be an asynchronous graph:

• a graph G = (V ,E) labeled by actions
• with an independence relation I

y1
B //

∼

z

x
A

OO

B
// y2

A

OO

relating paths of length 2

• together with a beginning and an end vertex

Homotopy is the smallest congruence on paths containing I.

11 / 34

Trace semantics

The trace semantics of a program will be an asynchronous graph:

• a graph G = (V ,E) labeled by actions
• with an independence relation I

y1
B //

∼

z

x
A

OO

B
// y2

A

OO

relating paths of length 2
• together with a beginning and an end vertex

Homotopy is the smallest congruence on paths containing I.

11 / 34

Trace semantics
To every program p we associate (Up, bp, ep) defined by:

• U1: terminal graph
• UPa : bPa

Pa // ePa UVa : bPa
Va // eVa

• Up.q:
Up Uqbp ep = bq eq

• Up|q is the “cartesian product” of Up and Uq:

(x , y)
A // (x ′, y) when x A // x ′ ∈ Up

(x , y ′) B // (x , y ′) when y B // y ′ ∈ Uq

(y , x ′) B //

∼

(y , y ′)

(x , x ′)

A

OO

B
// (x , y ′)

A

OO

12 / 34

Trace semantics
Example:

Pb.Vb.Pa.Va | Pa.Va

Pb //

∼

Vb //

∼

Pa //

∼ ∼

Va // ep

Va

OO

Pb //

∼

Va

OO

Vb //

∼

x

Pa //

Va

OO

∼

y

Va //

Va

OO

∼

Va

OO

bp

Pa

OO

Pb
//

Vb
//

Pa

OO

Pa
//

Pa

OO

Va
//

Pa

OO

Pa

OO

The resource function ra associates to every vertex x :
number of releases of a - number locks of a

Ex: ra(y) = −2, rb(y) = 0

13 / 34

Trace semantics
Example:

Pb.Vb.Pa.Va | Pa.Va

Pb //

∼

Vb //

∼

Pa //

∼ ∼

Va // ep

Va

OO

Pb //

∼

Va

OO

Vb //

∼

x

Pa //

Va

OO

∼

y

Va //

Va

OO

∼

Va

OO

bp

Pa

OO

Pb
//

Vb
//

Pa

OO

Pa
//

Pa

OO

Va
//

Pa

OO

Pa

OO

The resource function ra associates to every vertex x :
number of releases of a - number locks of a

Ex: ra(y) = −2, rb(y) = 0

13 / 34

Trace semantics
Example:

Pb.Vb.Pa.Va | Pa.Va

Pb //

∼

Vb //

∼

Pa //

∼ ∼

Va // ep

Va

OO

Pb //

∼

Va

OO

Vb //

∼

x Pa //

Va

OO

∼

y

Va //

Va

OO

∼

Va

OO

bp

Pa

OO

Pb
//

Vb
//

Pa

OO

Pa
//

Pa

OO

Va
//

Pa

OO

Pa

OO

The resource function ra associates to every vertex x :
number of releases of a - number locks of a

Ex: ra(x) = −1, rb(x) = 0 13 / 34

Trace semantics
Example:

Pb.Vb.Pa.Va | Pa.Va

Pb //

∼

Vb //

∼

Pa //

∼ ∼

Va // ep

Va

OO

Pb //

∼

Va

OO

Vb //

∼

x

Pa //

Va

OO

∼

y Va //

Va

OO

∼

Va

OO

bp

Pa

OO

Pb
//

Vb
//

Pa

OO

Pa
//

Pa

OO

Va
//

Pa

OO

Pa

OO

The resource function ra associates to every vertex x :
number of releases of a - number locks of a

Ex: ra(y) = −2, rb(y) = 0 13 / 34

Trace semantics
Trace semantics Tp:
Up where we remove vertices x which do not satisfy

−1 6 ra(x) 6 0

Example:
Pb.Vb.Pa.Va | Pa.Va

Pb //

∼

Vb //

∼

Pa // Va //

Va

OO

Pb //

∼

Va

OO

Vb //

∼

Va

OO

Va

OO

Pa

OO

Pb
//

Vb
//

Pa

OO

Pa
//

Pa

OO

Va
//

Pa

OO

14 / 34

Geometric semantics

The trace semantics is difficult to use to build intuitions. . .

In a similar way, one can define a geometric semantics where
programs are interpreted by directed spaces.

15 / 34

Geometric semantics
A path in a topological space X is a continuous map I = [0, 1]→ X .

Definition
A d-space (X , dX) consists of

• a topological space X
• a set dX of paths in X , called directed paths, such that

• constant paths: every constant path is directed,
• reparametrization: dX is closed under precomposition with

increasing maps I → I, which are called reparametrizations,
• concatenation: dX is closed under concatenation.

16 / 34

Geometric semantics
A path in a topological space X is a continuous map I = [0, 1]→ X .

Definition
A d-space (X , dX) consists of

• a topological space X
• a set dX of paths in X , called directed paths, such that

• constant paths: every constant path is directed,
• reparametrization: dX is closed under precomposition with

increasing maps I → I, which are called reparametrizations,
• concatenation: dX is closed under concatenation.

Example
(X ,6) space with a partial order, dX = {increasing maps I → X}

~I: d-space induced by [0, 1]

16 / 34

Geometric semantics
A path in a topological space X is a continuous map I = [0, 1]→ X .

Definition
A d-space (X , dX) consists of

• a topological space X
• a set dX of paths in X , called directed paths, such that

• constant paths: every constant path is directed,
• reparametrization: dX is closed under precomposition with

increasing maps I → I, which are called reparametrizations,
• concatenation: dX is closed under concatenation.

Example
S1 = {ei θ}0 6 θ < 2π
dS1: p(t) = ei f (t) for some increasing function f : I → R

16 / 34

Geometric semantics
To each program p we associate a d-space (Hp, bp, ep):

• H1: •
• HPa =~I HVa =~I
• Hp.q:

Hp Hqbp ep = bq eq

• Hp|q: Hp × Hq, bp|q = (bp, bq), ep|q = (ep, eq)

Resource function: ra(x) ∈ Z for each a ∈ R and point x

Forbidden region:
Fp = {x ∈ Hp / ∃a, ra(x) < −1 or ra(x) > 0}

Geometric semantics: Gp = Hp \ Fp

17 / 34

Geometric semantics
To each program p we associate a d-space (Hp, bp, ep):

• H1: •
• HPa =~I HVa =~I
• Hp.q:

Hp Hqbp ep = bq eq

• Hp|q: Hp × Hq, bp|q = (bp, bq), ep|q = (ep, eq)

Resource function: ra(x) ∈ Z for each a ∈ R and point x

Forbidden region:
Fp = {x ∈ Hp / ∃a, ra(x) < −1 or ra(x) > 0}

Geometric semantics: Gp = Hp \ Fp

17 / 34

Geometric semantics
To each program p we associate a d-space (Hp, bp, ep):

• H1: •
• HPa =~I HVa =~I
• Hp.q:

Hp Hqbp ep = bq eq

• Hp|q: Hp × Hq, bp|q = (bp, bq), ep|q = (ep, eq)

Resource function: ra(x) ∈ Z for each a ∈ R and point x

Forbidden region:
Fp = {x ∈ Hp / ∃a, ra(x) < −1 or ra(x) > 0}

Geometric semantics: Gp = Hp \ Fp

17 / 34

Geometric semantics
To each program p we associate a d-space (Hp, bp, ep):

• H1: •
• HPa =~I HVa =~I
• Hp.q:

Hp Hqbp ep = bq eq

• Hp|q: Hp × Hq, bp|q = (bp, bq), ep|q = (ep, eq)

Resource function: ra(x) ∈ Z for each a ∈ R and point x

Forbidden region:
Fp = {x ∈ Hp / ∃a, ra(x) < −1 or ra(x) > 0}

Geometric semantics: Gp = Hp \ Fp
17 / 34

Examples of geometric semantics

Pa.Va|Pa.Va

Pa.Pb.Vb.Va|Pb.Pa.Va.Vb Pa.(Va.Pa)∗|Pa.Va

bp

ep

bp

ep

bp
ep

18 / 34

Examples of geometric semantics

Pa.Va|Pa.Va Pa.Pb.Vb.Va|Pb.Pa.Va.Vb

Pa.(Va.Pa)∗|Pa.Va

bp

ep

bp

ep

bp
ep

18 / 34

Examples of geometric semantics

Pa.Va|Pa.Va Pa.Pb.Vb.Va|Pb.Pa.Va.Vb Pa.(Va.Pa)∗|Pa.Va

bp

ep

bp

ep

bp
ep

18 / 34

Examples of geometric semantics

Pa.Va|Pa.Va|Pa.Va Pa.Va|Pa.Va|Pa.Va
(κa = 1) (κa = 2)

t0

t1

t2

t0

t1

t2

19 / 34

Geometric realization

The two semantics are “essentially the same”: the geometric
semantics is the geometric realization of a cubical set

Gp =

∫ n∈�
Tp(n) ·~In

Proposition
Given a program p, with Tp as trace semantics and Gp as
geometric semantics,

• every path π : b → e in Tp induces a path π : b → e in Gp,
• π ∼ ρ in Tp implies π ∼ ρ in Gp

• every path ρ of Gp is homotopic to a path π (π path in Gp)

20 / 34

Computing the trace space

Goal
Given a program p, we describe an algorithm to compute a trace in
each equivalence class of traces π : bp → ep up to homotopy in Gp.

21 / 34

The algorithm
Suppose given a program

p = p0|p1| . . . |pn−1

with n threads.

Under mild assumptions, the geometric semantics is of the form

Gp = ~In \
l−1⋃
i=0

R i

where R i =
n−1∏
j=0

]x i
j , y i

j [

are l open rectangles.

Example Pa.Va.Pb.Vb|Pb.Vb.Pa.Va

t0

t1

0

1

x0
0 y0

0 x1
0 y1

0

x1
1

y1
1

x0
1

y0
1

a b
b

a

22 / 34

The algorithm
Suppose given a program

p = p0|p1| . . . |pn−1

with n threads.

Under mild assumptions, the geometric semantics is of the form

Gp = ~In \
l−1⋃
i=0

R i

where R i =
n−1∏
j=0

]x i
j , y i

j [

are l open rectangles.

t0

t1

t2

Example Pa.Va.Pb.Vb|Pb.Vb.Pa.Va

t0

t1

0

1

x0
0 y0

0 x1
0 y1

0

x1
1

y1
1

x0
1

y0
1

a b
b

a

22 / 34

The algorithm
Under mild assumptions, the geometric semantics is of the form

Gp = ~In \
l−1⋃
i=0

R i

where R i =
n−1∏
j=0

]x i
j , y i

j [

are l open rectangles.
Example Pa.Va.Pb.Vb|Pb.Vb.Pa.Va

t0

t1

0

1

x0
0 y0

0 x1
0 y1

0

x1
1

y1
1

x0
1

y0
1

a b
b

a

22 / 34

The algorithm
The main idea of the algorithm is to extend the forbidden cubes
downwards in various directions and look whether there is a path
from b to e in the resulting space.

t0

t1

t0

t1

t0

t1

By combining those information, we will be able to compute traces
modulo homotopy.

The directions in which to extend the holes will be coded by
boolean matrices M.

23 / 34

The algorithm
The main idea of the algorithm is to extend the forbidden cubes
downwards in various directions and look whether there is a path
from b to e in the resulting space.

t0

t1

t0

t1

t0

t1

By combining those information, we will be able to compute traces
modulo homotopy.

The directions in which to extend the holes will be coded by
boolean matrices M.

23 / 34

The index poset
Ml ,n: boolean matrices with l rows and n columns.

XM : space obtained by extending
for every (i , j) such that M(i , j) = 1
the forbidden cube i downwards
in every direction other than j

0

1
t0

t1

0

1
t0

t1

0

1
t0

t1

(
1 0
1 0

) (
0 1
1 0

) (
1 0
0 1

)
Ψ :Ml ,n → {0, 1}:

• Ψ(M) = 0 if there is a path b → e: M is alive
• Ψ(M) = 1 if there is no path b → e: M is dead

24 / 34

The index poset
Ml ,n: boolean matrices with l rows and n columns.

XM : space obtained by extending
for every (i , j) such that M(i , j) = 1
the forbidden cube i downwards
in every direction other than j

0

1
t0

t1

0

1
t0

t1

0

1
t0

t1

(
1 0
1 0

) (
0 1
1 0

) (
1 0
0 1

)
Ψ :Ml ,n → {0, 1}:

• Ψ(M) = 0 if there is a path b → e: M is alive
• Ψ(M) = 1 if there is no path b → e: M is dead

24 / 34

The index poset
Ml ,n: boolean matrices with l rows and n columns.

XM : space obtained by extending
for every (i , j) such that M(i , j) = 1
the forbidden cube i downwards
in every direction other than j

0

1
t0

t1

0

1
t0

t1

0

1
t0

t1

(
1 0
1 0

) (
0 1
1 0

) (
1 0
0 1

)

Ψ :Ml ,n → {0, 1}:
• Ψ(M) = 0 if there is a path b → e: M is alive
• Ψ(M) = 1 if there is no path b → e: M is dead

24 / 34

The index poset
Ml ,n: boolean matrices with l rows and n columns.

XM : space obtained by extending
for every (i , j) such that M(i , j) = 1
the forbidden cube i downwards
in every direction other than j

0

1
t0

t1

0

1
t0

t1

0

1
t0

t1

(
1 0
1 0

) (
0 1
1 0

) (
1 0
0 1

)
Ψ :Ml ,n → {0, 1}:

• Ψ(M) = 0 if there is a path b → e: M is alive
• Ψ(M) = 1 if there is no path b → e: M is dead 24 / 34

The index poset

Pa.Va.Pb.Vb | Pa.Va.Pb.Vb | Pa.Va.Pb.Vb

t0

t1

t2 0

1

t0

t1

t2

t0

t1

t2

t0

t1

t2

(
0 0 0
0 0 0

) (
1 0 0
0 0 1

) (
0 0 1
1 0 0

) (
0 0 0
1 1 1

)

alive alive alive dead
25 / 34

The index poset
• Ml ,n is equipped with the pointwise ordering
• Ψ is increasing: more 1 ⇒ more obstructions
• MR

l ,n: matrices with non-null rows
• MC

l ,n: matrices with unit column vectors

Definition
The index poset C(X) = {M ∈MR

l ,n / Ψ(M) = 0}
(the alive matrices).

Definition
The dead poset D(X) = {M ∈MC

l ,n / Ψ(M) = 1}.

D(X) C(X) homotopy classes of traces

26 / 34

The index poset
• Ml ,n is equipped with the pointwise ordering
• Ψ is increasing: more 1 ⇒ more obstructions
• MR

l ,n: matrices with non-null rows
• MC

l ,n: matrices with unit column vectors

Definition
The index poset C(X) = {M ∈MR

l ,n / Ψ(M) = 0}
(the alive matrices).

Definition
The dead poset D(X) = {M ∈MC

l ,n / Ψ(M) = 1}.

D(X) C(X) homotopy classes of traces

26 / 34

The index poset
• Ml ,n is equipped with the pointwise ordering
• Ψ is increasing: more 1 ⇒ more obstructions
• MR

l ,n: matrices with non-null rows
• MC

l ,n: matrices with unit column vectors

Definition
The index poset C(X) = {M ∈MR

l ,n / Ψ(M) = 0}
(the alive matrices).

Definition
The dead poset D(X) = {M ∈MC

l ,n / Ψ(M) = 1}.

D(X) C(X) homotopy classes of traces

26 / 34

The index poset
• Ml ,n is equipped with the pointwise ordering
• Ψ is increasing: more 1 ⇒ more obstructions
• MR

l ,n: matrices with non-null rows
• MC

l ,n: matrices with unit column vectors

Definition
The index poset C(X) = {M ∈MR

l ,n / Ψ(M) = 0}
(the alive matrices).

Definition
The dead poset D(X) = {M ∈MC

l ,n / Ψ(M) = 1}.

D(X) C(X) homotopy classes of traces

26 / 34

The dead poset
Proposition
A matrix M ∈MC

l ,n is in D(X) iff it satisfies

∀(i , j) ∈ [0 : l [×[0 : n[, M(i , j) = 1 ⇒ x i
j < min

i ′∈R(M)
y i ′

j

where R(M): indexes of non-null rows of M.

Example
M is dead:

t0

t1

0

1

x0
0 x1

0 y0
0 y1

0

x0
1

y0
1

x1
1

y1
1

M =

(
0 1
1 0

)
x0

1 = 1 < 2 = min(y0
1 , y1

1)
x1

0 = 2 < 3 = min(y0
0 , y1

0)

27 / 34

The dead poset
Proposition
A matrix M ∈MC

l ,n is in D(X) iff it satisfies

∀(i , j) ∈ [0 : l [×[0 : n[, M(i , j) = 1 ⇒ x i
j < min

i ′∈R(M)
y i ′

j

where R(M): indexes of non-null rows of M.

Example
M is dead:

t0

t1

0

1

x0
0 x1

0 y0
0 y1

0

x0
1

y0
1

x1
1

y1
1

M =

(
0 1
1 0

)
x0

1 = 1 < 2 = min(y0
1 , y1

1)
x1

0 = 2 < 3 = min(y0
0 , y1

0)

27 / 34

The index poset

Proposition
A matrix M is in C(X) iff for every N ∈ D(X), N 66 M.

Remark
N 66 M: there exists (i , j) s.t. N(i , j) = 1 and M(i , j) = 0.

Remark
Since C(X) is downward closed it will be enough to compute the
set Cmax(X) of maximal alive matrices.

28 / 34

The index poset

Proposition
A matrix M is in C(X) iff for every N ∈ D(X), N 66 M.

Remark
N 66 M: there exists (i , j) s.t. N(i , j) = 1 and M(i , j) = 0.

Remark
Since C(X) is downward closed it will be enough to compute the
set Cmax(X) of maximal alive matrices.

28 / 34

Connected components

M ∧ N: pointwise min of M and N

Definition
Two matrices M and N are connected when M ∧ N does not
contain any null row.

Proposition
The connected components of C(X) are in bijection with homotopy
classes of traces b → e in X.

29 / 34

Dining philosophers
n processes pk in parallel:

pk = Pak .Pak+1 .Vak .Vak+1
t0

t1

t2

n sched. alcool (s) alcool (MB) spin (s) spin (MB)
8 254 0.1 0.8 0.3 12
9 510 0.8 1.4 1.5 41

10 1022 5 4 8 179
11 2046 32 9 42 816
12 4094 227 26 313 3508
13 8190 1681 58 ∞ ∞
14 16382 13105 143 ∞ ∞

30 / 34

Handling programs with loops
Consider the following program:

p = (Pa.Va)∗|(Pa.Va)∗

31 / 34

Handling programs with loops
Consider the following program:

p = (Pa.Va)∗|(Pa.Va)∗

Its trace space is

t0

t1

31 / 34

Handling programs with loops
Consider the following program:

p = (Pa.Va)∗|(Pa.Va)∗

Its trace space is

t0

t1

31 / 34

Handling programs with loops
Consider the following program:

p = (Pa.Va)∗|(Pa.Va)∗

Its trace space is

t0

t1

31 / 34

Handling programs with loops
Consider the following program:

p = (Pa.Va)∗|(Pa.Va)∗

Its trace space is

t0

t1

31 / 34

Handling programs with loops
Consider the following program:

p = (Pa.Va)∗|(Pa.Va)∗

Its trace space is

t0

t1

31 / 34

Handling programs with loops
Consider the following program:

p = (Pa.Va)∗|(Pa.Va)∗

Its trace space is

t0

t1

31 / 34

Handling programs with loops
Consider the following program:

p = (Pa.Va)∗|(Pa.Va)∗

Its trace space is

t0

t1

31 / 34

Handling programs with loops
Consider the following program:

p = (Pa.Va)∗|(Pa.Va)∗

Its trace space can be described by the following automaton:

1, 11

1,
,,

0,

1,

QQ

1,
,,

0,

ll

0,

ll 0,mm

(which can be reduced a bit more)

31 / 34

Summary

• The computation of trace space through boolean matrices is
quite efficient

• We compute a “most reduced CFG” which can be then be
analyzed through usual techniques (abstract interpretation,
model checking, etc.)

• Geometric semantics can be useful in order to reason about
concurrency

32 / 34

Future works

• Interface with static analyzers
• Speed and implementation improvements (algorithms, GPU)
• Precise relation with partial-order reduction
(joint work with T. Heindel)

• Lots of work remain to be done on the theoretical side in
order to really understand the geometry of concurrency

33 / 34

Thanks!

Questions?

34 / 34

