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People in the business

Errors are mine, ideas are not.

This is not my work:
• Rigorous geometrical methods for chaos: Marian Mrozek,
Piotr Zgliczynski, . . .

• Taylor method for rigorous integration of flows: Martin Berz,
. . .

• . . .
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http://www.ii.uj.edu.pl/~mrozek/
http://www.ii.uj.edu.pl/~zgliczyn/
http://www.bt.pa.msu.edu/pub/


The big picture

We want to study dynamical systems:
• physics provide us with lots of differential equations
to describe gaz, heat, etc.

• we want to characterize properties “on the long run”:
steady states (fixpoints), periodic orbits, chaotic behavior, etc.

• these systems can be sensitive (and even chaotic):
we have to use guaranteed methods to handle floating-point
errors

• the topology of those systems can be very helpful!

LMeASI should be able to help!
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Part I

Dynamical systems
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Dynamical systems
Suppose given

• a topological space X
• a time domain T ∈ {R,R+,Z,N}.

Definition
A dynamical system (or flow) is a continuous

ϕ : X × T→ X

such that
• ϕ(x , 0) = x
• ϕ(ϕ(x , t1), t2) = ϕ(x , t1 + t2)

The ds is continuous when T ∈ {R,R+} or discrete when T ∈ {Z,N}.

Remark
A discrete dynamical system is characterized by f = x 7→ ϕ(x , 1).
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Flows vs. vector fields
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Examples of dynamical systems

• Free fall

mv̇ = mg

• Pendulum

• [insert your favorite physical system here]
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Limit behaviors

Theorem (Poincaré-Bendixon)
Given a differentiable real dynamical system defined on an open
subset of the plane, then every non-empty compact ω-limit set of
an orbit, which contains only finitely many fixed points, is either

• a fixed point,
• a periodic orbit,
• or a connected set composed of a finite number of fixed
points together with homoclinic and heteroclinic orbits
connecting these.

Moreover, there is at most one orbit connecting different fixed
points in the same direction. However, there could be countably
many homoclinic orbits connecting one fixed point.
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Chaotic systems

Some dynamical systems exhibit much more complex limit
behaviors. . .

Definition
A dynamical system is chaotic if

1 it is sensitive to initial conditions
2 it exhibits topological mixing
3 it has a dense set of periodic orbits
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Examples of dynamical systems – Chaotic
• The logistic map

xn+1 = rxn(1− xn)

• Lorenz equations (used to model weather)
• Hénon map (simplification of Lorenz)
• The tinkerbell map
• Double pendulum
• Smale’s horseshoe map
• Wikipedia’s

http://en.wikipedia.org/wiki/List_of_chaotic_maps
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Part II

Computing invariants of dynamical
systems
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Invariant sets
The trajectory of a point x ∈ X is

ϕ(x) = {ϕ(x , t) | t ∈ T}

A point x can be
• periodic: ∃t ∈ T, ϕ(x , t) = x
• stationary: ∀t ∈ T, ϕ(x , t) = x (i.e. ϕ(x) = {x})

Definition
Given N ⊆ X , its invariant part is

Inv(N, ϕ) = {x ∈ N | ϕ(x) ⊆ N}

and N is invariant when Inv(N, ϕ) = N.
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We want to study the structure
of these invariant sets!
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The kind of thing we will use

The exit set N− of N ⊆ X is

N− = {x ∈ N | ∃ε > 0, ∀0 < t < ε, ϕ(x , t) 6∈ N}

“Theorem” (not the exact hypothesis but you get the idea)
If N is connected and N− is either empty or not connected then N
admits a fixpoint.
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Stationary points: a simple example

Suppose that X = R, T = R and consider a dynamical system

ϕ : X × T→ X

defined as the solution of

ẋ = f (x)

which should be thought as a tangent vector field on X .

Proposition
If we can find an interval [a, b] such that f (a) < 0 and f (b) > 0
then by the intermediate value theorem there exists a point
s ∈ [a, b] which is stationary: ẋ = f (x) = 0.
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15 / 48



Links with the theorem
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Links with the theorem
Proposition
If we can find an interval [a, b] such that f (a) < 0 and f (b) > 0
then by the intermediate value theorem there exists a point
s ∈ [a, b] which is stationary: ẋ = f (x) = 0.

Remark
This methodology can be extended to guaranteed methods
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In higher dimensions?

When X = R2 the previous method cannot be used anymore. . .

. . . we have to use some topological tools.
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Brouwer fixpoint theorem
Theorem
Every continuous map h : D2 → D2 admits a fixpoint.

Proof.
By reduction ad absurdum.

• Write r for the map r : D2 → S1 sending x to the intersection
of the half-line from h(x), going through x , with ∂D2.

• Show that r is a deformation retract.
• Impossible because π1(S1) = Z 6= 1 = π1(D2).

So, every discrete dynamical system ϕ : X × T→ X with X = D2

and T = Z admits a stationary fixpoint.
This is the same kind of theorem!

18 / 48



Brouwer fixpoint theorem
Theorem
Every continuous map h : D2 → D2 admits a fixpoint.

Proof.
By reduction ad absurdum.

• Write r for the map r : D2 → S1 sending x to the intersection
of the half-line from h(x), going through x , with ∂D2.

• Show that r is a deformation retract.
• Impossible because π1(S1) = Z 6= 1 = π1(D2).

So, every discrete dynamical system ϕ : X × T→ X with X = D2

and T = Z admits a stationary fixpoint.
This is the same kind of theorem!

18 / 48



Brouwer fixpoint theorem
Theorem
Every continuous map h : D2 → D2 admits a fixpoint.

Proof.
By reduction ad absurdum.

• Write r for the map r : D2 → S1 sending x to the intersection
of the half-line from h(x), going through x , with ∂D2.

• Show that r is a deformation retract.
• Impossible because π1(S1) = Z 6= 1 = π1(D2).

So, every discrete dynamical system ϕ : X × T→ X with X = D2

and T = Z admits a stationary fixpoint.

This is the same kind of theorem!

18 / 48



Brouwer fixpoint theorem
Theorem
Every continuous map h : D2 → D2 admits a fixpoint.

Proof.
By reduction ad absurdum.

• Write r for the map r : D2 → S1 sending x to the intersection
of the half-line from h(x), going through x , with ∂D2.

• Show that r is a deformation retract.
• Impossible because π1(S1) = Z 6= 1 = π1(D2).

So, every discrete dynamical system ϕ : X × T→ X with X = D2

and T = Z admits a stationary fixpoint.
This is the same kind of theorem! 18 / 48



Algebraic topology in a hurry
• The standard interval I = [0, 1].

• A path on a topological space X is a cont. map p : I → X .
• A homotopy between paths p and q in X is a cont. map
h : I → X I such that h(0) = p and h(1) = q.

• More generally two maps f , g : X → Y are homotopic when
there exists h : I → Y X such that h(0) = f and h(1) = g .

• A ⊆ X is a deformation retract of X when idX : X → X is
homotopic to a retraction r : X → A of X onto A
(i.e. r(X ) = A and r |A = idA).
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The fundamental group
• The concatenation of paths p and q such that p(1) = q(0)
is defined by

(p · q)(t) =

{
p(2t) if 0 ≤ t ≤ 1/2
q(2t − 1) if 1/2 ≤ t ≤ 1.

• The inverse of a path p is defined by p−1(t) = p(1− t).
• The fundamental group π1(X , x0) is the group of homotopy
classes of paths p such that p(0) = p(1) = x0.

Example
π1(Dn) = 0 π1(S1) = Z

π1(S1 ∨ S1) = Z ∗ Z π1(S1 × S1) = Z× Z

Lemma
If A ⊆ X is a deformation retract of X then π1(A, x0) ∼= π1(X , x0).
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Homology
In practice, homotopy groups are very hard to compute so we
compute their homology groups.

• H(X ) is a sequence Hn(X ) of groups.

• Every finitely generated group G can be decomposed as

G = Zn ⊕ Zq1 ⊕ . . .⊕ Zqk

n = rank(G) is called the rank of G
(≈ dimension of a vector space).

• The n-th Betti number bn = rank(Hn(X )) can be thought as
the number of n-dimensional holes of X .

• The relative homology H(X ,Y ) of X wrt Y ⊆ X is the
homology of X where Y has been contracted to a point.

• Cohomology H∗(X ) is defined in a “similar” (dual) way.
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Ważezwski theorem
• The exit set N− of N ⊆ X is

N− = {x ∈ N | ∃ε > 0, ∀0 < t < ε, ϕ(x , t) 6∈ N}

• If N is compact and N− is closed, N is an isolating block.

Theorem
If N is an isolating block and N− is not a deformation retract of N
then there exists x ∈ N such that ϕ(x) ⊆ N.

Remark
This can be verified by ensuring that H∗(N,N−) 6∼= 0.

This gives invariant points in N for continuous dynamic systems.
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The Conley index

The Conley index
• generalizes this construction
• can be generalized to discrete dynamic systems

Let’s see the horseshoe map first!
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Part III

Chaos in the horseshoe map
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The horseshoe map

Definition
The horseshoe map is the discrete dynamical system defined on a
square as follows:

It can be extended to a dds on the whole plane R2 and we are
interested in Inv(N, ϕ).
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Invariant points and binary strings
Write f = x 7→ ϕ(x , 1) and N0 ] N1 = f −1(N):

• Obviously, Inv(N, ϕ) ⊆ N0 ] N1.

• This defines a map ρ : Inv(N, ϕ)→ Σ2 with Σ2 = {0, 1}Z.
• This map satisfies ρ ◦ f = σ ◦ ρ, where σ is the shift map

σ : Σ2 → Σ2
(n 7→ sn) 7→ (n 7→ sn+1)
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Symbolic Dynamics – A chaotic map

The set Σ2 admits a metric defined by

d(s, t) =
∞∑

n=−∞

|sn − tn|
2|n|

Theorem
The shift map σ : Σ2 → Σ2 is chaotic.

Theorem
There exists an homeomorphism ρ : Inv(N, ϕ)→ Σ2 (the
important part is that ρ is a continuous surjection) such that
ρ ◦ f = σ ◦ ρ (it’s called a topological conjugacy).
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Part IV

The Conley index
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The Conley index

• An isolating neighborhood N is a compact set such that
x ∈ bd(N) implies ϕ(x) 6⊆ N, i.e.

Inv(N, ϕ) ⊆ int(N)

• An isolated invariant set S is a compact set such that
S = Inv(N, ϕ) for some isolating neighborhood N.

Theorem
For every isolating neighborhood N of S there exists an isolating
block S ⊆ M ⊆ N and H∗(M,M−) only depends on S (or N),
where H∗ denotes the Alexander-Spanier cohomology (with
coefficients in Q).
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Generalizing to discrete systems
Suppose given a dds ϕ, and write f = x 7→ ϕ(x , 1).

Definition
An index pair (P1,P2) of an isolated invariant set S is a pair of
compact sets such that

f (P2) ∩ P1 ⊆ P2

P1 ∩ cl(f (P1) \ P1) ⊆ P2

S = Inv(cl(P1 \ P2), f ) ⊆ int(P1 \ P2)

(intuition: P2 is an exit set for P1).

Problem: H∗(P1,P2) is not an invariant...
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Index pairs
• Given a fd vector space V , the generalized kernel of
α : V → V is

gkerα =
⋃

n∈N
kerαn

• Leray functor: every α : V → V induces an iso
L(V , α) : V / gkerα→ V / gkerα

Definition
An index quadruple (P1,P2,P1,P2) consists of

• an index pair (P1,P2)

• we have

P1 ∪ f (P1) ⊆ P1 P2 ∪ f (P2) ⊆ P2

• the inclusion ι : (P1,P2) ↪→ (P1,P2) is an excision:

ι∗ : H∗(P1,P2)
∼
↪→ H∗(P1,P2)
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The discrete Conley index

Theorem
For every isolating neighborhood N of f there exists an index
quadruple such that Inv(N, f ) ⊆ P1 ⊆ P1 ⊆ N and the Conley
index of f in N is

Con(N, f ) = L(H∗(P1,P2), IP)

with IP = f ∗ ◦ (ι∗)−1 : H∗(P1,P2)→ H∗(P1,P2) where

(P1,P2)
f // (P1,P2) (P1,P2)

ιoo

and this does not depend on the choice of the index quadruple.
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Example: simple Conley indexes
• Con(N, f ) = 0

• Con(N, f ) = Q
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Example: the horseshoe map
We set P1 = N, P2 = N \ (N1 ] N2) and Pi = Pi ∪ f (Pi ):

H1(P1,P2) has two generators α and β. The index map is

A =

(
1 −1
1 −1

)

We have A2 = 0 and therefore gkerA = Q and Con(N, f ) = 0.
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Chaos with Conley
Theorem
If N = N0 ∪ N1 is an isolating neighborhood with N0 ∩ N1 = ∅. If
for i ∈ {0, 1},

Con(Ni , f )n =

{
(Q, id) if n = 1
0 otherwise

and the map parts of
Con(N00,01,11, f ) and Con(N00,10,11, f )

are different from the identity then there exists a continuous
surjection ρ : Inv(N, f )→ {0, 1}Z such that

ρ ◦ f d = σ ◦ ρ

for some d ∈ N.
35 / 48



Part V

Guaranteed methods
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Abstract interpretation
Suppose given a Galois connection

P(Rn)
α

++⊥ D
γ

ll

Typical example: the elements of D = P(KRn ) are sets of cubes.

Every map
f : X → Y

can be approximated as a map

F : X → P(KY )

such that
∀x ∈ X , α ◦ f (x) ≤ F (x)

and previous computations can be done on approximated maps.
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Guaranteed computations on dds

Given a dds f : X → X , we “replace” f by an approximation
F : X → P(KX ) in the computations (previous definitions are
adapted to the approximated case).

Theorem
If N is an isolating neighborhood of F and (P1,P2) is an index pair
for F in N, then for every function f approximated by F , γ(N) is
an isolating neighborhood for f and (γ(P1), γ(P2)) is an index pair
for f .

Theorem
...similarly for index quadruples...
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Guaranteed homology of a map
We also have to compute the homology of a map to compute the
Conley index!

• F : X → P(KX ) is acyclic-valued if for every x ∈ X , γ(F (x))
is acyclic.

• F : X → P(KX ) is lower-continuous if

∀x ∈ X , F (x) =
⋂
{F (Q) | x ∈ Q ∈ KX}

Theorem
If F is lower-continuous and acyclic-valued, then for every chain
map f approximated by F we have

H∗(f ) = H∗(F )
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Guaranteed homology of a map
A function F : X → Y can be represented by its graph

G(F ) = {(x , y) ∈ X × Y | y ∈ F (x)}

which makes the diagram

G(F )
p

}}zz
zz

zz
zz q

""DD
DD

DD
DD

X F
// Y

commute.

Theorem
H∗(f ) = H∗(q)H∗(p)−1.

40 / 48



Guaranteed homology of a map
A function F : X → Y can be represented by its graph

G(F ) = {(x , y) ∈ X × Y | y ∈ F (x)}

which makes the diagram

G(F )
p

}}zz
zz

zz
zz q

""DD
DD

DD
DD

X F
// Y

commute.

Theorem
H∗(f ) = H∗(q)H∗(p)−1.

40 / 48



Guaranteed homology of a map
A function F : X → Y can be represented by its graph

G(F ) = {(x , y) ∈ X × Y | y ∈ F (x)}

which makes the diagram

G(F )
p

}}zz
zz

zz
zz q

""DD
DD

DD
DD

X F
// Y

commute.

Theorem
H∗(f ) = H∗(q)H∗(p)−1.

40 / 48



Cubical homology

Images are approximated by finite sets of cubes, one can devise
very fast methods for computing the (cubical) homology. . .
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Part VI

Theorems

42 / 48



A few more definitions
Given a continuous dynamical system ϕ, we define the following.

• The return time tϕ,A : A→ R+ of ϕ in A ⊆ X is

tϕ,A(x) = inf{t > 0 | ϕ(x , t) ∈ A}

• The Poincaré map Pϕ,A : {x ∈ A | 0 < tϕ,A(x) <∞} → A

Pϕ,A(x) = ϕ(x , tϕ,A(x))

• A ⊆ X is a Poincaré section when Pϕ,A is continuous and
not empty.

• Given a boolean matrix A of size n × n, we define

Σ(A) = {s ∈ {0, . . . , n − 1}Z | ∀i ∈ Z,A(si , si+1) = 1}

i.e. the paths in the graph defined by A.
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The kind of theorems we get

Theorem
Consider the Lorenz equations and the plane
P = {(x , y , z) | z = 27}. For all parameter values in a sufficiently
small neighborhood of (σ, ρ, β) = (28, 10, 8/3) there exists a
Poincaré section N ⊆ P such that the associated Poincaré map g
is Lipschitz and well defined. Furthermore, for

A =


0 1 1 0 0 0
0 1 1 0 0 0
0 0 0 1 1 0
0 0 0 0 0 1
1 0 0 0 0 0
0 1 1 0 0 0
0 0 0 1 1 0


there is a continuous surjection ρ : Inv(N, g)→ Σ(A) such that
ρ ◦ g = σ ◦ ρ. In particular h(Inv(N, g)) ≥ 0.48. Moreover, for
every α ∈ Σ(A) which is periodic there exists an x ∈ Inv(N, g) on
a periodic trajectory such that ρ(x) = α.
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The kind of theorems we get
Theorem
Consider the Hénon map h : R2 → R2 given by the formula
h(x , y) = (1 + y/5− ax2, 5bx) at the classical parameter values
a = 1.4 and b = 0.2. The discrete dynamical system induced by
the Hénon map admits an invariant set S semiconjugate with a
subshift of finite type on 8 symbols and topological entropy
h = 0.28 Moreover, if

A =


0 0 0 0 0 0 0 1
0 0 0 0 0 0 1 0
0 0 0 0 0 1 0 0
0 0 0 0 1 0 0 0
1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 1 0 1 0 0 0 0
0 1 1 1 0 0 0 0


then for each periodic sequence θ ∈ Σ(A) with period p the set
ρ−1(θ) contains a periodic orbit with period p. In particular
h(S) ≥ 0.28.
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Part VII

Improving abstract interpretation
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Alternatives to cubical sets
• Cubical sets (≈ intervals) are easy to implement

• In particular, they can be represented by bitmaps for which
efficient algorithms to compute homology can be devised

• However, they don’t keep dependencies: very small grids need
to be used

Other domains can be used:
• zonotopes

x̂ = c0 +
∑

i
ciεi

• Taylor models

f (x) =
n∑

k=0

f (k)(x − x0)

k!
(x − x0)k +

f (n+1)(ζ)

(n + 1)!
(x − x0)n+1

= P f
n (x − x0) + I fn
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Thanks!

Questions?
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