
DIRECTED
GEOMETRIC
MODELS OF
CONCURRENT
PROGRAMS

Samuel Mimram
École Polytechnique

Applied and Computational Algebraic Topology

Spring School

April 24th, 2017



Models of concurrent programs

▶ We are interested in concurrent programs:

multiple threads in parallel.

▶ We want to model their state space:

describe all possible executions.

▶ We advocate here that geometric models can be useful:

we can (hope to) use geometric tools.

▶ A typical application is to verification of programs:

guarantee that a program will never divide by 0,

and other problems more specific to concurrency.
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Geometric models
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Geometric models are interesting:
▶ they range from algebraic to topological flavors
▶ they provide useful visualizations of the state space
▶ we can use geometric invariants and constructions
▶ it raises new questions in geometry
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Directed geometry
Let’s consider a typical example.

For a connected space X, one considers the fundamental group

π1(X, x0)

More generally, one considers the fundamental groupoid

Π1(X)

For directed space, we have a fundamental category

Π⃗1(X)

Other invariants have to be generalized similarly, which is not
always obvious (e.g. no weak equivalences / model categories,
etc.)
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This talk

Here

▶ we focus on (simple) geometric aspects:
more involved developments will follow in Raussen’s talk

▶ verification is only really used here as a motivation
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VERIFYING
SEQUENTIAL
PROGRAMS
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Control flow graphs

When studying sequential programs, people often already use a
geometric description: control flow graphs.
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Control flow graphs

x := 5;
while x != 1 do (

if x mod 2 != 0 then
(x := 3*x; x := x+1)

else
x := x/2

);
print "Reached 1!"

s x := 5 x != 1 x mod 2 != 0

¬(x mod 2 != 0)

x := 3*xx := x+1

x := x/2
¬(x != 1)

print "Reached 1!"
t
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A toy language
Consider a language consisting of
▶ arithmetic expressions:

a ::= x | n | a + a | a * a

▶ boolean expressions:

b ::= true | false | a < a | b and b | ¬b

▶ actions:
A ::= x := a | print a

▶ commands / programs:

c ::= A |
c; c | if b then c else c | while b do c
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Graphs

A graph G consists of
▶ a set G0 of vertices
▶ a set G1 of edges
▶ source and target maps ∂−, ∂+ : G1 → G0

For control flow graphs, we moreover have
▶ distinguished beginning and end vertices: s, t ∈ G0

▶ a labeling:
ℓ : G1 → A⊔ B

into actions (A) or boolean expressions (B)
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The control flow graph
To each program one can associate a graph by induction:
▶ action A:

GA = sA tA
A

▶ sequence p;q:

sp Gp tp sq Gq tq

▶ if b then p else q:

G = s

sp

sq

b

¬b

tp = tq = t
Gp

Gq
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The control flow graph
To each program one can associate a graph by induction:
▶ action A:

GA = sA tA
A

▶ sequence p;q:

Gp;q = sp Gp tp sq Gq tq

▶ while b do p:

G = s = tp spGp

b

t¬b

11 / 117



Execution paths

An execution path of a program is a path starting from sp in the
graph Gp.

s x := 5 x != 1 x mod 2 != 0

¬(x mod 2 != 0)

x := 3*xx := x+1

x := x/2
¬(x != 1)

print "Reached 1!"
t
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Denotational semantics
A state of the program is an element of Σ = ZVar:
variables contain integers.

We can define a semantics by interpreting
▶ each arithmetic expression a as a function

JaK : Σ → Z

▶ each boolean expression b as a function

JbK : Σ → {⊥,⊤}

▶ each action A as a function

JAK : Σ → Σ

e.g.
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Valid execution paths
The semantics can be extended to execution paths (as the
semantics of the sequence of labels, ignoring boolean
conditions).

s x := 5 x != 1 x mod 2 != 0

¬(x mod 2 != 0)

x := 3*xx := x+1

x := x/2
¬(x != 1)

print "Reached 1!"
t
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Verifying programs
A program with a distinguished set of error vertices is correct
when there is no valid execution path with an error vertex as
target.
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Verifying programs
A program with a distinguished set of error vertices is correct
when there is no valid execution path with an error vertex as
target.

Typical example:

if x = 0 then error else y := 1/x

corresponding to

x=0
y:=1/x

¬ (x=0)
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Verifying programs
A program with a distinguished set of error vertices is correct
when there is no valid execution path with an error vertex as
target.

Reachability analysis can be performed by systematic exploration.
This can be infinite because of
▶ loops,
▶ infinite sets of possible values,

and reachability is actually undecidable.

However, there are standard techniques which work well in prac-
tice such as abstract interpretation.
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Verifying programs

Another point of view on verification consists in ensuring
invariants on execution paths

p : sp ↠ tp

from the beginning to the end.

For this reason, the set of such paths is particularly important and
called the trace space.

The terminology “space” suggests that it generally has more
structure than a mere set...
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CONCURRENT
PROGRAMS
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Concurrent programs

Concurrent programs consists in multiple processes running in
parallel. In order to model this, we add a new construction to
programs:

p||q

means run p and q in parallel.
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Sequential consistency
Assumption
Sequential consistency: the possible behaviors of p||q are the
interleavings of the actions of p and q.

Example (x1:=1; y1:=x2) || (x2:=1; y2:=x1)

has the six following possible executions:
▶ x1:=1; y1:=x2; x2:=1; y2:=x1
▶ x1:=1; x2:=1; y1:=x2; y2:=x1
▶ x1:=1; x2:=1; y2:=x1; y1:=x2
▶ x2:=1; x1:=1; y1:=x2; y2:=x1
▶ x2:=1; x1:=1; y2:=x1; y1:=x2
▶ x2:=1; y2:=x1; x1:=1; y1:=x2
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Sequential consistency
Assumption
Sequential consistency: the possible behaviors of p||q are the
interleavings of the actions of p and q.
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Sequential consistency
Assumption
Sequential consistency: the possible behaviors of p||q are the
interleavings of the actions of p and q.

Example (x1:=1; y1:=x2) || (x2:=1; y2:=x1)

Nowadays processors have weak memory models, because of
which in the end you can even have

y1 = 0 and y2 = 0

if you are not careful...
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Sequential consistency

#include <pthread.h>
#include <stdio.h>

volatile int x1=0, y1=0, x2=0, y2=0;

void* f1(void *arg)
{

x1 = 1;
y1 = x2;
return NULL;

}

void* f2(void *arg)
{

x2 = 1;
y2 = x1;
return NULL;

}

int main(void)
{

pthread_t t1;
pthread_t t2;
int i;

for (i=0; i<1000000; i++) {
x1=0;
x2=0;
pthread_create(&t1, NULL, &f1, NULL);
pthread_create(&t2, NULL, &f2, NULL);
pthread_join(t1, NULL);
pthread_join(t2, NULL);
if (y1 == 0 && y2 == 0)

printf("Impossible case!\n");
}

return 0;
}
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Semantics for parallel
This suggests that we define

Gp||q = Gp ⊗Gq

where the tensor product has
▶ vertices: Vp||q = Vp × Vq
▶ edges: Ep||q = (Ep × Vq) ⊔ (Vp × Eq)
▶ expected source and target

x

e
��
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f
��
z

⊗

x′

e′
��
y′

f′
��
z′

=

x⊗ x′
e⊗x′
wwnnn

nnn x⊗e′
''PP

PPP
P

y⊗ x′
f⊗x′
wwooo

ooo y⊗e′
OO

''

x⊗ y′

e⊗y′
oo

ww
x⊗f′

''OO
OOO

O

z⊗ x′

z⊗e′ ''OO
OOO

O y⊗ y′

f⊗y′
oo

wwoo y⊗f′
OO

''OO

x⊗ z′

e⊗z′wwooo
ooo

z⊗ y′

z⊗f′ ''PP
PPP

P y⊗ z′

f⊗z′wwnnn
nnn

z⊗ z′
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Verifying parallel programs
In theory, this is all we need to perform verification on programs,
i.e. we can apply previously mentioned techniques...

In practice, we face the state space explosion problem: given
a program p of size k, the size of n copies of p in parallel

p ⊗ p ⊗ · · · ⊗ p

is
kn

e.g.
·

��
·

��
·

⊗

·

��
·

��
·

⊗ . . . ⊗

·

��
·

��
·

making things impractical.
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CUBICAL
SEMANTICS

OF
CONCURRENT
PROGRAMS
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Toward geometric models

This suggests that we need to take some more structure of
programs in account, i.e. study more carefully their geometry.

We will see that
▶ commutations between actions provide surfaces
▶ forbidden regions create holes
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Commutation between actions
In order to face the state explosion problem, people have
observed that some actions commute.

For instance, the actions of

x := 1 || y := 2

whose graph is

x:=1

~~}}
}}
}}
}}
} y:=2

  B
BB

BB
BB

BB

y:=2
  B

BB
BB

BB
BB

⋄

x:=1
~~}}
}}
}}
}}
}

do commute in the sense that

Jx:=1; y:=2K = Jy:=2; x:=1K
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Jx:=1; x:=2K = Jx:=2; x:=1K
25 / 117



Stability under refinement
Another reason why this commutation is important is that we
want semantics to be stable under refinement.

For instance:

▶ the semantics of A||B is B
��

A //

B
��

A
//

▶ if we replace A by A1;A2, we obtain B
��

A1 // A2 //

B
��

A1

//
A2

//

▶ the semantics of (A1;A2)||B is B
��

A1 //

B
��

A2 //

B
��

A1

//
A2

//
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True concurrency

This idea of taking commutations in account is called true
concurrency: Mazurkiewicz traces, asynchronous automata, etc.

There is no reason why we should stop at commutation of two
actions...
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Higher commutations
▶ commutation of two actions is indicated by a square

A

����
��
��
�� B

��?
??

??
??

?

B
��?

??
??

??
? ⋄

A
����
��
��
��

▶ commutation of three actions is indicated by a cube

C

��

B
??

?

��?
???

A //

C

��

B

��?
??

??
??

?

C

��

A //

C

��

A //

B ��?
??

??
??

?

B
??

?

��?
???

A
//

▶ etc.
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Precubical sets
A precubical set C consists of, for every n ∈ N,
▶ a set Cn of n-cubes
▶ face maps

∂αi : Cn → Cn−1

for α ∈ {−,+} and 0 ≤ i < n, such that

∂βj ∂
α
i = ∂αi ∂

β
j+1 : Cn+1 → Cn−1

for 0 ≤ i ≤ j < n and α, β ∈ {−,+}.
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for α ∈ {−,+} and 0 ≤ i < n, such that

∂βj ∂
α
i = ∂αi ∂

β
j+1 : Cn+1 → Cn−1

for 0 ≤ i ≤ j < n and α, β ∈ {−,+}.

For instance an element x ∈ C2 can be pictured as

∂−0 ∂
−
1 (x)

∂−
0 (x)

��

∂−
1 (x)

//

x

∂+0 ∂
−
1 (x)

∂+
0 (x)

��
∂−0 ∂

+
1 (x)

∂+
1 (x)

// ∂+0 ∂
+
1 (x)
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for α ∈ {−,+} and 0 ≤ i < n, such that

∂βj ∂
α
i = ∂αi ∂

β
j+1 : Cn+1 → Cn−1

for 0 ≤ i ≤ j < n and α, β ∈ {−,+}.

Note that there is an underlying graph with
▶ C0 as vertices
▶ C1 as edges
▶ ∂−, ∂+ : C1 → C0 as source and target maps
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Precubical sets
A precubical set C consists of, for every n ∈ N,
▶ a set Cn of n-cubes
▶ face maps

∂αi : Cn → Cn−1

for α ∈ {−,+} and 0 ≤ i < n, such that

∂βj ∂
α
i = ∂αi ∂

β
j+1 : Cn+1 → Cn−1

for 0 ≤ i ≤ j < n and α, β ∈ {−,+}.

Terminology: a precubical set with a distinguished vertex is called
an higher-dimensional automaton (or HDA)
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Tensor product

The tensor product
C⊗ D

of two precubical sets has n-cubes

(C⊗ D)n =
⨿
i+j=n

Ci × Dj

and boundary

∂αk : (C⊗ D)n → (C⊗ D)n−1

x⊗ y 7→

{
∂αk (x)⊗ y if 0 ≤ k < i

x⊗ ∂αk−i(y) if i ≤ k < n
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Tensor product
For instance with

I = x y
f

and S1 =
z

g

one has

▶ I⊗ S1: x ⊗ g y ⊗ g

x ⊗ z y ⊗ z

f ⊗ g

f ⊗ z

▶ I⊗ I: f ⊗ g
x ⊗ x y ⊗ x

x ⊗ y y ⊗ y

f ⊗ x

x ⊗ f y ⊗ f

f ⊗ y

▶ S1 ⊗ S1: z ⊗ z

g ⊗ z

z ⊗ gg ⊗ g
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Cubical semantics

The cubical semantics Cp of a program p is defined as before,
but in precubical sets, e.g.

Cp||q = Cp ⊗ Cq

where the tensor product is now taken in precubical sets.
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Cubical semantics
For now, the cubical semantics is too simple:
▶ x := 1 || y := 2

x:=1

����
��
��
�� y:=2

��?
??

??
??

?

y:=2
��?

??
??

??
? ⋄

x:=1
����
��
��
��

▶ x := 1 || x := 2

x:=1

����
��
��
�� x:=2

��?
??

??
??

?

x:=2
��?

??
??

??
? ⋄

x:=1
����
��
��
��

We need to carve holes!
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Mutexes
In practice, systems provide primitives to ensure that
▶ two threads will not access a variable at the same time:
mutual exclusion

▶ some sequences of actions are atomic

A mutex a is a resource which you can
▶ lock: Pa
▶ release: Va

and the system will guarantee that at most one process will have
the resource at a given time (locks can block).

We add to our language actions of the form

Pa and Va
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More general resources

More generally, we consider resources a with arbitrary capacity

κa ∈ N

which can be locked by at most κa threads at a time.

A mutex is a resource of capacity 1.
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Protecting variables
The semantics of the program

x := 1 || x := 2

is

x:=1

����
��
��
�� x:=2

��?
??

??
??

?

x:=2
��?

??
??

??
? ⋄

x:=1
����
��
��
��
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Protecting variables
The semantics of the program

(Pa;x := 1;Va) || (Pa;x := 2;Va)

is

Pa
{{www

ww
ww Pa

##G
GG

GG
GG

x:=1
{{www

ww
ww

Pa
GGG

##GG
G

⋄
Pa
www

{{www
x:=2

##G
GG

GG
GG

Va
{{www

ww
ww

Pa
GGG

##GG
G

⋄
x:=1w

ww

{{www
x:=2
GGG

##GG
G

⋄
Pa
www

{{www
Va

##G
GG

GG
GG

Pa ##G
GG

GG
GG ⋄

Va
www

{{www ##G
GG

GG
GG
x:=2
GGG

##GG
G

⋄
x:=1w

ww

{{www
Va
GGG

##GG
G

⋄

Pa{{www
ww
ww

x:=2 ##G
GG

GG
GG ⋄

Va
www

{{www
Va
GGG

##GG
G

⋄

x:=1{{www
ww
ww

Va ##G
GG

GG
GG ⋄

Va{{www
ww
ww
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Protecting variables

In a program of the form

(Pa;p;Va) || (Pa;q;Va)

the subprograms p and q are

▶ mutually exclusive:
they cannot be executed at the same time

▶ atomic:
once we start executing p, we go on until the end
i.e. there is no interleaving with other threads
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Conservative programs
A program is conservative when the resource consumption only
depends on the vertex (not on the path reaching the vertex).

▶ conservative programs:

Pa

Pb

Pa

Pb
Pa b

Va

Pa
¬b Va

Pa||Pb Pa;(while b do (Va;Pa));Va

▶ non-conservative programs:

¬b

b

Pa

Pb b Pa

¬b
if b then Pa else Pb while b do Pa
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Conservative programs
A program is conservative when the resource consumption

∆(p) : R → Z

is well defined:

∆(A) = 0

∆(Pa) = −δa ∆(Va) = δa

∆(p;q) = ∆(p) + ∆(q) ∆(p||q) = ∆(p) + ∆(q)

∆(if b then p else q) = ∆(p) whenever ∆(p) = ∆(q)

∆(while b do p) = 0 whenever ∆(p) = 0

where

δa(b) =

{
1 if b = a

0 otherwise
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Forbidden vertices
In a conservative program p a vertex x ∈ Cp is valid when, given a
path

t : sp ↠ x

for every resource a, we have

0 ≤ κa +∆(t)(a) ≤ κa

It is forbidden otherwise.

Pa
{{www

ww Pa
##G

GGG
G

•
x:=1
{{www

ww Pa
GG

##GG
⋄

Pa
ww

{{ww
x:=2
##G

GGG
G

Va
{{www

ww Pa
GG

##GG
⋄
x:=1w

w
{{ww x:=2

GG

##GG
⋄

Pa
ww

{{ww
Va
##G

GGG
G

Pa ##G
GGG

G •⋄
Va
ww

{{ww ##G
GGG

G
x:=2
GG

##GG
⋄
x:=1w

w
{{ww Va

GG

##GG
⋄•

Pa{{www
ww

x:=2 ##G
GGG

G ⋄
Va
ww

{{ww Va
GG

##GG
⋄

x:=1{{www
ww

Va ##G
GGG

G ⋄

Va{{www
ww

•
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Cubical semantics

The cubical semantics Čp of a conservative program p is the
precubical set

Cp

from which we have removed
▶ forbidden vertices
▶ cubes having forbidden vertices as iterated faces
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Influence of the capacity

Consider the program p:

Pa;Va || Pa;Va || Pa;Va

Depending on the capacity of a, the geometric semantics is

κa ≥ 3 κa = 2 κa = 1 κa = 0
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Equivalent paths
Given a precubical set, we write ∼ for the smallest equivalence
relation on paths
▶ such that

A · B ∼ B′ · A′

for every 2-cube
A

����
��
�� B′

��?
??

??
?

B ��?
??

??
? ⋄

A′����
��
��

▶ which is a congruence:

t ∼ t′ and u ∼ u′

implies
t · u ∼ t′ · u′

for concatenable paths
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Coherent programs

A program is coherent when all concurrent accesses to variables
are protected by mutexes.

Proposition
For coherent two equivalent paths have the same semantics:

t ∼ t′ implies JtK = Jt′K
In order to check all the behaviors, it is enough to check one
representative in each equivalence class of executions under ∼.
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The fundamental category

Given a precubical set C, the fundamental category Π⃗1(C) has
▶ vertices of C as objects
▶ paths up to equivalence as morphisms

and composition is given by concatenation.

The terminology suggests that equivalence corresponds to some
form of homotopy, we will get back to this.
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The trace space

Given a program p, we are mostly interested in the trace space:

Π⃗1(Čp)(sp, tp)

We are also interested into finer properties, e.g. how many ways
there are to show that two paths are equivalent, etc.

⇝ • •
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Forgetting about values
The geometry does not depend on actions manipulating values!

The semantics of

(Pa;x := 1;Va) || (Pa;x := 2;Va)
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DIRECTED
TOPOLOGICAL

MODELS
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Geometric realization
We write I for the interval topological space

I = [0, 1]

The topological n-cube is defined as

In
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For instance,

. . . .

I0 I1 I2 I3 . . .
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Geometric realization
We write I for the interval topological space

I = [0, 1]

The topological n-cube is defined as

In

With 0 ≤ i < n and α ∈ {−,+}, we write

ιαi : In−1 → In

for the canonical inclusions:

ι−i (x0, . . . , xn−2) = (x0, . . . , 0, . . . , xn−2)

ι+i (x0, . . . , xn−2) = (x0, . . . , 1, . . . , xn−2)
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Geometric realization

A precubical set can be seen as a topological space,
via the geometric realization functor

|−| : PCSet → Top

which to a precubical set C associates the space obtained by
gluing cubes as described by C:

|C| =
⨿
n∈N

(Cn × In)/ ≈

where Cn has discrete topology and

(∂αi (x),p) ≈ (x, ιαi (p))
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Geometric realization

Given the precubical set

x1

f1
��

ϕ

x
g1oo

f
��

g2 // x2

ψ f2
��

y1 y
h1

oo
h2

// y2

The cubes ϕ, f, ψ will induce cubes in the geometric realization:

|C| = I2 ⊔ I1 ⊔ I2 ⊔ . . .

and the identification (∂αi (x),p) ≈ (x, ιαi (p)) means
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Geometric realization

Proposition
Geometric realization sends tensor product to cartesian one:

|C⊗ D| = |C| × |D|
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What makes Top
a good place to take
geometric realization?
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Graphs

If we write □1 for the category

0
∂−

//

∂+
// 1

a functor
G : □op1 → Set

is characterized by two sets

G(0) G(1)

and two functions

G(∂−),G(∂+) : G(1) → G(0)

i.e. a graph.
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Graphs
Note that every graph can be canonically obtained as a colimit
involving the two graphs

G0 = · and G1 = · // ·

For instance,
· !!// · // ·

is the colimit of

G1

G0

66nnnnnnnnnnnnnnn

  A
AA

AA
AA

A G0

~~}}
}}
}}
}}

  A
AA

AA
AA

A G0

hhPPPPPPPPPPPPPPP

~~}}
}}
}}
}}

G1 G1

This means that a cocontinuous functor is uniquely determined
by its image on G0 and G1.
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Precubical sets
A precubical set can be seen as a presheaf functor

C : □op → Set

where □ is the category with
▶ n ∈ N as objects
▶ morphisms are generated by

∂αi : n− 1 → n

quotiented by relations

∂αi ∂
β
j = ∂βj+1∂

α
i : n− 1 → n+ 1

To sum up: PCSet ∼= □̂
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A cube object

We can remark that we have a functor

F : □ → Top

defined by
F(n) = In

and
F(∂αi ) = ιαi : In−1 → In

encoding the realization of all the standard cube and their faces.

This is all we need!
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Presheaves as cocompletion
A category is cocomplete when it has coproducts and quotients.

Proposition
The category □̂ is the free cocompletion of □: given a functor
F : □→ C, with C cocomplete, there is a unique cocontinuous
functor F̃ such that

□
Y
��

F // C

□̂
F̃

@@

where Y is the Yoneda embedding.
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Presheaves as cocompletion
A category is cocomplete when it has coproducts and quotients.

Proposition
The category □̂ is the free cocompletion of □: given a functor
F : □→ C, with C cocomplete, there is a unique cocontinuous
functor F̃ such that

□
Y
��

F // C

□̂
F̃

@@

where Y is the Yoneda embedding.

This point of view will be useful to consider other
“geometric realizations”.
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What about
geometric realizations

of
geometric semantics

of
concurrent programs?
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Geometric semantics

The geometric semantics Sp of a program p is the space

Sp =
∣∣∣Čp∣∣∣
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Simple programs
A simple program p is of the form

p1 || p2 || . . . || pn

where each pi is a sequence of actions (Pa / Va).

In this case, the geometric semantics is of the form

Sp =
∣∣∣Čp∣∣∣

= |Cp \ Fp|
=

∣∣I⊗n \ Fp∣∣
= In \

l∪
i=1

Ri

where Ri are open hyperrectangles.
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Geometric semantics

The geometric semantics of

Pa;Va || Pa;Va

with κa = 1, is

Pa Va

Pa

Va
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Geometric semantics

The geometric semantics of
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with κa = 1, is

Pa Pb Vb Va

Pb

Pa

Va
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Geometric semantics

The geometric semantics of

Pa; while b do (Va;Pa) || Pa;Va

with κa = 1, is

sp

tp

Pa
Va

Pa

bVaPa

¬b
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Paths in geometric semantics

The geometric semantics S is equipped with beginning and end
points s and t.

We can expect that
▶ the paths

p : I → S

with p(0) = s and p(1) = t to correspond to executions of
the program,

▶ deformations of paths correspond to equivalence between
paths.
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Paths in geometric semantics

The geometric semantics of

Pa;Va;Pb;Vb || Pb;Vb;Pa;Va
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Paths in geometric semantics

The geometric semantics of

Pa;Va;Pb;Vb || Pb;Vb;Pa;Va

is

s

t

Pa Va Pb Vb

Pb

Vb

Pa

Va

Actual executions correspond to increasing paths!
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Directed paths

We want to axiomatize a notion of directed path.

In practice, we will consider Rn with directed paths

p : I → Rn

being those for which

I
p // Rn πi // R

is increasing for every projection πi.
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Directed spaces

Definition (Grandis)
A d-space (X,dX) consists of a topological space X together
with a set dX of paths, called directed, such that
▶ dX contains constant paths
▶ dX is closed under composition with increasing
reparametrizations I→ I

▶ dX is closed under concatenation

We write dTop for the category whose morphisms preserve
directed paths.

The category dTop is complete and cocomplete.
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Directed spaces
Example
Any topological space X can canonically be seen as a d-space in
two ways:
▶ take dX the set of all paths in X, or
▶ take dX the set of constant paths in X

Example
The directed interval I⃗ is I = [0, 1] with increasing functions
p : I→ I as directed paths.
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p : I→ I as directed paths.

Example
The directed circle S⃗1 and directed complex plane C⃗:
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Directed spaces
Example
Any topological space X can canonically be seen as a d-space in
two ways:
▶ take dX the set of all paths in X, or
▶ take dX the set of constant paths in X

Example
The directed interval I⃗ is I = [0, 1] with increasing functions
p : I→ I as directed paths.

Remark
For a d-space (X,dX), there is a bijection

dX ∼= dTop(⃗I,X)
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Directed geometric semantics

The category dTop is cocomplete and we have a functor

I⃗ : □ → dTop

The directed geometric realization is its extension

□

Y
��

I⃗ // dTop

□̂
|−|

==

i.e.
|C| =

⨿
n∈N

(Cn × I⃗n)/ ≈
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Homotopy between paths
Two paths

p,q : I → X

are homotopic when there there is

h : I→ XI

such that
▶ h(0) = p
▶ h(1) = q
▶ h(t)(0) does not depend on t
▶ h(t)(1) does not depend on t

p

q
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Dihomotopy between paths
Two directed paths

p,q : I⃗ → X

are dihomotopic when there there is

h : I→ XI⃗

such that
▶ h(0) = p
▶ h(1) = q
▶ h(t)(0) does not depend on t
▶ h(t)(1) does not depend on t

p

q
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The fundamental category
The fundamental category Π⃗1(X) of a d-space X has
▶ points of X as objects
▶ dipaths up to dihomotopy as morphisms

and composition is induced by concatenation.

It coincides with the previous definition: for a precubical set C
there is a canonical full and faithful functor

Π⃗1(C) ↪→ Π⃗1(|C|)

e.g.
· / / ·

·

OO

// ·
⋄

OO

↪→
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Directed vs undirected paths

The geometric realization of the programs

Pa;Va;Pb;Vb||Pa;Va;Pb;Vb and Pa;Va;Pb;Vb||Pb;Vb;Pa;Va

are respectively

Pa Va Pb Vb

Pa

Va

Pb

Vb

Pa Va Pb Vb

Pb

Vb

Pa

Va

Note that the underlying spaces are homotopy equivalent!
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Dihomotopy vs homotopy

Consider I⃗3 without the interior:

The two dipaths are
▶ not dihomotopic

▶ homotopic
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Some classical theorems
can be adapted
to this context.
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The van Kampen theorem

Given X = U ∪ V, with U,V open, the image of

U ∩ V

��

// U

��
V // X

is a pushout in Cat:

Π⃗1(U ∩ V)

��

// Π⃗1(U)

��

Π⃗1(V) // Π⃗1(X)
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Dicovering spaces

A theory of dicovering spaces has been developed by Fajstrup.

It is useful in practice in order to unfold loops.

More later on about this (maybe).
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DEADLOCKS
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Deadlocks
Apart from “usual problems”, concurrent programs can suffer
from deadlocks.

In the program

Pa;Pb;Vb;Va || Pb;Pa;Va;Vb
consider the following execution:

s

t

Pa Pb Vb Va

Pb

Pa

Va

Vb

corresponding to
P1a · P2b · P1b · P2a

Each of the two processes is waiting for the other! 78 / 117



Deadlocks

Definition
A deadlock x in the geometric semantics is a point
▶ the only path

p : x ↠ y

with x as source is the constant path,
▶ x is different form the end point tp.

s

t

Pa Pb Vb Va

Pb

Pa

Va

Vb
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Simple programs
We want to find deadlocks for a simple program p with n
processes:

Sp = I⃗n \
l∪

i=1

Ri

with

Ri =

n∏
j=1

]xij, y
i
j[

e.g.

Pa Pb Vb Va

Pb

Pa

Va

Vb
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An algorithm for deadlocks
[Fajstrup,Goubault,Raussen]

The deadlock points can be found using the following algorithm:

1. find n intervals Ri1 , . . . ,Rin with
∩n
i=1 R

ij ̸= ∅

2. compute the point z with zj = max
{
xi1j , . . . , x

in
j

}
3. if there is no i with z ̸∈ Ri then z is a deadlock
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Lipski’s program

Consider the program with mutexes

Pa;Pb;Pc;Va;Pf;Vc;Vb;Vf
|| Pd;Pe;Pa;Vd;Pc;Ve;Va;Vc
|| Pb;Pf;Vb;Pd;Vf;Pe;Vd;Ve

Its geometric semantics is

p1

p2

p3
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Lipski’s program

Consider the program with mutexes

Pa;Pb;Pc;Va;Pf;Vc;Vb;Vf
|| Pd;Pe;Pa;Vd;Pc;Ve;Va;Vc
|| Pb;Pf;Vb;Pd;Vf;Pe;Vd;Ve

Its request graph is

a

b

c

d

e

f

Acyclicity of the request graph implies the absence of deadlocks.
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The doomed region

A point x is doomed when there is no path

p : x ↠ tp

The doomed region is the subspace of doomed points.

s

t

Pa Pb Vb Va

Pb

Pa

Va

Vb

In other words: a doomed point will eventually reach a deadlock!
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The doomed region

If z is a deadlock point as computed by the previous algorithm,
then the region

]z′, z]

is doomed with

z′j = max
{
xikj

∣∣∣ 1 ≤ k ≤ n, xikj ̸= zj
}

s

t

Pa Pb Vb Va

Pb

Pa

Va

Vb

z ′

z
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The doomed region

To compute the doomed region, we need need to iterate:

R1

R2

R3

Pa Pb Va Pc Vc Vb

Pc

Pa

Va

Pb

Vb

Vc

z
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To compute the doomed region, we need need to iterate:

Pa Pb Va Pc Vc Vb

Pc

Pa

Va

Pb

Vb

Vc

z ′

U ′
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The doomed region

To compute the doomed region, we need need to iterate:

Pa Pb Va Pc Vc Vb

Pc

Pa

Va

Pb

Vb

Vc
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The unreachable region

Dually, the unreachable region consists of points x for which
there is no path

p : se ↠ x

s

t

Pa Pb Vb Va

Pb

Pa

Va

Vb

Having dead code is often an indication of a misconception.
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PROGRAMS
WITH

MUTEXES
ONLY
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Programs with mutexes

The most common case is the one of programs with mutexes
only, i.e. κa = 1.

Otherwise said, all conflicts are binary.

▶ The cubical semantics is determined by cubes in dimension
0, 1 and 2 (all possible cubes in higher dimension are filled).

▶ The cubical semantics also satisfies an important property
called the cube property.
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The cube property

In a situation such as

Pa||Pa||A =

Pa

xxqqq
qqq

qqq
qq

A
��

Pa

&&MM
MMM

MMM
MMM

A

��
Pa
KKK

KKK
K

%%KKKyysss
sss

sss
sss

%%KK
KKK

KKK
KKK

K

Pas
sss

sss

yysss
A

��

Pa
$$I

II
II

II
II

II x

A
�� Pa
zzuu
uu
uu
uu
uu
u

y

the vertex x is forbidden (and has to be removed).

In this case, the vertex y has to be removed too, because A ̸= Va!

89 / 117



The cube property

In a situation such as

Pa||Pa||A =

Pa

xxqqq
qqq

qqq
qq

A
��

Pa

&&MM
MMM

MMM
MMM

A

��
Pa
KKK

KKK
K

%%KKKyysss
sss

sss
sss

%%KK
KKK

KKK
KKK

K

Pas
sss

sss

yysss
A

��

Pa
$$I

II
II

II
II

II x

A
�� Pa
zzuu
uu
uu
uu
uu
u

y

the vertex x is forbidden (and has to be removed).

In this case, the vertex y has to be removed too, because A ̸= Va!

89 / 117



The cube property
Semantics of programs satisfy the cube property:

A

����
��
��
��

��

C′

��?
??

??
??

?

B
��

⋄

����
��
��
��

��?
??

??
??

? ⋄

B′

��

C ��?
??

??
??

? ⋄

A′
����
��
��
��

⇔

A

����
��
��
�� C′

��?
??

??
??

?

B
�� ��?

??
??

??
? ⋄

����
��
��
��

B′

��

C ��?
??

??
??

? ⋄

��

⋄

A′
����
��
��
��

and other more minor properties, e.g.

A

����
��
��
�� B′

��?
??

??
??

?

B
��?

??
??

??
? ⋄

A′
����
��
��
��

and

A

����
��
��
�� B′′

��?
??

??
??

?

B
��?

??
??

??
? ⋄

A′′
����
��
��
��

implies A′ = A′′ and B′ = B′′.
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This has many consequences!
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Non-positively curved spaces

Suppose fixed a precubical set C satisfying the cube property.

Proposition
The geometric realization |C| of C is non-positively curved.

Let me:
▶ recall the notion of curvature for a metric space
▶ recall Gromov’s characterization of non-positively curved
cube complexes

▶ explain how to put a metric on the geometric realization

92 / 117



Non-positively curved spaces

Suppose fixed a precubical set C satisfying the cube property.

Proposition
The geometric realization |C| of C is non-positively curved.

Let me:
▶ recall the notion of curvature for a metric space
▶ recall Gromov’s characterization of non-positively curved
cube complexes

▶ explain how to put a metric on the geometric realization

92 / 117



Metric spaces

A metric space is a space X equipped with a metric
d : X× X→ [0,∞] such that, given x, y, z ∈ X,

(1) point equality: d(x, x) = 0
(2) triangle inequality: d(x, z) ≤ d(x, y) + d(y, z)
(3) finite distances: d(x, y) <∞
(4) separation: d(x, y) = 0 implies x = y
(5) symmetry: d(x, y) = d(y, x)

A path p : I→ X is geodesic when

d(p(t),p(t′)) = d(p(0),p(1))(t′ − t)

for 0 ≤ t ≤ t′ ≤ 1.
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Non-positively curved spaces
▶ A geodesic triangle ∆(x, y, z) in a metric space X consists
of three points x, y, z and geodesics joining any pairs.

▶ A comparison triangle for a geodesic triangle ∆(x, y, z)
consists of an isometry − : ∆(x, y, z) → R2 whose image
∆(x, y, z) is a geodesic triangle.

Definition
A geodesic space is CAT(0) if for every geodesic triangle
∆(x, y, z), there exists a comparison triangle ∆(x, y, z) such that
for every points p,q ∈ ∆(x, y, z), we have d(p,q) ≤ dR2(p,q).

A locally CAT(0) space is called
non-positively curved (NPC).
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Positively curved spaces

Typical examples of positively curved spaces:

x
y

x y

For realizations of precubical sets with the cube property, we can
expect that this does not happen!
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Metric realization
The interval I = [0, 1] can be equipped with the standard
euclidean distance.

This induces a functor

□ → Met

n 7→ In

which extends as a metric realization functor

□
Y
��

// Met

□̂

==

excepting that
▶ I did not tell you what the morphisms of Met are

▶ the category Met is not cocomplete
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Generalizing metric spaces

Definition
A metric space is a space X equipped with a metric
d : X× X→ [0,∞] such that, given x, y, z ∈ X,

(1) point equality: d(x, x) = 0
(2) triangle inequality: d(x, z) ≤ d(x, y) + d(y, z)
(3) finite distances: d(x, y) <∞
(4) separation: d(x, y) = 0 implies x = y
(5) symmetry: d(x, y) = d(y, x)

We consider contracting maps f : X→ Y:

dY(f(x), f(x
′)) ≤ dX(x, x

′)

Unfortunately, the resulting category is not cocomplete!
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Intuitively, X+ Y should be such that

d(x, y) = ∞

for x ∈ X and y ∈ Y.
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(3) finite distances: d(x, y) <∞
(4) separation: d(x, y) = 0 implies x = y
(5) symmetry: d(x, y) = d(y, x)

Consider the relation ≈ on X identifying a family of points (xi)i∈N
such that d(xi, y) = 1/i for some y

x1 x2 x3 x4 x5 y

Intuitively, in X/ ≈, we should have d([xi], [y]) = 0.
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A metric space is a space X equipped with a metric
d : X× X→ [0,∞] such that, given x, y, z ∈ X,

(1) point equality: d(x, x) = 0
(2) triangle inequality: d(x, z) ≤ d(x, y) + d(y, z)
(3) finite distances: d(x, y) <∞
(4) separation: d(x, y) = 0 implies x = y
(5) symmetry: d(x, y) = d(y, x)

We can encode direction in the distance!

d(x, y) =
∧{

ρ− θ
∣∣∣ x = ei2πθ, y = ei2πρ, ρ ≥ θ

}
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Generalized metric spaces

Definition (Lawvere)
A generalized metric space is a space X equipped with a metric
d : X× X→ [0,∞] such that, given x, y, z ∈ X,

(1) point equality: d(x, x) = 0
(2) triangle inequality: d(x, z) ≤ d(x, y) + d(y, z)

The category GMet enjoys the following:
▶ the category GMet is complete and cocomplete,
▶ the forgetful functor GMet → Set has left and right adjoints,
▶ the forgetful functor GMet → Top preserves finite (co)limits.
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Directed metric realization
We write I⃗ for the directed interval [0, 1] equipped with

d(x, y) =

{
y− x if y ≥ x

∞ if y < x

The product I⃗n is equipped with

d((x1, . . . , xn), (y1, . . . , yn)) = d(x1, y1) ∨ . . . ∨ d(xn, yn)

The geometric realization of a precubical set C is

|C| =

∫ n∈□
Cn · I⃗n

Proposition
For finite-dimensional precubical sets, geometric realization
commutes with forgetful functor GMet → Top and produces
geodesic length spaces.
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Colimits in GMet vs Top

Colimits in GMet do not necessarily coincide with those in Top.

Write In for the space I = [0, 1] equipped with dn(x, y) = |y− x|/n.

Consider the colimit

I∞ =
⨿
n∈N

In/ ≈
0

I1

I2

I3
1

where ≈ identifies 0 (resp. 1) in various In.

We have d(0, 1) = 0 and therefore the points 0 and 1 are not
separated in I∞.
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Gromov’s theorem
Reformulating “flag links condition” in our setting:

Theorem (Gromov)
The geometric realization of a precubical set is NPC if and only iff
it satisfies the cube property.

Such a space is locally uniquely geodesic. In particular, directed
paths are local geodesics:

an analogue of the least action principle

Moreover, it enjoys many nice properties:
▶ greedy normal forms for paths,
▶ universal cover is CAT(0),
▶ fundamental group is automatic,
▶ …
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A small example

Consider
Pa || Pa || Pa

whose realization of geometric semantics is

a mutex

a of arity 2

NPC

not NPC
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Gromov’s condition
Given a precubical set

z3

y1
a′3 ��

a′′2
>>}}}}}}
α3 y2

a′1
``AAAAAA

a′′3��
z2 xα2

a1AAA

``AA

a3
��

a2}}}

>>}}

α1 z1

y3
a′′1

``AAAAAA a′2

>>}}}}}}

and a vertex x, we can define a simplicial complex

a1
α3

α2 AA
AA

AA
AA

a2

α1}}
}}
}}
}}

a3

called the link of x.
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Gromov’s condition
A simplicial complex is flag when every boundary of an n-simplex
is filled, for n ≥ 2.

Theorem (Gromov’87)
A finite dimensional cubed complex is NPC if and only if the link of
every vertex is flag.
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Given a precubical set

and a vertex x, we can define a simplicial complex
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Some other properties
of NPC precubical sets
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Dihomotopy vs homotopy

Proposition
In (the geometric realization of) C two directed paths are
homotopic if and only if they are dihomotopic.

Otherwise said, there is a faithful functor

Π⃗1(C) ↪→ Π1(C)
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Universal directed covers
are easy to define

for NPC precubical sets
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Covering spaces

A covering space of X is a space which can be obtained from X
by “unrolling” some of its loops.

p−→

The universal covering is the initial (= most general) pointed
covering of a space X.
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Covering spaces

A morphism p : Y → X is covering when every x ∈ X admits a
neighborhood U such that p−1(U) is a disjoint union of homeo-
morphic copies of U.

p−→

The universal covering is the initial (= most general) pointed
covering of a space X.

It is the simply connected covering of X.
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Covering spaces

A morphism p : Y → X is covering when every x ∈ X admits a
neighborhood U such that p−1(U) is a disjoint union of homeo-
morphic copies of U.

p−→

The universal covering is the initial (= most general) pointed
covering of a space X.

Given x ∈ X, the universal covering space of X can be described
as the space of paths

x↠ y

with a suitable topology.
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Dicovering spaces
For dicovering spaces can consider:

1. the universal dicovering: every x ∈ X admits a neighborhood
U such that p−1(U) is a disjoint union of dihomeomorphic
copies of U,

2. the space of dipaths up to dihomotopy from a fixed point.

They do not coincide in general: the space of dipaths is

x̃

p−→
x

whereas identity is the only dicovering in the sense of 1.

However, for NPC spaces, they do coincide!
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They correspond to
configuration spaces
of event structures
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Event structures

An event structure (E,≤,#) consists of
▶ a poset (E,≤) of events
▶ a binary relation # called incompatibility

such that

▶ finite causes: for every event e, the set{
e′ ∈ E

∣∣ e′ ≤ e
}

is finite,
▶ hereditary incompatibility: for every events e1, e2, e′2,

e1#e2 and e2 ≤ e′2 implies e1#e′2
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Configuration spaces

A configuration of an event structure is a downward closed set
of events.

For instance, in the event structure

b c /o/o/o c′

a

>>>>>>>>

��������

oooooooooooooo

the configurations are:

∅ {a} {a,b} {a, c}
{
a, c′

}
{a,b, c}

{
a,b, c′

}
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Configuration spaces
The configuration space of an event structure has
▶ vertices: the configurations
▶ edges: an edge x→ y when y = x ⊎ {e}
▶ n-cubes for n ≥ 2: fill all possible cubes

d /o/o/o/o d′

b

yyyyyyyyy
c

EEEEEEEEEE

a

333333









⇝

abcd abcd′

abc

ddJJJJJ
99ttttt

ab

::ttttt
⋄ ac

eeKKKKKK

a

eeKKKKKK
99ssssss

∅

OO
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Configuration spaces

The configuration space of an event structure is always a CAT(0)
precubical set:

Theorem (Chepoi, Ardila-Owen-Sullivant, Goubault-M.)
The rooted (globally) CAT(0) precubical sets are in bijection with
event structures.
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CONCLUSION
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Conclusion

This was only a very brief overview, we can also mention:
▶ applications in verification of programs
▶ the geometry of tracespaces
▶ applications to distributed computing
▶ directed topology: from groupoids to categories
(e.g. directed homology)

▶ directed homotopy type theory
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Thanks!
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