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MORSE THEORY

I We consider a differentiable manifold M equipped with a
smooth height function f : M → R

I A critical point p is such that dfp = 0, i.e. ∂f /∂xi (p) = 0 in
every direction i .

I A critical point is non-degenerate if the Hessian matrix
Hf (p) = (∂2f /∂xi∂xj(p)) is invertible.

I f is a Morse function if it has no degenerate critical point.
I The index of a n-d critical point p is the dimension of the

largest subspace of TpM such that Hf (p) is negative definite
(the number of negative eigenvalues).
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MORSE THEORY

Lemma (Morse Lemma)
Given an non-degenerate critical point p, there exists a chart
(x1, . . . , xn) on a neighborhood U of p such that xi (p) = 0 for
every i , and

f (x) = f (p)− x2
1 − . . .− x2

k + x2
k+1 + . . .+ x2

n

on U, and k is the index of f .

Corollary
Non-degenerate critical points are isolated.
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MORSE THEORY
Proposition
Morse functions form an open dense subset of smooth functions
M → R.

Proposition
If f −1[a, b] is compact and without critical points, then
Ma = f −1(]−∞, a]) is diffeomorphic to Mb, and Mb deformation
retracts onto Ma.

Proposition
Suppose that p is a critical point of index γ, f (p) = q,
f −1([q − ε, q + ε]) is compact and contains no other critical point
than p. Then Mq+ε is homotopy equivalent to Mq−ε with a γ-cell
attached.

Corollary
Any differentiable manifold is a CW-complex with an n-cell for
each critical point of index n.
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MORSE THEORY

Proposition (Morse inequalities)
We write ci for the number of cp of index i and bi for the i-th
Betti number. Then

ci−ci−1+ci−2−. . .+(−1)ic0 ≥ bi−bi−1+bi−2−. . .+(−1)ib0
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MORSE HOMOLOGY
We suppose given

I a smooth manifold M,
I a smooth Morse function f : M → R and
I a smooth Riemannian metric on M

g :
∏

p∈M
(TpM × TpM → R)

(think of a scalar product)

This defines a gradient vector field ∇g f on M such that

g(∇g f ,−) = df (−)

We write ψs : M → M (with s ∈ R) for the flow associated to
−∇g f .
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MORSE HOMOLOGY
Given two critical points p, q ∈ M, we write

M(p, q) ={
u : R→ M | duds = −∇g f (u), lim

s→−∞
u(s) = p, lim

s→+∞
u(s) = q

}
and consider this set quotiented by translation over time.
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MORSE HOMOLOGY

Given a generic (Morse-Smale) pair (f , g), we define
I Ck : the Z-module generated by critical points of index k,
I ∂ : Ck → Ck−1 by ∂(p) =

∑
q∈CP(k−1) |M(p, q)| · q

Lemma
∂k−1 ◦ ∂k = 0.

Proposition
The homology is equal to the singular homology of M with
coefficients in Z. In particular, it does not depend on (f , g).
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MORSE HOMOLOGY

Example
I Morse complex of a 2-sphere:

. . . −→ 0 −→ Z −→ 0 −→ Z

I Morse complex of a 1-sphere:

. . . −→ 0 −→ 0 −→ Z 0−→ Z

I Morse complex of a torus:

. . . −→ 0 −→ Z ∂1−→ Z2 ∂0−→ Z

with ∂1(c2
0 ) = 2(c1

0 − c1
1 ) and ∂0(c1

i ) = 2c0 (???)
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DISCRETE MORSE THEORY
In 1998, Forman worked out a discrete analog for CW-complexes in
Morse Theory for Cell Complexes (we mainly focus on simplicial
complexes here, but it extends without much trouble).

We start with a simplicial complex K and write τ > σ if σ occurs
in the border of τ .

Example

3

1

2

0 1

2
2 3

1

2

1
0

not Morse Morse
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DISCRETE MORSE THEORY

Definition
A cell σ ∈ Kp is critical (of index p) if
1. there is no τ ∈ Kp+1 such that τ > σ and f (τ) ≤ f (σ),
2. there is no υ ∈ Kp−1 such that υ < σ and f (υ) ≥ f (τ).

Example

3

1

2

0 1

2
2 3

1

2

1
0

not Morse Morse
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DISCRETE MORSE THEORY

Proposition
Suppose that [a, b] is an interval which does not contain any
critical value of f , then Ma is a deformation retract of Mb.
Moreover, Mb simplicially collapses onto Ma.

This provides a way to “reduce” a simplicial complex while
retaining the geometrical properties.

Proposition
A simplicial complex with a discrete Morse function is homotopy
equivalent to a CW-complex with one cell of dimension p for each
critical simplex of dimension p.
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AN EXAMPLE
Consider the simplicial complex

6

5

8

9

7

11

10 2 1 0

4
3

I Critical cells are in red.
I The complex is therefore homotopy equivalent to the 1-sphere

0

8

��

obtained by “collapsing” all the connected black parts.
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THE DISCRETE GRADIENT VF
From the simplicial complex

6

5

8

9

7

11

10 2 1 0

4
3

We define a graph whose vertices are non-critical cells with an
arrow from σ ∈ Kp to τ ∈ Kp+1 when τ > σ and f (τ) ≤ f (σ):
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7 6

��
9

??

10 5 2 // 1

11

OO

4 // 3
It’s a discrete analogous of the gradient vector field.
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THE DISCRETE FLOW
We write Cp = ZKp. The discrete gradient induces a map

V : Cp → Cp+1

(with a right choice of signs).

The associated flow is φ : Cp → Cp defined by
φ = 1 + ∂V + V ∂

Example

Consider V defined by . The associated flow φ(e) is
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THE MORSE COMPLEX

We write Cφp ⊆ Cp for the p-chains c such that φ(c) = c.

Since ∂φ = φ∂, we get a complex Cφ• , called the Morse complex.

Proposition
The homology of the Morse complex is the same as the one of M
(with coefficients in Z).

Remark
The complexes Cφp can also be defined as spanned by critical
p-cells.
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Since all the information we need about the Morse function is
encoded in the discrete gradient vector field, this is what we are
going to start with in the following.
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A CHAIN COMPLEX
We start from a commutative ring R and

C• = (Ci , ∂i : Ci → Ci−1)

a chain complex of R-modules.

We write
∂i (c) =

∑
c′∈Xi−1

[c : c ′]c ′

with Xi a fixed basis of Ci .

Define a weighted dag G(C•) with vertices X = ∪i≥0Xi and edges

Xi 3 c [c:c′]−−−→ c ′ ∈ Xi−1

whenever [c : c ′] 6= 0.
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ACYCLIC MATCHINGS
A setM⊆ E of G(C•) = (X ,E ) is an acyclic matching when

1. For each c [c:c′]−−−→ c ′ inM, [c : c ′] in the center, invertible
2. Each vertex lies in a most one edge ofM
3. The graph GM = (X ,EM) has no directed cycle with

EM = (E \M) ∪
{
c ′ −1/[c:c′]−−−−−→ c | c → c ′ ∈M

}

y
g

��
α

x

f
??

h //

i ��

z

t
j

??

β

y

f
��

::

αoo

��

// g

ee

��
x hoo // z

i

OO

%%

βoo

OO

// j

OO

yyt
18 / 24
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ACYCLIC MATCHINGS

Consider G(C•) together with an acyclic matchingM.
I When e → f ∈M, e is collapsible and f is redundant.
I A vertex c ∈ X is critical when it lies in no edge ofM.
I We write XMi ⊆ Xi for the critical vertices.
I The weight of a path is

w(c1 → c2 → . . .→ cr ) =
r−1∏
i=1

w(ci → ci+1)

with w(c `−→ c ′) = `.
I We write

Γ(c, c ′) =
∑

p∈path(c,c′)
w(p)

19 / 24



THE MORSE COMPLEX

The Morse complex CM• = (CMi , ∂Mi ) is defined by CMi = RXMi
and ∂Mi : CMi → CMi−1 by

∂Mi (c) =
∑

c′∈XMi−1

Γ(c, c ′)c ′
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THE MORSE COMPLEX

The Morse complex CM• = (CMi , ∂Mi ) is defined by CMi = RXMi
and ∂Mi : CMi → CMi−1 by

∂Mi (c) =
∑

c′∈XMi−1

Γ(c, c ′)c ′

Theorem
The complex CM• of free R-modules is homotopy equivalent to C•.
The maps f : C• → CM• and g : CM• → C• give a chain homotopy
(and thus a quasi-iso) between C• and CM• :

fi (c) =
∑

c′∈XMi

Γ(c, c ′)c ′ gi (c) =
∑

c′∈Xi

Γ(c, c ′)c ′
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THE MORSE COMPLEX

The Morse complex CM• = (CMi , ∂Mi ) is defined by CMi = RXMi
and ∂Mi : CMi → CMi−1 by

∂Mi (c) =
∑

c′∈XMi−1

Γ(c, c ′)c ′

Proposition
IfM is a set of edges with different source and targets, then
CM• ∼= C• iffM is an acyclic matching.
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GAUß ELIMINATION
I Fix a free chain complex

0→ RXk
∂−→ RXk−1 → 0 (1)

with Xk = {x1, . . . , xm} and Xk−1 = {y1, . . . , yn}.

I We define a matrix A ∈ Rn×m with
aj,i = [∂xi : yj ]

and suppose that aj,i is invertible for some i , j ∈ n ×m.
I By Gauß elimination A is similar to

N−1AM =

(
1 0
0 A′

)
with A ∈ R(n−1)×(m−1).

I Then (1) has the same homology as

0→ RX ′k
A′−→ RX ′k−1 → 0

with X ′k = Xk \ {xi} and X ′k−1 = Xk−1 \ {yj}.

21 / 24



GAUß ELIMINATION
I Fix a free chain complex

0→ RXk
∂−→ RXk−1 → 0 (1)

with Xk = {x1, . . . , xm} and Xk−1 = {y1, . . . , yn}.
I We define a matrix A ∈ Rn×m with

aj,i = [∂xi : yj ]

and suppose that aj,i is invertible for some i , j ∈ n ×m.

I By Gauß elimination A is similar to

N−1AM =

(
1 0
0 A′

)
with A ∈ R(n−1)×(m−1).

I Then (1) has the same homology as

0→ RX ′k
A′−→ RX ′k−1 → 0

with X ′k = Xk \ {xi} and X ′k−1 = Xk−1 \ {yj}.

21 / 24



GAUß ELIMINATION
I Fix a free chain complex

0→ RXk
∂−→ RXk−1 → 0 (1)

with Xk = {x1, . . . , xm} and Xk−1 = {y1, . . . , yn}.
I We define a matrix A ∈ Rn×m with

aj,i = [∂xi : yj ]

and suppose that aj,i is invertible for some i , j ∈ n ×m.
I By Gauß elimination A is similar to

N−1AM =

(
1 0
0 A′

)
with A ∈ R(n−1)×(m−1).

I Then (1) has the same homology as

0→ RX ′k
A′−→ RX ′k−1 → 0

with X ′k = Xk \ {xi} and X ′k−1 = Xk−1 \ {yj}.

21 / 24



GAUß ELIMINATION
I Fix a free chain complex

0→ RXk
∂−→ RXk−1 → 0 (1)

with Xk = {x1, . . . , xm} and Xk−1 = {y1, . . . , yn}.
I We define a matrix A ∈ Rn×m with

aj,i = [∂xi : yj ]

and suppose that aj,i is invertible for some i , j ∈ n ×m.
I By Gauß elimination A is similar to

N−1AM =

(
1 0
0 A′

)
with A ∈ R(n−1)×(m−1).

I Then (1) has the same homology as

0→ RX ′k
A′−→ RX ′k−1 → 0

with X ′k = Xk \ {xi} and X ′k−1 = Xk−1 \ {yj}.
21 / 24



GAUß ELIMINATION

For instance
0→ Z3 A−→ Z2 → 0

with
A =

(
3 2 −1
0 1 4

)
Taking a2,2 as pivoting element,

A =

(
3 2 −1
0 1 4

)

The homology is the same as

0→ Z2

(
3 −9

)
−−−−−−−→ Z→ 0
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GAUß ELIMINATION
By Gauß elimination A is similar to

N−1AM =

(
1 0
0 A′

)
with aj,i as pivoting element where

M =

(
xi | x1 −

aj,1
aj,i

xi | . . . | 0̂ | . . . | xm −
aj,m
aj,i

xi

)
N = (Axi | y1 | . . . | ŷj | . . . | yn)

This is why we change

c [c:c′]−−−→ c ′ to c ′ −1/[c:c′]−−−−−→ c
For instance

We have
A ≈

(
1 0 0
0 3 −9

)
and the flow from x3 to y1 is −1 + 4× (−1)× 2 = −9, etc.
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TOWARDS THE CATEGORY OF
COMPONENTS

So, if we start with a cell-complex, we can always hope to reduce it
using an acyclic Matching.

Say we start from a cubic complex. The associated category of
components is described by a subcomplex.

I Can this subcomplex be obtained by Morse reduction?
I Is there (in good situations) a notion of minimal

Morse-equivalent complex?
I etc.
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