Discrete Morse Theory

Samuel Mimram

January 21, 2013

We consider a differentiable manifold *M* equipped with a smooth height function *f* : *M* → ℝ

- We consider a differentiable manifold *M* equipped with a smooth height function *f* : *M* → ℝ
- A critical point p is such that df_p = 0, i.e. ∂f/∂x_i(p) = 0 in every direction i.

- We consider a differentiable manifold *M* equipped with a smooth height function *f* : *M* → ℝ
- A critical point p is such that df_p = 0, i.e. ∂f/∂x_i(p) = 0 in every direction i.
- A critical point is **non-degenerate** if the Hessian matrix $H_f(p) = (\partial^2 f / \partial x_i \partial x_j(p))$ is invertible.

- ► We consider a differentiable manifold *M* equipped with a smooth height function *f* : *M* → ℝ
- A critical point p is such that df_p = 0, i.e. ∂f/∂x_i(p) = 0 in every direction i.
- A critical point is **non-degenerate** if the Hessian matrix $H_f(p) = (\partial^2 f / \partial x_i \partial x_j(p))$ is invertible.
- *f* is a **Morse function** if it has no degenerate critical point.

- We consider a differentiable manifold *M* equipped with a smooth height function *f* : *M* → ℝ
- A critical point p is such that df_p = 0, i.e. ∂f/∂x_i(p) = 0 in every direction i.
- A critical point is **non-degenerate** if the Hessian matrix $H_f(p) = (\partial^2 f / \partial x_i \partial x_j(p))$ is invertible.
- *f* is a **Morse function** if it has no degenerate critical point.
- ► The index of a n-d critical point p is the dimension of the largest subspace of T_pM such that H_f(p) is negative definite (the number of negative eigenvalues).

Lemma (Morse Lemma)

Given an non-degenerate critical point p, there exists a chart (x_1, \ldots, x_n) on a neighborhood U of p such that $x_i(p) = 0$ for every i, and

$$f(x) = f(p) - x_1^2 - \ldots - x_k^2 + x_{k+1}^2 + \ldots + x_n^2$$

on U, and k is the index of f.

Lemma (Morse Lemma)

Given an non-degenerate critical point p, there exists a chart (x_1, \ldots, x_n) on a neighborhood U of p such that $x_i(p) = 0$ for every i, and

$$f(x) = f(p) - x_1^2 - \ldots - x_k^2 + x_{k+1}^2 + \ldots + x_n^2$$

on U, and k is the index of f.

Corollary

Non-degenerate critical points are isolated.

Proposition

Morse functions form an open dense subset of smooth functions $M \to \mathbb{R}$.

Proposition

Morse functions form an open dense subset of smooth functions $M \to \mathbb{R}$.

Proposition

If $f^{-1}[a, b]$ is compact and without critical points, then $M^a = f^{-1}(] - \infty, a]$ is diffeomorphic to M^b , and M^b deformation retracts onto M^a .

Proposition

P If i

 $M^a =$

Morse functions form $M \to \mathbb{R}$

MORSE THEORY

nooth functions

d without critical points, then diffeomorphic to M^b , and M^b deformation

Proposition

retracts onto m

Suppose that p is a critical point of index γ , f(p) = q, $f^{-1}([q - \varepsilon, q + \varepsilon])$ is compact and contains no other critical point than p. Then $M^{q+\varepsilon}$ is homotopy equivalent to $M^{q-\varepsilon}$ with a γ -cell attached.

Proposition

Morse functions form an open dense subset of smooth functions $M \to \mathbb{R}$.

Proposition

If $f^{-1}[a, b]$ is compact and without critical points, then $M^a = f^{-1}(] - \infty, a]$ is diffeomorphic to M^b , and M^b deformation retracts onto M^a .

Proposition

Suppose that p is a critical point of index γ , f(p) = q, $f^{-1}([q - \varepsilon, q + \varepsilon])$ is compact and contains no other critical point than p. Then $M^{q+\varepsilon}$ is homotopy equivalent to $M^{q-\varepsilon}$ with a γ -cell attached.

Corollary

Any differentiable manifold is a CW-complex with an n-cell for each critical point of index n.

Proposition (Morse inequalities)

We write c_i for the number of cp of index i and b_i for the i-th Betti number. Then

$$c_i - c_{i-1} + c_{i-2} - \ldots + (-1)^i c_0 \quad \geq \quad b_i - b_{i-1} + b_{i-2} - \ldots + (-1)^i b_0$$

We suppose given

- ▶ a smooth manifold *M*,
- ▶ a smooth Morse function $f : M \to \mathbb{R}$ and
- a smooth Riemannian metric on M

$$g : \prod_{p \in M} (T_p M \times T_p M \to \mathbb{R})$$

(think of a scalar product)

We suppose given

- ▶ a smooth manifold *M*,
- ▶ a smooth Morse function $f : M \to \mathbb{R}$ and
- a smooth Riemannian metric on M

$$g \quad : \quad \prod_{p \in M} \left(T_p M \times T_p M \to \mathbb{R} \right)$$

(think of a scalar product)

This defines a gradient vector field $\nabla_g f$ on M such that

$$g(\nabla_g f, -) = df(-)$$

We suppose given

- a smooth manifold M,
- ▶ a smooth Morse function $f : M \to \mathbb{R}$ and
- a smooth Riemannian metric on M

$$g : \prod_{p \in M} (T_p M \times T_p M \to \mathbb{R})$$

(think of a scalar product)

This defines a gradient vector field $\nabla_g f$ on M such that

$$g(\nabla_g f, -) = df(-)$$

We write $\psi_s: M \to M$ (with $s \in \mathbb{R}$) for the flow associated to $-\nabla_g f$.

Given two critical points $p, q \in M$, we write

 $\mathcal{M}(p,q) =$

$$\left\{ u: \mathbb{R} \to M \mid \frac{du}{ds} = -\nabla_g f(u), \lim_{s \to -\infty} u(s) = p, \lim_{s \to +\infty} u(s) = q \right\}$$

and consider this set quotiented by translation over time.

Given two critical points $p, q \in M$, we write

$$\mathcal{M}(p,q) = \left\{ u : \mathbb{R} \to M \mid \frac{du}{ds} = -\nabla_g f(u), \lim_{s \to -\infty} u(s) = p, \lim_{s \to +\infty} u(s) = q \right\}$$

and consider this set quotiented by translation over time.

Given a generic (Morse-Smale) pair (f, g), we define

- C_k : the \mathbb{Z} -module generated by critical points of index k,
- ► $\partial : C_k \to C_{k-1}$ by $\partial(p) = \sum_{q \in CP(k-1)} |\mathcal{M}(p,q)| \cdot q$

Given a generic (Morse-Smale) pair (f, g), we define

- C_k : the \mathbb{Z} -module generated by critical points of index k,
- ► $\partial : C_k \to C_{k-1}$ by $\partial(p) = \sum_{q \in CP(k-1)} |\mathcal{M}(p,q)| \cdot q$

Lemma

 $\partial_{k-1} \circ \partial_k = 0.$

Given a generic (Morse-Smale) pair (f, g), we define

- C_k : the \mathbb{Z} -module generated by critical points of index k,
- $\partial: C_k \to C_{k-1}$ by $\partial(p) = \sum_{q \in CP(k-1)} |\mathcal{M}(p,q)| \cdot q$

Lemma

 $\partial_{k-1} \circ \partial_k = 0.$

Proposition

The homology is equal to the singular homology of M with coefficients in \mathbb{Z} . In particular, it does not depend on (f, g).

Example

• Morse complex of a 2-sphere:

$$\ldots \to 0 \to \mathbb{Z} \to 0 \to \mathbb{Z}$$

Example

Morse complex of a 2-sphere:

$$\ldots
ightarrow 0
ightarrow \mathbb{Z}
ightarrow 0
ightarrow \mathbb{Z}$$

• Morse complex of a 1-sphere:

$$\ldots \to 0 \to 0 \to \mathbb{Z} \xrightarrow{0} \mathbb{Z}$$

Example

Morse complex of a 2-sphere:

$$\ldots
ightarrow 0
ightarrow \mathbb{Z}
ightarrow 0
ightarrow \mathbb{Z}$$

Morse complex of a 1-sphere:

$$\ldots
ightarrow 0
ightarrow \mathbb{Z} \xrightarrow{0} \mathbb{Z}$$

Morse complex of a torus:

$$\ldots \to 0 \to \mathbb{Z} \xrightarrow{\partial_1} \mathbb{Z}^2 \xrightarrow{\partial_0} \mathbb{Z}$$

with $\partial_1(c_0^2) = 2(c_0^1 - c_1^1)$ and $\partial_0(c_i^1) = 2c_0$ (???)

In 1998, Forman worked out a discrete analog for CW-complexes in *Morse Theory for Cell Complexes* (we mainly focus on simplicial complexes here, but it extends without much trouble).

In 1998, Forman worked out a discrete analog for CW-complexes in *Morse Theory for Cell Complexes* (we mainly focus on simplicial complexes here, but it extends without much trouble).

We start with a simplicial complex K and write $\tau > \sigma$ if σ occurs in the border of τ .

In 1998, Forman worked out a discrete analog for CW-complexes in *Morse Theory for Cell Complexes* (we mainly focus on simplicial complexes here, but it extends without much trouble).

We start with a simplicial complex K and write $\tau > \sigma$ if σ occurs in the border of τ .

Definition

A discrete Morse function $f : K \to \mathbb{R}$ should satisfy for every $\sigma \in K_p$:

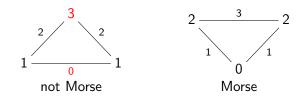
- 1. there is at most one $\tau \in K_{p+1}$ such that $\tau > \sigma$ and $f(\tau) \leq f(\sigma)$,
- 2. there is at most one $v \in K_{p-1}$ such that $\sigma > v$ and $f(v) \ge f(\sigma)$.

Definition

A discrete Morse function $f : K \to \mathbb{R}$ should satisfy for every $\sigma \in K_p$:

- 1. there is at most one $\tau \in K_{p+1}$ such that $\tau > \sigma$ and $f(\tau) \leq f(\sigma)$,
- 2. there is at most one $v \in K_{p-1}$ such that $\sigma > v$ and $f(v) \ge f(\sigma)$.

Example

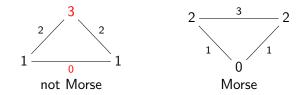


Definition

A cell $\sigma \in K_p$ is critical (of index p) if

- 1. there is no $\tau \in K_{p+1}$ such that $\tau > \sigma$ and $f(\tau) \leq f(\sigma)$,
- 2. there is no $v \in K_{p-1}$ such that $v < \sigma$ and $f(v) \ge f(\tau)$.

Example



Proposition

Suppose that [a, b] is an interval which does not contain any critical value of f, then M^a is a deformation retract of M^b . Moreover, M^b simplicially collapses onto M^a .

Proposition

Suppose that [a, b] is an interval which does not contain any critical value of f, then M^a is a deformation retract of M^b . Moreover, M^b simplicially collapses onto M^a .

This provides a way to "reduce" a simplicial complex while retaining the geometrical properties.

Proposition

Suppose that [a, b] is an interval which does not contain any critical value of f, then M^a is a deformation retract of M^b . Moreover, M^b simplicially collapses onto M^a .

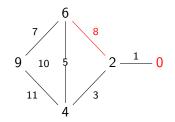
This provides a way to "reduce" a simplicial complex while retaining the geometrical properties.

Proposition

A simplicial complex with a discrete Morse function is homotopy equivalent to a CW-complex with one cell of dimension p for each critical simplex of dimension p.

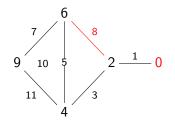
AN EXAMPLE

Consider the simplicial complex



AN EXAMPLE

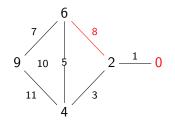
Consider the simplicial complex



Critical cells are in red.

AN EXAMPLE

Consider the simplicial complex

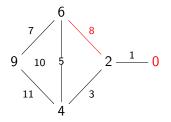


- Critical cells are in red.
- The complex is therefore homotopy equivalent to the 1-sphere

obtained by "collapsing" all the connected black parts.

THE DISCRETE GRADIENT VF

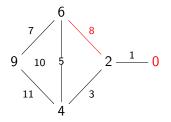
From the simplicial complex



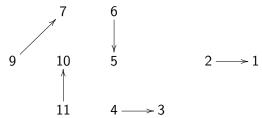
We define a graph whose vertices are non-critical cells with an arrow from $\sigma \in K_p$ to $\tau \in K_{p+1}$ when $\tau > \sigma$ and $f(\tau) \leq f(\sigma)$:

THE DISCRETE GRADIENT VF

From the simplicial complex



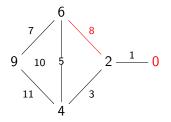
We define a graph whose vertices are non-critical cells with an arrow from $\sigma \in K_p$ to $\tau \in K_{p+1}$ when $\tau > \sigma$ and $f(\tau) \leq f(\sigma)$:



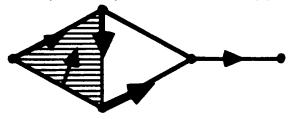
It's a discrete analogous of the gradient vector field.

THE DISCRETE GRADIENT VF

From the simplicial complex



We define a graph whose vertices are non-critical cells with an arrow from $\sigma \in K_p$ to $\tau \in K_{p+1}$ when $\tau > \sigma$ and $f(\tau) \leq f(\sigma)$:



It's a discrete analogous of the gradient vector field.

THE DISCRETE FLOW

We write $C_p = \mathbb{Z}K_p$. The discrete gradient induces a map

V : $C_p \rightarrow C_{p+1}$

(with a right choice of signs).

THE DISCRETE FLOW

We write $C_p = \mathbb{Z}K_p$. The discrete gradient induces a map V : $C_p \to C_{p+1}$ (with a right choice of signs).

The associated flow is $\phi: {\it C}_p \to {\it C}_p$ defined by $\phi = 1 + \partial V + V \partial$

Example Consider V defined by A. The associated flow $\phi(e)$ is $\underbrace{\bigcap_{e}}_{\varphi \ V(e)} + \underbrace{\bigcap_{\partial V(e)}}_{V(\partial e)} = \underbrace{\bigcap_{\Phi (e)}}_{\Phi (e)}$

We write $C_p^{\phi} \subseteq C_p$ for the *p*-chains *c* such that $\phi(c) = c$.

Since $\partial \phi = \phi \partial$, we get a complex C_{\bullet}^{ϕ} , called the **Morse complex**.

We write $C_p^{\phi} \subseteq C_p$ for the *p*-chains *c* such that $\phi(c) = c$.

Since $\partial \phi = \phi \partial$, we get a complex C_{\bullet}^{ϕ} , called the **Morse complex**.

Proposition

The homology of the Morse complex is the same as the one of M (with coefficients in \mathbb{Z}).

We write $C_p^{\phi} \subseteq C_p$ for the *p*-chains *c* such that $\phi(c) = c$.

Since $\partial \phi = \phi \partial$, we get a complex C_{\bullet}^{ϕ} , called the **Morse complex**.

Proposition

The homology of the Morse complex is the same as the one of M (with coefficients in \mathbb{Z}).

Remark

The complexes C_p^{ϕ} can also be defined as spanned by critical *p*-cells.

Since all the information we need about the Morse function is encoded in the discrete gradient vector field, this is what we are going to start with in the following.

A CHAIN COMPLEX

We start from a commutative ring R and

$$C_{\bullet} = (C_i, \partial_i : C_i \rightarrow C_{i-1})$$

a chain complex of *R*-modules.

A CHAIN COMPLEX

We start from a commutative ring R and

$$C_{\bullet} = (C_i, \partial_i : C_i \rightarrow C_{i-1})$$

a chain complex of *R*-modules.

We write

$$\partial_i(c) = \sum_{c' \in X_{i-1}} [c:c']c'$$

with X_i a fixed basis of C_i .

A CHAIN COMPLEX

We start from a commutative ring R and

$$C_{\bullet} = (C_i, \partial_i : C_i \to C_{i-1})$$

a chain complex of *R*-modules.

We write

$$\partial_i(c) = \sum_{c' \in X_{i-1}} [c:c']c'$$

with X_i a fixed basis of C_i .

Define a weighted DAG $G(C_{\bullet})$ with vertices $X = \bigcup_{i \ge 0} X_i$ and edges

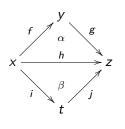
$$X_i \ni c \xrightarrow{[c:c']} c' \in X_{i-1}$$

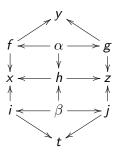
whenever $[c : c'] \neq 0$.

A set $\mathcal{M} \subseteq E$ of $G(C_{\bullet}) = (X, E)$ is an **acyclic matching** when 1. For each $c \xrightarrow{[c:c']} c'$ in \mathcal{M} , [c:c'] in the center, invertible 2. Each vertex lies in a most one edge of \mathcal{M}

3. The graph $G_{\mathcal{M}} = (X, E_{\mathcal{M}})$ has no directed cycle with

$$E_{\mathcal{M}} \hspace{0.1 cm} = \hspace{0.1 cm} (E \setminus \mathcal{M}) \cup \left\{ c' \xrightarrow{-1/[c:c']} c \mid c
ightarrow c' \in \mathcal{M}
ight\}$$

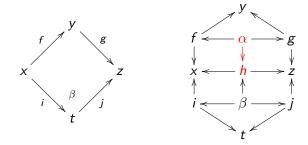




A set $\mathcal{M} \subseteq E$ of $G(C_{\bullet}) = (X, E)$ is an **acyclic matching** when 1. For each $c \xrightarrow{[c:c']} c'$ in \mathcal{M} , [c:c'] in the center, invertible 2. Each vertex lies in a most one edge of \mathcal{M}

3. The graph $G_{\mathcal{M}} = (X, E_{\mathcal{M}})$ has no directed cycle with

$$E_{\mathcal{M}} \hspace{0.1 cm} = \hspace{0.1 cm} (E \setminus \mathcal{M}) \cup \left\{ c' \xrightarrow{-1/[c:c']} c \mid c
ightarrow c' \in \mathcal{M}
ight\}$$

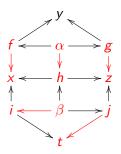


A set $\mathcal{M} \subseteq E$ of $G(C_{\bullet}) = (X, E)$ is an **acyclic matching** when 1. For each $c \xrightarrow{[c:c']} c'$ in \mathcal{M} , [c:c'] in the center, invertible 2. Each vertex lies in a most one edge of \mathcal{M}

3. The graph $G_{\mathcal{M}} = (X, E_{\mathcal{M}})$ has no directed cycle with

7

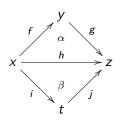
$$E_{\mathcal{M}} \hspace{0.1 cm} = \hspace{0.1 cm} (E \setminus \mathcal{M}) \cup \left\{ c' \xrightarrow{-1/[c:c']} c \mid c
ightarrow c' \in \mathcal{M}
ight\}$$

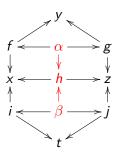


A set $\mathcal{M} \subseteq E$ of $G(C_{\bullet}) = (X, E)$ is an **acyclic matching** when

- 1. For each $c \xrightarrow{[c:c']} c'$ in \mathcal{M} , [c:c'] in the center, invertible
- 2. Each vertex lies in a most one edge of $\ensuremath{\mathcal{M}}$
- 3. The graph $G_{\mathcal{M}} = (X, E_{\mathcal{M}})$ has no directed cycle with

$$E_{\mathcal{M}} \hspace{0.1 cm} = \hspace{0.1 cm} (E \setminus \mathcal{M}) \cup \left\{ c' \xrightarrow{-1/[c:c']} c \mid c
ightarrow c' \in \mathcal{M}
ight\}$$

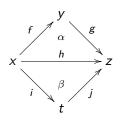


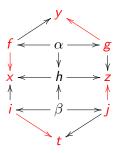


A set $\mathcal{M} \subseteq E$ of $G(C_{\bullet}) = (X, E)$ is an **acyclic matching** when 1. For each $c \xrightarrow{[c:c']} c'$ in \mathcal{M} , [c:c'] in the center, invertible 2. Each vertex lies in a most one edge of \mathcal{M}

3. The graph $G_{\mathcal{M}} = (X, E_{\mathcal{M}})$ has no directed cycle with

$$E_{\mathcal{M}} \hspace{0.1 cm} = \hspace{0.1 cm} (E \setminus \mathcal{M}) \cup \left\{ c' \xrightarrow{-1/[c:c']} c \mid c
ightarrow c' \in \mathcal{M}
ight\}$$

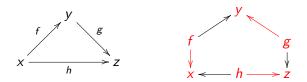




A set $\mathcal{M} \subseteq E$ of $G(C_{\bullet}) = (X, E)$ is an **acyclic matching** when 1. For each $c \xrightarrow{[c:c']} c'$ in \mathcal{M} , [c:c'] in the center, invertible 2. Each vertex lies in a most one edge of \mathcal{M}

3. The graph $G_{\mathcal{M}} = (X, E_{\mathcal{M}})$ has no directed cycle with

$$E_{\mathcal{M}} \hspace{0.1 cm} = \hspace{0.1 cm} (E \setminus \mathcal{M}) \cup \left\{ c' \xrightarrow{-1/[c:c']} c \mid c
ightarrow c' \in \mathcal{M}
ight\}$$



Consider $G(C_{\bullet})$ together with an acyclic matching \mathcal{M} .

- When $e \to f \in \mathcal{M}$, *e* is **collapsible** and *f* is **redundant**.
- A vertex $c \in X$ is **critical** when it lies in no edge of \mathcal{M} .
- We write $X_i^{\mathcal{M}} \subseteq X_i$ for the critical vertices.
- The weight of a path is

$$w(c_1 \rightarrow c_2 \rightarrow \ldots \rightarrow c_r) = \prod_{i=1}^{r-1} w(c_i \rightarrow c_{i+1})$$

with $w(c \stackrel{\ell}{\rightarrow} c') = \ell$.

We write

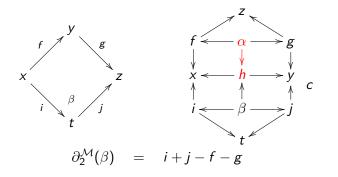
$$\Gamma(c,c') = \sum_{p \in path(c,c')} w(p)$$

The **Morse complex** $C^{\mathcal{M}}_{\bullet} = (C^{\mathcal{M}}_i, \partial^{\mathcal{M}}_i)$ is defined by $C^{\mathcal{M}}_i = RX^{\mathcal{M}}_i$ and $\partial^{\mathcal{M}}_i : C^{\mathcal{M}}_i \to C^{\mathcal{M}}_{i-1}$ by

$$\partial_i^{\mathcal{M}}(c) = \sum_{c' \in X_{i-1}^{\mathcal{M}}} \Gamma(c,c')c'$$

The **Morse complex** $C^{\mathcal{M}}_{\bullet} = (C^{\mathcal{M}}_i, \partial^{\mathcal{M}}_i)$ is defined by $C^{\mathcal{M}}_i = RX^{\mathcal{M}}_i$ and $\partial^{\mathcal{M}}_i : C^{\mathcal{M}}_i \to C^{\mathcal{M}}_{i-1}$ by

$$\partial_i^{\mathcal{M}}(c) = \sum_{c' \in X_{i-1}^{\mathcal{M}}} \Gamma(c,c')c'$$



The **Morse complex** $C^{\mathcal{M}}_{\bullet} = (C^{\mathcal{M}}_i, \partial^{\mathcal{M}}_i)$ is defined by $C^{\mathcal{M}}_i = RX^{\mathcal{M}}_i$ and $\partial^{\mathcal{M}}_i : C^{\mathcal{M}}_i \to C^{\mathcal{M}}_{i-1}$ by

$$\partial_i^{\mathcal{M}}(c) = \sum_{c' \in X_{i-1}^{\mathcal{M}}} \Gamma(c,c')c'$$

Theorem

The complex $C_{\bullet}^{\mathcal{M}}$ of free R-modules is homotopy equivalent to C_{\bullet} . The maps $f : C_{\bullet} \to C_{\bullet}^{\mathcal{M}}$ and $g : C_{\bullet}^{\mathcal{M}} \to C_{\bullet}$ give a chain homotopy (and thus a quasi-iso) between C_{\bullet} and $C_{\bullet}^{\mathcal{M}}$:

$$f_i(c) = \sum_{c' \in X_i^\mathcal{M}} \mathsf{\Gamma}(c,c')c' \qquad \qquad g_i(c) = \sum_{c' \in X_i} \mathsf{\Gamma}(c,c')c'$$

The Morse complex $C_{\bullet}^{\mathcal{M}} = (C_i^{\mathcal{M}}, \partial_i^{\mathcal{M}})$ is defined by $C_i^{\mathcal{M}} = RX_i^{\mathcal{M}}$ and $\partial_i^{\mathcal{M}} : C_i^{\mathcal{M}} \to C_{i-1}^{\mathcal{M}}$ by

$$\partial_i^{\mathcal{M}}(c) = \sum_{c' \in X_{i-1}^{\mathcal{M}}} \Gamma(c,c')c'$$

Proposition

If \mathcal{M} is a set of edges with different source and targets, then $C_{\bullet}^{\mathcal{M}} \cong C_{\bullet}$ iff \mathcal{M} is an acyclic matching.

Fix a free chain complex

$$0 \to RX_k \xrightarrow{\partial} RX_{k-1} \to 0 \tag{1}$$

with $X_k = \{x_1, \dots, x_m\}$ and $X_{k-1} = \{y_1, \dots, y_n\}.$

Fix a free chain complex

$$0 \to RX_k \xrightarrow{\partial} RX_{k-1} \to 0 \tag{1}$$

with $X_k = \{x_1, \ldots, x_m\}$ and $X_{k-1} = \{y_1, \ldots, y_n\}$. \blacktriangleright We define a matrix $A \in \mathbb{R}^{n \times m}$ with

$$a_{j,i} = [\partial x_i : y_j]$$

and suppose that $a_{j,i}$ is invertible for some $i, j \in n \times m$.

Fix a free chain complex

$$0 \to RX_k \xrightarrow{\partial} RX_{k-1} \to 0 \tag{1}$$

with $X_k = \{x_1, \ldots, x_m\}$ and $X_{k-1} = \{y_1, \ldots, y_n\}$. \blacktriangleright We define a matrix $A \in \mathbb{R}^{n \times m}$ with

$$a_{j,i} = [\partial x_i : y_j]$$

and suppose that $a_{j,i}$ is invertible for some $i, j \in n \times m$. • By Gauß elimination A is similar to

$$N^{-1}AM = \begin{pmatrix} 1 & 0 \\ 0 & A' \end{pmatrix}$$

with $A \in R^{(n-1)\times(m-1)}$.

Fix a free chain complex

$$0 \to RX_k \xrightarrow{\partial} RX_{k-1} \to 0 \tag{1}$$

with $X_k = \{x_1, \dots, x_m\}$ and $X_{k-1} = \{y_1, \dots, y_n\}$. \blacktriangleright We define a matrix $A \in \mathbb{R}^{n \times m}$ with

$$a_{j,i} = [\partial x_i : y_j]$$

and suppose that $a_{j,i}$ is invertible for some $i, j \in n \times m$.

By Gauß elimination A is similar to

$$N^{-1}AM = \begin{pmatrix} 1 & 0 \\ 0 & A' \end{pmatrix}$$

with $A \in R^{(n-1)\times(m-1)}$.

• Then (1) has the same homology as

$$0 o RX'_k \stackrel{A'}{ o} RX'_{k-1} o 0$$

with $X'_k = X_k \setminus \{x_i\}$ and $X'_{k-1} = X_{k-1} \setminus \{y_j\}.$

For instance

$$0 \to \mathbb{Z}^3 \xrightarrow{A} \mathbb{Z}^2 \to 0$$

with

$$A \quad = \quad \begin{pmatrix} 3 & 2 & -1 \\ 0 & 1 & 4 \end{pmatrix}$$

$$A = \begin{pmatrix} 3 & 2 & -1 \\ 0 & 1 & 4 \end{pmatrix}$$

For instance

$$0 \to \mathbb{Z}^3 \xrightarrow{A} \mathbb{Z}^2 \to 0$$

with

$$A \quad = \quad \begin{pmatrix} 3 & 2 & -1 \\ 0 & 1 & 4 \end{pmatrix}$$

$$A \approx \begin{pmatrix} 0 & 1 & 4 \\ 3 & 2 & -1 \end{pmatrix}$$

For instance

$$0 \to \mathbb{Z}^3 \xrightarrow{A} \mathbb{Z}^2 \to 0$$

with

$$A \quad = \quad \begin{pmatrix} 3 & 2 & -1 \\ 0 & 1 & 4 \end{pmatrix}$$

$$A \approx \begin{pmatrix} 1 & 0 & 4 \\ 2 & 3 & -1 \end{pmatrix}$$

For instance

$$0 \to \mathbb{Z}^3 \xrightarrow{A} \mathbb{Z}^2 \to 0$$

with

$$A \quad = \quad \begin{pmatrix} 3 & 2 & -1 \\ 0 & 1 & 4 \end{pmatrix}$$

$$A \approx \begin{pmatrix} 1 & 0 & 4 \\ 0 & 3 & -9 \end{pmatrix}$$

For instance

$$0 \to \mathbb{Z}^3 \xrightarrow{A} \mathbb{Z}^2 \to 0$$

with

$$A \quad = \quad \begin{pmatrix} 3 & 2 & -1 \\ 0 & 1 & 4 \end{pmatrix}$$

$$A \approx \begin{pmatrix} 1 & 0 & 0 \\ 0 & 3 & -9 \end{pmatrix}$$

For instance

$$0 \to \mathbb{Z}^3 \xrightarrow{A} \mathbb{Z}^2 \to 0$$

with

$$A \quad = \quad \begin{pmatrix} 3 & 2 & -1 \\ 0 & 1 & 4 \end{pmatrix}$$

Taking $a_{2,2}$ as pivoting element,

$$A \quad \approx \quad \begin{pmatrix} 1 & 0 & 0 \\ 0 & 3 & -9 \end{pmatrix}$$

The homology is the same as

$$0 \to \mathbb{Z}^2 \xrightarrow{\begin{pmatrix} 3 & -9 \end{pmatrix}} \mathbb{Z} \to 0$$

By Gauß elimination A is similar to

$$N^{-1}AM = \begin{pmatrix} 1 & 0 \\ 0 & A' \end{pmatrix}$$

with $a_{j,i}$ as pivoting element where

$$M = \left(x_i \mid x_1 - \frac{a_{j,1}}{a_{j,i}} x_i \mid \dots \mid \hat{0} \mid \dots \mid x_m - \frac{a_{j,m}}{a_{j,i}} x_i \right)$$
$$N = (Ax_i \mid y_1 \mid \dots \mid \hat{y}_j \mid \dots \mid y_n)$$

By Gauß elimination A is similar to

$$N^{-1}AM = \begin{pmatrix} 1 & 0 \\ 0 & A' \end{pmatrix}$$

with $a_{j,i}$ as pivoting element where

$$M = \left(x_i \mid x_1 - \frac{a_{j,1}}{a_{j,i}} x_i \mid \dots \mid \hat{0} \mid \dots \mid x_m - \frac{a_{j,m}}{a_{j,i}} x_i \right)$$
$$N = (Ax_i \mid y_1 \mid \dots \mid \hat{y}_j \mid \dots \mid y_n)$$

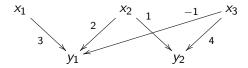
This is why we change

$$c \xrightarrow{[c:c']} c'$$
 to $c' \xrightarrow{-1/[c:c']} c$

This is why we change

$$c \xrightarrow{[c:c']} c'$$
 to $c' \xrightarrow{-1/[c:c']} c$

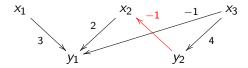
For instance



This is why we change

$$c \xrightarrow{[c:c']} c'$$
 to $c' \xrightarrow{-1/[c:c']} c$

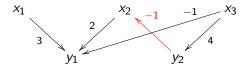
For instance



This is why we change

$$c \xrightarrow{[c:c']} c'$$
 to $c' \xrightarrow{-1/[c:c']} c$

For instance



We have

$$A \approx \begin{pmatrix} 1 & 0 & 0 \\ 0 & 3 & -9 \end{pmatrix}$$

and the flow from x_3 to y_1 is $-1 + 4 \times (-1) \times 2 = -9$, etc.

TOWARDS THE CATEGORY OF COMPONENTS

So, if we start with a cell-complex, we can always hope to reduce it using an acyclic Matching.

Say we start from a cubic complex. The associated category of components is described by a subcomplex.

- Can this subcomplex be obtained by Morse reduction?
- Is there (in good situations) a notion of minimal Morse-equivalent complex?

etc.