Asynchronous Games Innocence without Alternation

Paul-André Melliès Samuel Mimram

Laboratoire PPS, CNRS – Université Paris 7

CONCUR 2007 September 7, 2007

Game semantics

Denotational semantics

Giving properties of programs which are invariant during the execution.

Game semantics

Denotational semantics

Giving properties of programs which are invariant during the execution.

Game semantics

- 1 formulas A are interpreted by games
- **2** proofs $\pi: A \to B$ are interpreted by strategies

Game semantics

Denotational semantics

Giving properties of programs which are invariant during the execution.

Game semantics

- 1 formulas A are interpreted by games
- **2** proofs $\pi: A \to B$ are interpreted by strategies

We also want composition (and other structures) to be preserved by the interpretation.

Concurrency in game semantics

Game semantics is a *trace semantics*.

The program P emits and receives moves

$$P \xrightarrow{m_0} P_1 \xrightarrow{m_1} P_2 \xrightarrow{m_2} \cdots$$

played in a game.

Concurrency in game semantics

Game semantics is a *trace semantics*.

The program P emits and receives moves

$$P \xrightarrow{m_0} P_1 \xrightarrow{m_1} P_2 \xrightarrow{m_2} \cdots$$

played in a game.

Here, we will refine it as

a Mazurkiewicz trace semantics for proofs

based on event structures.

Unifying semantics of linear logic

Part I

Asynchronous games

A 2-player event structure

$$(M, \leq, \#, \lambda)$$

consisting of

- a set of moves M
- a partial order \leq expressing causal dependencies
- a symmetric relation # expressing incompatibilities
- a **polarization** of moves $\lambda : M \rightarrow \{O, P\}$

- positions are downward-closed sets of compatible moves
- **plays** are paths between positions, starting from \emptyset

- positions are downward-closed sets of compatible moves
- **plays** are paths between positions, starting from \emptyset

0

- positions are downward-closed sets of compatible moves
- **plays** are paths between positions, starting from \emptyset

- positions are downward-closed sets of compatible moves
- **plays** are paths between positions, starting from \emptyset

An approach to interferences

The Mazurkiewicz approach to true concurrency.

9 / 46

Parallel and

Left and

A game induces an asynchronous graph G:

- vertices are **positions** (+ initial position *),
- edges are moves,
- 2-dimensional tiles

generate homotopy between paths.

A logic for game semantics

• we only consider formulas of MALL:

$$\frac{\vdash \Gamma, A, B}{\vdash \Gamma, A \mathrel{\mathcal{B}} B}(\mathscr{T}) \qquad \frac{\vdash \Gamma_1, A \vdash \Gamma_2, B}{\vdash \Gamma_1, \Gamma_2, A \otimes B}(\otimes)$$
$$\frac{\vdash \Gamma, A \vdash \Gamma, B}{\vdash \Gamma, A \And B}(\And) \qquad \frac{\vdash \Gamma, A}{\vdash \Gamma, A \oplus B}(\oplus)$$

A logic for game semantics

• we only consider formulas of MALL:

$$\frac{\vdash \Gamma, A, B}{\vdash \Gamma, A \Im B}(\Im) \qquad \frac{\vdash \Gamma_1, A \vdash \Gamma_2, B}{\vdash \Gamma_1, \Gamma_2, A \otimes B}(\otimes)$$
$$\frac{\vdash \Gamma, A \vdash \Gamma, B}{\vdash \Gamma, A \& B}(\&) \qquad \frac{\vdash \Gamma, A}{\vdash \Gamma, A \oplus B}(\oplus)$$

• with explicit moves:

$$\frac{\vdash \Gamma, A}{\vdash \Gamma, \uparrow A}(\uparrow) \qquad \qquad \frac{\vdash \Gamma, A}{\vdash \Gamma, \downarrow A}(\downarrow)$$

In linear logic, the formula corresponding to booleans is

bool =
$$\uparrow(\downarrow 1 \oplus \downarrow 1)$$

which is like of $1\oplus 1$ with explicit changes of polarities.

In linear logic, the formula corresponding to booleans is

bool = $\uparrow(\downarrow 1 \oplus \downarrow 1)$

In linear logic, the formula corresponding to booleans is

bool = $\uparrow(\downarrow 1 \oplus \downarrow 1)$

In linear logic, the formula corresponding to booleans is

bool = $\uparrow(\downarrow 1 \oplus \downarrow 1)$

In linear logic, the formula corresponding to booleans is

bool = $\uparrow(\downarrow 1 \oplus \downarrow 1)$

From proofs to strategiesThe game associated to $\uparrow A$ is of the form \uparrow \uparrow

The game associated to $\uparrow A \otimes \uparrow B = \uparrow A \ \Re \uparrow B$ is of the form

The game associated to $\uparrow A \otimes \uparrow B = \uparrow A \ \Re \uparrow B$ is of the form

The corresponding asynchronous graph contains

The game associated to $\uparrow A \otimes \uparrow B = \uparrow A \ \Re \uparrow B$ is of the form

The corresponding asynchronous graph contains

.

Three proofs of $\uparrow A \approx \uparrow B$:

,

 $\vdash \uparrow A, \uparrow B$

Three proofs of $\uparrow A \approx \uparrow B$:

$$\frac{\vdash A, \uparrow B}{\vdash \uparrow A, \uparrow B}(\uparrow)$$

Three proofs of $\uparrow A ?? \uparrow B$:

Three proofs of $\uparrow A ?? \uparrow B$:

Three proofs of $\uparrow A \approx \uparrow B$:

,

 $\vdash \uparrow A, \uparrow B$

Three proofs of $\uparrow A \approx \uparrow B$:

$$\frac{\vdash \uparrow A, B}{\vdash \uparrow A, \uparrow B}(\uparrow)$$

Three proofs of $\uparrow A \approx \uparrow B$:

$$\frac{\vdash A, B}{\vdash \uparrow A, B}(\uparrow) \\ \frac{\vdash A, B}{\vdash \uparrow A, \uparrow B}(\uparrow)$$

Three proofs of $\uparrow A ?? \uparrow B$:

Three proofs of $\uparrow A \approx \uparrow B$:

Three proofs of $\uparrow A \approx \uparrow B$:

play	=	exploration of the formula
proof	=	strategy of exploration

Every proof is a partial order on moves...

play = exploration of the formula proof = strategy of exploration

play = exploration of the formula proof = strategy of exploration

play = exploration of the formula proof = strategy of exploration

play = exploration of the formula proof = strategy of exploration

$$\frac{\vdots}{\vdash A, B}_{\vdash \uparrow A, \uparrow B}(\uparrow, \uparrow) \qquad \begin{array}{c}\uparrow & \uparrow\\ & & \\ A & B\end{array}$$

Towards innocence

Can we characterize the *definable* strategies?

We have to restrict the space of strategies.

innocent strategy = strategy behaving like a proof

Part II

Traces vs. event structures

Traces vs. partial orders

formula = event structure on the moves

proof = refinement of the underlying partial order

From causal to sequential

Every event structure defines an asynchronous graph.

From sequential to causal

Here, one needs the Cube Property.

The Cube Property

Theorem

Paths modulo homotopy are given by a partial order on their moves.

Asynchronous games

By definition, an **asynchronous game** is a rooted asynchronous graph satisfying the Cube Property.

Positional strategies

Definition

A strategy is a set of plays, closed under prefix.

Definition

A strategy is **positional** when its paths form a subgraph of the game.

Causal strategies

From now on, we consider causal strategies which

- 1 are positional
- 2 satisfy properties implying the Cube Property

Composition

Unfortunately, causal strategies do not compose...

Part III

A category of asynchronous games

Categories of games and strategies

$$A \multimap B = A^* \mathfrak{B} B = A^* \otimes B$$

The strategy **not**:

Categories of games and strategies

$$A \multimap B = A^* \mathfrak{B} B = A^* \otimes B$$

The strategy **not**:

q

V

q

F

Traces compose by parallel composition

 $bool \longrightarrow bool bool \longrightarrow bool$

Composition

V

Traces compose by *parallel composition* + *hiding*.

q

V

Determinism

Definition A strategy σ : *A* is **deterministic** when

where m is a Proponent move.

Deterministic strategies do compose!

They form a monoidal category of asynchronous games.

Part IV

Concurrent strategies

Definition

A position of a strategy σ is **halting** when there is no Proponent move $m: x \longrightarrow y$ in σ .

We write σ° for the set of halting positions of σ .

The game true \otimes false.

The *parallel* implementation of true and false.

The *left* implementation of true and false.

Halting positions

The *right* implementation of true and false.

Ingenuous strategies

In the spirit of concurrent games Abramsky, Melliès 1999

we would like strategies to be characterized by their *halting positions*.

Ingenuous strategies

Definition

A strategy σ is $\operatorname{ingenuous}$ when it is

- 1 causal,
- deterministic,
- **3** courteous:

where m is a Proponent move.

Ingenuous strategies as relations

Theorem

Every ingenuous strategy σ is characterized by its set σ° of halting positions.

This set σ° describes a closure operator.

ingenuous strategies \iff concurrent strategies

Part V

Innocence

Unfortunately, we don't have

$$(\sigma; \tau)^{\circ} = \sigma^{\circ}; \tau^{\circ}$$

The livelock:

$$(\sigma; \tau)^{\circ} \subseteq \sigma^{\circ}; \tau^{\circ}$$

$$A \xrightarrow{\sigma} B \xrightarrow{\tau} C$$

The livelock:

$$(\sigma; au)^\circ \subseteq \sigma^\circ; au^\circ$$

Solution: handle infinite positions

The *deadlock*:

$$(\sigma; \tau)^{\circ} \supseteq \sigma^{\circ}; \tau^{\circ}$$

The *deadlock*:

$$(\sigma; au)^\circ \supseteq \sigma^\circ; au^\circ$$

Solution: add a scheduling criterion

the left conjunction:

The right boolean composed with the left conjunction:

Two kinds of tensors: \otimes and \Im .

 $bool \otimes bool \multimap bool = bool^* \mathfrak{P} bool^* \mathfrak{P} bool$

Two kinds of tensors: \otimes and \Im .

Two kinds of tensors: \otimes and \Im .

Two kinds of tensors: \otimes and \Im .

bool 🛇 bool

Functoriality

Definition

A strategy $\sigma : A$ is **receptive** when for every path $s : * \longrightarrow x$ in σ and for every Opponent move $m : x \longrightarrow y$ the path $s \cdot m : * \longrightarrow y$ is also in σ .

Functoriality

Definition

A strategy $\sigma : A$ is **receptive** when for every path $s : * \longrightarrow x$ in σ and for every Opponent move $m : x \longrightarrow y$ the path $s \cdot m : * \longrightarrow y$ is also in σ .

Theorem

Ingenuous strategies which satisfy the scheduling criterion and are receptive compose and satisfy

$$(\sigma; \tau)^{\circ} = \sigma^{\circ}; \tau^{\circ}$$

This defines a monoidal functor (realizing the *Timeless Games* programme initited by Baillot,Danos,Ehrard,Regnier 1998).

Part VI

Full completeness

Innocence

The scheduling criterion detects directed cycles.

Innocence

The scheduling criterion does not detect non-directed cycles.

We thus elaborate a more subtle scheduling criterion.

Part VII Thank you!