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HIGHER-DIMENSIONAL REWRITING THEORY

Rewriting theory has proven to be very useful to study
I monoids (and groups)
I term algebras

I n-categories

It can be generalized
to higher dimensions!
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IN THIS TALK

I will be interested in what can be said about categories of
I relations
I partial orders
I increasing functions

The main result will be a “coherence theorem for commutative
monads”.
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Rewriting systems
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REWRITING SYSTEMS
A rewriting system consists of
I a set of terms generated by a free construction:

I free monoid: string rewriting systems
I free term algebra: term rewriting systems

I a set of rewriting rules: r : t → u

A term t rewrites to a term t ′ when there exists
I a rule r : u → u′
I a context C such that t = C [u] and t ′ = C [u′]

Example
Σ = {a, b} terms = Σ∗ rules = {ba→ ab}

aabaab aarab−−−→ aaabab
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CONVERGENT REWRITING SYSTEMS
I A rewriting system can be terminating

when there is no infinite reduction path
t

��
t1

��
t2

��
...

I A rewriting can be confluent
I A rewriting system is convergent

when both terminating and (locally) confluent

In a convergent rewriting system, every term has a normal form:
canonical representative of terms modulo rewriting.

6 / 56



CONVERGENT REWRITING SYSTEMS
I A rewriting system can be terminating
I A rewriting can be confluent when

t
∗

~~

∗

  
u v

w
I A rewriting system is convergent

when both terminating and (locally) confluent

In a convergent rewriting system, every term has a normal form:
canonical representative of terms modulo rewriting.

6 / 56



CONVERGENT REWRITING SYSTEMS
I A rewriting system can be terminating
I A rewriting can be confluent when

t
∗

~~

∗

  
u

∗
  

v

∗
~~

w

I A rewriting system is convergent
when both terminating and (locally) confluent

In a convergent rewriting system, every term has a normal form:
canonical representative of terms modulo rewriting.

6 / 56



CONVERGENT REWRITING SYSTEMS
I A rewriting system can be terminating
I A rewriting can be confluent when

t
∗

~~

∗

  
u

∗
  

v

∗
~~

w
I A rewriting system is convergent

when both terminating and (locally) confluent

In a convergent rewriting system, every term has a normal form:
canonical representative of terms modulo rewriting.

6 / 56



CONVERGENT REWRITING SYSTEMS
I A rewriting system can be terminating
I A rewriting can be confluent when

t
∗

~~

∗

  
u

∗
  

v

∗
~~

w
I A rewriting system is convergent

when both terminating and (locally) confluent

In a convergent rewriting system, every term has a normal form:
canonical representative of terms modulo rewriting.

6 / 56



Why
are those properties

interesting?
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PRESENTATIONS OF MONOIDS
A presentation

〈G | R〉
of a monoid M consists of
I a set G of generators
I a set R ⊆ G∗ × G∗ of relations

such that
M ∼= G∗/ ≡R

Example
I N ∼= 〈a | 〉
I N/2N ∼= 〈a | aa = 1〉
I N× N ∼= 〈a, b | ba = ab〉
I Sn ∼= 〈σ1, . . . , σn | σiσi+1σi = σi+1σiσi+1, σ

2
i = 1, σiσj = σjσi〉

I . . .
8 / 56



PRESENTATIONS OF MONOIDS
How do we show that M ∼= 〈G | R〉 i.e. M ∼= G∗/ ≡R ?

1. Orient R to get a string rewriting system.
2. Show that the rewriting system is terminating.
3. Show that the rewriting system is confluent.
4. Show that the normal forms are in bijection with M.

Example N× (N/2N)
?∼= 〈a, b | ba→ ab, bb → 1〉

Remark: we actually only need normal forms
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How do we generalize this
to present categories?
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PRESENTING CATEGORIES
Presentation of a monoid M ∼= 〈G | R〉:

G

R

G∗

can be generalized to presentation of a category:

E
s

~~ t~~

R

V

E ∗

such that s∗sR = s∗tR and t∗sR = t∗tR

a presentation of a category

C ∼= G∗/ ≡R
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We see a pattern emerge!

[Burroni93,Street76,Power90]
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POLYGRAPHS

A 0-polygraph:

Σ1 Σ2 Σ3

Σ∗0

Σ∗1 Σ∗2

I The 3-polygraph Σ generates a 3-category Σ∗

I We write Σ̃∗ for the 2-category obtained from Σ∗ by
identifying two 2-cells f and g for which there exists a 3-cell
α : f V g

I The 3-polygraph Σ presents a 2-category C when C ∼= Σ̃∗
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THE SIMPLICIAL CATEGORY

Consider the simplicial category ∆ whose
I objects are natural integers [n] = {0, 1, . . . , n − 1}
I morphisms are increasing functions f : [m]→ [n]

For instance f : 4→ 3

[3] 0 1 2

[4]

f

OO

0 1 2 3
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THE SIMPLICIAL CATEGORY

The category ∆ is monoidal with [0] as unit and ⊗ defined
I on objects: [m]⊗ [n] = [m + n]

I on morphisms:
0 1

0 1 2

⊗


0 1

0

 =


0 1 2 3

0 1 2 3



A monoidal category is the same as a 2-category with only one
0-cell so we can (hope to) present it with a 3-polygraph!
[MacLane,Burroni,Lafont]
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PRESENTING THE SIMPLICIAL CATEGORY
We will show that the 2-category ∆ is presented by the polygraph

Σ1 Σ2 Σ3

Σ∗0

Σ∗1 Σ∗2

whose generators are
I Σ0 = {∗}

I Σ1 = {1 : ∗ → ∗}

(so Σ∗1
∼= N)

I Σ2 = {µ : (1⊗ 1)⇒ 1, η : 0⇒ 1}

I Σ3 =

{
α : µ ◦ (µ⊗ 1)V µ ◦ (1⊗ µ),
λ : µ ◦ (η ⊗ 1)V 1, ρ : µ ◦ (1⊗ η)V 1

}

16 / 56



PRESENTING THE SIMPLICIAL CATEGORY
We will show that the 2-category ∆ is presented by the polygraph

Σ1
s0

~~ t0~~

Σ2 Σ3

Σ∗0

Σ∗1 Σ∗2

whose generators are
I Σ0 = {∗}
I Σ1 = {1 : ∗ → ∗}

(so Σ∗1
∼= N)

I Σ2 = {µ : (1⊗ 1)⇒ 1, η : 0⇒ 1}

I Σ3 =

{
α : µ ◦ (µ⊗ 1)V µ ◦ (1⊗ µ),
λ : µ ◦ (η ⊗ 1)V 1, ρ : µ ◦ (1⊗ η)V 1

}

16 / 56



PRESENTING THE SIMPLICIAL CATEGORY
We will show that the 2-category ∆ is presented by the polygraph

Σ1
s0

~~ t0~~
i1
��

Σ2 Σ3

Σ∗0 Σ∗1
s∗
0oo

t∗
0

oo

Σ∗2

whose generators are
I Σ0 = {∗}
I Σ1 = {1 : ∗ → ∗} (so Σ∗1

∼= N)

I Σ2 = {µ : (1⊗ 1)⇒ 1, η : 0⇒ 1}

I Σ3 =

{
α : µ ◦ (µ⊗ 1)V µ ◦ (1⊗ µ),
λ : µ ◦ (η ⊗ 1)V 1, ρ : µ ◦ (1⊗ η)V 1

}

16 / 56



PRESENTING THE SIMPLICIAL CATEGORY
We will show that the 2-category ∆ is presented by the polygraph

Σ1
s0

~~ t0~~
i1
��

Σ2
s1

~~ t1~~

Σ3

Σ∗0 Σ∗1
s∗
0oo

t∗
0

oo

Σ∗2

whose generators are
I Σ0 = {∗}
I Σ1 = {1 : ∗ → ∗} (so Σ∗1

∼= N)
I Σ2 = {µ : (1⊗ 1)⇒ 1, η : 0⇒ 1}

I Σ3 =

{
α : µ ◦ (µ⊗ 1)V µ ◦ (1⊗ µ),
λ : µ ◦ (η ⊗ 1)V 1, ρ : µ ◦ (1⊗ η)V 1

}

16 / 56



PRESENTING THE SIMPLICIAL CATEGORY
We will show that the 2-category ∆ is presented by the polygraph

Σ1
s0

~~ t0~~
i1
��

Σ2
s1

~~ t1~~
i2
��

Σ3

Σ∗0 Σ∗1
s∗
0oo

t∗
0

oo Σ∗2
s∗
1oo

t∗
1

oo

whose generators are
I Σ0 = {∗}
I Σ1 = {1 : ∗ → ∗} (so Σ∗1

∼= N)
I Σ2 = {µ : (1⊗ 1)⇒ 1, η : 0⇒ 1}

I Σ3 =

{
α : µ ◦ (µ⊗ 1)V µ ◦ (1⊗ µ),
λ : µ ◦ (η ⊗ 1)V 1, ρ : µ ◦ (1⊗ η)V 1

}

16 / 56



PRESENTING THE SIMPLICIAL CATEGORY
We will show that the 2-category ∆ is presented by the polygraph

Σ1
s0

~~ t0~~
i1
��

Σ2
s1

~~ t1~~
i2
��

Σ3
s2

~~ t2~~
Σ∗0 Σ∗1

s∗
0oo

t∗
0

oo Σ∗2
s∗
1oo

t∗
1

oo

whose generators are
I Σ0 = {∗}
I Σ1 = {1 : ∗ → ∗} (so Σ∗1

∼= N)
I Σ2 = {µ : (1⊗ 1)⇒ 1, η : 0⇒ 1}

I Σ3 =

{
α : µ ◦ (µ⊗ 1)V µ ◦ (1⊗ µ),
λ : µ ◦ (η ⊗ 1)V 1, ρ : µ ◦ (1⊗ η)V 1

}

16 / 56



STRING DIAGRAMS
The 2-generators can be drawn as string diagrams:

 

 

and the 3-generators become

We recognize the laws for monoids!
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PROVING THE PRESENTATION
We have to prove that we have a presentation

∆ ∼= Σ̃∗

which means that diagrams built from the 2-generators

µ = and η =

by composition and tensoring, considered modulo the relations

are in bijection with increasing functions.
18 / 56



PROVING THE PRESENTATION
We have to prove that we have a presentation ∆ ∼= Σ̃∗.
I The generators can be interpreted as functions:

 

0

0 1

and  

0

Thus inducing a functor J−K : ∂Σ∗ → ∆.
u

ww
v

}

��
~ =

0 1 2

0 1 2 3

I The left and right members of the 3-generators get
interpreted as the same function (J−K is compatible with
relations): Thus inducing a 2-functor J−K : Σ̃∗ → ∆.

I The functor J−K is full.
I The 2-functor J−K is faithful (more difficult), i.e. Σ̃∗ ∼= ∆.
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FAITHFULNESS
To show that the 2-functor J−K : Σ̃∗ → ∆ is faithful, we have to
show that if two diagrams get interpreted as the same function
then they are equivalent modulo the 3-generators α, λ and ρ.
u

v

}

~ =

0 1 2

0 1 2 3

=

u

v

}

~

We can use rewriting theory!

I The five critical pairs are joinable:
I The rewriting system is terminating. . .
I The normal forms are tensor products of Mi with i ∈ N:
I Normal forms are in bijection with functions f : [m]→ [n]

f =
q
M|f −1(0)| ⊗M|f −1(1)| ⊗ . . .⊗M|f −1(n−1)|

y
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CONSEQUENCES

We have shown that
I we have a presentation Σ̃∗ ∼= ∆

I i.e. diagrams built from µ and η modulo the relation
generated by α, λ and ρ are in bijection with functions

I the category Σ is the theory for monoids.
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∆ AS A THEORY FOR MONOIDS
Since we have described ∆ by generators and relations we know
that a strict monoidal functor M : ∆→ C is uniquely determined
by the images of the generators, which satisfy the relations:
I an object M1 ∈ C

I two morphisms Mµ : M1⊗M1→ M1 and Mη : I → M1
I such that

M1⊗M1⊗M1
Mµ
��

Mµ⊗M1// M1⊗M1
Mµ
��

M1⊗M1
Mµ

// M1

M1Mη⊗M1// M1⊗M1
Mµ
��

M1M1⊗Mηoo

M1

In other words, a monoidal functor M : ∆→ C is a monoid in C!

StrMonCat(∆, C) ∼= Mon(C)

Ex: in Set, Cat, . . .
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AN IMPORTANT EXAMPLE: MONADS

Given a category C, consider the 2-category with
I one 0-cell: C
I 1-cells: endofunctors C → C
I 2-cells: natural transformations

It’s a 2-category with one 0-cell, i.e. a monoidal category.

Monoids in this category are precisely the monads on C.
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SOME REMARKS

[Lafont]

I It is important to remark that we don’t really need to have a
convergent rewriting system, we only need to provide a notion
of canonical form.

I Actually, those higher-dimensional rewriting systems are much
more complicated than usual (string/term) rewriting systems:
a convergent rewriting system can have an infinite number of
critical pairs!
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Let’s see some more examples.
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MORE EXAMPLES OF PROS

Definition
A PRO is a monoidal category whose objects are integers and
tensor product is given on objects by addition (e.g. ∆).

As for ∆, a presentation of a PRO necessarily have
I Σ0 = {∗}: it is a 2-category with one 0-cell
I Σ1 = {1}: the objects are Σ∗1

∼= N
I it is thus enough to specify the 2-generators and the

3-generators (the relations)
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A PRESENTATION OF ∆

The simplicial category ∆ admits a presentation with
I two 2-generators

µ : 2→ 1 η : 0→ 1

I three relations (3-generators)

(associativity) (unitality)
I ∆: theory of monoids
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A PRESENTATION OF ∆op

Dually, the category ∆op admits a presentation with
I two 2-generators

δ : 1→ 2 ε : 1→ 0

I three relations (3-generators)

(coassociativity) (counitality)
I ∆op: theory of comonoids
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A PRESENTATION OF Bij
The PRO Bij with N as objects and bijections f : [n]→ [n] as
morphisms admits a presentation with
I one 2-generator γ : 2→ 2

I two relations

(Yang-Baxter) (involutivity)
I it generalizes the usual presentation of the symmetric groups

by products of transpositions
29 / 56



A PRESENTATION OF FinOrd
The PRO FinOrd with N as objects and functions f : [m]→ [n] as
morphisms admits a presentation with
I three 2-generators

µ : 2→ 1 η : 0→ 1 γ : 2→ 2

I relations expressing that
I (µ, η) is a monoid + γ is a symmetry
I compatibility between monoid and symmetry

I commutativity of µ

I FinOrd is thus the theory for commutative monoids
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A PRESENTATION OF MRel
The PRO MRel with N as objects and m × n matrices with
coefficients in N as morphisms [m]→ [n].

For instance, a morphism [3]→ [2]:2 1
0 0
1 0



 

0 1

0 1 2

 

It admits a presentation with
I five 2-generators

µ : 2→ 1 η : 0→ 1 δ : 1→ 2 ε : 1→ 0 γ : 2→ 2

I relations
I (µ, η, γ) is a commutative monoid
I (δ, ε, γ) is cocommutative comonoid
I bialgebra laws
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A PRESENTATION OF Rel
The PRO Rel with N as objects and relations R ⊆ [m]× [n] as
morphisms m→ n.

It can be seen as a quotient of MRel:2 1
0 0
1 0

 =

0 1

0 1 2

≈
0 1

0 1 2

=

1 1
0 0
1 0



It admits the same presentation as MRel with the following extra
relation:

Rel: theory for qualitative bialgebras
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THE PROOF

Given a morphism φ = : m→ n we define

Eφ = : m + 1→ n Hφ = : m→ n + 1

(add a line) (add a column)

Wiφ = : m→ n Z = 0→ 0

(add a link) ()
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THE PROOF

Given a morphism φ = : m→ n we define

Eφ = : m + 1→ n Hφ = : m→ n + 1

(add a line) (add a column)

Wiφ = : m→ n Z = 0→ 0

(add a link) ()

Lemma
Every diagram is equivalent (modulo the relations) to a composite
of those morphisms (called pre-canonical forms).
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Eφ = : m + 1→ n Hφ = : m→ n + 1

(add a line) (add a column)

Wiφ = : m→ n Z = 0→ 0

(add a link) ()
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WiWjφ = WjWiφ EHφ = HEφ EWiφ = Wi+1Eφ
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THE PROOF

Given a morphism φ = : m→ n we define

Eφ = : m + 1→ n Hφ = : m→ n + 1

(add a line) (add a column)

Wiφ = : m→ n Z = 0→ 0

(add a link) ()

Lemma
WiWj VWjWi (i < j) EH V HE EWi VWi+1E

normal forms are in bijection with multirelations.
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Now begins the novel part:
partial orders
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THE CATEGORY OF FINITE POSETS

We write FinPOSet for the PRO whose
I objects are integers
I a morphism f : [m]→ [n] is a finite poset (f ,≤f ) with m

chosen minimal elements and n chosen maximal elements
(both sets being distinct)

For instance:
[2] 0 1

•

[1]

f

OO

0
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COMPOSITION
[1] 0

•

[2]

g

OO

0 1

[2] 0 1

•

[1]

f

OO

0

=

0

•

•

0

(and tensor product is juxtaposition as usual)
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RELATIONS IN FinPOSet

An element of a poset is internal when it is not in the source or the
target.

A relation can be seen as a poset with no internal elements: we
have a faithful embedding Rel ↪→ FinPOSet.

0 1

0 1 2

So, it makes sense to build a presentation extending the
presentation for Rel.
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A PRESENTATION FOR FinPOSet
Theorem
The category FinPOSet is presented by the 3-polygraph with
I six 2-generators

µ : 2→ 1 η : 0→ 1 δ : 1→ 2 ε : 1→ 0 γ : 2→ 2 σ : 1→ 1

I relations
I (µ, η, δ, ε, γ) is a qualitative bialgebra (as for Rel)
I dependencies are transitive
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ABOUT THE PROOF
Notice that it cannot be done using a canonical rewriting system:

I does not terminate

I does not allow to derive
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What about presenting
increasing functions between posets?

We extend this
to better understand

commutative monads.
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MONADS
Definition
A monad T on a category C is an endofunctor T : C → C together
with two natural transformations

µ : TT ⇒ T η : Id⇒ T

such that

TTT
Tµ
��

µT // TT
µ
��

TT µ
// T

T ηT //// TT

��

TTηoo

T

Example
The stream monad TA = AR with

ηA : A → TA µA : TTA → TA
a 7→ λt.a s 7→ λt.stt
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STRONG MONADS

Definition
A strength for a monad T on a monoidal category C is a natural
transformation

τA,B : A⊗ TB → T (A⊗ B)

such that

(A⊗ B)⊗ TC
τA⊗B,C //

αA,B,TC
��

T ((A⊗ B)⊗ C)

TαA,B,C
��

A⊗ (B ⊗ TC)
A⊗τB,C

// A⊗ T (B ⊗ C) τA,B⊗C
// T (A⊗ (B ⊗ C))

Definition
A costrength τA,B : TA⊗ B → T (A⊗ B) is defined dually.
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STRONG MONADS
Example
The stream monad is strong with

τA,B : A× TB → T (A× B)
(a, s) 7→ λt.(a, st)

where

A⊗ TTB

A⊗µB
��

τA,TB // T (A⊗ TB)
TτA,B // TT (A⊗ B)

µA⊗B
��

A⊗ TB τA,B
// T (A⊗ B)

means

λt.(λt1t2.(a, st1t2))tt = λt.(a, (λt ′.st ′t ′)t)
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COMMUTATIVE MONADS
Definition
A commutative monad T : C → C is a monad together with a
strength and a costrength

τA,B : A⊗ TB → T (A⊗ B) υA,B : TA⊗ B → T (A⊗ B)

such that

T (A⊗ TB)
TτA,B // TT (A⊗ B)

µA⊗B

''
TA⊗ TB

υA,TB
77

τTA,B ''

T (A⊗ B)

T (TA⊗ B)
TυA,B

// TT (A⊗ B)

µA⊗B

77
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COMMUTATIVE MONADS

Example
The stream monad:

T (A⊗ TB)
TτA,B // TT (A⊗ B)

µA⊗B

''
TA⊗ TB

υA,TB
77

τTA,B ''

T (A⊗ B)

T (TA⊗ B)
TυA,B

// TT (A⊗ B)

µA⊗B

77

means

λt.(λt1t2.(s1t1, s2t2))tt = λt.(λt2t1.(s1t1, s2t2))tt
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IN STRING DIAGRAMS
We can try to draw these laws using string diagrams:
I a monoidal category is a (pseudo-)monoid in Cat:

⊗ : C × C → C I : 1→ C

satisfying associativity and unitality

(actually up to iso)

I a monad T : C → C: together with

µ : η :

satisfying

(these define exactly functions between totally ordered sets)
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IN STRING DIAGRAMS
I the strength τA,B : A⊗ TB → T (A⊗ B)

looks like an increasing function between posets:

c d

b

a

7→

c d

b

a
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IN STRING DIAGRAMS
and actually all the laws of commutative monads are compatible
with this interpretation:

A⊗ TTB

A⊗µB
��

τA,TB // T (A⊗ TB)
TτA,B // TT (A⊗ B)

µA⊗B
��

A⊗ TB τA,B
// T (A⊗ B)

becomes
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IN STRING DIAGRAMS
and actually all the laws of commutative monads are compatible
with this interpretation:

T (A⊗ TB)
TτA,B // TT (A⊗ B)

µA⊗B

''
TA⊗ TB

υA,TB
88

τTA,B &&

T (A⊗ B)

T (TA⊗ B)
TυA,B

// TT (A⊗ B)

µA⊗B

77

becomes

48 / 56



MAKING THIS PRECISE
We define the PRO PTrees as the monoidal subcategory of
FinPOSet whose morphisms m→ n are posets with m minimal
and n maximal chosen elements which are planar forests:

I a poset is a forest when
a ≤ c ∧ b ≤ c ⇒ a ≤ b ∨ b ≤ a

i.e.
c

a b
⇒

c

a b
∨

c

a b
I planar means that it can be drawn without crossings:

0 1

• •

0

is forbidden
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A PRESENTATION OF PTrees
Proposition
The PRO PTrees is presented by the 3-polygraph with
I three 2-generators

I three relations
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MAKING THIS PRECISE
We define the monoidal 2-category IncPTrees by considering
PTrees (planar forests) together with increasing functions between
them, which preserve the number of trees.
Theorem
The category IncPTrees is presented by the 3-polygraph with

I three 2-generators:

I 3-generators:

I relations: the axioms of commutative monads
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MAKING THIS PRECISE

Theorem

A strong monoidal functor IncPTrees→ Cat
is the same as

a category together with a commutative monad
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THE COHERENCE THEOREM
Theorem (MacLane)
In a monoidal category, “all diagrams” commute.

((A⊗ I)⊗ B)⊗ C
(ρA⊗B)⊗C// (A⊗ B)⊗ C

αA,B,C

!!
(A⊗ (I ⊗ B))⊗ C

α−1
A,I,B⊗C

99

αA,I⊗B,C

%%

A⊗ (B ⊗ C)

A⊗ ((I ⊗ B)⊗ C)

A⊗(λB⊗C)

55

53 / 56



COHERENCE THEOREM
FOR COMMUTATIVE MONADS

Theorem
Given a monoidal category C with a strong monad there are as
many canonical morphisms in C(A,B) as there are functions from
A to B seen as posets:

T (TTA⊗ (TI ⊗ B)) −→ T (A⊗ TB)
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COHERENCE THEOREM
FOR COMMUTATIVE MONADS

Theorem
Given a monoidal category C with a strong monad there are as
many canonical morphisms in C(A,B) as there are functions from
A to B seen as posets:

T (TTA⊗ (TI ⊗ B)) −→ T (A⊗ TB)

A B

•

• •

•

0

A B

•

•

0
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TOWARDS MONADIC COERCIONS?

In a programming language, if s : TN is a stream of integers, one
would like to automatically make sense of programs such as

s : TN ` 3 + s : TN

A monad is characterized by:
I its return (or unit): ρA : A→ TA
I its bind: βA : (A→ TB)→ (TA→ TB)

We would like to implicitly use those as coercions, but it would
have to be done in a coherent way!
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CONCLUSION

We have shown that
higher-dimensional rewriting methods

can be helpful to
better understand algebraic structures.

But lots remains to be done...

56 / 56


