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HIGHER-DIMENSIONAL REWRITING THEORY

Rewriting theory has proven to be very useful to study
» monoids (and groups)

> term algebras
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HIGHER-DIMENSIONAL REWRITING THEORY

Rewriting theory has proven to be very useful to study
» monoids (and groups)
> term algebras

» n-categories

It can be generalized
to higher dimensions!
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IN THIS TALK

| will be interested in what can be said about categories of
> relations
> partial orders

» increasing functions

The main result will be a “coherence theorem for commutative
monads”.
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Rewriting systems
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REWRITING SYSTEMS

A rewriting system consists of
> a set of terms generated by a free construction:
» free monoid: string rewriting systems
> free term algebra: term rewriting systems
> a set of rewriting rules: r: t — u

Example
Y ={a, b} terms = ¥* rules = {ba — ab}
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REWRITING SYSTEMS

A rewriting system consists of
> a set of terms generated by a free construction:
» free monoid: string rewriting systems
> free term algebra: term rewriting systems
> a set of rewriting rules: r: t — u

A term t rewrites to a term t’ when there exists
»aruler:u—u
» a context C such that t = C[u] and t' = C[//]

Example
Y ={a, b} terms = ¥* rules = {ba — ab}

b
aabaab 2222 aaabab
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CONVERGENT REWRITING SYSTEMS

> A rewriting system can be terminating
when there is no infinite reduction path
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> A rewriting system can be terminating
> A rewriting can be confluent when
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CONVERGENT REWRITING SYSTEMS

> A rewriting system can be terminating
> A rewriting can be confluent when

> A rewriting system is convergent
when both terminating and (locally) confluent
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CONVERGENT REWRITING SYSTEMS

> A rewriting system can be terminating
> A rewriting can be confluent when

> A rewriting system is convergent
when both terminating and (locally) confluent

In a convergent rewriting system, every term has a normal form:
canonical representative of terms modulo rewriting.

6
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Why
are those properties
interesting?
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PRESENTATIONS OF MONOIDS

A presentation
(G| R)
of a monoid M consists of

» a set G of generators
» aset R C G* x G* of relations

such that
M = G*/ =R
Example
» N=(al)
» N/2N = (a | aa=1)
» NxN=(a,b| ba= ab)
> &, = (01,...,04 | 0i0i110] = 04100041, U,-2 =1, 005 = gjoj)
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PRESENTATIONS OF MONOIDS

How do we show that M = (G | R) i.e. M= G*/ =g ?

56
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PRESENTATIONS OF MONOIDS
How do we show that M = (G | R) i.e. M= G*/ =g ?

. Orient R to get a string rewriting system.

. Show that the rewriting system is terminating.

. Show that the rewriting system is confluent.

. Show that the normal forms are in bijection with M.
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PRESENTATIONS OF MONOIDS

How do we show that M = (G | R) i.e. M= G*/ =g ?

AW N =

Example N x (N/2N)

?
o~

. Orient R to get a string rewriting system.

. Show that the rewriting system is terminating.
. Show that the rewriting system is confluent.

. Show that the normal forms are in bijection with M.

(a,b | ba= ab, bb=1)
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PRESENTATIONS OF MONOIDS

How do we show that M = (G | R) i.e. M= G*/ =g ?

AW N =

Example N x (N/2N)

?
o~

. Orient R to get a string rewriting system.

. Show that the rewriting system is terminating.

. Show that the rewriting system is confluent.

. Show that the normal forms are in bijection with M.

(a,b | ba— ab, bb — 1)
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PRESENTATIONS OF MONOIDS

How do we show that M = (G | R) i.e. M= G*/ =g ?

. Orient R to get a string rewriting system.

. Show that the rewriting system is terminating.

. Show that the rewriting system is confluent.

. Show that the normal forms are in bijection with M.

AW N =

?
Example N x (N/2N) = (a,b| ba— ab, bb — 1)

Critical pairs are:
bba bbb

A NVAaN

a bab
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PRESENTATIONS OF MONOIDS

How do we show that M = (G | R) i.e. M= G*/ =g ?

Orient R to get a string rewriting system.

Show that the rewriting system is terminating.
Show that the rewriting system is confluent.

Show that the normal forms are in bijection with M.

o=

?
Example N x (N/2N) = (a,b| ba— ab, bb — 1)

Critical pairs are joinable'

/N
N

\
/

/\

9/56



PRESENTATIONS OF MONOIDS

How do we show that M = (G | R) i.e. M= G*/ =g ?

. Orient R to get a string rewriting system.

. Show that the rewriting system is terminating.

. Show that the rewriting system is confluent.

. Show that the normal forms are in bijection with M.

AW N =

?
Example N x (N/2N) = (a,b| ba— ab, bb — 1)

Normal forms are:
n

a and ab

They are in bijection with N x (N/2N)!
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PRESENTATIONS OF MONOIDS

How do we show that M = (G | R) i.e. M= G*/ =g ?

. Orient R to get a string rewriting system.

. Show that the rewriting system is terminating.

. Show that the rewriting system is confluent.

. Show that the normal forms are in bijection with M.

AW N =

?
Example N x (N/2N) = (a,b| ba— ab, bb — 1)

Normal forms are:
n

a and ab

They are in bijection with N x (N/2N)!

Remark: we actually only need normal forms
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How do we generalize this
to present categories?
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PRESENTING CATEGORIES

Presentation of a monoid M = (G | R):
G
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Presentation of a monoid M = (G | R):
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PRESENTING CATEGORIES

Presentation of a monoid M = (G | R):
G R

SR
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PRESENTING CATEGORIES

Presentation of a monoid M = (G | R):

SR
il
tr
G*

can be generalized to presentation of a category:
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PRESENTING CATEGORIES

Presentation of a monoid M = (G | R):

SR
i
tr
G*
can be generalized to presentation of a category:

E

4

S
| m—
t*

a free graph
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PRESENTING CATEGORIES

Presentation of a monoid M = (G | R):
G R
l 57
1
tr
G*
can be generalized to presentation of a category:
E R
Ay
1
st tr

S
| m—
t*

such that s*sp = s*tg and t*sp = t*tp

a presentation of a category

C = G*/ =R
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We see a pattern emerge!

[Burroni93,Street76,Power90]
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A 0-polygraph:

POLYGRAPHS



POLYGRAPHS

A 1-polygraph:
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POLYGRAPHS

A 1-polygraph generates a category:
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POLYGRAPHS

A 2-polygraph:

such that sjs; = sjt1 and t5s; = gt
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POLYGRAPHS

A 2-polygraph generates a 2-category:

2 2o

S0 S1
i1 in
* * T
S 0 s; 1

==X
t t
0 1

such that sjs; = sjt1 and t5s; = gt
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POLYGRAPHS

A 3-polygraph:

PX} 2o 23

S0 51 S2
i1 in
* * T t.
Gl Gt 2

o=
t t
0 1

such that sisy = sty and ti's) = ity
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A 3-polygraph ...

PX} 2o 23

S0 51 S2
i1 in
* * T t.
Gl Gt 2

o=
t t
0 1

such that sisy = sty and ti's) = ity

» The 3-polygraph ¥ generates a 3-category ¥ *
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POLYGRAPHS

A 3-polygraph ...

PX} 2o 23

S0 s1 S
i1 in
* * T t.
Gl Gt 2

o=
t t
0 1

such that sisy = sty and ti's) = ity

» The 3-polygraph ¥ generates a 3-category ¥ *

> We write * for the 2-category obtained from ¥* by
identifying two 2-cells f and g for which there exists a 3-cell
a:f=>g
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POLYGRAPHS

A 3-polygraph ...

PX} 2o 23

S0 s1 S
i1 in
* * T t.
Gl Gt 2

o=
t t
0 1

such that sisy = sty and ti's) = ity

» The 3-polygraph ¥ generates a 3-category ¥ *

> We write * for the 2-category obtained from ¥* by
identifying two 2-cells f and g for which there exists a 3-cell
a:f=>g

> The 3-polygraph ¥ presents a 2-category C when C = PR

13 /56



THE SIMPLICIAL CATEGORY

Consider the simplicial category A whose
» objects are natural integers [n] = {0,1,...,n— 1}

» morphisms are increasing functions f : [m] — [n]

For instance f : 4 — 3

[3]

AN

[4]
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THE SIMPLICIAL CATEGORY

The category A is monoidal with [0] as unit and ® defined
» on objects: [m] ® [n] = [m + n]

» on morphisms:

Do

2



THE SIMPLICIAL CATEGORY

The category A is monoidal with [0] as unit and ® defined
» on objects: [m] ® [n] = [m + n]

» on morphisms:
0 1 0 1 0 1 2

\ \ ; / - \ \
0 1 2 0 0 1 2 3

A monoidal category is the same as a 2-category with only one
O-cell so we can (hope to) present it with a 3-polygraph!
[MacLane,Burroni,Lafont]
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PRESENTING THE SIMPLICIAL CATEGORY

We will show that the 2-category A is presented by the polygraph

2
whose generators are
> Zo = {*}
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PRESENTING THE SIMPLICIAL CATEGORY

We will show that the 2-category A is presented by the polygraph
2
S0
to
25
whose generators are
> Zo = {*}
> Y ={1:% — *}
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PRESENTING THE SIMPLICIAL CATEGORY

We will show that the 2-category A is presented by the polygraph

whose generators are
> Yo = {x}
> Y ={1:%— %} (so Xj ¥ N)
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PRESENTING THE SIMPLICIAL CATEGORY

We will show that the 2-category A is presented by the polygraph
N 2

whose generators are
> Yo = {*}
> Y ={1:%— %} (so Xj ¥ N)
» L ={p:(1®1)=1n:0=1}
A

A
N
—r @
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PRESENTING THE SIMPLICIAL CATEGORY

We will show that the 2-category A is presented by the polygraph
N 2

S0 S1
i i
* 1 * T
O Ol

PR X fm— 3
tg t
whose generators are
> Yo = {*}
> Y ={1:%— %} (so Xj ¥ N)
» L ={p:(1®1)=1n:0=1}

A A
N
r @
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PRESENTING THE SIMPLICIAL CATEGORY

We will show that the 2-category A is presented by the polygraph
X} ) 23

S0 S1 52
i i2
* T * T [5)
O s;

ZE‘HTZTTZ}‘
0 1
whose generators are
> Yo = {x}
> Y ={1:%— %} (so Xi 2 N)
» L ={p:(1®1)=1n:0=1}
sy, o) ape(p@l)= po(lep),
3_
Aipo(n®l)=1p:po(len) =1

CANN < N

¥k —DF =D x ——k K

\J N/
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STRING DIAGRAMS

The 2-generators can be drawn as string diagrams:

A A

< lr ¥ ~ * /%\‘

4,\9‘ A /L!"'
A

@ -

17 /56



STRING DIAGRAMS

The 2-generators can be drawn as string diagrams:

A A

< lr ¥ ~ * /%\‘
4,\9‘ A /L!"'
A

@ -

and the 3-generators become

> ASlEn

We recognize the laws for monoids!
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PROVING THE PRESENTATION

We have to prove that we have a presentation
IN=

which means that diagrams built from the 2-generators

w= and = AD

by composition and tensoring, considered modulo the relations

5 N2|E

are in bijection with increasing functions.
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PROVING THE PRESENTATION

We have to prove that we have a presentation A = T
» The generators can be interpreted as functions:

A

SN

A— 4
Thus inducing a functor [—] : 0X* — A.

CYRER AN
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PROVING THE PRESENTATION

We have to prove that we have a presentation A = T

> The generators can be interpreted as functions. Thus
inducing a functor [—] : 0X* — A.

» The left and right members of the 3-generators get interpreted
as the same function ([—] is compatible with relations):

Thus inducing a 2-functor [—] : £* — A.

19 /56



PROVING THE PRESENTATION

We have to prove that we have a presentation A = Y

» The generators can be interpreted as functions. Thus
inducing a functor [—] : 0X* — A.

» The left and right members of the 3-generators get
interpreted as the same function ([—] is compatible with
relations): Thus inducing a 2-functor [—] : £* — A.

» The functor [—] is full.

A
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PROVING THE PRESENTATION

We have to prove that we have a presentation A = Y*.

» The generators can be interpreted as functions. Thus
inducing a functor [—] : 90X* — A.

> The left and right members of the 3-generators get
interpreted as the same function ([—] is compatible with
relations): Thus inducing a 2-functor [—] : ©¥* — A.

» The functor [—] is full.
» The 2-functor [—] is faithful (more difficult), i.e. £* = A.
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FAITHFULNESS

To show that the 2-functor [—] : £* — A is faithful, we have to
show that if two diagrams get interpreted as the same function
then they are equivalent modulo the 3-generators a;, A and p.

Y E RSN
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FAITHFULNESS

To show that the 2-functor [—] : £* — A is faithful, we have to
show that if two diagrams get interpreted as the same function
then they are equivalent modulo the 3-generators a;, A and p.

Y E RSN

We can use rewriting theory!
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FAITHFULNESS

To show that the 2-functor [~] : £* — A is faithful, we have to
show that if two diagrams get interpreted as the same function
then they are equivalent modulo the 3-generators o, A and p. We
can use rewriting theory!

» The five critical pairs are joinable:

A5 A) = M A

y 8 6
A= .
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FAITHFULNESS

To show that the 2-functor [~] : £* — A is faithful, we have to
show that if two diagrams get interpreted as the same function
then they are equivalent modulo the 3-generators o, A and p. We
can use rewriting theory!

» The five critical pairs are joinable:

A= A9 a2 >
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FAITHFULNESS

To show that the 2-functor [~] : £* — A is faithful, we have to
show that if two diagrams get interpreted as the same function
then they are equivalent modulo the 3-generators o, A and p. We
can use rewriting theory!

» The five critical pairs are joinable:

A= A9 a2 >

\\\\J Lz/ D 4 (H
» The rewriting system is terminating. ..
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FAITHFULNESS

To show that the 2-functor [—] : £* — A is faithful, we have to
show that if two diagrams get interpreted as the same function
then they are equivalent modulo the 3-generators «, A and p. We
can use rewriting theory!

» The five critical pairs are joinable:

» The rewriting system is terminating. ..

» The normal forms are tensor products of M; with i € N:

d

My Moy =
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FAITHFULNESS

To show that the 2-functor [—] : £* — A is faithful, we have to
show that if two diagrams get interpreted as the same function
then they are equivalent modulo the 3-generators «, A and p. We
can use rewriting theory!

» The five critical pairs are joinable:

» The rewriting system is terminating. ..

» The normal forms are tensor products of M; with i € N:

d

My Moy =

» Normal forms are in bijection with functions f : [m] — [n]

fo= M) ® Mgy ® - @ Moy
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FAITHFULNESS

To show that the 2-functor [~] : £* — A is faithful, we have to
show that if two diagrams get interpreted as the same function
then they are equivalent modulo the 3-generators o, A and p. We
can use rewriting theory!

» The five critical pairs are joinable:

> The rewriting system is terminating. ..

» The normal forms are tensor products of M; with i € N:
» Normal forms are in bijection with functions f : [m] — [n]

o= Moy ® My ® - © Miesgoy]

0 1 2 &
= = [M3® My @ My
SN 1R | R
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CONSEQUENCES

We have shown that

» we have a presentation TFA
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CONSEQUENCES

We have shown that
» we have a presentation TFA

> i.e. diagrams built from g and 7 modulo the relation
generated by «, A and p are in bijection with functions
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CONSEQUENCES

We have shown that
» we have a presentation TFA

> i.e. diagrams built from g and 7 modulo the relation
generated by «, A and p are in bijection with functions

» the category X is the theory for monoids.

21 /56



A AS A THEORY FOR MONOIDS

Since we have described A by generators and relations we know
that a strict monoidal functor M : A — C is uniquely determined
by the images of the generators, which satisfy the relations:

» an object M1 € C
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A AS A THEORY FOR MONOIDS

Since we have described A by generators and relations we know
that a strict monoidal functor M : A — C is uniquely determined
by the images of the generators, which satisfy the relations:

» an object M1 € C

> two morphisms My : M1 ® M1 — M1 and Mn : | — M1
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A AS A THEORY FOR MONOIDS

Since we have described A by generators and relations we know
that a strict monoidal functor M : A — C is uniquely determined
by the images of the generators, which satisfy the relations:

» an object M1 € C

> two morphisms My : M1 ® M1 — M1 and Mn : | — M1

> such that

ML M1l® MlAMlMl ® M1 Man@MlMl 2 M1M1®MnM1

T A

M1 M1
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A AS A THEORY FOR MONOIDS

Since we have described A by generators and relations we know
that a strict monoidal functor M : A — C is uniquely determined
by the images of the generators, which satisfy the relations:

» an object M1 € C

> two morphisms My : M1 ® M1 — M1 and Mn : | — M1

> such that

ML M1l® MlAMlMl ® M1 Man@MlMl 2 M1M1®MnM1

ol e N

In other words, a monoidal functor M : A — C is a monoid in C!

StrMonCat(A,C) = Mon(C)

Ex: in Set, Cat, ...
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AN IMPORTANT EXAMPLE: MONADS

Given a category C, consider the 2-category with
> one O-cell: C
> 1-cells: endofunctors C — C

» 2-cells: natural transformations

It's a 2-category with one O-cell, i.e. a monoidal category.

Monoids in this category are precisely the monads on C.

23 /56



SOME REMARKS

[Lafont]

> It is important to remark that we don't really need to have a
convergent rewriting system, we only need to provide a notion
of canonical form.
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SOME REMARKS

[Lafont]

> It is important to remark that we don't really need to have a
convergent rewriting system, we only need to provide a notion
of canonical form.

» Actually, those higher-dimensional rewriting systems are much
more complicated than usual (string/term) rewriting systems:
a convergent rewriting system can have an infinite number of

critical pairs!
24 /56



Let’s see some more examples.
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MORE EXAMPLES OF PROS

Definition
A PRO is a monoidal category whose objects are integers and
tensor product is given on objects by addition (e.g. A).
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MORE EXAMPLES OF PROS

Definition
A PRO is a monoidal category whose objects are integers and
tensor product is given on objects by addition (e.g. A).

As for A, a presentation of a PRO necessarily have
» Yo = {x}: it is a 2-category with one 0-cell
» ¥Y; = {1}: the objects are ¥ = N
> it is thus enough to specify the 2-generators and the
3-generators (the relations)

26
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A PRESENTATION OF A

The simplicial category A admits a presentation with
> two 2-generators

wi2—1 n:0—1

» three relations (3-generators)

5 A2ER

(associativity) (unitality)

» A: theory of monoids

27 /56



A PRESENTATION OF A°P

Dually, the category A°P admits a presentation with
> two 2-generators

6:1—=2 e:1—0

» three relations (3-generators)

Sy yalel

(coassociativity) (counitality)

> A°P: theory of comonoids

28 /56



A PRESENTATION OF Bij

The PRO Bij with N as objects and bijections f : [n] — [n] as
morphisms admits a presentation with
> one 2-generator y:2 — 2

» two relations

>¥) ;jv

(Yang-Baxter) (involutivity)

> it generalizes the usual presentation of the symmetric groups
by products of transpositions

29 /56



A PRESENTATION OF FinOrd

The PRO FinOrd with N as objects and functions f : [m] — [n] as
morphisms admits a presentation with
> three 2-generators

wi2—1 n:0—=1 v:2—=2

5

30/56



A PRESENTATION OF FinOrd

The PRO FinOrd with N as objects and functions f : [m] — [n] as
morphisms admits a presentation with

> three 2-generators p:2 —-1,7:0—1,~v:2—2
> relations expressing that

» (u,n) is a monoid + v is a symmetry

» compatibility between monoid and symmetry

» commutativity of u
= /l)
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A PRESENTATION OF FinOrd

The PRO FinOrd with N as objects and functions f : [m] — [n] as
morphisms admits a presentation with

> three 2-generators p:2 —-1,7:0—1,~v:2—2
> relations expressing that

» (u,n) is a monoid + v is a symmetry

» compatibility between monoid and symmetry

» commutativity of u
= /l)

» FinOrd is thus the theory for commutative monoids 20 /56



A PRESENTATION OF MRel

The PRO MRel with N as objects and m x n matrices with
coefficients in N as morphisms [m] — [n].

For instance, a morphism [3] — [2]:

£

= O N
O O =
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A PRESENTATION OF MRel

The PRO MRel with N as objects and m x n matrices with
coefficients in N as morphisms [m] — [n].

For instance, a morphism [3] — [2]:
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A PRESENTATION OF MRel

The PRO MRel with N as objects and m x n matrices with
coefficients in N as morphisms [m] — [n].

For instance, a morphism [3] — [2]:

by - 04 - X

31/56



A PRESENTATION OF MRel

The PRO MRel with N as objects and m x n matrices with
coefficients in N as morphisms [m] — [n].

For instance, a morphism [3] — [2]:

00 w<>>\ -
Lo o0 1 2 ¢

It admits a presentation with
> five 2-generators

wi2—1 n:0—1 0:1—2 €:1—=0 v:2—2

Aob Y e R
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A PRESENTATION OF MRel

The PRO MRel with N as objects and m x n matrices with
coefficients in N as morphisms [m] — [n].
It admits a presentation with

> five 2-generators

ni2—1 n:0—=1 0:1—2 €:1—=0 v:2—2

Aob Y e R

> relations
» (u,m,7) is a commutative monoid
» (4,&,7) is cocommutative comonoid
> bialgebra laws

R

31/56



A PRESENTATION OF Rel

The PRO Rel with N as objects and relations R C [m] x [n] as
morphisms m — n.
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A PRESENTATION OF Rel

The PRO Rel with N as objects and relations R C [m] x [n] as
morphisms m — n.

It can be seen as a quotient of MRel:

§:<>>\ N :>\ B

1 2

= O N
—_ o
O O =
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A PRESENTATION OF Rel

The PRO Rel with N as objects and relations R C [m] x [n] as
morphisms m — n.

It can be seen as a quotient of MRel:

0 1

21 0 11
Y- A
1.0/ 1 2 0 1 > \1 0

It admits the same presentation as MRel with the following extra

relation:

l

Rel: theory for qualitative bialgebras

32/56



THE PROOF

Given a morphism ¢ = : m — n we define
]

Ed)z?{% m+1=n H¢:éﬁ;§i§ m—nt1
W,-¢>: . m—n Z = 00

v
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THE PROOF

Given a morphism ¢ = :m — n we define

-

E¢p = ?{?:ll ‘m+1—n H¢—é\_i_—r§___"‘_x ‘m—n+1

(add a line) (add a column)

W,-¢>: . m—n Z = 00

(add a link) O
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THE PROOF

Given a morphism ¢ = :m — n we define

-

E¢p = ?] Z( ‘m+1—n H¢—é\_i_—r§___"‘_x ‘m—n+1
(add a Ime (add a column)
W,-¢>: . m—n Z = 00
(add a link) 0

Lemma
Every diagram is equivalent (modulo the relations) to a composite
of those morphisms (called pre-canonical forms).
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THE PROOF

Given a morphism ¢ = :m — n we define

N

A
é
E¢p = ? :m+1—n Hp = m—n+1
(add a I|ne (add a cqumn
W,-¢>: . m—n Z = 00
(add a link) 0

Lemma
WiW6 = W;Wi¢  EHé = HE)  EWig = Wii1E
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THE PROOF

Given a morphism ¢ = :m — n we define

-

E¢p = ?] Z( ‘m+1—n H¢—é\_i_—r§___"‘_x ‘m—n+1
(add a Ime (add a column)
W,-¢>: . m—n Z = 00
(add a link) 0

Lemma
WiwW;, = W;W; (i <j) EH = HE EW;, = Wi E

normal forms are in bijection with multirelations.
33/56



Now begins the novel part:
partial orders
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THE CATEGORY OF FINITE POSETS

We write FinPOSet for the PRO whose
> objects are integers
» a morphism f : [m] — [n] is a finite poset (f, <f) with m
chosen minimal elements and n chosen maximal elements
(both sets being distinct)
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THE CATEGORY OF FINITE POSETS

We write FinPOSet for the PRO whose
> objects are integers
» a morphism f : [m] — [n] is a finite poset (f, <f) with m
chosen minimal elements and n chosen maximal elements
(both sets being distinct)

For instance:
2] 0 1

/

f [ ]

35/56



COMPOSITION
[1]

2]

2]

[1]



[1]

2]

2]

[1]

oSO—e——O

SO——ee——O

COMPOSITION




COMPOSITION

[1] 0 0
[2] 0 1

[2] o/ 1

f .

(1] 0 0

(and tensor product is juxtaposition as usual) e



RELATIONS IN FinPOSet

An element of a poset is internal when it is not in the source or the
target.
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RELATIONS IN FinPOSet

An element of a poset is internal when it is not in the source or the
target.

A relation can be seen as a poset with no internal elements: we
have a faithful embedding Rel — FinPOSet.

0>1\
0 1 2
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RELATIONS IN FinPOSet

An element of a poset is internal when it is not in the source or the
target.

A relation can be seen as a poset with no internal elements: we
have a faithful embedding Rel — FinPOSet.

0>1\
0 1 2

So, it makes sense to build a presentation extending the
presentation for Rel.

37 /56



A PRESENTATION FOR FinPOSet

Theorem
The category FinPOSet is presented by the 3-polygraph with

> six 2-generators

p:2—=-1 n:0—-1 6:1-2 €:1-0 ~v:2—=2 oc:1—>1

Ab Y s ®oe

» relations

> (u,m,9,e,7) is a qualitative bialgebra (as for Rel)
» dependencies are transitive

T
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ABOUT THE PROOF

Notice that it cannot be done using a canonical rewriting system:

> + E> @ does not terminate
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ABOUT THE PROOF

Notice that it cannot be done using a canonical rewriting system:

+ E> G does not terminate
> GE> + does not allow to derive

: @ Q’?’Q
] 1

39 /56



What about presenting
increasing functions between posets?
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What about presenting
increasing functions between posets?

We extend this
to better understand
commutative monads.

40 /56



MONADS

Definition
A monad T on a category C is an endofunctor T : C — C together

with two natural transformations

w:TT =T n:ld=T
such that
mT
TTT—TT T 1T Tn T

=

TT T

N

o
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MONADS

Definition
A monad T on a category C is an endofunctor T : C — C together

with two natural transformations

w:TT =T n:ld=T
such that
mT
TTT—TT T 1T Tn T

a | \ L /

Example
The stream monad TA = AR with
na A — TA pua + TTA — TA

a — At.a s —  At.stt

41 /56



STRONG MONADS

Definition
A strength for a monad T on a monoidal category C is a natural

transformation
TAB : AR TB — T(A®B)

such that
(A2 B)® TC ThsB.C T((A® B)® C)
aA,B,TC\L iTaA,B,C

A®(B® TC)zor AR T(B® O) 7= T(A® (B® O))

TA,BRC
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STRONG MONADS

Definition
A strength for a monad T on a monoidal category C is a natural

transformation
TAB : AR TB — T(A®B)

such that

.
AR TTB-2Z T(A® TB) —22 TT(A® B)

A®p3l lliA®B

A® TB — T(A® B)
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STRONG MONADS

Definition
A strength for a monad T on a monoidal category C is a natural

transformation
TAB : AR TB — T(A®B)

such that

by A
19 TA—A T(1o A) Ao B-"2" Ag TB

TA,B
iT)\A k i

TA T(A® B)

ATA
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STRONG MONADS

Definition
A strength for a monad T on a monoidal category C is a natural

transformation
TAB : AR TB — T(A®B)

such that

by A
19 TA—A T(1o A) Ao B-"2" Ag TB

TA,B
iT)\A k i

TA T(A® B)

ATA

Definition
A costrength 745 : TA® B — T(A® B) is defined dually.

42 /56



STRONG MONADS

Example
The stream monad is strong with

Tas : AxXTB — T(AxB)
(a,s) ~— At.(a,st)
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STRONG MONADS

Example
The stream monad is strong with

Tas : AxXTB — T(AxB)
(a,s) ~— At.(a,st)

where
.
AR TTB 22 T(A® TB) —2£ TT(A® B)
A®“BJ/ lﬂA@B
A® TB o T(A® B)
means

At.(At1ta.(a, stito))tt = At.(a, (At .st't))t)

43 /56



COMMUTATIVE MONADS

Definition
A commutative monad T : C — C is a monad together with a
strength and a costrength

TA7BZA®TB—> T(A@B) UA7B:TA®B—>T(A®B)
such that

T
T(A® TB) —22 TT(A® B)

TA® TB T(A® B)

k %

T(TA® B) 7~ TT(A® B)
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COMMUTATIVE MONADS

Example
The stream monad:

T
T(A® TB)—=2 TT(A® B)

y W

TA® TB T(A® B)

T(TA® B) 7~ TT(A® B)

means

At.(At1to.(sit1, ot2))tt = At.(Ataty.(sit1, Sptp))tt

45 /56



IN STRING DIAGRAMS

We can try to draw these laws using string diagrams:
» a monoidal category is a (pseudo-)monoid in Cat:

®:CxC—C I:1¢C
d e
\T/ ®
! !

satisfying associativity and unitality

Y

(actually up to iso)

46
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IN STRING DIAGRAMS

We can try to draw these laws using string diagrams:
S 4

» a monoidal category is a (pseudo-)monoid in Cat: \?/ (T
|4 4

|4
» amonad T :C — C: r* together with
e

IR ENRE
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IN STRING DIAGRAMS

We can try to draw these laws using string diagrams:
S 4

» a monoidal category is a (pseudo-)monoid in Cat: \?/ (T
|4 4

|4
» amonad T :C — C: r* together with
e

LN
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IN STRING DIAGRAMS

We can try to draw these laws using string diagrams:
S 4

» a monoidal category is a (pseudo-)monoid in Cat: \?/ (T
|4 4

|4
» amonad T :C — C: r* together with
e

LN

satisfying

(these define exactly functions between totally ordered sets)

46
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IN STRING DIAGRAMS

> the strength Tap : A® TB = T(A® B)

e ﬁ

7 /56



IN STRING DIAGRAMS

> the strength Tap : A® TB = T(A® B)

=

looks like an increasing function between posets:

c d

| C\/d
/
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IN STRING DIAGRAMS

and actually all the laws of commutative monads are compatible
with this interpretation:

T T
AR TTB—2E T(A® TB) —=2 TT(A® B)

A®/},Bl l#A@B

A@ TB T(A® B)

TA,B

becomes
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IN STRING DIAGRAMS

and actually all the laws of commutative monads are compatible
with this interpretation:

T,
T(A® TB) —% TT(A® B)

VA, TB WA

TA® TB T(A® B)

TTA,B %ﬁ‘f

T(TA® B) *>TTA®B

becomes L{ \{

A

48 /56



MAKING THIS PRECISE

We define the PRO PTrees as the monoidal subcategory of
FinPOSet whose morphisms m — n are posets with m minimal
and n maximal chosen elements which are planar forests:
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MAKING THIS PRECISE

We define the PRO PTrees as the monoidal subcategory of
FinPOSet whose morphisms m — n are posets with m minimal
and n maximal chosen elements which are planar forests:

> a poset is a forest when

a<cAb<c = a<bVvb<a
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MAKING THIS PRECISE

We define the PRO PTrees as the monoidal subcategory of
FinPOSet whose morphisms m — n are posets with m minimal
and n maximal chosen elements which are planar forests:

> a poset is a forest when
a<cAb<c = a<bvb<a
» planar means that it can be drawn without crossings:

0 1

X

° ° is forbidden

/

0

49 /56



A PRESENTATION OF PTrees

Proposition
The PRO PTrees is presented by the 3-polygraph with

> three 2-generators

» three relations
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MAKING THIS PRECISE

We define the monoidal 2-category IncPTrees by considering
PTrees (planar forests) together with increasing functions between
them, which preserve the number of trees.

Theorem

The category IncPTrees is presented by the 3-polygraph with

> three 2-generators: \7) ?)
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> three 2-generators: \7) ?) +

> 3-ggnerators:

=) =

>% Y=Y



MAKING THIS PRECISE

We define the monoidal 2-category IncPTrees by considering
PTrees (planar forests) together with increasing functions between
them, which preserve the number of trees.

Theorem
The category IncPTrees is presented by the 3-polygraph with

> three 2-generators: \7) ?) +

> 3-generators:

oYy ps

51/56



MAKING THIS PRECISE

We define the monoidal 2-category IncPTrees by considering
PTrees (planar forests) together with increasing functions between
them, which preserve the number of trees.

Theorem
The category IncPTrees is presented by the 3-polygraph with

> three 2-generators: L'J ?

» 3-generators

» relations: the axioms of commutative monads

51/56



MAKING THIS PRECISE

Theorem
A strong monoidal functor IncPTrees — Cat

is the same as
a category together with a commutative monad
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THE COHERENCE THEOREM

Theorem (MacLane)
In a monoidal category, “all diagrams” commute.

(Ao eB) ot 2sB)ec

QA B,C

(A (l®B))®C A® (B® C)

QA I®B,C
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COHERENCE THEOREM
FOR COMMUTATIVE MONADS

Theorem

Given a monoidal category C with a strong monad there are as
many canonical morphisms in C(A, B) as there are functions from
A to B seen as posets:

T(TTA® (TI®B)) — T(A® TB)
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COHERENCE THEOREM
FOR COMMUTATIVE MONADS

Theorem

Given a monoidal category C with a strong monad there are as
many canonical morphisms in C(A, B) as there are functions from
A to B seen as posets:

T(TTA® (TI® B)) — T(A® TB)
A 3R A B

g
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COHERENCE THEOREM
FOR COMMUTATIVE MONADS

Theorem

Given a monoidal category C with a strong monad there are as
many canonical morphisms in C(A, B) as there are functions from
A to B seen as posets:

T(TTA® (TI®B)) — T(A® TB)
A B A
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TOWARDS MONADIC COERCIONS?

In a programming language, if s : TN is a stream of integers, one
would like to automatically make sense of programs such as

s: TN = 3+s: TN
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TOWARDS MONADIC COERCIONS?

In a programming language, if s : TN is a stream of integers, one
would like to automatically make sense of programs such as

s: TN = 3+s: TN

A monad is characterized by:

> its return (or unit): pa: A— TA

» its bind: S4: (A— TB) — (TA— TB)
We would like to implicitly use those as coercions, but it would
have to be done in a coherent way!
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CONCLUSION

We have shown that
higher-dimensional rewriting methods
can be helpful to
better understand algebraic structures.

But lots remains to be done...
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