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Goals

The goal is to define type theories whose models are (weak higher) (structured)
categories

categories cartesian closed categories

weak ω-categories weak cartesian closed ω-categories
⌜

This is based on joint work with Éric Finster and Thibaut Benjamin:
· A type-theoretical definition of weak ω-categories, LICS 2017.
· Globular weak ω-categories as models of a type theory, Higher Struct. 2024.

Based on earlier work by Ara, Batanin, Gothendieck, Leinster, Maltsiniotis, ...
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Main ideas

What I want to convey here is that in order to define weak higher structures
· it is often easier to be unbiased / generic / non parcimonious
· it is enough to formally make generic composition situations contractible
· this can be done using type theory
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Part I

Categories
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Categories

A category is a graph equipped with composition and identities such that

h ◦ (g ◦ f ) = (h ◦ g) ◦ f id ◦f = f = f ◦ id

Why is this a nice definition?

We have a well-defined notion of composition for composable morphisms!

x y z w u
f g h i

e.g.
i ◦ (h ◦ (g ◦ f )) or ((id ◦i) ◦ id) ◦ (h ◦ (g ◦ ((id ◦ id) ◦ f )))
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Categories

In some sense, what we really want to implement is an unbiased notion of
category where we have a unique composite

x0 x1 · · · xn
f1 f2 fn

for every n ∈ N but
· the binary compositions and identities are enough to generate all of them,
· the associativity and unitality axioms ensure uniqueness of composite.
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Categories

We only want compositions for composable situations such as

x0 x1 · · · xn
f1 f2 fn

but not

x y z
f g

or

y

x

z

f

g

or x y
f

g

nor

x

f

which could mean f or f ◦ f or f ◦ f ◦ f
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Categories

In a situation such as

x

f

if we want to compute
f ◦ f ◦ f

we can consider the composite of

x0 x1 x2 x3
f1 f2 f3

and then instantiate to xi = x and fi = f .
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Judgments in type-theory

· Γ ≡ x1 : A1, . . . , xn : An is a well-formed context:

Γ ⊢

· A is a well-formed type in context Γ:

Γ ⊢ A

· t is a term of type A in context Γ:

Γ ⊢ t : A

· t and u are equal terms of type A in context Γ:

Γ ⊢ t = u : A
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A type-theoretic definition of categories

Cartmell, 1984:
· type constructors:

Γ ⊢
Γ ⊢ ⋆

Γ ⊢ x : ⋆ Γ ⊢ y : ⋆

Γ ⊢ x → y

· term constructors:
x : ⋆ ⊢ id(x) : x → x

x : ⋆, y : ⋆, f : x → y, z : ⋆,g : y → z ⊢ comp(f ,g) : x → z

· axioms:
Γ ⊢ f : x → y

Γ ⊢ comp(id(x), f ) = f

Γ ⊢ f : x → y

Γ ⊢ comp(f , id(y)) = f
. . .

· plus “standard rules” (contexts, weakening, substitutions, . . . )
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Models of the type theory

A model of the type theory consists in interpreting
· closed types as sets,
· closed terms as elements of their type,

in such a way that axioms are satisfied.

A model of the previous type theory consists of
· a set J⋆K
· for each x, y ∈ J⋆K, a set J→Kx,y
· for each x ∈ J⋆K, an element JidKx ∈ J→Kx,x
· . . .

In other words, a model of the type theory is precisely a category
(and a morphism is a functor).
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Unbiased definition

Since the composition is associative for categories, the composite of any diagram
like

x0 x1 . . . xn
f1 f2 fn

is uniquely defined.

So, instead of having a binary composition and identities, we could have a more
general rule

x0 : ⋆, x1 : ⋆, f1 : x0 → x1, . . . , xn : ⋆, fn : xn−1 → xn ⊢ comp(f1, . . . , fn) : x0 → xn

and associated axioms.

The models of this unbiased definition would still be categories.
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Part II

A type theory for globular sets
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Higher categories

The definition of ω-category generalizes categories by taking higher cells into
account.
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Higher categories

The definition of ω-category generalizes categories by taking higher cells into
account.

In such a category, you have
· 0-cells (objects): x

· 1-cells (morphisms):
x y

f

· 2-cells: x y
f

g
α ⇓

· 3-cells:
x y

f

g

α ⇓
F
⇛⇓ β

· . . .
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Higher categories

The definition of ω-category generalizes categories by taking higher cells into
account.

In such a category, you have compositions

x y z
f

f ′

g

g′
α β ⇝ x z

f∗g

f ′∗g′

α∗0β

x y

f

g

h

α

β
⇝ x y

f

h

α∗1β

More generally, n-cells α and β can be composed in dimension i, with 0 ≤ i < n. 13 / 79



Higher categories

The definition of ω-category generalizes categories by taking higher cells into
account.

In such a category, you have axioms such as
· associativity of composition and neutrality of identities,
· exchange laws:

x y z

f

g

h

f ′

g′

h′

α

β

α′

β′

(more on this later)
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Globular sets

Definition
A globular set consists of

· a set G, and
· for every x, y ∈ G, a globular set Gxy .

For instance

x y z
f

g

h
α

corresponds to

G = {x, y, z} Gxy = {f ,g} (Gxy)
f
g = {α} ((Gxy)

f
g)

α
α = ∅ . . .
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Globular sets

Definition
A globular set consists of

· a set G, and
· for every x, y ∈ G, a globular set Gxy .

Alternatively, this can be defined as
· a sequence of sets Gn of n-cells for n ∈ N,
· with source and target maps

sn, tn : Gn+1 → Gn

satisfying suitable axioms.

G0 G1 G2 · · ·
s0

t0

s1

t1

s2

t2 14 / 79



Globular sets

Proposition
Globular sets are precisely the models of the type theory

Γ ⊢
Γ ⊢ ⋆

Γ ⊢ t : A Γ ⊢ u : A
Γ ⊢ t→

A
u

. . .
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Globular sets

Proposition
Globular sets are precisely the models of the type theory

Γ ⊢
Γ ⊢ ⋆

Γ ⊢ t : A Γ ⊢ u : A
Γ ⊢ t→

A
u

. . .

Remark
A finite globular set

x y z
f

g

h
α

can be encoded as a context

x : ⋆, y : ⋆, z : ⋆, f : x →
⋆
y,g : x →

⋆
y,h : z→

⋆
y, α : f →

x→
⋆
y
g
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Globular sets

Proposition
Globular sets are precisely the models of the type theory

Γ ⊢
Γ ⊢ ⋆

Γ ⊢ t : A Γ ⊢ u : A
Γ ⊢ t→

A
u

. . .

Proposition
The syntactic category (of contexts and substitutions) of this type theory is the
opposite of the category of finite globular sets.
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Part III

Weak higher categories
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Weak higher categories

A strict higher category is a globular set with compositions and satisfying axioms:
associativity, unitality and exchange.

In a weak higher category, all the axioms should hold up to a higher cell, which
should be unique up to higher cells.

Those can be thought of as an intensional variant of higher categories.
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Bicategories

The notion of bicategory is defined almost as for 2-categories, excepting that we
replace the requirement that composition of 1-cells is associative and unital by

· weak associativity: given

x y z wa b c

there is an invertible 2-cell, the associator,

αa,b,c : (a ∗0 b) ∗0 c⇒ a ∗0 (b ∗0 c)

· weak unitality: given
x ya

there are invertible 2-cells, the left and right unitors,

λa : idx ∗0a⇒ a ρa : a ∗0 idy ⇒ a
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Bicategories: axioms

We also need to ensure that those satisfy suitable axioms,
the pentagon and the triangle:

((a ∗ b) ∗ c) ∗ d (a ∗ (b ∗ c)) ∗ d

a ∗ ((b ∗ c) ∗ d)

(a ∗ b) ∗ (c ∗ d) a ∗ (b ∗ (c ∗ d))

αa∗b,c,d

αa,b,c∗d

αa,b∗c,d

a∗αb,c,d

αa,b,c∗d

(a ∗ id) ∗ b a ∗ (id ∗b)

a ∗ b
ρa∗b

αa,id,b

a∗ρb
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Bicategories: coherence

This notion is pleasant because

Theorem (Mac Lane’s coherence theorem)
Any two ways of composing 1-cells are isomorphic and there is one such
structural isomorphism.

For instance,
f1 ∗ (f2 ∗ (f3 ∗ f4)) ∼= (f1 ∗ f2 ∗ f3) ∗ (id ∗f4)
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Tricategories

Defining tricategories can be done starting from the definition of 3-categories
and

1. replacing all equalities between 0-, 1- and 2- cells by 1-, 2- and 3- cells,
2. making those coherent by adding the suitable axioms.

For instance, we replace associativity of composition between 1-cells

(f ∗0 g) ∗0 h = f ∗0 (g ∗0 h)

by an invertible associator 2-cell

αf ,g,h : (f ∗0 g) ∗0 h⇒ f ∗0 (g ∗0 h)

but by “invertible”, we mean here that αf ,g,h should be an equivalence:

η : Id⇛ αf ,g,h ∗1 αf ,g,h ε : αf ,g,h ∗1 αf ,g,h ⇛ Id

and so on...
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Tricategories

The definition of tricategories takes roughly 4 pages with axioms such as

=
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Tetracategories

The process can be generalized to define weak n-categories.

No one has ever tried to give a definition of a pentacategory in this way.

Instead of explicitly trying to give the axioms of weak higher categories, one
should try to find a systematic way of generating those.

If we go all the way, we obtain weak ω-categories aka (∞, ω)-categories.

In those, we never have axioms, only higher cells. This can be thought of as very
constructive definition: we want to have witnesses for all the laws.
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The general scheme

Instead of trying to carefully craft compositions and coherences, it is actually
easier to take an unbiased approach.

The general pattern is that
· we identify situation that should be contractible (the pasting schemes)
· and formally make them contractible
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Part IV

Pasting schemes
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Pasting schemes

We now want to define pasting schemes which are diagrams for which we expect
to have a composition. For instance,

x y z w

f

f ′

f ′′

α

β

g h

is a pasting scheme, but not

x y z
f

g or x y z
f g
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Disks

Given n ∈ N, the n-disk Dn is the globular set corresponding to a general n-cell:

x x y x y x y⇛

D0 D1 D2 D3

Those are basic building blocks of globular sets: any globular set can be obtained
by gluing such disks.

(those are the representable globular sets)
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Pasting schemes

A pasting scheme is a globular set

x y z w

f

f ′

f ′′

α

β

g h

· Grothendieck: which can be obtained as a particular colimit of disks

x y x y y z z w

x y

f

f ′ f ′

f ′′

g hα

β

f ′ y z
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Pasting schemes

A pasting scheme is a globular set

x y z w

f

f ′

f ′′

α

β

g h

· Batanin: which is described by a particular tree

x2
0 x2

1

x1
0 x1

1 x1
2

x0
0

α β

f

f ′

f ′′
g h

x

y z

w
28 / 79



Pasting schemes

A pasting scheme is a globular set

x y z w

f

f ′

f ′′

α

β

g h

· Finster-Mimram: which is “totally ordered”
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Order relation

We can define a preorder ◁ on the cells of a globular set by

source(x) ◁ x and x ◁ target(x)

For the globular set

x y z w

f

f ′

f ′′

α

β

g h

we have

x ◁ f ◁ α ◁ f ′ ◁ β ◁ f ′′ ◁ y ◁ g ◁ z ◁ h ◁ w
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Characterization of pasting schemes

Theorem
A globular set is a pasting scheme if and only if it is

· non-empty,
· finite, and
· the relation ◁ is a total order.
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Construction of pasting schemes

A pointed globular set is a globular set with a distinguished cell.

Theorem
A pasting scheme is a pointed globular set which can be constructed as follows:

· we start from a 0-cell x
· we can add a new (n+1)-cell and its new target,

its source being the distinguished n-cell

x y
f

⇝ x y
f

g

α

· or the distinguished cell becomes the target of the previous one

x y
f

g

α ⇝ x y
f

g

α
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Construction of pasting schemes

The construction of the pasting scheme

x

y z w

f

f ′

f ′′

α

β

g h

corresponds to its order

x

◁ f ◁ α ◁ f ′ ◁ β ◁ f ′′ ◁ y ◁ g ◁ z ◁ h ◁ w
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Type-theoretic pasting schemes

Now, recall that a pasting scheme

x y z w

f

f ′

f ′′

α

β

g h

can be seen as a context

x : ⋆, y : ⋆, f : x → y, f ′ : x → y,
α : f → f ′, f ′′ : x → y, β : f ′ → f ′′,
z : ⋆,g : y → z,w : ⋆,h : z→ w
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Type-theoretic pasting schemes

A context Γ (seen as a globular set) is a pasting scheme iff

Γ ⊢ps

is derivable with the rules

x : ⋆ ⊢ps x : ⋆
Γ ⊢ps x : ⋆

Γ ⊢ps

Γ ⊢ps x : A
Γ, y : A, f : x →

A
y ⊢ps f : x →

A
y

Γ ⊢ps f : x →
A
y

Γ ⊢ps y : A
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Type-theoretic pasting schemes

Note that with those rules
· the order of cells matters:

x y z
f

g

g
α

· because of this we can easily check
· proofs are canonical
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Source and targets

A pasting scheme Γ

x y z w

f

f ′

f ′′

α

β

g h

has
· a source ∂−(Γ):

x y z w

f

g h

· a target ∂+(Γ):
x y z w

f ′′

g h

both of which can be defined by induction on contexts.
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Part V

A type-theoretic definition of weak
ω-categories
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Type-theoretic ω-categories

We expect that in an ω-category every pasting scheme has a composite:

Γ ⊢ps Γ ⊢ A
Γ ⊢ cohΓ,A : A

You can derive expected operations, such as composition:

x : ⋆, y : ⋆, f : x →
⋆
y, z : ⋆,g : y →

⋆
z ⊢ coh : x →

⋆
z

However, you can derive too much:

x : ⋆, y : ⋆, f : x →
⋆
y ⊢ coh : y →

⋆
x

We have in fact a definition of ω-groupoids
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Type-theoretic ω-categories

We need to take care of side-conditions and in fact split the rule in two:
· operations:

Γ ⊢ps Γ ⊢ t→
A
u ∂−(Γ) ⊢ t : A ∂+(Γ) ⊢ u : A

Γ ⊢ cohΓ,t→
A
u : t→

A
u

whenever

FV(t) = FV(∂−(Γ)) and FV(u) = FV(∂+(Γ))

· coherences:
Γ ⊢ps Γ ⊢ A
Γ ⊢ cohΓ,A : A

whenever
FV(A) = FV(Γ)
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Type-theoretic ω-categories

Definition
An ω-category is a model of this type theory.

Theorem
This definition coincides with the one of Grothendieck-Maltsiniotis.
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Type-theoretic ω-categories

A typical example of operation is composition

x y

f

f ′

f ′′

α

β
⊢ coh : x y

f

→ x y

f ′′

(this coherence is noted “comp” in the following).
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Type-theoretic ω-categories

A typical example of coherence is associativity

x y z w
f g h

⊢

coh : x w
comp(comp(f ,g),h)

→ x w
comp(f ,comp(g,h))
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Coherences are reversible

Note that if we derive a coherence
Γ ⊢ps Γ ⊢ A
Γ ⊢ cohΓ,A : A

with FV(A) = FV(Γ)

where
A = t→ u

there is also one with
A = u→ t

Definition
An n-cell f : x → y is reversible when there exists

· an n-cell g : y → x and
· reversible (n+1)-cells

α : f ∗n−1 g→ idx β : g ∗n−1 f → idy
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“Demo”

· identity 1-cells
coh id {a : .} : a -> a

· composition of 1-cells:
coh co {a b c : .} (f : a -> b) (g : b -> c) : a -> c

· associativity of composition of 1-cells:
coh assoc {a b c d : .} (f : a -> b) (g : b -> c) (h : c -> d) :

co (co f g) h -> co f (co g h)

· . . .
· no inverses:
coh inv {a b : .} (f : a -> b) : b -> a

produces and error!
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Part VI

Unbiased cartesian closed categories
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Next steps

Previous work is nice but
· the type theory is very limited (no Σ- or Π-types, etc.)
· we would like to be able to consider categories with structure

([locally] cartesian [closed]...)

Here
1. we restrict to 1-categories
2. we extend with products and internal homs
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Unbiased

cartesian closed

1-categories

If we restrict our theory for weak ω-categories to consider that 2-cells (and higher
are identities), we obtain a theory for unbiased categories:

x y z w
f g h ⊢ coh : x → w

Our aim is to extend this to have a definition for unbiased cartesian closed
categories (which could hopefully extend in higher dimensions).
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Unbiased cartesian closed 1-categories

There are various definition of cartesian closed categories:
· the traditional categorical definition
· simply-typed λ-calculus
· combinatory logic (I, K, S)
· categorical combinators
· ...

We want here
· an agnostic approach in which we could implement most of the above
· a “nice” definition which does not require substitution/α-conversion, weird

rules, etc.
· on the long term, we would like an “equality-free” definition of MLTT...
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Simply-typed λ-calculus

We consider simply-typed λ-calculus where types are

A ::= X | A→ B | . . .

terms are
t ::= x | λxA.t | t u

rules are

Γ, x : A,∆ ⊢ x : A

Γ ⊢ t : A→ B Γ ⊢ u : A
Γ ⊢ t u : B

Γ, x : A ⊢ t : B
Γ ⊢ λxA.t : A→ B

and equality is extensional equality

(λxA.t)u = t[u/x] t = λxA.t x

Note: we consider the implicational fragment for simplicity
49 / 79



Simply typed λ-calculus

A λ-term is a normal form when it is normal with respect to β-reduction

(λxA.t)u ⇝ t[u/x]

Theorem
Any typable λ-term is β-equivalent to a unique (η-long) normal form.

Such a term is of the from

λx1x2 . . . xn.xit1t2 . . . tk

with ti normal forms.
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Contractible types

We say that a type is
· propositional when there is at most one inhabitant

(modulo extensional equality)
· contractible when there is exactly one inhabitant

For instance:
· (A→ B) → A→ B is

contractible

· B→ A is

propositional

· (A→ A) → (A→ A) is

not contractible
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Komori’s conjecture

We write A ≤ B when B can be obtained from A by replacing variables, for instance

A→ A ≤ (A→ B) → (A→ B)

From Yuichi Komori. BCK algebras and lambda calculus. In Proceedings of the
10th Symposium on Semigroups, pages 5–11, 1987:
Conjecture
A minimal provable type is contractible.
For instance,

(A→ A) → (A→ A)

is not contractible, but this is the case of the smaller

(A→ B) → A→ B

This does not hold, but we will see that contractible types still generate all proofs.
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Komori’s conjecture

The conjecture does hold for formulas of depth ≤ 2

but various counter-examples to the conjecture were found:
· Mint’90: ((((A→ B) → A) → A) → B) → B
· Aoto’99: ((A→ B) → A) → ((A→ B) → B)
fun x -> fun y -> y (x (fun z -> y z))

fun x -> fun y -> y (x (fun z -> y (x (fun z -> y z))))

fun x -> fun y -> y (x (fun z -> y (x (fun z -> y (x (fun z -> y z))))))

...
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Propositional formulas

People tried to come up with conditions which would imply that a formula has at
most one proof:

· Hirokawa’93:
in implication fragments of BCI and BCK (no contraction), minimal inhabited
types are contractible.

· Aoto’99:
provable without non-prime contraction, i.e. an implication introduction rule
whose canceled assumption differs from a propositional variable and
appears more than once in the proof.
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Propositional formulas

Another trend of work is in
· Mint’82, Babaev&Solov’ev’82 (coherence for CCC):

a formula which is balanced (no variable occurs more than twice) admits at
most one inhabitant

For instance,
· (A→ B) → (A→ B) is balanced and thus contractible
· (A→ B) → (B→ A) is balanced by not inhabited
· (A→ B→ C) → (A→ B) → A→ C is not balanced but contractible (this is S!)
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Propositional formulas

This is generalized in
· Takahito Aoto and Hiroakira Ono. Uniqueness of normal proofs in
{→,∧}-fragment of NJ. Technical Report IS-RR-94-0024F, School of
Information Science, JAIST, 1994. Research report.

· Pierre Bourreau and Sylvain Salvati. Game semantics and uniqueness of type
inhabitance in the simply-typed λ-calculus. In 10th International Conference,
TLCA 2011, Novi Sad, Serbia, June 1-3, 2011. Proceedings, volume 6690 of LNCS,
pages 61–75. Springer, 2011.

· Sabine Broda and Luıı́s Damas. On long normal inhabitants of a type. J. Log.
Comput., 15(3):353–390, 2005.
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Propositional formulas

A type is non-negatively duplicating when every variable has at most one
negative occurrence, e.g.

S : (A+ → B+ → C−) → (A+ → B−) → A− → C+

Theorem
A non-negatively duplicating type is propositional.

Proof.
By cut-elimination, we can look for a proof which corresponds to a λ-term which
is β-normal and η-long (we take as many variables as there are arrows), i.e. terms
of the form

λx1x2 . . . xn.xit1t2 . . . tk
the choice of the head variable must have a type whose target is the negative
occurrence of the variable being proved.
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Propositional formulas

Proof search in βη-long form can be performed with
· the introduction

Γ, x1 : A1, . . . , xn : An ⊢ t : B
Γ ⊢ λx1 . . . xn.t : A1 → . . . → An → B

(→I)

where B is not an arrow,
· the elimination

Γ ⊢ t1 : A1 . . . Γ ⊢ tn : An
Γ ⊢ x t1 . . . tn : X

(→E)

with x : A1 → . . . → An → X in Γ.
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Propositional formulas

⊢

λfgx.

f

x (g

x

)

: (A+ → B+ → C−) → (A+ → B−) → A− → C+
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Γ ⊢

x

: A+ Γ ⊢

g

x

: B+
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x (g

x
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Propositional formulas

Γ ⊢ x : A+
Γ ⊢ x : A+

Γ ⊢ g x : B+

f : A+ → B+ → C−,g : A+ → B−, x : A− ⊢ f x (g x) : C+

⊢ λfgx.f x (g x) : (A+ → B+ → C−) → (A+ → B−) → A− → C+
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Contractible formulas

A (apparently new) remark is that in the rule

Γ ⊢ t1 : A1 . . . Γ ⊢ tn : An
Γ ⊢ x t1 . . . tn : X

(→E)

(with x : A1 → . . . → An → X in Γ), we never use x in the ti (otherwise the proof
would be “infinite” by determinism). Because of this,

Proposition
Contractibility is (very easily) decidable.
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Pasting types

Definition
A type A is a pasting type when it is non-negatively duplicated and inhabited.

Proposition
Any pasting type is contractible.

Definition
We say that

A1, . . . ,An ⊢ A

is a pasting scheme when
A1 → . . . → An → A

is a pasting type.
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Pasting types

The rules for pasting types are

Θ, tgt(A); Γ,A ⊢ps B
Θ; Γ ⊢ps A→ B

when tgt(A) ̸∈ Θ, and

Θ; Γ, Γ′ ⊢ A1 . . . Θ; Γ, Γ′ ⊢ An
Θ; Γ,A1 → . . . → An → A, Γ′ ⊢ A

when A is a variable.

This is in between non-negatively duplicated and deterministic.
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CCCaTT

The type theory CCCaTT has rules

Γ ⊢ ⋆

Γ ⊢ a : ⋆ Γ ⊢ b : ⋆

Γ ⊢ a→ b : ⋆

Γ ⊢ a : ⋆

Γ ⊢ a

Γ ⊢ps a
Γ ⊢ coh : a

Γ ⊢ps a Γ ⊢ t : a Γ ⊢ u : a
Γ ⊢ t = u : a

plus
· = is a congruence
· closure under substitution so that

∆ ⊢ σ : Γ Γ ⊢ t : a
∆ ⊢ t[σ] : a[σ]

is derivable
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Substitutions

Note that substitutions can replace both types and morphisms.

For instance, we have a substitution

a

f

→ a b c
f g

(a : ⋆, f : a→ a) ⊢ ⟨a,a,a, f ,g⟩ : (a : ⋆,b : ⋆, c : ⋆, f : a→ b,g : b→ c)
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CCCaTT

For instance, we can derive
· I = λx.x : A→ A
· K = λxy.x : A→ B→ A
· S = λfgx.fx(gx) : (A→ B→ C) → (A→ B) → A→ C
· application f : A→ B, x : A ⊢ fx : B
· expected equalities such as I x = x

https://cccatt.mimram.fr/
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Combinatory logic

Combinatory logic is defined as the closure under applications of I, K and S.

With rules

I t = t K tu = t S tuv = tv(uv)

along with
· S(S(K S)(S(K K)(S(K S)K)))(K K) = S(K K)
· S(S(K S)K)(K I) = I
· S(K I) = I
· S(K S)(S(K K)) = K
· S(K(S(K S)))(S(K S)(S(K S))) = S(S(K S)(S(K K)(S(K S)(S(K(S(K S))) S))))(K S)
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Combinatory logic vs λ-calculus

We can translate from CC to λ:

I = λx.x K = λxy.x S = λfgx.fx(gx)

On the other side, we have that Jλx.tK = Λx.JtK with

Λx.x = I
Λx.t = K t for x ̸∈ FV(t)

Λx.t u = S(Λx.t)(Λx.u) otherwise

For instance,
Jλxy.xK = S (K K) I

̸= K
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Adding products

Type isomorphism in cartesian closed categories is the congruence generated by

(A× B)× C = A× (B× C) 1 × A = A
A× B = B× A A× 1 = A

A→ (B× C) = (A→ B)× (A→ C) A→ 1 = 1
(A× B) → C = A→ B→ C 1 → A = A

We consider the rewriting system

A→ (B× C) ⇒ (A→ B)× (A→ C) A→ 1 ⇒ 1
(A× B) → C ⇒ A→ B→ C 1 → A⇒ A

A product A1 × . . .× An is pasting when all the Ai are.
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Adding products

For combinators we should add

P : A→ B→ A× B P1 : A× B→ A P2 : A× B→ A T : 1

along with the obvious equations

S(K(S(K(S(K P1)))))(S(K S)(S(K P))) = K
S(K(S(K(S(K P2)))))(S(K S)(S(K P))) = K I

S(S(K S)(S(K(S(K P)))(S(K P1))))(S(K P2)) = I
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The theorem

We have axiomatized cartesian closed categories.

Theorem
There is a bijection between

· terms ⊢ t : A modulo equality (in contexts containing only type definitions),
· λ-terms of type A modulo βη-equality.

Proof.
⇒ Pasting types are contractible so they correspond to (unique) λ-terms.
⇐ λ-terms can be implemented with combinators, which can be derived
in CCCaTT1.
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Categorical combinators
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Abstraction vs meta-abstraction

Because of ap we have that if we have a coherence

Γ ⊢ coh : A→ B

then we have a coherence
Γ, x : A ⊢ coh : B

coh ap {a b : .} (f : a -> b) (x : a) : b

coh I {a : .} : a -> a

let id {a : .} (x : a) := ap I x

The converse is true, but at the “meta-level”, which corresponds to λ-abstraction!
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Unbiasing equalities

Equalities are (for now) imposed to be congruences, e.g.

Γ ⊢ t = u Γ ⊢ u = v
Γ ⊢ t = v

or
Γ ⊢ t = u Γ ⊢ t1 = u1 . . . Γ ⊢ tn = un

Γ ⊢ t⟨t1, . . . , tn⟩ = u⟨u1, . . . ,un⟩
e.g.

coh ap-cong

{a b : .}

{t t’ : a → b} {u u’ : a}

(p : t = t’) (q : u = u’) : ap t u = ap t’ u’

which is biased. . . We can also give unbiased rules!
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Interesting subsystems

Interesting subsystems can be defined including
· monoidal categories
· symmetric monoidal categories
· cartesian categories
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Toward higher dimensions

Claim
We can also define higher-dimensional pasting schemes in order to define
cartesian closed (∞, 1)-categories.
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Part VII

Conclusion

76 / 79



We have defined simply-typed λ-calculus without anything which looks like
reduction / evaluation / substitution.

As being unbiased, this unifies many known definitions of λ-calculus.

This should have applications in homotopy type theory!
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This is implemented at

https://cccatt.mimram.fr/
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Questions?

79 / 79


	Categories
	A type theory for globular sets
	Weak higher categories
	Pasting schemes
	A type-theoretic definition of weak -categories
	Unbiased cartesian closed categories
	Conclusion

