

Type theoretic definitions of structured weak higher categories

Samuel Mimram

École polytechnique

MathStic Category Theory Workshop June 16, 2025

Goals

The goal is to define type theories whose models are (weak higher) (structured) categories

This is based on joint work with Éric Finster and Thibaut Benjamin:

- \cdot A type-theoretical definition of weak ω -categories, LICS 2017.
- \cdot Globular weak ω -categories as models of a type theory, Higher Struct. 2024.

Based on earlier work by Ara, Batanin, Gothendieck, Leinster, Maltsiniotis, ...

Main ideas

What I want to convey here is that in order to define weak higher structures

- \cdot it is often easier to be unbiased / generic / non parcimonious
- $\cdot\,$ it is enough to formally make generic composition situations contractible
- $\cdot\,$ this can be done using type theory

Part I

Categories

A category is a graph equipped with composition and identities such that

$$h \circ (g \circ f) = (h \circ g) \circ f$$
 id $\circ f = f = f \circ id$

Why is this a nice definition?

A category is a graph equipped with composition and identities such that

$$h \circ (g \circ f) = (h \circ g) \circ f$$
 id $\circ f = f = f \circ id$

Why is this a nice definition?

We have a well-defined notion of composition for composable morphisms!

$$x \xrightarrow{f} y \xrightarrow{g} z \xrightarrow{h} w \xrightarrow{i} u$$

e.g.

 $i \circ (h \circ (g \circ f))$ or $((id \circ i) \circ id) \circ (h \circ (g \circ ((id \circ id) \circ f)))$

In some sense, what we really want to implement is an **unbiased** notion of category where we have a unique composite

$$x_0 \xrightarrow{f_1} x_1 \xrightarrow{f_2} \cdots \xrightarrow{f_n} x_n$$

for every $n \in \mathbb{N}$ but

- · the binary compositions and identities are enough to generate all of them,
- · the associativity and unitality axioms ensure uniqueness of composite.

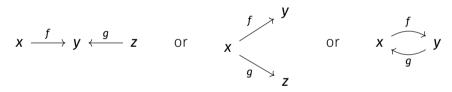
We only want compositions for composable situations such as

$$x_0 \xrightarrow{f_1} x_1 \xrightarrow{f_2} \cdots \xrightarrow{f_n} x_n$$

We only want compositions for composable situations such as

$$x_0 \xrightarrow{f_1} x_1 \xrightarrow{f_2} \cdots \xrightarrow{f_n} x_n$$

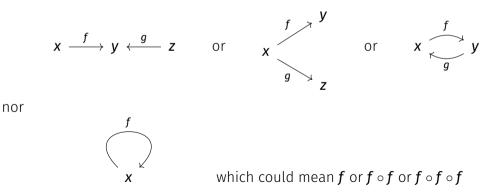
but not



We only want compositions for composable situations such as

$$x_0 \xrightarrow{f_1} x_1 \xrightarrow{f_2} \cdots \xrightarrow{f_n} x_n$$

but not



In a situation such as

if we want to compute

 $f \circ f \circ f$

we can consider the composite of

$$x_0 \xrightarrow{f_1} x_1 \xrightarrow{f_2} x_2 \xrightarrow{f_3} x_3$$

and then instantiate to $x_i = x$ and $f_i = f$.

Judgments in type-theory

· $\Gamma \equiv x_1 : A_1, \dots, x_n : A_n$ is a well-formed context:

Г⊢

· **A** is a well-formed type in context Γ :

$\Gamma \vdash A$

· t is a term of type A in context Γ :

$\Gamma \vdash t : A$

 \cdot *t* and *u* are equal terms of type **A** in context **F**:

$$\Gamma \vdash t = u : A$$

Cartmell, 1984:

• type constructors:

$$\frac{\Gamma \vdash}{\Gamma \vdash \star} \qquad \qquad \frac{\Gamma \vdash x : \star \quad \Gamma \vdash y : \star}{\Gamma \vdash x \to y}$$

Cartmell, 1984:

• type constructors:

$$\frac{\Gamma \vdash}{\Gamma \vdash \star} \qquad \qquad \frac{\Gamma \vdash x : \star \quad \Gamma \vdash y : \star}{\Gamma \vdash x \to y}$$

• term constructors:

$$x: \star \vdash \mathsf{id}(x): x \to x$$

 $x: \star, y: \star, f: x \rightarrow y, z: \star, g: y \rightarrow z \vdash \mathsf{comp}(f, g): x \rightarrow z$

Cartmell, 1984:

· type constructors:

$$\frac{\Gamma \vdash}{\Gamma \vdash \star} \qquad \qquad \frac{\Gamma \vdash x : \star \quad \Gamma \vdash y : \star}{\Gamma \vdash x \to y}$$

• term constructors:

$$x : \star \vdash \mathsf{id}(x) : x \to x$$

 $x:\star,y:\star,f:x
ightarrow y,z:\star,g:y
ightarrow zdash \mathsf{comp}(f,g):x
ightarrow z$

• axioms:

 $\frac{\Gamma \vdash f : x \to y}{\Gamma \vdash \mathsf{comp}(\mathsf{id}(x), f) = f} \qquad \qquad \frac{\Gamma \vdash f : x \to y}{\Gamma \vdash \mathsf{comp}(f, \mathsf{id}(y)) = f}$

. . .

Cartmell, 1984:

type constructors:

$$\frac{\Gamma \vdash}{\Gamma \vdash \star} \qquad \qquad \frac{\Gamma \vdash x : \star \quad \Gamma \vdash y : \star}{\Gamma \vdash x \to y}$$

• term constructors:

$$x : \star \vdash \mathsf{id}(x) : x \to x$$

 $x:\star,y:\star,f:x
ightarrow y,z:\star,g:y
ightarrow zdash \mathsf{comp}(f,g):x
ightarrow z$

• axioms:

 $\frac{\Gamma \vdash f : x \to y}{\Gamma \vdash \operatorname{comp}(\operatorname{id}(x), f) = f} \qquad \qquad \frac{\Gamma \vdash f : x \to y}{\Gamma \vdash \operatorname{comp}(f, \operatorname{id}(y)) = f}$

• plus "standard rules" (contexts, weakening, substitutions, ...)

. . .

Models of the type theory

A model of the type theory consists in interpreting

- closed types as sets,
- · closed terms as elements of their type,

in such a way that axioms are satisfied.

Models of the type theory

A model of the type theory consists in interpreting

- $\cdot\,$ closed types as sets,
- $\cdot\,$ closed terms as elements of their type,

in such a way that axioms are satisfied.

A model of the previous type theory consists of

- ∙ a set [[★]]
- $\cdot \hspace{0.1 cm}$ for each $x,y \in \llbracket \star \rrbracket$, a set $\llbracket
 ightarrow
 rbracket_{x,y}$
- \cdot for each $x \in [\![\star]\!]$, an element $[\![id]\!]_x \in [\![
 ightarrow]_{x,x}$

Models of the type theory

A model of the type theory consists in interpreting

- closed types as sets,
- $\cdot\,$ closed terms as elements of their type,

in such a way that axioms are satisfied.

A model of the previous type theory consists of

∙ a set [[★]]

· ...

- $\cdot \hspace{0.1 cm}$ for each $x,y \in \llbracket \star \rrbracket$, a set $\llbracket
 ightarrow
 rac{J}{x,y}$
- \cdot for each $x \in [\![\star]\!]$, an element $[\![id]\!]_x \in [\![
 ightarrow]_{x,x}$

In other words, a model of the type theory is precisely a **category** (and a morphism is a functor).

Unbiased definition

Since the composition is associative for categories, the composite of any diagram like

$$x_0 \xrightarrow{f_1} x_1 \xrightarrow{f_2} \ldots \xrightarrow{f_n} x_n$$

is uniquely defined.

So, instead of having a binary composition and identities, we could have a more general rule

$$x_{o}: \star, x_{1}: \star, f_{1}: x_{o} \rightarrow x_{1}, \ldots, x_{n}: \star, f_{n}: x_{n-1} \rightarrow x_{n} \vdash \operatorname{comp}(f_{1}, \ldots, f_{n}): x_{o} \rightarrow x_{n}$$

and associated axioms.

The models of this **unbiased** definition would still be categories.

Part II

A type theory for globular sets

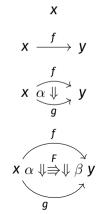
The definition of ω -category generalizes categories by taking higher cells into account.

The definition of ω -category generalizes categories by taking higher cells into account.

In such a category, you have

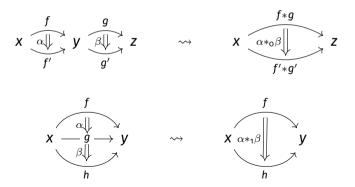
- · o-cells (objects):
- 1-cells (morphisms):
- · 2-cells:

· 3-cells:



The definition of ω -category generalizes categories by taking higher cells into account.

In such a category, you have **compositions**

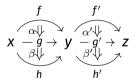


More generally, *n*-cells α and β can be composed in dimension *i*, with $\mathbf{O} \leq \mathbf{i} < \mathbf{n}$.

The definition of ω -category generalizes categories by taking higher cells into account.

In such a category, you have **axioms** such as

- · associativity of composition and neutrality of identities,
- \cdot exchange laws:



(more on this later)

Definition A globular set consists of

- \cdot a set **G**, and
- for every $x, y \in G$, a globular set G_y^x .

For instance

$$x \underbrace{\overset{f}{\underset{g}{\overset{}}}}_{g} y \xrightarrow{h} z$$

corresponds to

$$\mathbf{G} = \{\mathbf{x}, \mathbf{y}, \mathbf{z}\} \qquad \mathbf{G}_{\mathbf{y}}^{\mathbf{x}} = \{f, g\} \qquad (\mathbf{G}_{\mathbf{y}}^{\mathbf{x}})_{g}^{f} = \{\alpha\} \qquad ((\mathbf{G}_{\mathbf{y}}^{\mathbf{x}})_{g}^{f})_{\alpha}^{\alpha} = \emptyset \qquad \dots$$

Definition A globular set consists of

- \cdot a set **G**, and
- for every $x, y \in G$, a globular set G_y^x .

Alternatively, this can be defined as

- \cdot a sequence of sets G_n of n-cells for $n \in \mathbb{N}$,
- $\cdot\,$ with source and target maps

$$\mathbf{s}_n, \mathbf{t}_n: \mathbf{G}_{n+1} \to \mathbf{G}_n$$

satisfying suitable axioms.

$$G_0 \stackrel{s_0}{\longleftarrow} G_1 \stackrel{s_1}{\longleftarrow} G_2 \stackrel{s_2}{\longleftarrow} \cdots$$

Proposition

Globular sets are precisely the models of the type theory

$$\frac{\Gamma \vdash}{\Gamma \vdash \star} \qquad \frac{\Gamma \vdash t : A \quad \Gamma \vdash u : A}{\Gamma \vdash t \xrightarrow{} u} \qquad \cdots$$

Proposition

Globular sets are precisely the models of the type theory

$$\frac{\Gamma \vdash}{\Gamma \vdash \star} \qquad \qquad \frac{\Gamma \vdash t : A \quad \Gamma \vdash u : A}{\Gamma \vdash t \xrightarrow{} u} \qquad \qquad .$$

. .

15 / 79

Remark A finite globular set

$$x \xrightarrow{f} y \xrightarrow{h} z$$

can be encoded as a context

$$x:\star,y:\star,z:\star,f:x\xrightarrow{\star} y,g:x\xrightarrow{\star} y,h:z\xrightarrow{\star} y,\alpha:f\xrightarrow{X\rightarrow y} g$$

Proposition

Globular sets are precisely the models of the type theory

$$\frac{\Gamma \vdash}{\Gamma \vdash \star} \qquad \frac{\Gamma \vdash t : A \quad \Gamma \vdash u : A}{\Gamma \vdash t \xrightarrow{}_{A} u} \qquad \cdots$$

Proposition

The syntactic category (of contexts and substitutions) of this type theory is the opposite of the category of finite globular sets.

Part III

Weak higher categories

A strict higher category is a globular set with compositions and satisfying axioms: associativity, unitality and exchange.

A strict higher category is a globular set with compositions and satisfying axioms: associativity, unitality and exchange.

In a **weak** higher category, all the axioms should hold up to a higher cell, which should be unique up to higher cells.

Those can be thought of as an *intensional* variant of higher categories.

Bicategories

The notion of **bicategory** is defined almost as for **2**-categories, excepting that we replace the requirement that composition of **1**-cells is associative and unital by

• weak associativity: given

$$x \xrightarrow{a} y \xrightarrow{b} z \xrightarrow{c} w$$

there is an invertible 2-cell, the associator,

$$\alpha_{a,b,c}: (a *_{o} b) *_{o} c \Rightarrow a *_{o} (b *_{o} c)$$

Bicategories

The notion of **bicategory** is defined almost as for **2**-categories, excepting that we replace the requirement that composition of **1**-cells is associative and unital by

• weak associativity: given

$$x \xrightarrow{a} y \xrightarrow{b} z \xrightarrow{c} w$$

there is an invertible 2-cell, the associator,

$$\alpha_{a,b,c}: (a *_{o} b) *_{o} c \Rightarrow a *_{o} (b *_{o} c)$$

• weak unitality: given

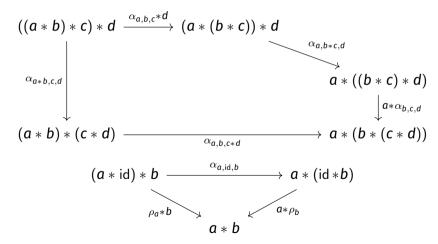
$$x \xrightarrow{a} y$$

there are invertible 2-cells, the left and right unitors,

$$\lambda_a : \operatorname{id}_x *_{o} a \Rightarrow a \qquad \qquad \rho_a : a *_{o} \operatorname{id}_y \Rightarrow a$$

Bicategories: axioms

We also need to ensure that those satisfy suitable axioms, the **pentagon** and the **triangle**:



This notion is pleasant because

Theorem (Mac Lane's coherence theorem)

Any two ways of composing **1**-cells are isomorphic and there is one such structural isomorphism.

For instance,

$$f_1 * (f_2 * (f_3 * f_4)) \cong (f_1 * f_2 * f_3) * (id * f_4)$$

Defining **tricategories** can be done starting from the definition of **3**-categories and

- 1. replacing all equalities between 0-, 1- and 2- cells by 1-, 2- and 3- cells,
- 2. making those coherent by adding the suitable axioms.

Defining **tricategories** can be done starting from the definition of **3**-categories and

- 1. replacing all equalities between 0-, 1- and 2- cells by 1-, 2- and 3- cells,
- 2. making those coherent by adding the suitable axioms.

For instance, we replace associativity of composition between 1-cells

$$(f *_{o} g) *_{o} h = f *_{o} (g *_{o} h)$$

by an invertible **associator 2**-cell

$$\alpha_{f,g,h}: (f *_{o} g) *_{o} h \Rightarrow f *_{o} (g *_{o} h)$$

Defining **tricategories** can be done starting from the definition of **3**-categories and

- 1. replacing all equalities between O-, 1- and 2- cells by 1-, 2- and 3- cells,
- 2. making those coherent by adding the suitable axioms.

For instance, we replace associativity of composition between 1-cells

$$(f *_{o} g) *_{o} h = f *_{o} (g *_{o} h)$$

by an invertible **associator 2**-cell

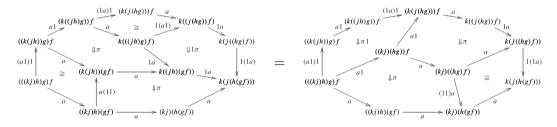
$$\alpha_{f,g,h}: (f *_{o} g) *_{o} h \Rightarrow f *_{o} (g *_{o} h)$$

but by "invertible", we mean here that $\alpha_{f,g,h}$ should be an equivalence:

$$\eta: \mathsf{Id} \Rrightarrow \alpha_{\!f,g,h} *_1 \overline{\alpha}_{\!f,g,h} \qquad \qquad \varepsilon: \overline{\alpha}_{\!f,g,h} *_1 \alpha_{\!f,g,h} \Rrightarrow \mathsf{Id}$$

and so on ...

The definition of tricategories takes roughly 4 pages with axioms such as



Tetracategories

The process can be generalized to define weak *n*-categories.

The process can be generalized to define weak *n*-categories.

No one has ever tried to give a definition of a **pentacategory** in this way.

The process can be generalized to define weak *n*-categories.

No one has ever tried to give a definition of a **pentacategory** in this way.

Instead of explicitly trying to give the axioms of weak higher categories, one should try to find a systematic way of generating those.

The process can be generalized to define weak *n*-categories.

No one has ever tried to give a definition of a **pentacategory** in this way.

Instead of explicitly trying to give the axioms of weak higher categories, one should try to find a systematic way of generating those.

If we go all the way, we obtain weak ω -categories aka (∞, ω)-categories.

In those, we never have axioms, only higher cells. This can be thought of as very constructive definition: we want to have witnesses for all the laws.

Instead of trying to carefully craft compositions and coherences, it is actually easier to take an **unbiased** approach.

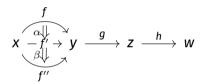
The general pattern is that

- we identify situation that should be contractible (the *pasting schemes*)
- and formally make them contractible

Part IV

Pasting schemes

We now want to define **pasting schemes** which are diagrams for which we expect to have a composition. For instance,

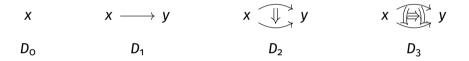


is a pasting scheme, but not

$$x \xrightarrow{f} y z$$
 or $x \xrightarrow{f} y \xleftarrow{g} z$

Disks

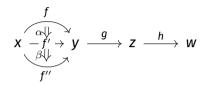
Given $n \in \mathbb{N}$, the *n*-disk D_n is the globular set corresponding to a general *n*-cell:



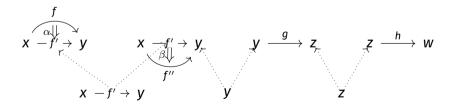
Those are basic building blocks of globular sets: any globular set can be obtained by gluing such disks.

(those are the representable globular sets)

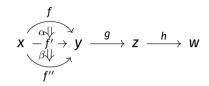
A pasting scheme is a globular set



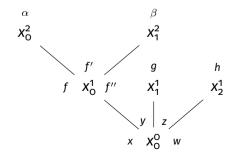
· Grothendieck: which can be obtained as a particular colimit of disks



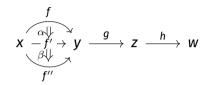
A pasting scheme is a globular set



· Batanin: which is described by a particular tree



A pasting scheme is a globular set



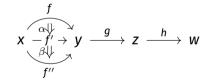
· Finster-Mimram: which is "totally ordered"

Order relation

We can define a preorder \triangleleft on the cells of a globular set by

source(x) $\triangleleft x$ and $x \triangleleft target(x)$

For the globular set



we have

 $\mathbf{x} \triangleleft \mathbf{f} \triangleleft \alpha \triangleleft \mathbf{f}' \triangleleft \beta \triangleleft \mathbf{f}'' \triangleleft \mathbf{y} \triangleleft \mathbf{g} \triangleleft \mathbf{z} \triangleleft \mathbf{h} \triangleleft \mathbf{w}$

Characterization of pasting schemes

Theorem

A globular set is a *pasting scheme* if and only if it is

- non-empty,
- \cdot finite, and
- \cdot the relation \triangleleft is a total order.

A pointed globular set is a globular set with a distinguished cell.

A pointed globular set is a globular set with a distinguished cell.

Theorem

A *pasting scheme* is a pointed globular set which can be constructed as follows:

A pointed globular set is a globular set with a distinguished cell.

Theorem

A pasting scheme is a pointed globular set which can be constructed as follows:

we start from a o-cell x

A pointed globular set is a globular set with a distinguished cell.

Theorem

A pasting scheme is a pointed globular set which can be constructed as follows:

- \cdot we start from a **o**-cell **x**
- we can add a new (n+1)-cell and its new target, its source being the distinguished n-cell

$$x \xrightarrow{f} y \longrightarrow x \xrightarrow{q} y$$

A pointed globular set is a globular set with a distinguished cell.

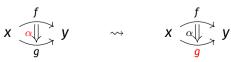
Theorem

A pasting scheme is a pointed globular set which can be constructed as follows:

- \cdot we start from a **o**-cell **x**
- we can add a new (n+1)-cell and its new target, its source being the distinguished n-cell

$$x \xrightarrow{f} y \longrightarrow x \xrightarrow{f} y$$

 \cdot or the distinguished cell becomes the target of the previous one



The construction of the pasting scheme

X

corresponds to its order

Х

The construction of the pasting scheme

corresponds to its order

 $x \triangleleft f$

The construction of the pasting scheme

$$\begin{array}{c} f \\ \overbrace{\mathbf{x} - f' \to \mathbf{y}}^{\mathbf{a} \downarrow \downarrow} \end{array}$$

$$\mathbf{X} \triangleleft \mathbf{f} \triangleleft \alpha$$

The construction of the pasting scheme

$$\begin{array}{c} f \\ \overbrace{\alpha \downarrow \downarrow} \\ x & -f' \rightarrow y \end{array}$$

$$\mathbf{x} \triangleleft \mathbf{f} \triangleleft \alpha \triangleleft \mathbf{f}'$$

The construction of the pasting scheme

$$\begin{array}{c} f \\ x \xrightarrow{-f' \to \mathbf{y}} \\ f'' \end{array}$$

$$\mathsf{x} riangle \mathsf{f} riangle \alpha riangle \mathsf{f}' riangle eta$$

The construction of the pasting scheme

$$\begin{array}{c} f \\ x \xrightarrow{-f' \to \mathbf{y}} \\ f'' \end{array}$$

$$\mathsf{X} riangle f riangle \alpha riangle f' riangle \beta riangle f''$$

The construction of the pasting scheme

$$\begin{array}{c} f \\ x \xrightarrow{-f' \to \mathbf{y}} \\ f'' \end{array}$$

$$\mathbf{X} \triangleleft \mathbf{f} \triangleleft \alpha \triangleleft \mathbf{f}' \triangleleft \beta \triangleleft \mathbf{f}'' \triangleleft \mathbf{y}$$

The construction of the pasting scheme

$$\begin{array}{c} f \\ x \xrightarrow{\alpha \downarrow } f' \rightarrow y \xrightarrow{g} z \\ \beta \downarrow f'' \end{array}$$

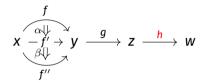
$$\mathbf{x} riangle \mathbf{f} riangle lpha riangle \mathbf{f}'' riangle \mathbf{g}$$

The construction of the pasting scheme

$$\begin{array}{c} f \\ x \xrightarrow{-f' \to } y \xrightarrow{g} z \\ f'' \end{array}$$

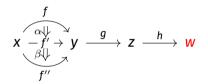
$$\mathbf{X} \triangleleft \mathbf{f} \triangleleft \alpha \triangleleft \mathbf{f}' \triangleleft \beta \triangleleft \mathbf{f}'' \triangleleft \mathbf{Y} \triangleleft \mathbf{g} \triangleleft \mathbf{Z}$$

The construction of the pasting scheme



$$\mathbf{x} riangle \mathbf{f} riangle \mathbf{\alpha} riangle \mathbf{f}' riangle \mathbf{\beta} riangle \mathbf{f}'' riangle \mathbf{y} riangle \mathbf{g} riangle \mathbf{z} riangle \mathbf{h}$$

The construction of the pasting scheme



$$\mathbf{x} \triangleleft \mathbf{f} \triangleleft \alpha \triangleleft \mathbf{f}' \triangleleft \beta \triangleleft \mathbf{f}'' \triangleleft \mathbf{y} \triangleleft \mathbf{g} \triangleleft \mathbf{z} \triangleleft \mathbf{h} \triangleleft \mathbf{w}$$

Type-theoretic pasting schemes

Now, recall that a pasting scheme

$$\begin{array}{c} f \\ x \xrightarrow{\alpha \downarrow} f \\ -f' \rightarrow y \\ \beta \downarrow \\ f'' \end{array} \xrightarrow{g} z \xrightarrow{h} w$$

can be seen as a context

$$\begin{aligned} \mathbf{x} &: \mathbf{\star}, \mathbf{y} : \mathbf{\star}, \mathbf{f} : \mathbf{x} \to \mathbf{y}, \mathbf{f}' : \mathbf{x} \to \mathbf{y}, \\ \alpha &: \mathbf{f} \to \mathbf{f}', \mathbf{f}'' : \mathbf{x} \to \mathbf{y}, \beta : \mathbf{f}' \to \mathbf{f}'', \\ \mathbf{z} &: \mathbf{\star}, \mathbf{g} : \mathbf{y} \to \mathbf{z}, \mathbf{w} : \mathbf{\star}, \mathbf{h} : \mathbf{z} \to \mathbf{w} \end{aligned}$$

Type-theoretic pasting schemes

A context Γ (seen as a globular set) is a **pasting scheme** iff

is derivable with the rules

$$\frac{\overline{r} \vdash_{ps} x : \star}{\Gamma \vdash_{ps} x : A} \qquad \qquad \frac{\overline{r} \vdash_{ps}}{\Gamma \vdash_{ps}} \\
\frac{\Gamma \vdash_{ps} x : A}{\Gamma, y : A, f : x \xrightarrow{A} y \vdash_{ps} f : x \xrightarrow{A} y} \qquad \qquad \frac{\Gamma \vdash_{ps} f : x \xrightarrow{A} y}{\Gamma \vdash_{ps} y : A}$$

 $\Gamma \vdash_{nc} X : \star$

 $\Gamma \vdash_{ps}$

Type-theoretic pasting schemes

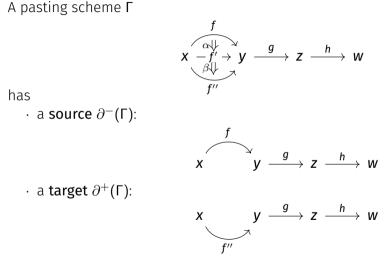
Note that with those rules

 $\cdot\,$ the order of cells matters:

$$x \xrightarrow[a]{g}{f} y \xrightarrow{g} z$$

- $\cdot\,$ because of this we can easily check
- $\cdot\,$ proofs are canonical

Source and targets



both of which can be defined by induction on contexts.

Part V

A type-theoretic definition of weak ω -categories

We expect that in an ω -category every pasting scheme has a composite:

 $\frac{\Gamma \vdash_{ps} \quad \Gamma \vdash A}{\Gamma \vdash coh_{\Gamma,A} : A}$

We expect that in an ω -category every pasting scheme has a composite:

$$\frac{\Gamma \vdash_{\mathsf{ps}} \quad \Gamma \vdash A}{\Gamma \vdash \mathsf{coh}_{\Gamma,A} : A}$$

You can derive expected operations, such as composition:

$$x:\star,y:\star,f:x \xrightarrow{\star} y,z:\star,g:y \xrightarrow{\star} z \vdash \mathsf{coh}:x \xrightarrow{\star} z$$

We expect that in an ω -category every pasting scheme has a composite:

$$\frac{\Gamma \vdash_{\mathsf{ps}} \quad \Gamma \vdash A}{\Gamma \vdash \mathsf{coh}_{\Gamma,A} : A}$$

You can derive expected operations, such as composition:

$$x:\star,y:\star,f:x \xrightarrow{\star} y,z:\star,g:y \xrightarrow{\star} z \vdash \mathsf{coh}:x \xrightarrow{\star} z$$

However, you can derive too much:

$$x:\star,y:\star,f:x \xrightarrow{\star} y \vdash \mathsf{coh}:y \xrightarrow{\star} x$$

We have in fact a definition of ω -groupoids

We need to take care of side-conditions and in fact split the rule in two: • operations:

$$\frac{\Gamma \vdash_{\mathsf{ps}} \quad \Gamma \vdash t \xrightarrow{\rightarrow} u \quad \partial^{-}(\Gamma) \vdash t : A \quad \partial^{+}(\Gamma) \vdash u : A}{\Gamma \vdash \mathsf{coh}_{\Gamma, t \xrightarrow{\rightarrow} u} : t \xrightarrow{\rightarrow} u}$$

whenever

 $FV(t) = FV(\partial^{-}(\Gamma))$ and $FV(u) = FV(\partial^{+}(\Gamma))$

coherences:

$$\frac{\Gamma \vdash_{\mathsf{ps}} \Gamma \vdash A}{\Gamma \vdash \mathsf{coh}_{\Gamma,A} : A}$$

whenever

 $FV(A) = FV(\Gamma)$

Definition An ω -category is a model of this type theory.

Definition An ω -category is a model of this type theory.

Theorem This definition coincides with the one of Grothendieck-Maltsiniotis.

A typical example of **operation** is *composition*

(this coherence is noted "comp" in the following).

A typical example of **coherence** is associativity

Coherences are reversible

Note that if we derive a coherence

 $\frac{\Gamma \vdash_{ps} \quad \Gamma \vdash A}{\Gamma \vdash coh_{\Gamma,A} : A} \qquad \text{with} \qquad FV(A) = FV(\Gamma)$

where

$$A = t \rightarrow u$$

there is also one with

$$A = u \rightarrow t$$

Coherences are reversible

Note that if we derive a coherence

 $\frac{\Gamma \vdash_{ps} \Gamma \vdash A}{\Gamma \vdash coh_{\Gamma,A} : A} \quad \text{with} \quad FV(A) = FV(\Gamma)$

where

$$A = t \rightarrow u$$

there is also one with

$$A = u \rightarrow t$$

Definition

An n-cell $f : x \rightarrow y$ is **reversible** when there exists

- \cdot an *n*-cell $g: y \rightarrow x$ and
- · reversible (n+1)-cells

$$\alpha: f *_{n-1} g \to \mathsf{id}_x \qquad \qquad \beta: g *_{n-1} f \to \mathsf{id}_y$$

· identity 1-cells
coh id {a : .} : a -> a

• identity 1-cells

coh id $\{a : .\}$: a -> a

· composition of 1-cells: coh co {a b c : .} (f : a -> b) (g : b -> c) : a -> c

• identity 1-cells

coh id {a : .} : a -> a

· composition of 1-cells:

coh co {a b c : .} (f : a \rightarrow b) (g : b \rightarrow c) : a \rightarrow c

• associativity of composition of 1-cells:
coh assoc {a b c d : .} (f : a -> b) (g : b -> c) (h : c -> d) :
co (co f g) h -> co f (co g h)

· ...

• identity 1-cells

coh id {a : .} : a -> a

· composition of 1-cells:

coh co {a b c : .} (f : a \rightarrow b) (g : b \rightarrow c) : a \rightarrow c

· associativity of composition of 1-cells:
 coh assoc {a b c d : .} (f : a -> b) (g : b -> c) (h : c -> d) :
 co (co f g) h -> co f (co g h)

• identity 1-cells

coh id {a : .} : a -> a

· composition of 1-cells:

coh co {a b c : .} (f : a \rightarrow b) (g : b \rightarrow c) : a \rightarrow c

• ...

no inverses:

coh inv {a b : .} (f : a -> b) : b -> a
produces and error!

Part VI

Unbiased cartesian closed categories

Previous work is nice but

- $\cdot\,$ the type theory is very limited (no $\Sigma\text{-}$ or $\Pi\text{-}$ types, etc.)
- we would like to be able to consider categories with structure ([locally] cartesian [closed]...)

Here

- 1. we restrict to 1-categories
- 2. we extend with products and internal homs

If we restrict our theory for weak ω -categories to consider that 2-cells (and higher are identities), we obtain a theory for **unbiased categories**:

$$x \xrightarrow{f} y \xrightarrow{g} z \xrightarrow{h} w \vdash \operatorname{coh} : x \to w$$

If we restrict our theory for weak ω -categories to consider that 2-cells (and higher are identities), we obtain a theory for **unbiased categories**:

$$x \xrightarrow{f} y \xrightarrow{g} z \xrightarrow{h} w \vdash \operatorname{coh} : x \to w$$

Our aim is to extend this to have a definition for **unbiased cartesian closed categories** (which could hopefully extend in higher dimensions).

Unbiased cartesian closed 1-categories

There are various definition of cartesian closed categories:

- the traditional categorical definition
- · simply-typed λ -calculus
- combinatory logic (I, K, S)
- categorical combinators

• ...

We want here

- $\cdot\,$ an agnostic approach in which we could implement most of the above
- \cdot a "nice" definition which does not require substitution/ α -conversion, weird rules, etc.
- $\cdot\,$ on the long term, we would like an "equality-free" definition of MLTT...

Simply-typed λ -calculus

We consider simply-typed λ -calculus where types are

$$A$$
 ::= X | $A \rightarrow B$ | ...

terms are

$$t ::= x \mid \lambda x^{A}.t \mid t u$$

rules are

$$\overline{\Gamma, x : A, \Delta \vdash x : A}$$

$$\frac{\Gamma \vdash t : A \to B \quad \Gamma \vdash u : A}{\Gamma \vdash t u : B} \qquad \qquad \frac{\Gamma, x : A \vdash t : B}{\Gamma \vdash \lambda x^{A} \cdot t : A \to B}$$

and equality is extensional equality

$$(\lambda x^{A}.t) u = t[u/x]$$
 $t = \lambda x^{A}.tx$

Note: we consider the implicational fragment for simplicity

A λ -term is a normal form when it is normal with respect to β -reduction

$$(\lambda x^{A}.t) u \longrightarrow t[u/x]$$

Theorem

Any typable λ -term is β -equivalent to a unique (η -long) normal form.

Such a term is of the from

 $\lambda x_1 x_2 \dots x_n x_i t_1 t_2 \dots t_k$

with t_i normal forms.

- **propositional** when there is at most one inhabitant (modulo extensional equality)
- · contractible when there is exactly one inhabitant

- **propositional** when there is at most one inhabitant (modulo extensional equality)
- · contractible when there is exactly one inhabitant

- $\cdot (A
 ightarrow B)
 ightarrow A
 ightarrow B$ is
- $\cdot \ \textbf{B}
 ightarrow \textbf{A}$ is
- $\cdot \ (A \rightarrow A) \rightarrow (A \rightarrow A)$ is

- **propositional** when there is at most one inhabitant (modulo extensional equality)
- · contractible when there is exactly one inhabitant

- $\cdot (A \rightarrow B) \rightarrow A \rightarrow B$ is contractible
- $\cdot \ \textbf{B}
 ightarrow \textbf{A}$ is
- $\cdot \ (A \rightarrow A) \rightarrow (A \rightarrow A)$ is

- **propositional** when there is at most one inhabitant (modulo extensional equality)
- · contractible when there is exactly one inhabitant

- $\cdot (A \rightarrow B) \rightarrow A \rightarrow B$ is contractible
- $\cdot \ \textbf{\textit{B}} \rightarrow \textbf{\textit{A}}$ is propositional
- $\cdot \ (A \rightarrow A) \rightarrow (A \rightarrow A)$ is

- **propositional** when there is at most one inhabitant (modulo extensional equality)
- · contractible when there is exactly one inhabitant

- $\cdot (A \rightarrow B) \rightarrow A \rightarrow B$ is contractible
- $\cdot \ B
 ightarrow A$ is propositional
- $\cdot~(\textbf{A}\rightarrow\textbf{A})\rightarrow(\textbf{A}\rightarrow\textbf{A})$ is not contractible

Komori's conjecture

We write $A \leq B$ when B can be obtained from A by replacing variables, for instance

$$\mathsf{A}
ightarrow \mathsf{A} \leq (\mathsf{A}
ightarrow \mathsf{B})
ightarrow (\mathsf{A}
ightarrow \mathsf{B})$$

Komori's conjecture

We write $A \leq B$ when B can be obtained from A by replacing variables, for instance

$$\mathsf{A}
ightarrow \mathsf{A} \leq (\mathsf{A}
ightarrow \mathsf{B})
ightarrow (\mathsf{A}
ightarrow \mathsf{B})$$

From Yuichi Komori. *BCK algebras and lambda calculus*. In Proceedings of the 10th Symposium on Semigroups, pages 5–11, 1987:

Conjecture

A minimal provable type is contractible. For instance,

$$(\mathsf{A} \to \mathsf{A}) \to (\mathsf{A} \to \mathsf{A})$$

is not contractible, but this is the case of the smaller

$$(\mathsf{A} \to \mathsf{B}) \to \mathsf{A} \to \mathsf{B}$$

Komori's conjecture

We write $A \leq B$ when B can be obtained from A by replacing variables, for instance

$$\mathsf{A}
ightarrow \mathsf{A} \leq (\mathsf{A}
ightarrow \mathsf{B})
ightarrow (\mathsf{A}
ightarrow \mathsf{B})$$

From Yuichi Komori. *BCK algebras and lambda calculus*. In Proceedings of the 10th Symposium on Semigroups, pages 5–11, 1987:

Conjecture

A minimal provable type is contractible. For instance,

$$(\mathsf{A} \to \mathsf{A}) \to (\mathsf{A} \to \mathsf{A})$$

is not contractible, but this is the case of the smaller

$$(\mathsf{A} \to \mathsf{B}) \to \mathsf{A} \to \mathsf{B}$$

This does not hold, but we will see that contractible types still generate all proofs.

The conjecture does hold for formulas of depth $\leq \mathbf{2}$

The conjecture does hold for formulas of depth \leq 2 but various counter-examples to the conjecture were found:

· Mint'90:
$$((((A → B) → A) → A) → B) → B$$

· Aoto'99: $((A → B) → A) → ((A → B) → B)$
fun x -> fun y -> y (x (fun z -> y z))
fun x -> fun y -> y (x (fun z -> y (x (fun z -> y z))))
fun x -> fun y -> y (x (fun z -> y (x (fun z -> y z)))))
...

People tried to come up with conditions which would imply that a formula has at most one proof:

• Hirokawa'93:

in implication fragments of BCI and BCK (no contraction), minimal inhabited types are contractible.

• Aoto'99:

provable without *non-prime contraction*, i.e. an implication introduction rule whose canceled assumption differs from a propositional variable and appears more than once in the proof.

Another trend of work is in

 Mint'82, Babaev&Solov'ev'82 (coherence for CCC): a formula which is balanced (no variable occurs more than twice) admits at most one inhabitant

For instance,

- $\cdot~(\textbf{A} \rightarrow \textbf{B}) \rightarrow (\textbf{A} \rightarrow \textbf{B})$ is balanced and thus contractible
- $\cdot \hspace{0.1 cm}$ (A ightarrow B) ightarrow (B ightarrow A) is balanced by not inhabited
- \cdot (A \rightarrow B \rightarrow C) \rightarrow (A \rightarrow B) \rightarrow A \rightarrow C is not balanced but contractible (this is S!)

This is generalized in

- Takahito Aoto and Hiroakira Ono. Uniqueness of normal proofs in {→, ∧}-fragment of NJ. Technical Report IS-RR-94-0024F, School of Information Science, JAIST, 1994. Research report.
- Pierre Bourreau and Sylvain Salvati. Game semantics and uniqueness of type inhabitance in the simply-typed λ-calculus. In 10th International Conference, TLCA 2011, Novi Sad, Serbia, June 1-3, 2011. Proceedings, volume 6690 of LNCS, pages 61–75. Springer, 2011.
- Sabine Broda and Luiís Damas. *On long normal inhabitants of a type*. J. Log. Comput., 15(3):353–390, 2005.

A type is **non-negatively duplicating** when every variable has at most one negative occurrence, e.g.

$$\mathsf{S}$$
 : $(\mathsf{A}^+ o \mathsf{B}^+ o \mathsf{C}^-) o (\mathsf{A}^+ o \mathsf{B}^-) o \mathsf{A}^- o \mathsf{C}^+$

A type is **non-negatively duplicating** when every variable has at most one negative occurrence, e.g.

$$\mathsf{S}$$
 : $(\mathsf{A}^+ o \mathsf{B}^+ o \mathsf{C}^-) o (\mathsf{A}^+ o \mathsf{B}^-) o \mathsf{A}^- o \mathsf{C}^+$

Theorem

A non-negatively duplicating type is propositional.

A type is **non-negatively duplicating** when every variable has at most one negative occurrence, e.g.

$$\mathsf{S}$$
 : $(\mathsf{A}^+ o \mathsf{B}^+ o \mathsf{C}^-) o (\mathsf{A}^+ o \mathsf{B}^-) o \mathsf{A}^- o \mathsf{C}^+$

Theorem

A non-negatively duplicating type is propositional.

Proof.

By cut-elimination, we can look for a proof which corresponds to a λ -term which is β -normal and η -long (we take as many variables as there are arrows), i.e. terms of the form

$\lambda \mathbf{x}_1 \mathbf{x}_2 \dots \mathbf{x}_n \mathbf{x}_i t_1 t_2 \dots t_k$

the choice of the head variable must have a type whose target is *the* negative occurrence of the variable being proved.

Proof search in $\beta\eta$ -long form can be performed with

 $\cdot\,$ the introduction

$$\frac{\Gamma, x_1 : A_1, \dots, x_n : A_n \vdash t : B}{\Gamma \vdash \lambda x_1 \dots x_n . t : A_1 \to \dots \to A_n \to B} (\to_1)$$

where **B** is not an arrow,

 \cdot the elimination

$$\frac{\Gamma \vdash t_1 : A_1 \quad \dots \quad \Gamma \vdash t_n : A_n}{\Gamma \vdash x \, t_1 \dots t_n : X} \; (\rightarrow_{\mathsf{E}})$$

with $x : A_1 \to \ldots \to A_n \to X$ in Γ .

$$\vdash \qquad \qquad : (\mathsf{A}^+ \to \mathsf{B}^+ \to \mathsf{C}^-) \to (\mathsf{A}^+ \to \mathsf{B}^-) \to \mathsf{A}^- \to \mathsf{C}^+$$

$$\frac{f: \mathsf{A}^+ \to \mathsf{B}^+ \to \mathsf{C}^-, g: \mathsf{A}^+ \to \mathsf{B}^-, x: \mathsf{A}^- \vdash : \mathsf{C}^+}{\vdash \lambda fgx. : (\mathsf{A}^+ \to \mathsf{B}^+ \to \mathsf{C}^-) \to (\mathsf{A}^+ \to \mathsf{B}^-) \to \mathsf{A}^- \to \mathsf{C}^+}$$

$$\frac{\Gamma \vdash : A^{+} \quad \Gamma \vdash : B^{+}}{f : A^{+} \rightarrow B^{+} \rightarrow C^{-}, g : A^{+} \rightarrow B^{-}, x : A^{-} \vdash f \quad : C^{+}}$$
$$\vdash \lambda fgx.f \quad : (A^{+} \rightarrow B^{+} \rightarrow C^{-}) \rightarrow (A^{+} \rightarrow B^{-}) \rightarrow A^{-} \rightarrow C^{+}$$

$$\frac{\overline{\Gamma \vdash x : A^{+}} \quad \Gamma \vdash \quad :B^{+}}{f : A^{+} \rightarrow B^{+} \rightarrow C^{-}, g : A^{+} \rightarrow B^{-}, x : A^{-} \vdash f x \quad :C^{+}}$$
$$+ \lambda fgx.fx \quad :(A^{+} \rightarrow B^{+} \rightarrow C^{-}) \rightarrow (A^{+} \rightarrow B^{-}) \rightarrow A^{-} \rightarrow C^{+}$$

$$\frac{ \begin{matrix} \Gamma \vdash x : A^+ \\ \hline \Gamma \vdash x : A^+ \end{matrix}}{ \begin{matrix} \Gamma \vdash g & : B^+ \end{matrix}} \\ \frac{ \begin{matrix} f : A^+ \to B^+ \to C^-, g : A^+ \to B^-, x : A^- \vdash f x (g) : C^+ \\ \vdash \lambda fgx.f x (g) : (A^+ \to B^+ \to C^-) \to (A^+ \to B^-) \to A^- \to C^+ \end{matrix}$$

$$\frac{\overline{\Gamma \vdash x : A^{+}}}{\overline{\Gamma \vdash g : B^{+}}} \frac{\overline{\Gamma \vdash g : B^{+}}}{\overline{\Gamma \vdash g : B^{+}}}$$
$$\frac{\overline{f : A^{+} \rightarrow B^{+} \rightarrow C^{-}, g : A^{+} \rightarrow B^{-}, x : A^{-} \vdash f : x (g : x) : C^{+}}}{\overline{\vdash \lambda fg : f : x (g : x) : (A^{+} \rightarrow B^{+} \rightarrow C^{-}) \rightarrow (A^{+} \rightarrow B^{-}) \rightarrow A^{-} \rightarrow C^{+}}}$$

A (apparently new) remark is that in the rule

$$\frac{\Gamma \vdash t_1 : A_1 \dots \Gamma \vdash t_n : A_n}{\Gamma \vdash x \, t_1 \dots t_n : X} \; (\rightarrow_{\mathsf{E}})$$

(with $x : A_1 \to \ldots \to A_n \to X$ in Γ), we never use x in the t_i (otherwise the proof would be "infinite" by determinism). Because of this,

Proposition

Contractibility is (very easily) decidable.

Definition A type **A** is a **pasting type** when it is non-negatively duplicated and inhabited.

Definition A type **A** is a **pasting type** when it is non-negatively duplicated and inhabited.

Proposition

Any pasting type is contractible.

Definition A type **A** is a **pasting type** when it is non-negatively duplicated and inhabited.

Proposition

Any pasting type is contractible.

Definition We say that

$$A_1, \ldots, A_n \vdash A$$

is a **pasting scheme** when

$$A_1 \rightarrow \ldots \rightarrow A_n \rightarrow A$$

is a pasting type.

The rules for **pasting types** are

 $\frac{\Theta, \mathsf{tgt}(A); \Gamma, A \vdash_{\mathsf{ps}} B}{\Theta; \Gamma \vdash_{\mathsf{ps}} A \to B}$

when $tgt(A) \notin \Theta$, and

$$\frac{\Theta; \Gamma, \Gamma' \vdash A_1}{\Theta; \Gamma, A_1 \to \ldots \to A_n \to A, \Gamma' \vdash A}$$

when **A** is a variable.

The rules for **pasting types** are

 $\frac{\Theta, \mathsf{tgt}(A); \Gamma, A \vdash_{\mathsf{ps}} B}{\Theta; \Gamma \vdash_{\mathsf{ps}} A \to B}$

when $tgt(A) \notin \Theta$, and

$$\begin{array}{ccc} \Theta; \, \Gamma, \, \Gamma' \vdash A_1 & \dots & \Theta; \, \Gamma, \, \Gamma' \vdash A_n \\ \hline \Theta; \, \Gamma, A_1 \rightarrow \dots \rightarrow A_n \rightarrow A, \, \Gamma' \vdash A \end{array}$$

when **A** is a variable.

This is in between non-negatively duplicated and deterministic.

CCCaTT

The type theory **CCCaTT** has rules

	Γ⊢ <i>a</i> : ★	$\Gamma \vdash b : \star$	Γ⊢ <i>a</i> : ★
$\overline{\Gamma \vdash \star}$	Г⊢а –	→ b : ★	Γ ⊢ <i>a</i>
$\Gamma \vdash_{ps} a$	Г⊢	_{рs} а Г⊢	$t: a \qquad \Gamma \vdash u: a$
Γ⊢ coh : <i>α</i>		Γ ⊢ <i>t</i>	= <i>u</i> : <i>a</i>

plus

- $\cdot = is a congruence$
- · closure under substitution so that

$$\frac{\Delta \vdash \sigma : \Gamma \qquad \Gamma \vdash t : a}{\Delta \vdash t[\sigma] : a[\sigma]}$$

is derivable

Substitutions

Note that substitutions can replace both types and morphisms.

For instance, we have a substitution

 $(a:\star,f:a\to a) \qquad \vdash \qquad \langle a,a,a,f,g\rangle: (a:\star,b:\star,c:\star,f:a\to b,g:b\to c)$

CCCaTT

For instance, we can derive

- $\cdot \mathbf{I} = \lambda \mathbf{x}.\mathbf{x} : \mathbf{A} \to \mathbf{A}$
- $\cdot \mathbf{K} = \lambda x y. x : \mathbf{A} \to \mathbf{B} \to \mathbf{A}$
- \cdot S = λ fgx.fx(gx) : (A \rightarrow B \rightarrow C) \rightarrow (A \rightarrow B) \rightarrow A \rightarrow C
- · application $f : A \rightarrow B, x : A \vdash fx : B$
- \cdot expected equalities such as I x = x

https://cccatt.mimram.fr/

Combinatory logic

Combinatory logic is defined as the closure under applications of I, K and S.

Combinatory logic

Combinatory logic is defined as the closure under applications of I, K and S.

With rules

$$It = t$$
 $Ktu = t$ $Stuv = tv(uv)$

Combinatory logic

Combinatory logic is defined as the closure under applications of I. K and S.

With rules

$$I t = t$$
 $K t u = t$ $S t u v = t v(uv)$

 $\cdot S(K(S(KS)))(S(KS)(S(KS))) = S(S(KS)(S(KK)(S(KS)(S(K(S(KS)))))))(KS)$

along with

- $\cdot S(S(KS)(S(KK)(S(KS)K)))(KK) = S(KK)$
- \cdot S(S(KS)K)(KI) = I

- \cdot S(KI) = I

- \cdot S(KS)(S(KK)) = K

66 / 79

We can translate from CC to λ :

$$I = \lambda x.x$$
 $K = \lambda xy.x$ $S = \lambda fgx.fx(gx)$

We can translate from CC to λ :

 $I = \lambda x.x$ $K = \lambda xy.x$ $S = \lambda fgx.fx(gx)$

On the other side, we have that $[\lambda x.t] = \Lambda x.[t]$ with

$$\begin{array}{l} \Lambda x.x = \mathsf{I} \\ \Lambda x.t = \mathsf{K} \ t & \text{for } x \not\in \mathsf{FV}(t) \\ \Lambda x.t \ u = \mathsf{S}(\Lambda x.t)(\Lambda x.u) & \text{otherwise} \end{array}$$

We can translate from CC to λ :

 $I = \lambda x.x$ $K = \lambda xy.x$ $S = \lambda fgx.fx(gx)$

On the other side, we have that $[\lambda x.t] = \Lambda x.[t]$ with

$$\begin{array}{l} \Lambda x.x = \mathsf{I} \\ \Lambda x.t = \mathsf{K} \ t & \text{for } x \not\in \mathsf{FV}(t) \\ \Lambda x.t \ u = \mathsf{S}(\Lambda x.t)(\Lambda x.u) & \text{otherwise} \end{array}$$

For instance,

$$[\![\lambda xy.x]\!] = \mathsf{S}(\mathsf{K} \mathsf{K})\mathsf{I}$$

We can translate from CC to λ :

 $I = \lambda x.x$ $K = \lambda xy.x$ $S = \lambda fgx.fx(gx)$

On the other side, we have that $[\![\lambda x.t]\!] = \Lambda x.[\![t]\!]$ with

$$\begin{array}{l} \Lambda x.x = \mathsf{I} \\ \Lambda x.t = \mathsf{K} \ t & \text{for } x \not\in \mathsf{FV}(t) \\ \Lambda x.t \ u = \mathsf{S}(\Lambda x.t)(\Lambda x.u) & \text{otherwise} \end{array}$$

For instance,

 $[\![\lambda xy.x]\!] = \mathsf{S}(\mathsf{K} \mathsf{K})\mathsf{I} \neq \mathsf{K}$

Type isomorphism in cartesian closed categories is the congruence generated by

$$(\mathbf{A} \times \mathbf{B}) \times \mathbf{C} = \mathbf{A} \times (\mathbf{B} \times \mathbf{C})$$
 $\mathbf{1} \times \mathbf{A} = \mathbf{A}$

$$A \times B = B \times A$$
 $A \times 1 = A$

$$\begin{array}{ll} \mathsf{A} \to (\mathsf{B} \times \mathsf{C}) = (\mathsf{A} \to \mathsf{B}) \times (\mathsf{A} \to \mathsf{C}) & \mathsf{A} \to \mathsf{1} = \mathsf{1} \\ (\mathsf{A} \times \mathsf{B}) \to \mathsf{C} = \mathsf{A} \to \mathsf{B} \to \mathsf{C} & \mathsf{1} \to \mathsf{A} = \mathsf{A} \end{array}$$

Type isomorphism in cartesian closed categories is the congruence generated by

$$(A \times B) \times C = A \times (B \times C)$$
 $1 \times A = A$

$$A \times B = B \times A$$
 $A \times 1 = A$

$$\begin{array}{ll} A \rightarrow (B \times C) = (A \rightarrow B) \times (A \rightarrow C) & A \rightarrow 1 = 1 \\ (A \times B) \rightarrow C = A \rightarrow B \rightarrow C & 1 \rightarrow A = A \end{array}$$

We consider the rewriting system

$$\begin{array}{ll} A \to (B \times C) \Rightarrow (A \to B) \times (A \to C) & A \to 1 \Rightarrow 1 \\ (A \times B) \to C \Rightarrow A \to B \to C & 1 \to A \Rightarrow A \end{array}$$

Type isomorphism in cartesian closed categories is the congruence generated by

$$(A \times B) \times C = A \times (B \times C)$$
 $1 \times A = A$

$$A \times B = B \times A$$
 $A \times 1 = A$

$$\begin{array}{ll} A \rightarrow (B \times C) = (A \rightarrow B) \times (A \rightarrow C) & A \rightarrow 1 = 1 \\ (A \times B) \rightarrow C = A \rightarrow B \rightarrow C & 1 \rightarrow A = A \end{array}$$

We consider the rewriting system

$$\begin{array}{ll} A \to (B \times C) \Rightarrow (A \to B) \times (A \to C) & A \to 1 \Rightarrow 1 \\ (A \times B) \to C \Rightarrow A \to B \to C & 1 \to A \Rightarrow A \end{array}$$

A product $A_1 \times \ldots \times A_n$ is **pasting** when all the A_i are.

For combinators we should add

 $P: A \rightarrow B \rightarrow A \times B$ $P_1: A \times B \rightarrow A$ $P_2: A \times B \rightarrow A$ T: 1

along with the obvious equations

For combinators we should add

 $P: A \rightarrow B \rightarrow A \times B$ $P_1: A \times B \rightarrow A$ $P_2: A \times B \rightarrow A$ T: 1

along with the obvious equations

$$\begin{split} S(K(S(K(S(K \, P_1)))))(S(K \, S)(S(K \, P))) &= K \\ S(K(S(K(S(K \, P_2)))))(S(K \, S)(S(K \, P))) &= K \, I \\ S(S(K \, S)(S(K(S(K \, P)))(S(K \, P_1))))(S(K \, P_2)) &= I \end{split}$$

The theorem

We have axiomatized cartesian closed categories.

Theorem

There is a bijection between

- \cdot terms \vdash **t** : **A** modulo equality (in contexts containing only type definitions),
- $\cdot \lambda$ -terms of type **A** modulo $\beta\eta$ -equality.

Proof.

⇒ Pasting types are contractible so they correspond to (unique) λ -terms. $\Leftarrow \lambda$ -terms can be implemented with combinators, which can be derived in CCCaTT₁.

Categorical combinators AA_{κ} :

(Ass) $(x^{\sigma_3 \Rightarrow \sigma_4} \circ y^{\sigma_2 \Rightarrow \sigma_3}) \circ z^{\sigma_1 \Rightarrow \sigma_2} = x \circ (y \circ z)$ $\mathrm{Id}^{\tau \Rightarrow \tau} \circ x^{\sigma \Rightarrow \tau} = x^{\sigma \Rightarrow \tau}$ (IdL) $x^{\sigma \Rightarrow \tau} \circ \mathrm{Id}^{\sigma \Rightarrow \sigma} = x$ (IdR) (Fst) Fst^{τ_1, τ_2} $\circ \langle x^{\sigma \Rightarrow \tau_1}, y^{\sigma \Rightarrow \tau_2} \rangle = x$ (Snd) Snd^{τ_1, τ_2} $\circ \langle x^{\sigma \Rightarrow \tau_1}, y^{\sigma \Rightarrow \tau_2} \rangle = y$ $\langle x^{\sigma_1 \Rightarrow \tau_1}, y^{\sigma_1 \Rightarrow \tau_2} \rangle \circ z^{\sigma \Rightarrow \sigma_1} = \langle x \circ z, y \circ z \rangle$ (DPair) App^{σ_2,σ_3} $\circ \langle \Lambda(x^{\sigma_1 \times \sigma_2 \Rightarrow \sigma_3}), y^{\sigma_1 \Rightarrow \sigma_2} \rangle = x \circ \langle \mathrm{Id}^{\sigma_1 \Rightarrow \sigma_1}, y \rangle$ (Beta) $\Lambda(x^{\sigma_1 \times \sigma_2 \Rightarrow \sigma_3}) \circ y^{\sigma \Rightarrow \sigma_1} = \Lambda(x \circ \langle y \circ \mathsf{Fst}^{\sigma, \sigma_2}, \mathsf{Snd}^{\sigma, \sigma_2} \rangle)$ (DA) $\Lambda(\operatorname{App}^{\sigma,\tau}) = \operatorname{Id}^{(\sigma \Rightarrow \tau) \Rightarrow (\sigma \Rightarrow \tau)}$ (AI)(FSI) $\langle \operatorname{Fst}^{\sigma,\tau}, \operatorname{Snd}^{\sigma,\tau} \rangle = \operatorname{Id}^{\sigma \times \tau \Rightarrow \sigma \times \tau}$ $(x^{\sigma_1 \Rightarrow \sigma_2} \circ y^{\sigma \Rightarrow \sigma_1}) z^{\sigma} = x(yz)$ (ass) (fst) $\operatorname{Fst}^{\sigma_1,\sigma_2}(x^{\sigma_1}, y^{\sigma_2}) = x$ Snd^{σ_1, σ_2} $(x^{\sigma_1}, y^{\sigma_2}) = y$ (snd) $\langle x^{\sigma \Rightarrow \tau_1}, y^{\sigma \Rightarrow \tau_2} \rangle z^{\sigma} = (xz, yz)$ (dpair) $\operatorname{App}^{\sigma,\tau}(x^{\sigma \Rightarrow \tau}, y^{\sigma}) = xy$ (app) (Quote₁) $\Lambda(\operatorname{Fst}^{\sigma,\sigma_2}) x^{\sigma} \circ y^{\sigma_1 \Rightarrow \sigma_2} = \Lambda(\operatorname{Fst}^{\sigma,\sigma_1}) x$ (Quote₂) App^{σ_2,σ_3} $\circ \langle x^{\sigma \Rightarrow (\sigma_2 \Rightarrow \sigma_3)} \circ \Lambda(Fst^{\sigma,\sigma_1}) y^{\sigma}, z^{\sigma_1 \Rightarrow \sigma_2} \rangle = xy \circ z.$

Abstraction vs meta-abstraction

Because of **ap** we have that if we have a coherence

 $\Gamma \vdash \mathsf{coh} : A \to B$

then we have a coherence

 $\Gamma, x : A \vdash \operatorname{coh} : B$ coh ap {a b : .} (f : a -> b) (x : a) : b coh I {a : .} : a -> a let id {a : .} (x : a) := ap I x

Abstraction vs meta-abstraction

Because of **ap** we have that if we have a coherence

 $\Gamma \vdash \mathsf{coh} : A \to B$

then we have a coherence

 $\Gamma, x : A \vdash \operatorname{coh} : B$ coh ap {a b : .} (f : a -> b) (x : a) : b coh I {a : .} : a -> a let id {a : .} (x : a) := ap I x

The converse is true, but at the "meta-level", which corresponds to λ -abstraction!

Unbiasing equalities

Equalities are (for now) imposed to be congruences, e.g.

$$\frac{\Gamma \vdash t = u \quad \Gamma \vdash u = v}{\Gamma \vdash t = v}$$

or

$$\frac{\Gamma \vdash t = u \quad \Gamma \vdash t_1 = u_1 \quad \dots \quad \Gamma \vdash t_n = u_n}{\Gamma \vdash t \langle t_1, \dots, t_n \rangle = u \langle u_1, \dots, u_n \rangle}$$

e.g.

coh ap-cong
{a b : .}
{t t' : a → b} {u u' : a}
(p : t = t') (q : u = u') : ap t u = ap t' u'

Unbiasing equalities

Equalities are (for now) imposed to be congruences, e.g.

$$\frac{\Gamma \vdash t = u \quad \Gamma \vdash u = v}{\Gamma \vdash t = v}$$

or

$$\frac{\Gamma \vdash t = u \quad \Gamma \vdash t_1 = u_1 \quad \dots \quad \Gamma \vdash t_n = u_n}{\Gamma \vdash t \langle t_1, \dots, t_n \rangle = u \langle u_1, \dots, u_n \rangle}$$

e.g.

```
coh ap-cong
{a b : .}
{t t' : a → b} {u u' : a}
(p : t = t') (q : u = u') : ap t u = ap t' u'
```

which is biased...

Unbiasing equalities

Equalities are (for now) imposed to be congruences, e.g.

$$\frac{\Gamma \vdash t = u \qquad \Gamma \vdash u = v}{\Gamma \vdash t = v}$$

or

$$\frac{\Gamma \vdash t = u \quad \Gamma \vdash t_1 = u_1 \quad \dots \quad \Gamma \vdash t_n = u_n}{\Gamma \vdash t \langle t_1, \dots, t_n \rangle = u \langle u_1, \dots, u_n \rangle}$$

e.g.

```
coh ap-cong
{a b : .}
{t t' : a → b} {u u' : a}
(p : t = t') (q : u = u') : ap t u = ap t' u'
```

which is biased...We can also give unbiased rules!

Interesting subsystems can be defined including

- monoidal categories
- symmetric monoidal categories
- $\cdot\,$ cartesian categories

Toward higher dimensions

Claim

We can also define higher-dimensional pasting schemes in order to define cartesian closed (∞ , 1)-categories.

Part VII

Conclusion

We have defined simply-typed $\lambda\text{-}calculus$ without anything which looks like reduction / evaluation / substitution.

As being unbiased, this unifies many known definitions of λ -calculus.

This should have applications in homotopy type theory!

This is implemented at

https://cccatt.mimram.fr/

Questions?