
Type theoretic definitions of
structured weak higher categories

Samuel Mimram
École polytechnique

MathStic Category Theory Workshop
June 16, 2025

Goals

The goal is to define type theories whose models are (weak higher) (structured)
categories

categories cartesian closed categories

weak ω-categories weak cartesian closed ω-categories
⌜

This is based on joint work with Éric Finster and Thibaut Benjamin:
· A type-theoretical definition of weak ω-categories, LICS 2017.
· Globular weak ω-categories as models of a type theory, Higher Struct. 2024.

Based on earlier work by Ara, Batanin, Gothendieck, Leinster, Maltsiniotis, ...
1 / 79

Main ideas

What I want to convey here is that in order to define weak higher structures
· it is often easier to be unbiased / generic / non parcimonious
· it is enough to formally make generic composition situations contractible
· this can be done using type theory

2 / 79

Part I

Categories

3 / 79

Categories

A category is a graph equipped with composition and identities such that

h ◦ (g ◦ f) = (h ◦ g) ◦ f id ◦f = f = f ◦ id

Why is this a nice definition?

We have a well-defined notion of composition for composable morphisms!

x y z w u
f g h i

e.g.
i ◦ (h ◦ (g ◦ f)) or ((id ◦i) ◦ id) ◦ (h ◦ (g ◦ ((id ◦ id) ◦ f)))

4 / 79

Categories

A category is a graph equipped with composition and identities such that

h ◦ (g ◦ f) = (h ◦ g) ◦ f id ◦f = f = f ◦ id

Why is this a nice definition?

We have a well-defined notion of composition for composable morphisms!

x y z w u
f g h i

e.g.
i ◦ (h ◦ (g ◦ f)) or ((id ◦i) ◦ id) ◦ (h ◦ (g ◦ ((id ◦ id) ◦ f)))

4 / 79

Categories

In some sense, what we really want to implement is an unbiased notion of
category where we have a unique composite

x0 x1 · · · xn
f1 f2 fn

for every n ∈ N but
· the binary compositions and identities are enough to generate all of them,
· the associativity and unitality axioms ensure uniqueness of composite.

5 / 79

Categories

We only want compositions for composable situations such as

x0 x1 · · · xn
f1 f2 fn

but not

x y z
f g

or

y

x

z

f

g

or x y
f

g

nor

x

f

which could mean f or f ◦ f or f ◦ f ◦ f

6 / 79

Categories

We only want compositions for composable situations such as

x0 x1 · · · xn
f1 f2 fn

but not

x y z
f g

or

y

x

z

f

g

or x y
f

g

nor

x

f

which could mean f or f ◦ f or f ◦ f ◦ f

6 / 79

Categories

We only want compositions for composable situations such as

x0 x1 · · · xn
f1 f2 fn

but not

x y z
f g

or

y

x

z

f

g

or x y
f

g

nor

x

f

which could mean f or f ◦ f or f ◦ f ◦ f

6 / 79

Categories

In a situation such as

x

f

if we want to compute
f ◦ f ◦ f

we can consider the composite of

x0 x1 x2 x3
f1 f2 f3

and then instantiate to xi = x and fi = f .

7 / 79

Judgments in type-theory

· Γ ≡ x1 : A1, . . . , xn : An is a well-formed context:

Γ ⊢

· A is a well-formed type in context Γ:

Γ ⊢ A

· t is a term of type A in context Γ:

Γ ⊢ t : A

· t and u are equal terms of type A in context Γ:

Γ ⊢ t = u : A

8 / 79

A type-theoretic definition of categories

Cartmell, 1984:
· type constructors:

Γ ⊢
Γ ⊢ ⋆

Γ ⊢ x : ⋆ Γ ⊢ y : ⋆

Γ ⊢ x → y

· term constructors:
x : ⋆ ⊢ id(x) : x → x

x : ⋆, y : ⋆, f : x → y, z : ⋆,g : y → z ⊢ comp(f ,g) : x → z

· axioms:
Γ ⊢ f : x → y

Γ ⊢ comp(id(x), f) = f

Γ ⊢ f : x → y

Γ ⊢ comp(f , id(y)) = f
. . .

· plus “standard rules” (contexts, weakening, substitutions, . . .)

9 / 79

A type-theoretic definition of categories

Cartmell, 1984:
· type constructors:

Γ ⊢
Γ ⊢ ⋆

Γ ⊢ x : ⋆ Γ ⊢ y : ⋆

Γ ⊢ x → y

· term constructors:
x : ⋆ ⊢ id(x) : x → x

x : ⋆, y : ⋆, f : x → y, z : ⋆,g : y → z ⊢ comp(f ,g) : x → z

· axioms:
Γ ⊢ f : x → y

Γ ⊢ comp(id(x), f) = f

Γ ⊢ f : x → y

Γ ⊢ comp(f , id(y)) = f
. . .

· plus “standard rules” (contexts, weakening, substitutions, . . .)

9 / 79

A type-theoretic definition of categories

Cartmell, 1984:
· type constructors:

Γ ⊢
Γ ⊢ ⋆

Γ ⊢ x : ⋆ Γ ⊢ y : ⋆

Γ ⊢ x → y

· term constructors:
x : ⋆ ⊢ id(x) : x → x

x : ⋆, y : ⋆, f : x → y, z : ⋆,g : y → z ⊢ comp(f ,g) : x → z

· axioms:
Γ ⊢ f : x → y

Γ ⊢ comp(id(x), f) = f

Γ ⊢ f : x → y

Γ ⊢ comp(f , id(y)) = f
. . .

· plus “standard rules” (contexts, weakening, substitutions, . . .)

9 / 79

A type-theoretic definition of categories

Cartmell, 1984:
· type constructors:

Γ ⊢
Γ ⊢ ⋆

Γ ⊢ x : ⋆ Γ ⊢ y : ⋆

Γ ⊢ x → y

· term constructors:
x : ⋆ ⊢ id(x) : x → x

x : ⋆, y : ⋆, f : x → y, z : ⋆,g : y → z ⊢ comp(f ,g) : x → z

· axioms:
Γ ⊢ f : x → y

Γ ⊢ comp(id(x), f) = f

Γ ⊢ f : x → y

Γ ⊢ comp(f , id(y)) = f
. . .

· plus “standard rules” (contexts, weakening, substitutions, . . .)
9 / 79

Models of the type theory

A model of the type theory consists in interpreting
· closed types as sets,
· closed terms as elements of their type,

in such a way that axioms are satisfied.

A model of the previous type theory consists of
· a set J⋆K
· for each x, y ∈ J⋆K, a set J→Kx,y
· for each x ∈ J⋆K, an element JidKx ∈ J→Kx,x
· . . .

In other words, a model of the type theory is precisely a category
(and a morphism is a functor).

10 / 79

Models of the type theory

A model of the type theory consists in interpreting
· closed types as sets,
· closed terms as elements of their type,

in such a way that axioms are satisfied.

A model of the previous type theory consists of
· a set J⋆K
· for each x, y ∈ J⋆K, a set J→Kx,y
· for each x ∈ J⋆K, an element JidKx ∈ J→Kx,x
· . . .

In other words, a model of the type theory is precisely a category
(and a morphism is a functor).

10 / 79

Models of the type theory

A model of the type theory consists in interpreting
· closed types as sets,
· closed terms as elements of their type,

in such a way that axioms are satisfied.

A model of the previous type theory consists of
· a set J⋆K
· for each x, y ∈ J⋆K, a set J→Kx,y
· for each x ∈ J⋆K, an element JidKx ∈ J→Kx,x
· . . .

In other words, a model of the type theory is precisely a category
(and a morphism is a functor).

10 / 79

Unbiased definition

Since the composition is associative for categories, the composite of any diagram
like

x0 x1 . . . xn
f1 f2 fn

is uniquely defined.

So, instead of having a binary composition and identities, we could have a more
general rule

x0 : ⋆, x1 : ⋆, f1 : x0 → x1, . . . , xn : ⋆, fn : xn−1 → xn ⊢ comp(f1, . . . , fn) : x0 → xn

and associated axioms.

The models of this unbiased definition would still be categories.
11 / 79

Part II

A type theory for globular sets

12 / 79

Higher categories

The definition of ω-category generalizes categories by taking higher cells into
account.

13 / 79

Higher categories

The definition of ω-category generalizes categories by taking higher cells into
account.

In such a category, you have
· 0-cells (objects): x

· 1-cells (morphisms):
x y

f

· 2-cells: x y
f

g
α ⇓

· 3-cells:
x y

f

g

α ⇓
F
⇛⇓ β

· . . .
13 / 79

Higher categories

The definition of ω-category generalizes categories by taking higher cells into
account.

In such a category, you have compositions

x y z
f

f ′

g

g′
α β ⇝ x z

f∗g

f ′∗g′

α∗0β

x y

f

g

h

α

β
⇝ x y

f

h

α∗1β

More generally, n-cells α and β can be composed in dimension i, with 0 ≤ i < n. 13 / 79

Higher categories

The definition of ω-category generalizes categories by taking higher cells into
account.

In such a category, you have axioms such as
· associativity of composition and neutrality of identities,
· exchange laws:

x y z

f

g

h

f ′

g′

h′

α

β

α′

β′

(more on this later)

13 / 79

Globular sets

Definition
A globular set consists of

· a set G, and
· for every x, y ∈ G, a globular set Gxy .

For instance

x y z
f

g

h
α

corresponds to

G = {x, y, z} Gxy = {f ,g} (Gxy)
f
g = {α} ((Gxy)

f
g)

α
α = ∅ . . .

14 / 79

Globular sets

Definition
A globular set consists of

· a set G, and
· for every x, y ∈ G, a globular set Gxy .

Alternatively, this can be defined as
· a sequence of sets Gn of n-cells for n ∈ N,
· with source and target maps

sn, tn : Gn+1 → Gn

satisfying suitable axioms.

G0 G1 G2 · · ·
s0

t0

s1

t1

s2

t2 14 / 79

Globular sets

Proposition
Globular sets are precisely the models of the type theory

Γ ⊢
Γ ⊢ ⋆

Γ ⊢ t : A Γ ⊢ u : A
Γ ⊢ t→

A
u

. . .

15 / 79

Globular sets

Proposition
Globular sets are precisely the models of the type theory

Γ ⊢
Γ ⊢ ⋆

Γ ⊢ t : A Γ ⊢ u : A
Γ ⊢ t→

A
u

. . .

Remark
A finite globular set

x y z
f

g

h
α

can be encoded as a context

x : ⋆, y : ⋆, z : ⋆, f : x →
⋆
y,g : x →

⋆
y,h : z→

⋆
y, α : f →

x→
⋆
y
g

15 / 79

Globular sets

Proposition
Globular sets are precisely the models of the type theory

Γ ⊢
Γ ⊢ ⋆

Γ ⊢ t : A Γ ⊢ u : A
Γ ⊢ t→

A
u

. . .

Proposition
The syntactic category (of contexts and substitutions) of this type theory is the
opposite of the category of finite globular sets.

15 / 79

Part III

Weak higher categories

16 / 79

Weak higher categories

A strict higher category is a globular set with compositions and satisfying axioms:
associativity, unitality and exchange.

In a weak higher category, all the axioms should hold up to a higher cell, which
should be unique up to higher cells.

Those can be thought of as an intensional variant of higher categories.

17 / 79

Weak higher categories

A strict higher category is a globular set with compositions and satisfying axioms:
associativity, unitality and exchange.

In a weak higher category, all the axioms should hold up to a higher cell, which
should be unique up to higher cells.

Those can be thought of as an intensional variant of higher categories.

17 / 79

Bicategories

The notion of bicategory is defined almost as for 2-categories, excepting that we
replace the requirement that composition of 1-cells is associative and unital by

· weak associativity: given

x y z wa b c

there is an invertible 2-cell, the associator,

αa,b,c : (a ∗0 b) ∗0 c⇒ a ∗0 (b ∗0 c)

· weak unitality: given
x ya

there are invertible 2-cells, the left and right unitors,

λa : idx ∗0a⇒ a ρa : a ∗0 idy ⇒ a

18 / 79

Bicategories

The notion of bicategory is defined almost as for 2-categories, excepting that we
replace the requirement that composition of 1-cells is associative and unital by

· weak associativity: given

x y z wa b c

there is an invertible 2-cell, the associator,

αa,b,c : (a ∗0 b) ∗0 c⇒ a ∗0 (b ∗0 c)

· weak unitality: given
x ya

there are invertible 2-cells, the left and right unitors,

λa : idx ∗0a⇒ a ρa : a ∗0 idy ⇒ a

18 / 79

Bicategories: axioms

We also need to ensure that those satisfy suitable axioms,
the pentagon and the triangle:

((a ∗ b) ∗ c) ∗ d (a ∗ (b ∗ c)) ∗ d

a ∗ ((b ∗ c) ∗ d)

(a ∗ b) ∗ (c ∗ d) a ∗ (b ∗ (c ∗ d))

αa∗b,c,d

αa,b,c∗d

αa,b∗c,d

a∗αb,c,d

αa,b,c∗d

(a ∗ id) ∗ b a ∗ (id ∗b)

a ∗ b
ρa∗b

αa,id,b

a∗ρb

19 / 79

Bicategories: coherence

This notion is pleasant because

Theorem (Mac Lane’s coherence theorem)
Any two ways of composing 1-cells are isomorphic and there is one such
structural isomorphism.

For instance,
f1 ∗ (f2 ∗ (f3 ∗ f4)) ∼= (f1 ∗ f2 ∗ f3) ∗ (id ∗f4)

20 / 79

Tricategories

Defining tricategories can be done starting from the definition of 3-categories
and

1. replacing all equalities between 0-, 1- and 2- cells by 1-, 2- and 3- cells,
2. making those coherent by adding the suitable axioms.

For instance, we replace associativity of composition between 1-cells

(f ∗0 g) ∗0 h = f ∗0 (g ∗0 h)

by an invertible associator 2-cell

αf ,g,h : (f ∗0 g) ∗0 h⇒ f ∗0 (g ∗0 h)

but by “invertible”, we mean here that αf ,g,h should be an equivalence:

η : Id⇛ αf ,g,h ∗1 αf ,g,h ε : αf ,g,h ∗1 αf ,g,h ⇛ Id

and so on...

21 / 79

Tricategories

Defining tricategories can be done starting from the definition of 3-categories
and

1. replacing all equalities between 0-, 1- and 2- cells by 1-, 2- and 3- cells,
2. making those coherent by adding the suitable axioms.

For instance, we replace associativity of composition between 1-cells

(f ∗0 g) ∗0 h = f ∗0 (g ∗0 h)

by an invertible associator 2-cell

αf ,g,h : (f ∗0 g) ∗0 h⇒ f ∗0 (g ∗0 h)

but by “invertible”, we mean here that αf ,g,h should be an equivalence:

η : Id⇛ αf ,g,h ∗1 αf ,g,h ε : αf ,g,h ∗1 αf ,g,h ⇛ Id

and so on...

21 / 79

Tricategories

Defining tricategories can be done starting from the definition of 3-categories
and

1. replacing all equalities between 0-, 1- and 2- cells by 1-, 2- and 3- cells,
2. making those coherent by adding the suitable axioms.

For instance, we replace associativity of composition between 1-cells

(f ∗0 g) ∗0 h = f ∗0 (g ∗0 h)

by an invertible associator 2-cell

αf ,g,h : (f ∗0 g) ∗0 h⇒ f ∗0 (g ∗0 h)

but by “invertible”, we mean here that αf ,g,h should be an equivalence:

η : Id⇛ αf ,g,h ∗1 αf ,g,h ε : αf ,g,h ∗1 αf ,g,h ⇛ Id

and so on...
21 / 79

Tricategories

The definition of tricategories takes roughly 4 pages with axioms such as

=

22 / 79

Tetracategories

The process can be generalized to define weak n-categories.

No one has ever tried to give a definition of a pentacategory in this way.

Instead of explicitly trying to give the axioms of weak higher categories, one
should try to find a systematic way of generating those.

If we go all the way, we obtain weak ω-categories aka (∞, ω)-categories.

In those, we never have axioms, only higher cells. This can be thought of as very
constructive definition: we want to have witnesses for all the laws.

23 / 79

Tetracategories

The process can be generalized to define weak n-categories.

No one has ever tried to give a definition of a pentacategory in this way.

Instead of explicitly trying to give the axioms of weak higher categories, one
should try to find a systematic way of generating those.

If we go all the way, we obtain weak ω-categories aka (∞, ω)-categories.

In those, we never have axioms, only higher cells. This can be thought of as very
constructive definition: we want to have witnesses for all the laws.

23 / 79

Tetracategories

The process can be generalized to define weak n-categories.

No one has ever tried to give a definition of a pentacategory in this way.

Instead of explicitly trying to give the axioms of weak higher categories, one
should try to find a systematic way of generating those.

If we go all the way, we obtain weak ω-categories aka (∞, ω)-categories.

In those, we never have axioms, only higher cells. This can be thought of as very
constructive definition: we want to have witnesses for all the laws.

23 / 79

Tetracategories

The process can be generalized to define weak n-categories.

No one has ever tried to give a definition of a pentacategory in this way.

Instead of explicitly trying to give the axioms of weak higher categories, one
should try to find a systematic way of generating those.

If we go all the way, we obtain weak ω-categories aka (∞, ω)-categories.

In those, we never have axioms, only higher cells. This can be thought of as very
constructive definition: we want to have witnesses for all the laws.

23 / 79

The general scheme

Instead of trying to carefully craft compositions and coherences, it is actually
easier to take an unbiased approach.

The general pattern is that
· we identify situation that should be contractible (the pasting schemes)
· and formally make them contractible

24 / 79

Part IV

Pasting schemes

25 / 79

Pasting schemes

We now want to define pasting schemes which are diagrams for which we expect
to have a composition. For instance,

x y z w

f

f ′

f ′′

α

β

g h

is a pasting scheme, but not

x y z
f

g or x y z
f g

26 / 79

Disks

Given n ∈ N, the n-disk Dn is the globular set corresponding to a general n-cell:

x x y x y x y⇛

D0 D1 D2 D3

Those are basic building blocks of globular sets: any globular set can be obtained
by gluing such disks.

(those are the representable globular sets)

27 / 79

Pasting schemes

A pasting scheme is a globular set

x y z w

f

f ′

f ′′

α

β

g h

· Grothendieck: which can be obtained as a particular colimit of disks

x y x y y z z w

x y

f

f ′ f ′

f ′′

g hα

β

f ′ y z

28 / 79

Pasting schemes

A pasting scheme is a globular set

x y z w

f

f ′

f ′′

α

β

g h

· Batanin: which is described by a particular tree

x2
0 x2

1

x1
0 x1

1 x1
2

x0
0

α β

f

f ′

f ′′
g h

x

y z

w
28 / 79

Pasting schemes

A pasting scheme is a globular set

x y z w

f

f ′

f ′′

α

β

g h

· Finster-Mimram: which is “totally ordered”

28 / 79

Order relation

We can define a preorder ◁ on the cells of a globular set by

source(x) ◁ x and x ◁ target(x)

For the globular set

x y z w

f

f ′

f ′′

α

β

g h

we have

x ◁ f ◁ α ◁ f ′ ◁ β ◁ f ′′ ◁ y ◁ g ◁ z ◁ h ◁ w

29 / 79

Characterization of pasting schemes

Theorem
A globular set is a pasting scheme if and only if it is

· non-empty,
· finite, and
· the relation ◁ is a total order.

30 / 79

Construction of pasting schemes

A pointed globular set is a globular set with a distinguished cell.

Theorem
A pasting scheme is a pointed globular set which can be constructed as follows:

· we start from a 0-cell x
· we can add a new (n+1)-cell and its new target,

its source being the distinguished n-cell

x y
f

⇝ x y
f

g

α

· or the distinguished cell becomes the target of the previous one

x y
f

g

α ⇝ x y
f

g

α

31 / 79

Construction of pasting schemes

A pointed globular set is a globular set with a distinguished cell.

Theorem
A pasting scheme is a pointed globular set which can be constructed as follows:

· we start from a 0-cell x
· we can add a new (n+1)-cell and its new target,

its source being the distinguished n-cell

x y
f

⇝ x y
f

g

α

· or the distinguished cell becomes the target of the previous one

x y
f

g

α ⇝ x y
f

g

α

31 / 79

Construction of pasting schemes

A pointed globular set is a globular set with a distinguished cell.

Theorem
A pasting scheme is a pointed globular set which can be constructed as follows:

· we start from a 0-cell x

· we can add a new (n+1)-cell and its new target,
its source being the distinguished n-cell

x y
f

⇝ x y
f

g

α

· or the distinguished cell becomes the target of the previous one

x y
f

g

α ⇝ x y
f

g

α

31 / 79

Construction of pasting schemes

A pointed globular set is a globular set with a distinguished cell.

Theorem
A pasting scheme is a pointed globular set which can be constructed as follows:

· we start from a 0-cell x
· we can add a new (n+1)-cell and its new target,

its source being the distinguished n-cell

x y
f

⇝ x y
f

g

α

· or the distinguished cell becomes the target of the previous one

x y
f

g

α ⇝ x y
f

g

α

31 / 79

Construction of pasting schemes

A pointed globular set is a globular set with a distinguished cell.

Theorem
A pasting scheme is a pointed globular set which can be constructed as follows:

· we start from a 0-cell x
· we can add a new (n+1)-cell and its new target,

its source being the distinguished n-cell

x y
f

⇝ x y
f

g

α

· or the distinguished cell becomes the target of the previous one

x y
f

g

α ⇝ x y
f

g

α

31 / 79

Construction of pasting schemes

The construction of the pasting scheme

x

y z w

f

f ′

f ′′

α

β

g h

corresponds to its order

x

◁ f ◁ α ◁ f ′ ◁ β ◁ f ′′ ◁ y ◁ g ◁ z ◁ h ◁ w

32 / 79

Construction of pasting schemes

The construction of the pasting scheme

x y

z w

f

f ′

f ′′

α

β

g h

corresponds to its order

x ◁ f

◁ α ◁ f ′ ◁ β ◁ f ′′ ◁ y ◁ g ◁ z ◁ h ◁ w

32 / 79

Construction of pasting schemes

The construction of the pasting scheme

x y

z w

f

f ′

f ′′

α

β

g h

corresponds to its order

x ◁ f ◁ α

◁ f ′ ◁ β ◁ f ′′ ◁ y ◁ g ◁ z ◁ h ◁ w

32 / 79

Construction of pasting schemes

The construction of the pasting scheme

x y

z w

f

f ′

f ′′

α

β

g h

corresponds to its order

x ◁ f ◁ α ◁ f ′

◁ β ◁ f ′′ ◁ y ◁ g ◁ z ◁ h ◁ w

32 / 79

Construction of pasting schemes

The construction of the pasting scheme

x y

z w

f

f ′

f ′′

α

β

g h

corresponds to its order

x ◁ f ◁ α ◁ f ′ ◁ β

◁ f ′′ ◁ y ◁ g ◁ z ◁ h ◁ w

32 / 79

Construction of pasting schemes

The construction of the pasting scheme

x y

z w

f

f ′

f ′′

α

β

g h

corresponds to its order

x ◁ f ◁ α ◁ f ′ ◁ β ◁ f ′′

◁ y ◁ g ◁ z ◁ h ◁ w

32 / 79

Construction of pasting schemes

The construction of the pasting scheme

x y

z w

f

f ′

f ′′

α

β

g h

corresponds to its order

x ◁ f ◁ α ◁ f ′ ◁ β ◁ f ′′ ◁ y

◁ g ◁ z ◁ h ◁ w

32 / 79

Construction of pasting schemes

The construction of the pasting scheme

x y z

w

f

f ′

f ′′

α

β

g h

corresponds to its order

x ◁ f ◁ α ◁ f ′ ◁ β ◁ f ′′ ◁ y ◁ g

◁ z ◁ h ◁ w

32 / 79

Construction of pasting schemes

The construction of the pasting scheme

x y z

w

f

f ′

f ′′

α

β

g h

corresponds to its order

x ◁ f ◁ α ◁ f ′ ◁ β ◁ f ′′ ◁ y ◁ g ◁ z

◁ h ◁ w

32 / 79

Construction of pasting schemes

The construction of the pasting scheme

x y z w

f

f ′

f ′′

α

β

g h

corresponds to its order

x ◁ f ◁ α ◁ f ′ ◁ β ◁ f ′′ ◁ y ◁ g ◁ z ◁ h

◁ w

32 / 79

Construction of pasting schemes

The construction of the pasting scheme

x y z w

f

f ′

f ′′

α

β

g h

corresponds to its order

x ◁ f ◁ α ◁ f ′ ◁ β ◁ f ′′ ◁ y ◁ g ◁ z ◁ h ◁ w

32 / 79

Type-theoretic pasting schemes

Now, recall that a pasting scheme

x y z w

f

f ′

f ′′

α

β

g h

can be seen as a context

x : ⋆, y : ⋆, f : x → y, f ′ : x → y,
α : f → f ′, f ′′ : x → y, β : f ′ → f ′′,
z : ⋆,g : y → z,w : ⋆,h : z→ w

33 / 79

Type-theoretic pasting schemes

A context Γ (seen as a globular set) is a pasting scheme iff

Γ ⊢ps

is derivable with the rules

x : ⋆ ⊢ps x : ⋆
Γ ⊢ps x : ⋆

Γ ⊢ps

Γ ⊢ps x : A
Γ, y : A, f : x →

A
y ⊢ps f : x →

A
y

Γ ⊢ps f : x →
A
y

Γ ⊢ps y : A

34 / 79

Type-theoretic pasting schemes

Note that with those rules
· the order of cells matters:

x y z
f

g

g
α

· because of this we can easily check
· proofs are canonical

35 / 79

Source and targets

A pasting scheme Γ

x y z w

f

f ′

f ′′

α

β

g h

has
· a source ∂−(Γ):

x y z w

f

g h

· a target ∂+(Γ):
x y z w

f ′′

g h

both of which can be defined by induction on contexts.
36 / 79

Part V

A type-theoretic definition of weak
ω-categories

37 / 79

Type-theoretic ω-categories

We expect that in an ω-category every pasting scheme has a composite:

Γ ⊢ps Γ ⊢ A
Γ ⊢ cohΓ,A : A

You can derive expected operations, such as composition:

x : ⋆, y : ⋆, f : x →
⋆
y, z : ⋆,g : y →

⋆
z ⊢ coh : x →

⋆
z

However, you can derive too much:

x : ⋆, y : ⋆, f : x →
⋆
y ⊢ coh : y →

⋆
x

We have in fact a definition of ω-groupoids

38 / 79

Type-theoretic ω-categories

We expect that in an ω-category every pasting scheme has a composite:

Γ ⊢ps Γ ⊢ A
Γ ⊢ cohΓ,A : A

You can derive expected operations, such as composition:

x : ⋆, y : ⋆, f : x →
⋆
y, z : ⋆,g : y →

⋆
z ⊢ coh : x →

⋆
z

However, you can derive too much:

x : ⋆, y : ⋆, f : x →
⋆
y ⊢ coh : y →

⋆
x

We have in fact a definition of ω-groupoids

38 / 79

Type-theoretic ω-categories

We expect that in an ω-category every pasting scheme has a composite:

Γ ⊢ps Γ ⊢ A
Γ ⊢ cohΓ,A : A

You can derive expected operations, such as composition:

x : ⋆, y : ⋆, f : x →
⋆
y, z : ⋆,g : y →

⋆
z ⊢ coh : x →

⋆
z

However, you can derive too much:

x : ⋆, y : ⋆, f : x →
⋆
y ⊢ coh : y →

⋆
x

We have in fact a definition of ω-groupoids
38 / 79

Type-theoretic ω-categories

We need to take care of side-conditions and in fact split the rule in two:
· operations:

Γ ⊢ps Γ ⊢ t→
A
u ∂−(Γ) ⊢ t : A ∂+(Γ) ⊢ u : A

Γ ⊢ cohΓ,t→
A
u : t→

A
u

whenever

FV(t) = FV(∂−(Γ)) and FV(u) = FV(∂+(Γ))

· coherences:
Γ ⊢ps Γ ⊢ A
Γ ⊢ cohΓ,A : A

whenever
FV(A) = FV(Γ)

39 / 79

Type-theoretic ω-categories

Definition
An ω-category is a model of this type theory.

Theorem
This definition coincides with the one of Grothendieck-Maltsiniotis.

40 / 79

Type-theoretic ω-categories

Definition
An ω-category is a model of this type theory.

Theorem
This definition coincides with the one of Grothendieck-Maltsiniotis.

40 / 79

Type-theoretic ω-categories

A typical example of operation is composition

x y

f

f ′

f ′′

α

β
⊢ coh : x y

f

→ x y

f ′′

(this coherence is noted “comp” in the following).

41 / 79

Type-theoretic ω-categories

A typical example of coherence is associativity

x y z w
f g h

⊢

coh : x w
comp(comp(f ,g),h)

→ x w
comp(f ,comp(g,h))

42 / 79

Coherences are reversible

Note that if we derive a coherence
Γ ⊢ps Γ ⊢ A
Γ ⊢ cohΓ,A : A

with FV(A) = FV(Γ)

where
A = t→ u

there is also one with
A = u→ t

Definition
An n-cell f : x → y is reversible when there exists

· an n-cell g : y → x and
· reversible (n+1)-cells

α : f ∗n−1 g→ idx β : g ∗n−1 f → idy

43 / 79

Coherences are reversible

Note that if we derive a coherence
Γ ⊢ps Γ ⊢ A
Γ ⊢ cohΓ,A : A

with FV(A) = FV(Γ)

where
A = t→ u

there is also one with
A = u→ t

Definition
An n-cell f : x → y is reversible when there exists

· an n-cell g : y → x and
· reversible (n+1)-cells

α : f ∗n−1 g→ idx β : g ∗n−1 f → idy
43 / 79

“Demo”

· identity 1-cells
coh id {a : .} : a -> a

· composition of 1-cells:
coh co {a b c : .} (f : a -> b) (g : b -> c) : a -> c

· associativity of composition of 1-cells:
coh assoc {a b c d : .} (f : a -> b) (g : b -> c) (h : c -> d) :

co (co f g) h -> co f (co g h)

· . . .
· no inverses:
coh inv {a b : .} (f : a -> b) : b -> a

produces and error!

44 / 79

“Demo”

· identity 1-cells
coh id {a : .} : a -> a

· composition of 1-cells:
coh co {a b c : .} (f : a -> b) (g : b -> c) : a -> c

· associativity of composition of 1-cells:
coh assoc {a b c d : .} (f : a -> b) (g : b -> c) (h : c -> d) :

co (co f g) h -> co f (co g h)

· . . .
· no inverses:
coh inv {a b : .} (f : a -> b) : b -> a

produces and error!

44 / 79

“Demo”

· identity 1-cells
coh id {a : .} : a -> a

· composition of 1-cells:
coh co {a b c : .} (f : a -> b) (g : b -> c) : a -> c

· associativity of composition of 1-cells:
coh assoc {a b c d : .} (f : a -> b) (g : b -> c) (h : c -> d) :

co (co f g) h -> co f (co g h)

· . . .
· no inverses:
coh inv {a b : .} (f : a -> b) : b -> a

produces and error!

44 / 79

“Demo”

· identity 1-cells
coh id {a : .} : a -> a

· composition of 1-cells:
coh co {a b c : .} (f : a -> b) (g : b -> c) : a -> c

· associativity of composition of 1-cells:
coh assoc {a b c d : .} (f : a -> b) (g : b -> c) (h : c -> d) :

co (co f g) h -> co f (co g h)

· . . .

· no inverses:
coh inv {a b : .} (f : a -> b) : b -> a

produces and error!

44 / 79

“Demo”

· identity 1-cells
coh id {a : .} : a -> a

· composition of 1-cells:
coh co {a b c : .} (f : a -> b) (g : b -> c) : a -> c

· associativity of composition of 1-cells:
coh assoc {a b c d : .} (f : a -> b) (g : b -> c) (h : c -> d) :

co (co f g) h -> co f (co g h)

· . . .
· no inverses:
coh inv {a b : .} (f : a -> b) : b -> a

produces and error!

44 / 79

Part VI

Unbiased cartesian closed categories

45 / 79

Next steps

Previous work is nice but
· the type theory is very limited (no Σ- or Π-types, etc.)
· we would like to be able to consider categories with structure

([locally] cartesian [closed]...)

Here
1. we restrict to 1-categories
2. we extend with products and internal homs

46 / 79

Unbiased

cartesian closed

1-categories

If we restrict our theory for weak ω-categories to consider that 2-cells (and higher
are identities), we obtain a theory for unbiased categories:

x y z w
f g h ⊢ coh : x → w

Our aim is to extend this to have a definition for unbiased cartesian closed
categories (which could hopefully extend in higher dimensions).

47 / 79

Unbiased cartesian closed 1-categories

If we restrict our theory for weak ω-categories to consider that 2-cells (and higher
are identities), we obtain a theory for unbiased categories:

x y z w
f g h ⊢ coh : x → w

Our aim is to extend this to have a definition for unbiased cartesian closed
categories (which could hopefully extend in higher dimensions).

47 / 79

Unbiased cartesian closed 1-categories

There are various definition of cartesian closed categories:
· the traditional categorical definition
· simply-typed λ-calculus
· combinatory logic (I, K, S)
· categorical combinators
· ...

We want here
· an agnostic approach in which we could implement most of the above
· a “nice” definition which does not require substitution/α-conversion, weird

rules, etc.
· on the long term, we would like an “equality-free” definition of MLTT...

48 / 79

Simply-typed λ-calculus

We consider simply-typed λ-calculus where types are

A ::= X | A→ B | . . .

terms are
t ::= x | λxA.t | t u

rules are

Γ, x : A,∆ ⊢ x : A

Γ ⊢ t : A→ B Γ ⊢ u : A
Γ ⊢ t u : B

Γ, x : A ⊢ t : B
Γ ⊢ λxA.t : A→ B

and equality is extensional equality

(λxA.t)u = t[u/x] t = λxA.t x

Note: we consider the implicational fragment for simplicity
49 / 79

Simply typed λ-calculus

A λ-term is a normal form when it is normal with respect to β-reduction

(λxA.t)u ⇝ t[u/x]

Theorem
Any typable λ-term is β-equivalent to a unique (η-long) normal form.

Such a term is of the from

λx1x2 . . . xn.xit1t2 . . . tk

with ti normal forms.

50 / 79

Contractible types

We say that a type is
· propositional when there is at most one inhabitant

(modulo extensional equality)
· contractible when there is exactly one inhabitant

For instance:
· (A→ B) → A→ B is

contractible

· B→ A is

propositional

· (A→ A) → (A→ A) is

not contractible

51 / 79

Contractible types

We say that a type is
· propositional when there is at most one inhabitant

(modulo extensional equality)
· contractible when there is exactly one inhabitant

For instance:
· (A→ B) → A→ B is

contractible

· B→ A is

propositional

· (A→ A) → (A→ A) is

not contractible

51 / 79

Contractible types

We say that a type is
· propositional when there is at most one inhabitant

(modulo extensional equality)
· contractible when there is exactly one inhabitant

For instance:
· (A→ B) → A→ B is contractible
· B→ A is

propositional

· (A→ A) → (A→ A) is

not contractible

51 / 79

Contractible types

We say that a type is
· propositional when there is at most one inhabitant

(modulo extensional equality)
· contractible when there is exactly one inhabitant

For instance:
· (A→ B) → A→ B is contractible
· B→ A is propositional
· (A→ A) → (A→ A) is

not contractible

51 / 79

Contractible types

We say that a type is
· propositional when there is at most one inhabitant

(modulo extensional equality)
· contractible when there is exactly one inhabitant

For instance:
· (A→ B) → A→ B is contractible
· B→ A is propositional
· (A→ A) → (A→ A) is not contractible

51 / 79

Komori’s conjecture

We write A ≤ B when B can be obtained from A by replacing variables, for instance

A→ A ≤ (A→ B) → (A→ B)

From Yuichi Komori. BCK algebras and lambda calculus. In Proceedings of the
10th Symposium on Semigroups, pages 5–11, 1987:
Conjecture
A minimal provable type is contractible.
For instance,

(A→ A) → (A→ A)

is not contractible, but this is the case of the smaller

(A→ B) → A→ B

This does not hold, but we will see that contractible types still generate all proofs.

52 / 79

Komori’s conjecture

We write A ≤ B when B can be obtained from A by replacing variables, for instance

A→ A ≤ (A→ B) → (A→ B)

From Yuichi Komori. BCK algebras and lambda calculus. In Proceedings of the
10th Symposium on Semigroups, pages 5–11, 1987:
Conjecture
A minimal provable type is contractible.
For instance,

(A→ A) → (A→ A)

is not contractible, but this is the case of the smaller

(A→ B) → A→ B

This does not hold, but we will see that contractible types still generate all proofs.

52 / 79

Komori’s conjecture

We write A ≤ B when B can be obtained from A by replacing variables, for instance

A→ A ≤ (A→ B) → (A→ B)

From Yuichi Komori. BCK algebras and lambda calculus. In Proceedings of the
10th Symposium on Semigroups, pages 5–11, 1987:
Conjecture
A minimal provable type is contractible.
For instance,

(A→ A) → (A→ A)

is not contractible, but this is the case of the smaller

(A→ B) → A→ B

This does not hold, but we will see that contractible types still generate all proofs.
52 / 79

Komori’s conjecture

The conjecture does hold for formulas of depth ≤ 2

but various counter-examples to the conjecture were found:
· Mint’90: ((((A→ B) → A) → A) → B) → B
· Aoto’99: ((A→ B) → A) → ((A→ B) → B)
fun x -> fun y -> y (x (fun z -> y z))

fun x -> fun y -> y (x (fun z -> y (x (fun z -> y z))))

fun x -> fun y -> y (x (fun z -> y (x (fun z -> y (x (fun z -> y z))))))

...

53 / 79

Komori’s conjecture

The conjecture does hold for formulas of depth ≤ 2
but various counter-examples to the conjecture were found:

· Mint’90: ((((A→ B) → A) → A) → B) → B
· Aoto’99: ((A→ B) → A) → ((A→ B) → B)
fun x -> fun y -> y (x (fun z -> y z))

fun x -> fun y -> y (x (fun z -> y (x (fun z -> y z))))

fun x -> fun y -> y (x (fun z -> y (x (fun z -> y (x (fun z -> y z))))))

...

53 / 79

Propositional formulas

People tried to come up with conditions which would imply that a formula has at
most one proof:

· Hirokawa’93:
in implication fragments of BCI and BCK (no contraction), minimal inhabited
types are contractible.

· Aoto’99:
provable without non-prime contraction, i.e. an implication introduction rule
whose canceled assumption differs from a propositional variable and
appears more than once in the proof.

54 / 79

Propositional formulas

Another trend of work is in
· Mint’82, Babaev&Solov’ev’82 (coherence for CCC):

a formula which is balanced (no variable occurs more than twice) admits at
most one inhabitant

For instance,
· (A→ B) → (A→ B) is balanced and thus contractible
· (A→ B) → (B→ A) is balanced by not inhabited
· (A→ B→ C) → (A→ B) → A→ C is not balanced but contractible (this is S!)

55 / 79

Propositional formulas

This is generalized in
· Takahito Aoto and Hiroakira Ono. Uniqueness of normal proofs in
{→,∧}-fragment of NJ. Technical Report IS-RR-94-0024F, School of
Information Science, JAIST, 1994. Research report.

· Pierre Bourreau and Sylvain Salvati. Game semantics and uniqueness of type
inhabitance in the simply-typed λ-calculus. In 10th International Conference,
TLCA 2011, Novi Sad, Serbia, June 1-3, 2011. Proceedings, volume 6690 of LNCS,
pages 61–75. Springer, 2011.

· Sabine Broda and Luıı́s Damas. On long normal inhabitants of a type. J. Log.
Comput., 15(3):353–390, 2005.

56 / 79

Propositional formulas

A type is non-negatively duplicating when every variable has at most one
negative occurrence, e.g.

S : (A+ → B+ → C−) → (A+ → B−) → A− → C+

Theorem
A non-negatively duplicating type is propositional.

Proof.
By cut-elimination, we can look for a proof which corresponds to a λ-term which
is β-normal and η-long (we take as many variables as there are arrows), i.e. terms
of the form

λx1x2 . . . xn.xit1t2 . . . tk
the choice of the head variable must have a type whose target is the negative
occurrence of the variable being proved.

57 / 79

Propositional formulas

A type is non-negatively duplicating when every variable has at most one
negative occurrence, e.g.

S : (A+ → B+ → C−) → (A+ → B−) → A− → C+

Theorem
A non-negatively duplicating type is propositional.

Proof.
By cut-elimination, we can look for a proof which corresponds to a λ-term which
is β-normal and η-long (we take as many variables as there are arrows), i.e. terms
of the form

λx1x2 . . . xn.xit1t2 . . . tk
the choice of the head variable must have a type whose target is the negative
occurrence of the variable being proved.

57 / 79

Propositional formulas

A type is non-negatively duplicating when every variable has at most one
negative occurrence, e.g.

S : (A+ → B+ → C−) → (A+ → B−) → A− → C+

Theorem
A non-negatively duplicating type is propositional.

Proof.
By cut-elimination, we can look for a proof which corresponds to a λ-term which
is β-normal and η-long (we take as many variables as there are arrows), i.e. terms
of the form

λx1x2 . . . xn.xit1t2 . . . tk
the choice of the head variable must have a type whose target is the negative
occurrence of the variable being proved.

57 / 79

Propositional formulas

Proof search in βη-long form can be performed with
· the introduction

Γ, x1 : A1, . . . , xn : An ⊢ t : B
Γ ⊢ λx1 . . . xn.t : A1 → . . . → An → B

(→I)

where B is not an arrow,
· the elimination

Γ ⊢ t1 : A1 . . . Γ ⊢ tn : An
Γ ⊢ x t1 . . . tn : X

(→E)

with x : A1 → . . . → An → X in Γ.

58 / 79

Propositional formulas

⊢

λfgx.

f

x (g

x

)

: (A+ → B+ → C−) → (A+ → B−) → A− → C+

59 / 79

Propositional formulas

f : A+ → B+ → C−,g : A+ → B−, x : A− ⊢

f

x (g

x

)

: C+

⊢ λfgx.

f

x (g

x

)

: (A+ → B+ → C−) → (A+ → B−) → A− → C+

59 / 79

Propositional formulas

Γ ⊢

x

: A+ Γ ⊢

g

x

: B+

f : A+ → B+ → C−,g : A+ → B−, x : A− ⊢ f

x (g

x

)

: C+

⊢ λfgx.f

x (g

x

)

: (A+ → B+ → C−) → (A+ → B−) → A− → C+

59 / 79

Propositional formulas

Γ ⊢ x : A+ Γ ⊢

g

x

: B+

f : A+ → B+ → C−,g : A+ → B−, x : A− ⊢ f x

(g

x

)

: C+

⊢ λfgx.f x

(g

x

)

: (A+ → B+ → C−) → (A+ → B−) → A− → C+

59 / 79

Propositional formulas

Γ ⊢ x : A+
Γ ⊢

x

: A+

Γ ⊢ g

x

: B+

f : A+ → B+ → C−,g : A+ → B−, x : A− ⊢ f x (g

x

) : C+

⊢ λfgx.f x (g

x

) : (A+ → B+ → C−) → (A+ → B−) → A− → C+

59 / 79

Propositional formulas

Γ ⊢ x : A+
Γ ⊢ x : A+

Γ ⊢ g x : B+

f : A+ → B+ → C−,g : A+ → B−, x : A− ⊢ f x (g x) : C+

⊢ λfgx.f x (g x) : (A+ → B+ → C−) → (A+ → B−) → A− → C+

59 / 79

Contractible formulas

A (apparently new) remark is that in the rule

Γ ⊢ t1 : A1 . . . Γ ⊢ tn : An
Γ ⊢ x t1 . . . tn : X

(→E)

(with x : A1 → . . . → An → X in Γ), we never use x in the ti (otherwise the proof
would be “infinite” by determinism). Because of this,

Proposition
Contractibility is (very easily) decidable.

60 / 79

Pasting types

Definition
A type A is a pasting type when it is non-negatively duplicated and inhabited.

Proposition
Any pasting type is contractible.

Definition
We say that

A1, . . . ,An ⊢ A

is a pasting scheme when
A1 → . . . → An → A

is a pasting type.

61 / 79

Pasting types

Definition
A type A is a pasting type when it is non-negatively duplicated and inhabited.

Proposition
Any pasting type is contractible.

Definition
We say that

A1, . . . ,An ⊢ A

is a pasting scheme when
A1 → . . . → An → A

is a pasting type.

61 / 79

Pasting types

Definition
A type A is a pasting type when it is non-negatively duplicated and inhabited.

Proposition
Any pasting type is contractible.

Definition
We say that

A1, . . . ,An ⊢ A

is a pasting scheme when
A1 → . . . → An → A

is a pasting type.
61 / 79

Pasting types

The rules for pasting types are

Θ, tgt(A); Γ,A ⊢ps B
Θ; Γ ⊢ps A→ B

when tgt(A) ̸∈ Θ, and

Θ; Γ, Γ′ ⊢ A1 . . . Θ; Γ, Γ′ ⊢ An
Θ; Γ,A1 → . . . → An → A, Γ′ ⊢ A

when A is a variable.

This is in between non-negatively duplicated and deterministic.

62 / 79

Pasting types

The rules for pasting types are

Θ, tgt(A); Γ,A ⊢ps B
Θ; Γ ⊢ps A→ B

when tgt(A) ̸∈ Θ, and

Θ; Γ, Γ′ ⊢ A1 . . . Θ; Γ, Γ′ ⊢ An
Θ; Γ,A1 → . . . → An → A, Γ′ ⊢ A

when A is a variable.

This is in between non-negatively duplicated and deterministic.

62 / 79

CCCaTT

The type theory CCCaTT has rules

Γ ⊢ ⋆

Γ ⊢ a : ⋆ Γ ⊢ b : ⋆

Γ ⊢ a→ b : ⋆

Γ ⊢ a : ⋆

Γ ⊢ a

Γ ⊢ps a
Γ ⊢ coh : a

Γ ⊢ps a Γ ⊢ t : a Γ ⊢ u : a
Γ ⊢ t = u : a

plus
· = is a congruence
· closure under substitution so that

∆ ⊢ σ : Γ Γ ⊢ t : a
∆ ⊢ t[σ] : a[σ]

is derivable
63 / 79

Substitutions

Note that substitutions can replace both types and morphisms.

For instance, we have a substitution

a

f

→ a b c
f g

(a : ⋆, f : a→ a) ⊢ ⟨a,a,a, f ,g⟩ : (a : ⋆,b : ⋆, c : ⋆, f : a→ b,g : b→ c)

64 / 79

CCCaTT

For instance, we can derive
· I = λx.x : A→ A
· K = λxy.x : A→ B→ A
· S = λfgx.fx(gx) : (A→ B→ C) → (A→ B) → A→ C
· application f : A→ B, x : A ⊢ fx : B
· expected equalities such as I x = x

https://cccatt.mimram.fr/

65 / 79

https://cccatt.mimram.fr/
https://cccatt.mimram.fr/

Combinatory logic

Combinatory logic is defined as the closure under applications of I, K and S.

With rules

I t = t K tu = t S tuv = tv(uv)

along with
· S(S(K S)(S(K K)(S(K S)K)))(K K) = S(K K)
· S(S(K S)K)(K I) = I
· S(K I) = I
· S(K S)(S(K K)) = K
· S(K(S(K S)))(S(K S)(S(K S))) = S(S(K S)(S(K K)(S(K S)(S(K(S(K S))) S))))(K S)

66 / 79

Combinatory logic

Combinatory logic is defined as the closure under applications of I, K and S.

With rules

I t = t K tu = t S tuv = tv(uv)

along with
· S(S(K S)(S(K K)(S(K S)K)))(K K) = S(K K)
· S(S(K S)K)(K I) = I
· S(K I) = I
· S(K S)(S(K K)) = K
· S(K(S(K S)))(S(K S)(S(K S))) = S(S(K S)(S(K K)(S(K S)(S(K(S(K S))) S))))(K S)

66 / 79

Combinatory logic

Combinatory logic is defined as the closure under applications of I, K and S.

With rules

I t = t K tu = t S tuv = tv(uv)

along with
· S(S(K S)(S(K K)(S(K S)K)))(K K) = S(K K)
· S(S(K S)K)(K I) = I
· S(K I) = I
· S(K S)(S(K K)) = K
· S(K(S(K S)))(S(K S)(S(K S))) = S(S(K S)(S(K K)(S(K S)(S(K(S(K S))) S))))(K S)

66 / 79

Combinatory logic vs λ-calculus

We can translate from CC to λ:

I = λx.x K = λxy.x S = λfgx.fx(gx)

On the other side, we have that Jλx.tK = Λx.JtK with

Λx.x = I
Λx.t = K t for x ̸∈ FV(t)

Λx.t u = S(Λx.t)(Λx.u) otherwise

For instance,
Jλxy.xK = S (K K) I

̸= K

67 / 79

Combinatory logic vs λ-calculus

We can translate from CC to λ:

I = λx.x K = λxy.x S = λfgx.fx(gx)

On the other side, we have that Jλx.tK = Λx.JtK with

Λx.x = I
Λx.t = K t for x ̸∈ FV(t)

Λx.t u = S(Λx.t)(Λx.u) otherwise

For instance,
Jλxy.xK = S (K K) I

̸= K

67 / 79

Combinatory logic vs λ-calculus

We can translate from CC to λ:

I = λx.x K = λxy.x S = λfgx.fx(gx)

On the other side, we have that Jλx.tK = Λx.JtK with

Λx.x = I
Λx.t = K t for x ̸∈ FV(t)

Λx.t u = S(Λx.t)(Λx.u) otherwise

For instance,
Jλxy.xK = S (K K) I

̸= K

67 / 79

Combinatory logic vs λ-calculus

We can translate from CC to λ:

I = λx.x K = λxy.x S = λfgx.fx(gx)

On the other side, we have that Jλx.tK = Λx.JtK with

Λx.x = I
Λx.t = K t for x ̸∈ FV(t)

Λx.t u = S(Λx.t)(Λx.u) otherwise

For instance,
Jλxy.xK = S (K K) I ̸= K

67 / 79

Adding products

Type isomorphism in cartesian closed categories is the congruence generated by

(A× B)× C = A× (B× C) 1 × A = A
A× B = B× A A× 1 = A

A→ (B× C) = (A→ B)× (A→ C) A→ 1 = 1
(A× B) → C = A→ B→ C 1 → A = A

We consider the rewriting system

A→ (B× C) ⇒ (A→ B)× (A→ C) A→ 1 ⇒ 1
(A× B) → C ⇒ A→ B→ C 1 → A⇒ A

A product A1 × . . .× An is pasting when all the Ai are.

68 / 79

Adding products

Type isomorphism in cartesian closed categories is the congruence generated by

(A× B)× C = A× (B× C) 1 × A = A
A× B = B× A A× 1 = A

A→ (B× C) = (A→ B)× (A→ C) A→ 1 = 1
(A× B) → C = A→ B→ C 1 → A = A

We consider the rewriting system

A→ (B× C) ⇒ (A→ B)× (A→ C) A→ 1 ⇒ 1
(A× B) → C ⇒ A→ B→ C 1 → A⇒ A

A product A1 × . . .× An is pasting when all the Ai are.

68 / 79

Adding products

Type isomorphism in cartesian closed categories is the congruence generated by

(A× B)× C = A× (B× C) 1 × A = A
A× B = B× A A× 1 = A

A→ (B× C) = (A→ B)× (A→ C) A→ 1 = 1
(A× B) → C = A→ B→ C 1 → A = A

We consider the rewriting system

A→ (B× C) ⇒ (A→ B)× (A→ C) A→ 1 ⇒ 1
(A× B) → C ⇒ A→ B→ C 1 → A⇒ A

A product A1 × . . .× An is pasting when all the Ai are.

68 / 79

Adding products

For combinators we should add

P : A→ B→ A× B P1 : A× B→ A P2 : A× B→ A T : 1

along with the obvious equations

S(K(S(K(S(K P1)))))(S(K S)(S(K P))) = K
S(K(S(K(S(K P2)))))(S(K S)(S(K P))) = K I

S(S(K S)(S(K(S(K P)))(S(K P1))))(S(K P2)) = I

69 / 79

Adding products

For combinators we should add

P : A→ B→ A× B P1 : A× B→ A P2 : A× B→ A T : 1

along with the obvious equations

S(K(S(K(S(K P1)))))(S(K S)(S(K P))) = K
S(K(S(K(S(K P2)))))(S(K S)(S(K P))) = K I

S(S(K S)(S(K(S(K P)))(S(K P1))))(S(K P2)) = I

69 / 79

The theorem

We have axiomatized cartesian closed categories.

Theorem
There is a bijection between

· terms ⊢ t : A modulo equality (in contexts containing only type definitions),
· λ-terms of type A modulo βη-equality.

Proof.
⇒ Pasting types are contractible so they correspond to (unique) λ-terms.
⇐ λ-terms can be implemented with combinators, which can be derived
in CCCaTT1.

70 / 79

Categorical combinators

71 / 79

Abstraction vs meta-abstraction

Because of ap we have that if we have a coherence

Γ ⊢ coh : A→ B

then we have a coherence
Γ, x : A ⊢ coh : B

coh ap {a b : .} (f : a -> b) (x : a) : b

coh I {a : .} : a -> a

let id {a : .} (x : a) := ap I x

The converse is true, but at the “meta-level”, which corresponds to λ-abstraction!

72 / 79

Abstraction vs meta-abstraction

Because of ap we have that if we have a coherence

Γ ⊢ coh : A→ B

then we have a coherence
Γ, x : A ⊢ coh : B

coh ap {a b : .} (f : a -> b) (x : a) : b

coh I {a : .} : a -> a

let id {a : .} (x : a) := ap I x

The converse is true, but at the “meta-level”, which corresponds to λ-abstraction!

72 / 79

Unbiasing equalities

Equalities are (for now) imposed to be congruences, e.g.

Γ ⊢ t = u Γ ⊢ u = v
Γ ⊢ t = v

or
Γ ⊢ t = u Γ ⊢ t1 = u1 . . . Γ ⊢ tn = un

Γ ⊢ t⟨t1, . . . , tn⟩ = u⟨u1, . . . ,un⟩
e.g.

coh ap-cong

{a b : .}

{t t’ : a → b} {u u’ : a}

(p : t = t’) (q : u = u’) : ap t u = ap t’ u’

which is biased. . . We can also give unbiased rules!

73 / 79

Unbiasing equalities

Equalities are (for now) imposed to be congruences, e.g.

Γ ⊢ t = u Γ ⊢ u = v
Γ ⊢ t = v

or
Γ ⊢ t = u Γ ⊢ t1 = u1 . . . Γ ⊢ tn = un

Γ ⊢ t⟨t1, . . . , tn⟩ = u⟨u1, . . . ,un⟩
e.g.

coh ap-cong

{a b : .}

{t t’ : a → b} {u u’ : a}

(p : t = t’) (q : u = u’) : ap t u = ap t’ u’

which is biased. . .

We can also give unbiased rules!

73 / 79

Unbiasing equalities

Equalities are (for now) imposed to be congruences, e.g.

Γ ⊢ t = u Γ ⊢ u = v
Γ ⊢ t = v

or
Γ ⊢ t = u Γ ⊢ t1 = u1 . . . Γ ⊢ tn = un

Γ ⊢ t⟨t1, . . . , tn⟩ = u⟨u1, . . . ,un⟩
e.g.

coh ap-cong

{a b : .}

{t t’ : a → b} {u u’ : a}

(p : t = t’) (q : u = u’) : ap t u = ap t’ u’

which is biased. . . We can also give unbiased rules!
73 / 79

Interesting subsystems

Interesting subsystems can be defined including
· monoidal categories
· symmetric monoidal categories
· cartesian categories

74 / 79

Toward higher dimensions

Claim
We can also define higher-dimensional pasting schemes in order to define
cartesian closed (∞, 1)-categories.

75 / 79

Part VII

Conclusion

76 / 79

We have defined simply-typed λ-calculus without anything which looks like
reduction / evaluation / substitution.

As being unbiased, this unifies many known definitions of λ-calculus.

This should have applications in homotopy type theory!

77 / 79

This is implemented at

https://cccatt.mimram.fr/

78 / 79

https://cccatt.mimram.fr/
https://cccatt.mimram.fr/

Questions?

79 / 79

	Categories
	A type theory for globular sets
	Weak higher categories
	Pasting schemes
	A type-theoretic definition of weak -categories
	Unbiased cartesian closed categories
	Conclusion

