
An unbiased definition of simply typed λ-calculus

Samuel Mimram
École polytechnique

CoREACT meeting
November 29, 2024

Part I

A type theory for weak higher categories

1 / 47

Higher categories

The definition of (strict) ω-category generalizes categories by taking higher cells
into account.

2 / 47

Higher categories

The definition of (strict) ω-category generalizes categories by taking higher cells
into account.

In such a category, you have
· 0-cells (objects): x

· 1-cells (morphisms):
x y

f

· 2-cells: x y
f

g
ϕ ⇓

· 3-cells:
x y

f

g

ϕ ⇓
F
⇛⇓ ψ

· . . .
2 / 47

Higher categories

The definition of (strict) ω-category generalizes categories by taking higher cells
into account.

In such a category, you have compositions

x y z
f

g

2 / 47

Weak higher categories

In a weak higher category, all the axioms hold up to a

3 / 47

A type-theoretic definition of weak ω-categories

We have introduced a definition of weak ω-categories as models of a type theory:
· A type-theoretical definition of weak ω-categories.

Eric Finster and Samuel Mimram. In 2017 32nd Annual ACM/IEEE Symposium
on Logic in Computer Science (LICS), pages 1–12, 2017.

· Globular weak ω-categories as models of a type theory.
Thibaut Benjamin, Eric Finster, and Samuel Mimram. Higher Structures,
8(2):1–69, 2024.

4 / 47

A type-theoretic definition of categories

Cartmell, 1984:
· type constructors:

Γ ⊢
Γ ⊢ ⋆

Γ ⊢ x : ⋆ Γ ⊢ y : ⋆

Γ ⊢ x → y

· term constructors:
x : ⋆ ⊢ id(x) : x → x

x : ⋆, y : ⋆, f : x → y, z : ⋆,g : y → z ⊢ comp(f ,g) : x → z

· axioms:
Γ ⊢ f : x → y

Γ ⊢ comp(id(x), f) = f

Γ ⊢ f : x → y

Γ ⊢ comp(f , id(y)) = f
. . .

· plus “standard rules” (contexts, weakening, substitutions, . . .)

5 / 47

A type-theoretic definition of categories

Cartmell, 1984:
· type constructors:

Γ ⊢
Γ ⊢ ⋆

Γ ⊢ x : ⋆ Γ ⊢ y : ⋆

Γ ⊢ x → y

· term constructors:
x : ⋆ ⊢ id(x) : x → x

x : ⋆, y : ⋆, f : x → y, z : ⋆,g : y → z ⊢ comp(f ,g) : x → z

· axioms:
Γ ⊢ f : x → y

Γ ⊢ comp(id(x), f) = f

Γ ⊢ f : x → y

Γ ⊢ comp(f , id(y)) = f
. . .

· plus “standard rules” (contexts, weakening, substitutions, . . .)

5 / 47

A type-theoretic definition of categories

Cartmell, 1984:
· type constructors:

Γ ⊢
Γ ⊢ ⋆

Γ ⊢ x : ⋆ Γ ⊢ y : ⋆

Γ ⊢ x → y

· term constructors:
x : ⋆ ⊢ id(x) : x → x

x : ⋆, y : ⋆, f : x → y, z : ⋆,g : y → z ⊢ comp(f ,g) : x → z

· axioms:
Γ ⊢ f : x → y

Γ ⊢ comp(id(x), f) = f

Γ ⊢ f : x → y

Γ ⊢ comp(f , id(y)) = f
. . .

· plus “standard rules” (contexts, weakening, substitutions, . . .)

5 / 47

A type-theoretic definition of categories

Cartmell, 1984:
· type constructors:

Γ ⊢
Γ ⊢ ⋆

Γ ⊢ x : ⋆ Γ ⊢ y : ⋆

Γ ⊢ x → y

· term constructors:
x : ⋆ ⊢ id(x) : x → x

x : ⋆, y : ⋆, f : x → y, z : ⋆,g : y → z ⊢ comp(f ,g) : x → z

· axioms:
Γ ⊢ f : x → y

Γ ⊢ comp(id(x), f) = f

Γ ⊢ f : x → y

Γ ⊢ comp(f , id(y)) = f
. . .

· plus “standard rules” (contexts, weakening, substitutions, . . .)
5 / 47

Unbiased definition

Since the composition is associative for categories, the composite of any diagram
like

x0 x1 . . . xn
f1 f2 fn

is uniquely defined.

So, instead of having a binary composition and identities, we could have a more
general rule

x0 : ⋆, x1 : ⋆, f1 : x0 → x1, . . . , xn : ⋆, fn : xn−1 → xn ⊢ comp(f1, . . . , fn) : x0 → xn

6 / 47

Globular sets

Proposition
Globular sets are precisely the models of the type theory

Γ ⊢
Γ ⊢ ⋆

Γ ⊢ t : A Γ ⊢ u : A
Γ ⊢ t→

A
u

. . .

7 / 47

Globular sets

Proposition
Globular sets are precisely the models of the type theory

Γ ⊢
Γ ⊢ ⋆

Γ ⊢ t : A Γ ⊢ u : A
Γ ⊢ t→

A
u

. . .

Remark
A finite globular set

x y z
f

g
⇓ α

can be encoded as a context

x : ⋆, y : ⋆, z : ⋆, f : x →
⋆
y,g : x →

⋆
y,h : z→

⋆
y, α : f →

x→
⋆
y
g

7 / 47

Globular sets

Proposition
Globular sets are precisely the models of the type theory

Γ ⊢
Γ ⊢ ⋆

Γ ⊢ t : A Γ ⊢ u : A
Γ ⊢ t→

A
u

. . .

Proposition
The syntactic category (of contexts and substitutions) of this type theory is the
opposite of the category of finite globular sets.

7 / 47

Pasting schemes

A pasting scheme is a diagram for which we expect to have unique composition.

x y z

f

g
⇓
⇓

h

i

We write
Γ ⊢ps

to indicate that Γ encodes a pasting scheme.

8 / 47

Type-theoretic ω-categories

· operations:

Γ ⊢ps Γ ⊢ t→
A
u ∂−(Γ) ⊢ t : A ∂+(Γ) ⊢ u : A

Γ ⊢ cohΓ,t→
A
u : t→

A
u

whenever

FV(t) = FV(∂−(Γ)) and FV(u) = FV(∂+(Γ))

· coherences:
Γ ⊢ps Γ ⊢ A
Γ ⊢ cohΓ,A : A

whenever
FV(A) = FV(Γ)

9 / 47

Type-theoretic ω-categories

A typical example of operation is composition

x y

f

α ⇓
g

β ⇓
h

⊢ coh : x y

f

→ x y

h

(this coherence is noted “comp” in the following).

10 / 47

Type-theoretic ω-categories

Note that we also have unbiased compositions:

x y z w
f g h ⊢ coh : x → w

11 / 47

Type-theoretic ω-categories

A typical example of coherence is associativity

x y z w
f g h

⊢

coh : x w
comp(comp(f ,g),h)

→ x w
comp(f ,comp(g,h))

12 / 47

The general scheme

The general pattern is that
· we identify things that should be contractible (the pasting schemes)
· and formally make them contractible

13 / 47

Part II

Unbiased cartesian closed categories

14 / 47

Next steps

Previous work is nice but
· the type theory is very limited (no Σ- or Π-types, etc.)
· we would like to be able to consider categories with structure

([locally] cartesian [closed]...)

Here
1. we restrict to 1-categories
2. we extend with products and internal homs

15 / 47

Unbiased

cartesian closed

1-categories

If we restrict our theory for weak ω-categories to consider that 2-cells (and higher
are identities), we obtain a theory for unbiased categories:

x y z w
f g h ⊢ coh : x → w

Our aim is to extend this to have a definition for unbiased cartesian closed
categories (which could hopefully extend in higher dimensions).

16 / 47

Unbiased cartesian closed 1-categories

If we restrict our theory for weak ω-categories to consider that 2-cells (and higher
are identities), we obtain a theory for unbiased categories:

x y z w
f g h ⊢ coh : x → w

Our aim is to extend this to have a definition for unbiased cartesian closed
categories (which could hopefully extend in higher dimensions).

16 / 47

Unbiased cartesian closed 1-categories

There are various definition of cartesian closed categories:
· the traditional categorical definition
· simply-typed λ-calculus
· combinatory logic (I, K, S)
· categorical combinators
· ...

We want here
· an agnostic approach in which we could implement most of the above
· a “nice” definition which does not require substitution/α-conversion, weird

rules, etc.
· on the long term, we would like an “equality-free” definition of MLTT...

17 / 47

Simply-typed λ-calculus

We consider simply-typed λ-calculus where types are

A ::= X | A→ B | . . .

terms are
t ::= x | λxA.t | t u

rules are

Γ, x : A,∆ ⊢ x : A

Γ ⊢ t : A→ B Γ ⊢ u : A
Γ ⊢ t u : B

Γ, x : A ⊢ t : B
Γ ⊢ λxA.t : A→ B

and equality is extensional equality

(λxA.t)u = t[u/x] t = λxA.t x

Note: we consider the implicational fragment for simplicity
18 / 47

Contractible types

We say that a type is
· propositional when there is at most one inhabitant

(modulo extensional equality)
· contractible when there is exactly one inhabitant

For instance:
· (A→ B) → A→ B is contractible
· B→ A is propositional
· (A→ A) → (A→ A) is not contractible

19 / 47

Contractible types

We say that a type is
· propositional when there is at most one inhabitant

(modulo extensional equality)
· contractible when there is exactly one inhabitant

For instance:
· (A→ B) → A→ B is contractible
· B→ A is propositional
· (A→ A) → (A→ A) is not contractible

19 / 47

Komori’s conjecture

We write A ≤ B when B can be obtained from A by replacing variables, for instance

A→ A ≤ (A→ B) → (A→ B)

From Yuichi Komori. BCK algebras and lambda calculus. In Proceedings of the
10th Symposium on Semigroups, pages 5–11, 1987:
Conjecture
A minimal provable type is contractible.
For instance,

(A→ A) → (A→ A)

is not contractible, but this is the case of the smaller

(A→ B) → A→ B

This does not hold, but we will see that contractible types still generate.

20 / 47

Komori’s conjecture

We write A ≤ B when B can be obtained from A by replacing variables, for instance

A→ A ≤ (A→ B) → (A→ B)

From Yuichi Komori. BCK algebras and lambda calculus. In Proceedings of the
10th Symposium on Semigroups, pages 5–11, 1987:
Conjecture
A minimal provable type is contractible.
For instance,

(A→ A) → (A→ A)

is not contractible, but this is the case of the smaller

(A→ B) → A→ B

This does not hold, but we will see that contractible types still generate.

20 / 47

Komori’s conjecture

We write A ≤ B when B can be obtained from A by replacing variables, for instance

A→ A ≤ (A→ B) → (A→ B)

From Yuichi Komori. BCK algebras and lambda calculus. In Proceedings of the
10th Symposium on Semigroups, pages 5–11, 1987:
Conjecture
A minimal provable type is contractible.
For instance,

(A→ A) → (A→ A)

is not contractible, but this is the case of the smaller

(A→ B) → A→ B

This does not hold, but we will see that contractible types still generate.
20 / 47

Komori’s conjecture

The conjecture does hold for formulas of depth ≤ 2

but various counter-examples to the conjecture were found:
· Mint’90: ((((A→ B) → A) → A) → B) → B
· Aoto’99: ((A→ B) → A) → ((A→ B) → B)
fun x -> fun y -> y (x (fun z -> y z))

fun x -> fun y -> y (x (fun z -> y (x (fun z -> y z))))

fun x -> fun y -> y (x (fun z -> y (x (fun z -> y (x (fun z -> y z))))))

...

21 / 47

Komori’s conjecture

The conjecture does hold for formulas of depth ≤ 2
but various counter-examples to the conjecture were found:

· Mint’90: ((((A→ B) → A) → A) → B) → B
· Aoto’99: ((A→ B) → A) → ((A→ B) → B)
fun x -> fun y -> y (x (fun z -> y z))

fun x -> fun y -> y (x (fun z -> y (x (fun z -> y z))))

fun x -> fun y -> y (x (fun z -> y (x (fun z -> y (x (fun z -> y z))))))

...

21 / 47

Propositional formulas

People tried to come up with conditions which would imply that a formula has at
most one proof:

· Hirokawa’93:
in implication fragments of BCI and BCK (no contraction), minimal inhabited
types are contractible.

· Aoto’99:
provable without non-prime contraction, i.e. an implication introduction rule
whose canceled assumption differs from a propositional variable and
appears more than once in the proof.

22 / 47

Propositional formulas

Another trend of work is in
· Mint’82, Babaev&Solov’ev’82 (coherence for CCC):

a formula which is balanced (no variable occurs more than twice) admits at
most one inhabitant

For instance,
· (A→ B) → (A→ B) is balanced and thus contractible
· (A→ B) → (B→ A) is balanced by not inhabited
· (A→ B→ C) → (A→ B) → A→ C is not balanced but contractible (this is S!)

23 / 47

Propositional formulas

This is generalized in
· Takahito Aoto and Hiroakira Ono. Uniqueness of normal proofs in
{→,∧}-fragment of NJ. Technical Report IS-RR-94-0024F, School of
Information Science, JAIST, 1994. Research report.

· Pierre Bourreau and Sylvain Salvati. Game semantics and uniqueness of type
inhabitance in the simply-typed λ-calculus. In 10th International Conference,
TLCA 2011, Novi Sad, Serbia, June 1-3, 2011. Proceedings, volume 6690 of LNCS,
pages 61–75. Springer, 2011.

· Sabine Broda and Luıı́s Damas. On long normal inhabitants of a type. J. Log.
Comput., 15(3):353–390, 2005.

24 / 47

Propositional formulas

A type is non-negatively duplicating when every variable has at most one
negative occurrence, e.g.

S : (A+ → B+ → C−) → (A+ → B−) → A− → C+

Theorem
A non-negatively duplicating type is propositional.

Proof.
By cut-elimination, we can look for a proof which corresponds to a λ-term which
is β-normal and η-long (we take as many variables as there are arrows), i.e. terms
of the form

λx1x2 . . . xn.xit1t2 . . . tk
the choice of the head variable must have a type whose target is the negative
occurrence of the variable being proved.

25 / 47

Propositional formulas

A type is non-negatively duplicating when every variable has at most one
negative occurrence, e.g.

S : (A+ → B+ → C−) → (A+ → B−) → A− → C+

Theorem
A non-negatively duplicating type is propositional.

Proof.
By cut-elimination, we can look for a proof which corresponds to a λ-term which
is β-normal and η-long (we take as many variables as there are arrows), i.e. terms
of the form

λx1x2 . . . xn.xit1t2 . . . tk
the choice of the head variable must have a type whose target is the negative
occurrence of the variable being proved.

25 / 47

Propositional formulas

A type is non-negatively duplicating when every variable has at most one
negative occurrence, e.g.

S : (A+ → B+ → C−) → (A+ → B−) → A− → C+

Theorem
A non-negatively duplicating type is propositional.

Proof.
By cut-elimination, we can look for a proof which corresponds to a λ-term which
is β-normal and η-long (we take as many variables as there are arrows), i.e. terms
of the form

λx1x2 . . . xn.xit1t2 . . . tk
the choice of the head variable must have a type whose target is the negative
occurrence of the variable being proved.

25 / 47

Propositional formulas

Proof search in βη-long form can be performed with
· the introduction

Γ, x1 : A1, . . . , xn : An ⊢ t : B
Γ ⊢ λx1 . . . xn.t : A1 → . . .→ An → B

(→I)

where B is not an arrow,
· the elimination

Γ ⊢ t1 : A1 . . . Γ ⊢ tn : An
Γ ⊢ x t1 . . . tn : X

(→E)

with x : A1 → . . .→ An → X in Γ.

26 / 47

Propositional formulas

⊢

λfgx.

f

x (g

x

)

: (A+ → B+ → C−) → (A+ → B−) → A− → C+

27 / 47

Propositional formulas

f : A+ → B+ → C−,g : A+ → B−, x : A− ⊢

f

x (g

x

)

: C+

⊢ λfgx.

f

x (g

x

)

: (A+ → B+ → C−) → (A+ → B−) → A− → C+

27 / 47

Propositional formulas

Γ ⊢

x

: A+ Γ ⊢

g

x

: B+

f : A+ → B+ → C−,g : A+ → B−, x : A− ⊢ f

x (g

x

)

: C+

⊢ λfgx.f

x (g

x

)

: (A+ → B+ → C−) → (A+ → B−) → A− → C+

27 / 47

Propositional formulas

Γ ⊢ x : A+ Γ ⊢

g

x

: B+

f : A+ → B+ → C−,g : A+ → B−, x : A− ⊢ f x

(g

x

)

: C+

⊢ λfgx.f x

(g

x

)

: (A+ → B+ → C−) → (A+ → B−) → A− → C+

27 / 47

Propositional formulas

Γ ⊢ x : A+
Γ ⊢

x

: A+

Γ ⊢ g

x

: B+

f : A+ → B+ → C−,g : A+ → B−, x : A− ⊢ f x (g

x

) : C+

⊢ λfgx.f x (g

x

) : (A+ → B+ → C−) → (A+ → B−) → A− → C+

27 / 47

Propositional formulas

Γ ⊢ x : A+
Γ ⊢ x : A+

Γ ⊢ g x : B+

f : A+ → B+ → C−,g : A+ → B−, x : A− ⊢ f x (g x) : C+

⊢ λfgx.f x (g x) : (A+ → B+ → C−) → (A+ → B−) → A− → C+

27 / 47

Propositional formulas

This can be generalized to deterministic formulas.

Remark
Every non-negatively duplicated formula is deterministic but there are more:

(((A→ B) → A→ C) → (B→ C) → D) → (B→ C) → D

Remark
There are non-deterministic formulas which are contractible:

· (A→ B) → B→ B
· (A→ A) → (A→ B) → B→ B

28 / 47

Propositional formulas

This can be generalized to deterministic formulas.

Remark
Every non-negatively duplicated formula is deterministic but there are more:

(((A→ B) → A→ C) → (B→ C) → D) → (B→ C) → D

Remark
There are non-deterministic formulas which are contractible:

· (A→ B) → B→ B
· (A→ A) → (A→ B) → B→ B

28 / 47

Propositional formulas

This can be generalized to deterministic formulas.

Remark
Every non-negatively duplicated formula is deterministic but there are more:

(((A→ B) → A→ C) → (B→ C) → D) → (B→ C) → D

Remark
There are non-deterministic formulas which are contractible:

· (A→ B) → B→ B
· (A→ A) → (A→ B) → B→ B

28 / 47

Contractible formulas

A (apparently new) remark is that in the rule

Γ ⊢ t1 : A1 . . . Γ ⊢ tn : An
Γ ⊢ x t1 . . . tn : X

(→E)

(with x : A1 → . . .→ An → X in Γ), we never use x in the ti (otherwise the proof
would be “infinite” by determinism). Because of this,

Proposition
Contractibility is (very easily) decidable.

29 / 47

Pasting types

Definition
A type A is a pasting type when it is non-negatively duplicated and inhabited.

Proposition
Any pasting type is contractible.

Definition
We say that

A1, . . . ,An ⊢ A

is a pasting scheme when
A1 → . . .→ An → A

is a pasting type.

30 / 47

Pasting types

Definition
A type A is a pasting type when it is non-negatively duplicated and inhabited.

Proposition
Any pasting type is contractible.

Definition
We say that

A1, . . . ,An ⊢ A

is a pasting scheme when
A1 → . . .→ An → A

is a pasting type.

30 / 47

Pasting types

Definition
A type A is a pasting type when it is non-negatively duplicated and inhabited.

Proposition
Any pasting type is contractible.

Definition
We say that

A1, . . . ,An ⊢ A

is a pasting scheme when
A1 → . . .→ An → A

is a pasting type.
30 / 47

Pasting types

The rules for pasting types are

Θ,TV(A); Γ,A ⊢ps B
Θ; Γ ⊢ps A→ B

when TV(A) ̸∈ Θ, and

Θ; Γ, Γ′ ⊢ A1 . . . Θ; Γ, Γ′ ⊢ An
Θ; Γ,A1 → . . .→ An → A, Γ′ ⊢ A

when A is a variable.

This is in between non-negatively duplicated and deterministic.

31 / 47

Pasting types

The rules for pasting types are

Θ,TV(A); Γ,A ⊢ps B
Θ; Γ ⊢ps A→ B

when TV(A) ̸∈ Θ, and

Θ; Γ, Γ′ ⊢ A1 . . . Θ; Γ, Γ′ ⊢ An
Θ; Γ,A1 → . . .→ An → A, Γ′ ⊢ A

when A is a variable.

This is in between non-negatively duplicated and deterministic.

31 / 47

CCCaTT

The type theory CCCaTT has rules

Γ ⊢ ⋆
Γ ⊢ a : ⋆ Γ ⊢ b : ⋆

Γ ⊢ a→ b : ⋆

Γ ⊢ a : ⋆

Γ ⊢ a

Γ ⊢ps a
Γ ⊢ coh : a

Γ ⊢ps a Γ ⊢ t : a Γ ⊢ u : a
Γ ⊢ t = u : a

plus
· = is a congruence
· closure under substitution so that

∆ ⊢ σ : Γ Γ ⊢ t : a
∆ ⊢ t[σ] : a[σ]

is derivable
32 / 47

Substitutions

Note that substitutions can replace both types and morphisms.

For instance, we have a substitution

a

f

→ a b c
f g

(a : ⋆, f : a→ a) ⊢ ⟨a,a,a, f ,g⟩ : (a : ⋆,b : ⋆, c : ⋆, f : a→ b,g : b→ c)

33 / 47

CCCaTT

For instance, we can derive
· I = λx.x : A→ A (but also meta-identity)
· K = λxy.x : A→ B→ A (but also the variant of type A→ A→ A)
· S = λfgx.fx(gx) : (A→ B→ C) → (A→ B) → A→ C
· application f : A→ B, x : A ⊢ fx : B
· expected equalities such as I x = x

https://cccatt.mimram.fr/

34 / 47

https://cccatt.mimram.fr/
https://cccatt.mimram.fr/

Combinatory logic

Combinatory logic is defined as the closure under applications of I, K and S.

With rules

I t = t K tu = t S tuv = tv(uv)

along with
· S(S(K S)(S(K K)(S(K S)K)))(K K) = S(K K)
· S(S(K S)K)(K I) = I
· S(K I) = I
· S(K S)(S(K K)) = K
· S(K(S(K S)))(S(K S)(S(K S))) = S(S(K S)(S(K K)(S(K S)(S(K(S(K S))) S))))(K S)

35 / 47

Combinatory logic

Combinatory logic is defined as the closure under applications of I, K and S.

With rules

I t = t K tu = t S tuv = tv(uv)

along with
· S(S(K S)(S(K K)(S(K S)K)))(K K) = S(K K)
· S(S(K S)K)(K I) = I
· S(K I) = I
· S(K S)(S(K K)) = K
· S(K(S(K S)))(S(K S)(S(K S))) = S(S(K S)(S(K K)(S(K S)(S(K(S(K S))) S))))(K S)

35 / 47

Combinatory logic

Combinatory logic is defined as the closure under applications of I, K and S.

With rules

I t = t K tu = t S tuv = tv(uv)

along with
· S(S(K S)(S(K K)(S(K S)K)))(K K) = S(K K)
· S(S(K S)K)(K I) = I
· S(K I) = I
· S(K S)(S(K K)) = K
· S(K(S(K S)))(S(K S)(S(K S))) = S(S(K S)(S(K K)(S(K S)(S(K(S(K S))) S))))(K S)

35 / 47

Combinatory logic vs λ-calculus

We can translate from CC to λ:

I = λx.x K = λxy.x S = λfgx.fx(gx)

On the other side, we have that Jλx.tK = Λx.JtK with

Λx.x = I
Λx.t = K t for x ̸∈ FV(t)

Λx.t u = S(Λx.t)(Λx.u) otherwise

For instance,
Jλxy.xK = S (K K) I

̸= K

36 / 47

Combinatory logic vs λ-calculus

We can translate from CC to λ:

I = λx.x K = λxy.x S = λfgx.fx(gx)

On the other side, we have that Jλx.tK = Λx.JtK with

Λx.x = I
Λx.t = K t for x ̸∈ FV(t)

Λx.t u = S(Λx.t)(Λx.u) otherwise

For instance,
Jλxy.xK = S (K K) I

̸= K

36 / 47

Combinatory logic vs λ-calculus

We can translate from CC to λ:

I = λx.x K = λxy.x S = λfgx.fx(gx)

On the other side, we have that Jλx.tK = Λx.JtK with

Λx.x = I
Λx.t = K t for x ̸∈ FV(t)

Λx.t u = S(Λx.t)(Λx.u) otherwise

For instance,
Jλxy.xK = S (K K) I

̸= K

36 / 47

Combinatory logic vs λ-calculus

We can translate from CC to λ:

I = λx.x K = λxy.x S = λfgx.fx(gx)

On the other side, we have that Jλx.tK = Λx.JtK with

Λx.x = I
Λx.t = K t for x ̸∈ FV(t)

Λx.t u = S(Λx.t)(Λx.u) otherwise

For instance,
Jλxy.xK = S (K K) I ̸= K

36 / 47

Adding products

Type isomorphism in cartesian closed categories is the congruence generated by

(A× B)× C = A× (B× C) 1 × A = A
A× B = B× A A× 1 = A

A→ (B× C) = (A→ B)× (A→ C) A→ 1 = 1
(A× B) → C = A→ B→ C 1 → A = A

We consider the rewriting system

A→ (B× C) ⇒ (A→ B)× (A→ C) A→ 1 ⇒ 1
(A× B) → C ⇒ A→ B→ C 1 → A⇒ A

A product A1 × . . .× An is pasting when all the Ai are.

37 / 47

Adding products

Type isomorphism in cartesian closed categories is the congruence generated by

(A× B)× C = A× (B× C) 1 × A = A
A× B = B× A A× 1 = A

A→ (B× C) = (A→ B)× (A→ C) A→ 1 = 1
(A× B) → C = A→ B→ C 1 → A = A

We consider the rewriting system

A→ (B× C) ⇒ (A→ B)× (A→ C) A→ 1 ⇒ 1
(A× B) → C ⇒ A→ B→ C 1 → A⇒ A

A product A1 × . . .× An is pasting when all the Ai are.

37 / 47

Adding products

Type isomorphism in cartesian closed categories is the congruence generated by

(A× B)× C = A× (B× C) 1 × A = A
A× B = B× A A× 1 = A

A→ (B× C) = (A→ B)× (A→ C) A→ 1 = 1
(A× B) → C = A→ B→ C 1 → A = A

We consider the rewriting system

A→ (B× C) ⇒ (A→ B)× (A→ C) A→ 1 ⇒ 1
(A× B) → C ⇒ A→ B→ C 1 → A⇒ A

A product A1 × . . .× An is pasting when all the Ai are.

37 / 47

Adding products

For combinators we should add

P : A→ B→ A× B P1 : A× B→ A P2 : A× B→ A T : 1

along with the obvious equations

S(K(S(K(S(K P1)))))(S(K S)(S(K P))) = K
S(K(S(K(S(K P2)))))(S(K S)(S(K P))) = K I

S(S(K S)(S(K(S(K P)))(S(K P1))))(S(K P2)) = I

38 / 47

Adding products

For combinators we should add

P : A→ B→ A× B P1 : A× B→ A P2 : A× B→ A T : 1

along with the obvious equations

S(K(S(K(S(K P1)))))(S(K S)(S(K P))) = K
S(K(S(K(S(K P2)))))(S(K S)(S(K P))) = K I

S(S(K S)(S(K(S(K P)))(S(K P1))))(S(K P2)) = I

38 / 47

The theorem

We have axiomatized cartesian closed categories.

Theorem
There is a bijection between

· terms ⊢ t : A modulo equality (in contexts containing only type definitions),
· λ-terms of type A modulo βη-equality.

Proof.
⇒ Pasting types are contractible so they correspond to (unique) λ-terms.
⇐ λ-terms can be implemented with combinators, which can be derived
in CCCaTT.

39 / 47

Categorical combinators

40 / 47

Abstraction vs meta-abstraction

Because of ap we have that if we have a coherence

Γ ⊢ coh : A→ B

then we have a coherence
Γ, x : A ⊢ coh : B

coh ap {a b : .} (f : a -> b) (x : a) : b

coh I {a : .} : a -> a

let id {a : .} (x : a) := ap I x

The converse is true, but at the “meta-level”, which corresponds to λ-abstraction!

41 / 47

Abstraction vs meta-abstraction

Because of ap we have that if we have a coherence

Γ ⊢ coh : A→ B

then we have a coherence
Γ, x : A ⊢ coh : B

coh ap {a b : .} (f : a -> b) (x : a) : b

coh I {a : .} : a -> a

let id {a : .} (x : a) := ap I x

The converse is true, but at the “meta-level”, which corresponds to λ-abstraction!

41 / 47

Unbiasing equalities

Equalities are (for now) imposed to be congruences, e.g.

Γ ⊢ t = u Γ ⊢ u = v
Γ ⊢ t = v

or
Γ ⊢ t = u Γ ⊢ t1 = u1 . . . Γ ⊢ tn = un

Γ ⊢ t⟨t1, . . . , tn⟩ = u⟨u1, . . . ,un⟩
e.g.

coh ap-cong

{a b : .}

{t t’ : a → b} {u u’ : a}

(p : t = t’) (q : u = u’) : ap t u = ap t’ u’

which is biased. . . We can also give unbiased rules!

42 / 47

Unbiasing equalities

Equalities are (for now) imposed to be congruences, e.g.

Γ ⊢ t = u Γ ⊢ u = v
Γ ⊢ t = v

or
Γ ⊢ t = u Γ ⊢ t1 = u1 . . . Γ ⊢ tn = un

Γ ⊢ t⟨t1, . . . , tn⟩ = u⟨u1, . . . ,un⟩
e.g.

coh ap-cong

{a b : .}

{t t’ : a → b} {u u’ : a}

(p : t = t’) (q : u = u’) : ap t u = ap t’ u’

which is biased. . .

We can also give unbiased rules!

42 / 47

Unbiasing equalities

Equalities are (for now) imposed to be congruences, e.g.

Γ ⊢ t = u Γ ⊢ u = v
Γ ⊢ t = v

or
Γ ⊢ t = u Γ ⊢ t1 = u1 . . . Γ ⊢ tn = un

Γ ⊢ t⟨t1, . . . , tn⟩ = u⟨u1, . . . ,un⟩
e.g.

coh ap-cong

{a b : .}

{t t’ : a → b} {u u’ : a}

(p : t = t’) (q : u = u’) : ap t u = ap t’ u’

which is biased. . . We can also give unbiased rules!
42 / 47

Interesting subsystems

Interesting subsystems can be defined including
· monoidal categories
· symmetric monoidal categories
· cartesian categories

43 / 47

Part III

Conclusion

44 / 47

We have defined simply-typed λ-calculus without anything which looks like
reduction / evaluation / substitution.

45 / 47

This is implemented at

https://cccatt.mimram.fr/

46 / 47

https://cccatt.mimram.fr/
https://cccatt.mimram.fr/

Questions?

47 / 47

	A type theory for weak higher categories
	Unbiased cartesian closed categories
	Conclusion

