o, .
K '.\g INSTITUT
E’!l' 7 POLYTECHNIQUE

) DE PARIS

ECOLE
POLYTECHNIQUE

An unbiased definition of simply typed A-calculus

Samuel Mimram

Ecole polytechnique

COREACT meeting
November 29, 2024

Part |

A type theory for weak higher categories

1/ 47

Higher categories

The definition of (strict) w-category generalizes categories by taking higher cells
into account.

2/ 47

Higher categories

The definition of (strict) w-category generalizes categories by taking higher cells

into account.

In such a category, you have
. 0-cells (objects):

f
X ——
- 1-cells (morphisms): . Y
- 2-cells: X @ y
g
f
- 3-cells: /:\
xol=lyy

2/ 47

Higher categories

The definition of (strict) w-category generalizes categories by taking higher cells
into account.

In such a category, you have compositions

2/ 47

Weak higher categories

In a weak higher category, all the axioms hold up to a

3/47

A type-theoretic definition of weak w-categories

We have introduced a definition of weak w-categories as models of a type theory:

- A type-theoretical definition of weak w-categories.
Eric Finster and Samuel Mimram. In 2017 32nd Annual ACM/IEEE Symposium
on Logic in Computer Science (LICS), pages 1-12, 2017.

- Globular weak w-categories as models of a type theory.
Thibaut Benjamin, Eric Finster, and Samuel Mimram. Higher Structures,
8(2):1-69, 2024,

4|47

A type-theoretic definition of categories

Cartmell, 1984:
- type constructors:
M-
M=%

MN=x:% M-y %

MNk=x—y

5/47

A type-theoretic definition of categories

Cartmell, 1984:
- type constructors:

M= F=X:* FEy:x
[MEx—y

- term constructors:

X:xHid(x) i x = x

X:xy:xfiX—=y,z2:x,9g:y—zFcomp(f,g):x—z

5/47

A type-theoretic definition of categories

Cartmell, 1984:
- type constructors:

M= F=X:* FEy:x
[MEx—y

- term constructors:

X:xHid(x) i x = x

X:xy:xfiX—=y,z2:x,9g:y—zFcomp(f,g):x—z

. axioms:
Nr-f:x—y Nr-f:x—vy

[+ comp(id(x),f) = f [+ comp(f,id(y)) = f

5/47

A type-theoretic definition of categories

Cartmell, 1984:
- type constructors:

M= F=X:* FEy:x
[MEx—y

- term constructors:

X:xHid(x) i x = x

X:xy:xfiX—=y,z2:x,9g:y—zFcomp(f,g):x—z

. axioms:
Nr-f:x—y Nr-f:x—vy

= comp(id(x),f) = f '+ comp(f,id(y)) =f
- plus “standard rules” (contexts, weakening, substitutions, ...)

5/47

Unbiased definition

Since the composition is associative for categories, the composite of any diagram
like

f’l f2 fn
Xo X Xn

is uniquely defined.

So, instead of having a binary composition and identities, we could have a more
general rule

Xo ik, Xq i %, f1 0 Xo = Xa, ..oy Xn ik, fn i Xn—q — Xn - comp(fa, ..., fn) i Xo — Xn

6/ 47

Globular sets
Proposition
Globular sets are precisely the models of the type theory

M+ M-t:A NM-u:A
M=% Fl—tﬁu

7147

Globular sets

Proposition
Globular sets are precisely the models of the type theory

[M=t:A lFu:A
M=% Fl—tﬁu
Remark
A finite globular set f

x lay+—z
_){y

can be encoded as a context

X:xy:xZ:xf:x—>y,g:x—=>yh:z=>ya:f

—
X—=y g

7147

Globular sets
Proposition
Globular sets are precisely the models of the type theory

M+ M-t:A NM-u:A
M=% Fl—tﬁu

Proposition
The syntactic category (of contexts and substitutions) of this type theory is the
opposite of the category of finite globular sets.

7147

Pasting schemes

A pasting scheme is a diagram for which we expect to have unique composition.

We write
I }—ps

to indicate that I encodes a pasting scheme.

8/ 47

Type-theoretic w-categories

- operations:

Mhps THt>u 0 (NEt:A 97 (N)Fu:A

M-cohrtyy:t—u
A A

whenever
FV(t) = FV(0o—(I)) and FV(u) = FV(o™ ()

- coherences:
Mhps TFA

I+ COhr7A CA

whenever
FV(A) = FV(I)

9/ 4

Type-theoretic w-categories

A typical example of operation is composition

f f
AR Y
X—9->y F coh : x y = X y
\@/\ N~
h h

(this coherence is noted “comp” in the following).

10/ 47

Type-theoretic w-categories

Note that we also have unbiased compositions:

xfygzhwl—coh:x—>w

1/ 47

Type-theoretic w-categories

A typical example of coherence is associativity

xfygzhw

h
coh - X comp(comp(f,g),h) w . X comp(f,comp(g,h)) w

12/ 47

The general scheme

The general pattern is that
- we identify things that should be contractible (the pasting schemes)
- and formally make them contractible

13/ 47

Part Il

Unbiased cartesian closed categories

W/ 47

Next steps

Previous work is nice but
- the type theory is very limited (no X- or M-types, etc.)

- we would like to be able to consider categories with structure
([locally] cartesian [closed]...)

Here
1. we restrict to 1-categories
2. we extend with products and internal homs

15/ 47

Unbiased 1-categories

If we restrict our theory for weak w-categories to consider that 2-cells (and higher
are identities), we obtain a theory for unbiased categories:

xfygzhwl—coh:x—>w

16/ 47

Unbiased cartesian closed 1-categories

If we restrict our theory for weak w-categories to consider that 2-cells (and higher
are identities), we obtain a theory for unbiased categories:

f g h -

X y z w coh : x = w

Our aim is to extend this to have a definition for unbiased cartesian closed
categories (which could hopefully extend in higher dimensions).

16/ 47

Unbiased cartesian closed 1-categories

There are various definition of cartesian closed categories:
- the traditional categorical definition
- simply-typed A-calculus
- combinatory logic (I, K, S)
- categorical combinators

We want here
- an agnostic approach in which we could implement most of the above

- a “nice” definition which does not require substitution/«a-conversion, weird
rules, etc.

- on the long term, we would like an “equality-free” definition of MLTT...

17/ 47

Simply-typed \-calculus

We consider simply-typed A-calculus where types are
A = X | A—>B |
terms are
t o= x | Mt | tu
rules are

MXx:AAFX:A

N-t:A—B Fr-u:A Nx:AFt:B

Fr-tu:B TEMAt:A—B
and equality is extensional equality
(WAt u = t[u/x] t=M"tx

Note: we consider the implicational fragment for simplicity

18/ 47

Contractible types

We say that a type is

- propositional when there is at most one inhabitant
(modulo extensional equality)

- contractible when there is exactly one inhabitant

19/ 47

Contractible types

We say that a type is

- propositional when there is at most one inhabitant
(modulo extensional equality)

- contractible when there is exactly one inhabitant
For instance:

- (A— B) - A — Bis contractible

- B— Als propositional

- (A— A) — (A — A) is not contractible

19/ 47

Komori’'s conjecture

We write A < Bwhen B can be obtained from A by replacing variables, for instance

A—-A<(A—B)— (A—B)

20/ 47

Komori’'s conjecture

We write A < Bwhen B can be obtained from A by replacing variables, for instance

A—-A<(A—B)— (A—B)

From Yuichi Komori. BCK algebras and lambda calculus. In Proceedings of the
10th Symposium on Semigroups, pages 5-11, 1987:

Conjecture
A minimal provable type is contractible.

For instance,
(A=A — (A=A

is not contractible, but this is the case of the smaller

(A—-B)—-A—B

20/ 47

Komori’'s conjecture

We write A < Bwhen B can be obtained from A by replacing variables, for instance

A—-A<(A—B)— (A—B)

From Yuichi Komori. BCK algebras and lambda calculus. In Proceedings of the
10th Symposium on Semigroups, pages 5-11, 1987:

Conjecture
A minimal provable type is contractible.

For instance,
(A=A — (A=A

is not contractible, but this is the case of the smaller

(A—-B)—-A—B

This does not hold, but we will see that contractible types still generate.

20/ 47

Komori’'s conjecture

The conjecture does hold for formulas of depth < 2

/47

Komori’'s conjecture

The conjecture does hold for formulas of depth < 2
but various counter-examples to the conjecture were found:

- Mint'9o: ((((A—B) - A) - A)—B)—B
- Aoto'99: ((A — B) - A) = ((A— B) — B)
fun x > fun y -=> y (x (fun z -> y z))
fun x > funy >y (x (fun z -> y (x (fun z -> y 2))))
fun x > funy >y (x (fun z > y (x (fun z -> y (x (fun z > y 2)))).

21/ 47

Propositional formulas

People tried to come up with conditions which would imply that a formula has at
most one proof:

- Hirokawa’'93:
in implication fragments of BCl and BCK (no contraction), minimal inhabited
types are contractible.

- Aoto’99:
provable without non-prime contraction, i.e. an implication introduction rule
whose canceled assumption differs from a propositional variable and
appears more than once in the proof.

22/ 47

Propositional formulas

Another trend of work is in

- Mint'82, Babaev&Solov'ev'82 (coherence for CCC):
a formula which is balanced (no variable occurs more than twice) admits at
most one inhabitant

For instance,
- (A — B) — (A — B) is balanced and thus contractible
- (A — B) — (B — A) is balanced by not inhabited
- (A—B— C)— (A— B) — A— Cis not balanced but contractible (this is S!)

23/ 47

Propositional formulas

This is generalized in

- Takahito Aoto and Hiroakira Ono. Uniqueness of normal proofs in
{—, A}-fragment of NJ. Technical Report IS-RR-94-0024F, School of
Information Science, JAIST, 1994. Research report.

- Pierre Bourreau and Sylvain Salvati. Game semantics and uniqueness of type
inhabitance in the simply-typed A-calculus. In 10th International Conference,
TLCA 2011, Novi Sad, Serbia, June 1-3, 2011. Proceedings, volume 6690 of LNCS,
pages 61-75. Springer, 2011.

- Sabine Broda and Luiis Damas. On long normal inhabitants of a type.). Log.
Comput., 15(3):353-390, 2005.

24 [47

Propositional formulas

A type is non-negatively duplicating when every variable has at most one
negative occurrence, e.g.

S : AT—=Bt—=C)> A" =B)=A = CT

25/ 47

Propositional formulas

A type is non-negatively duplicating when every variable has at most one
negative occurrence, e.g.

S : AT—=Bt—=C)> A" =B)=A = CT

Theorem
A non-negatively duplicating type is propositional.

25/ 47

Propositional formulas

A type is non-negatively duplicating when every variable has at most one
negative occurrence, e.g.

S : AT—=Bt—=C)> A" =B)=A = CT

Theorem
A non-negatively duplicating type is propositional.

Proof.
By cut-elimination, we can look for a proof which corresponds to a A-term which
is B-normal and n-long (we take as many variables as there are arrows), i.e. terms
of the form

AXqXa .. Xp Xttt .. tg

the choice of the head variable must have a type whose target is the negative
occurrence of the variable being proved. O

25/ 47

Propositional formulas

Proof search in gn-long form can be performed with
- the introduction
X :Aq,... . Xp:ApHt:B
FrEXMq .. . xpt:Ah— ... > A — B

(—>|)

where B is not an arrow,

- the elimination
rl_t‘]:A‘] rl_tn:An(

—¢)
rl_Xt‘]tnX

withx: A, — ... = A, = XinT.

26/ 47

Propositional formulas

= (AT =BT = C)= (AT -B)= A = Ct

27 [47

Propositional formulas

f:AT =BT - C ,9g:A" =B ,x:A F :Ct

= Mgx. (At =BT - C)= (A" =B)= A = Ct

27 [57

Propositional formulas

r- A" M+ BT
f:At BT - C ,g:A" 5B ,x:A +f :C*
- Mgx.f (AT =BT = C)= (At =B)= A = Ct

27| 57

Propositional formulas

M-x:A" M+ BT
f:At BT - C ,g:A" 5B ,x:A Ffx :C*
= Mgx.f x (AT =BT = C)= (At =B)= A = Ct

27| 57

Propositional formulas

r- A"
FEx:A" r-g :B"
f:AT =Bt —-C ,g:At =B, x:A Ffx(g):C"
- Mgxfx(g): (AT =BT —=C)= (AT =B)—=A = C"

27 | 57

Propositional formulas

FEx:A"
-x:AT TrFgx:.B"
f:A"T =Bt - C,g:At B, x:A Ffx(gx):Ct
- Mgxfx(gx): (AT =BT - C) > (AT =B)=A = C"

27 [47

Propositional formulas

This can be generalized to deterministic formulas.

28/ 47

Propositional formulas

This can be generalized to deterministic formulas.

Remark
Every non-negatively duplicated formula is deterministic but there are more:

(A—-B)—-A—-C)—-B—-C)—D)—-(B—=C)—D

28/ 47

Propositional formulas

This can be generalized to deterministic formulas.

Remark
Every non-negatively duplicated formula is deterministic but there are more:

(A—-B)—-A—-C)—-B—-C)—D)—-(B—=C)—D

Remark
There are non-deterministic formulas which are contractible:

-(A—-B)—=B—B
-(A-A)—-A—-B)—-B—B

28/ 47

Contractible formulas

A (apparently new) remark is that in the rule

M=t A I=th:An
M=xt.. .ty X

(—>E)

(withx: Ay — ... — Ay — XinT), we never use x in the t; (otherwise the proof
would be “infinite” by determinism). Because of this,

Proposition
Contractibility is (very easily) decidable.

29/ 47

Pasting types

Definition
A type A is a pasting type when it is non-negatively duplicated and inhabited.

30/ 47

Pasting types

Definition
A type A is a pasting type when it is non-negatively duplicated and inhabited.

Proposition
Any pasting type is contractible.

30/ 47

Pasting types

Definition
A type A is a pasting type when it is non-negatively duplicated and inhabited.

Proposition
Any pasting type is contractible.

Definition
We say that
Ay, ..., AnFA

is a pasting scheme when
AL — ... > A, —>A

is a pasting type.

30/ 47

Pasting types

The rules for pasting types are

©, TV(A):T,Akps B
©:ThpsA— B

when TV(A) € ©, and

O:r,I"FA, ... ©O:TTFA,

O:TA = ... A - AT FA

when A is a variable.

/47

Pasting types

The rules for pasting types are

©, TV(A):T,Akps B
©:ThpsA— B

when TV(A) € ©, and

OrrEA ... ©T,TFA,
O:TA = ... A - AT FA

when A is a variable.

This is in between non-negatively duplicated and deterministic.

/47

CCCaTT

The type theory CCCaTT has rules

MN-a:« F-b:x N-a:«

M % lN-a—=>b:x Nl-a

[Fps a IFps a N=t:a Nu:a
~coh:a lNt=u:a

plus
- = isacongruence
. closure under substitution so that
Aro:T N-t:a
A Ftlo] : alo]

is derivable

32/ 47

Substitutions

Note that substitutions can replace both types and morphisms.

For instance, we have a substitution

f
C) o
a — a——b —=>c

(a:xf:a—a) H (a,a,a,f,g):(a:x,b:x,c:x,f:a—b,g:b—c)

33/47

CCCaTT

For instance, we can derive
- 1= Mx.x: A — A (but also meta-identity)
- K= Mxy.x:A— B— A(butalso the variant of type A — A — A)
- S=XMgxfx(gx):(A—-B—-C) —-(A—-B)—-A—C
- applicationf:A—B,x:A-fx:B
- expected equalities such as | x = x

E 534
i
[3

https://cccatt.mimram.fr/

34/ 47

https://cccatt.mimram.fr/
https://cccatt.mimram.fr/

Combinatory logic

Combinatory logic is defined as the closure under applications of I, Kand S.

35/ 47

Combinatory logic

Combinatory logic is defined as the closure under applications of I, Kand S.
With rules

Ilt=t Ktu=t Stuv = tv(uv)

35/ 47

Combinatory logic

Combinatory logic is defined as the closure under applications of I, Kand S.
With rules
Ilt=t Ktu=t Stuv = tv(uv)

along with
- S(S(KS)(S(KK)(S(KS) K)))(KK) = S(KK)

.) K
- S(K(S(KS)))(S(KS)(S(KS))) = S(S(KS)(S(KK)(S(KS)(S(K(S(KS))) S)(KS)

35/ 47

Combinatory logic vs A-calculus

We can translate from CC to \:

| = \x.x K= \xy.x S = Mgx.fx(gx)

36/ 47

Combinatory logic vs A-calculus

We can translate from CC to A:
| = \x.x K= \xy.x S = Mgx.fx(gx)
On the other side, we have that [Ax.t] = Ax.[t] with

Axx =1
Axt=Kt for x ¢ FV(t)
Ax.tu = S(Ax.t)(Ax.u) otherwise

36/ 47

Combinatory logic vs A-calculus

We can translate from CC to \:
| = \x.x K= \xy.x S = Mgx.fx(gx)

On the other side, we have that [Ax.t] = Ax.[t] with

Axx =1
Axt=Kt for x ¢ FV(t)
Ax.tu = S(Ax.t)(Ax.u) otherwise

For instance,
[My x] =S (KK)I

36/ 47

Combinatory logic vs A-calculus

We can translate from CC to \:
| = \x.x K= \xy.x S = Mgx.fx(gx)

On the other side, we have that [Ax.t] = Ax.[t] with

Axx =1
Axt=Kt for x ¢ FV(t)
Ax.tu = S(Ax.t)(Ax.u) otherwise

For instance,
[Myx] =S (KK)I #K

36/ 47

Adding products

Type isomorphism in cartesian closed categories is the congruence generated by

(AxB)xC=Ax(BxC) 1xA=A
AxB=BxA Ax1=A
A—-(BxC)=(A—->B)x(A=0() A—1=1

(AxB)-C=A—-B—C 1—-A=A

37/ 47

Adding products

Type isomorphism in cartesian closed categories is the congruence generated by

(AxB)xC=Ax(BxC)
AxB=BxA
A—-(BxC)=(A—->B)x(A=0()
(AxB)-C=A—-B—C

We consider the rewriting system

A—(BxC)=(A—B)x(A—=C()
(AxB)-C=A—-B—C

1xA=A

Ax1=A
A—>1=1
1—-A=A
A—=1=1
1—-A=A

37/ 47

Adding products

Type isomorphism in cartesian closed categories is the congruence generated by

(AxB)xC=Ax(BxC)
AxB=BxA
A—-(BxC)=(A—->B)x(A=0()
(AxB)-C=A—-B—C

We consider the rewriting system

A—(BxC)=(A—B)x(A—=C()
(AxB)-C=A—-B—C

A product A; x ... x A, is pasting when all the A; are.

1xA=A

Ax1=A
A—>1=1
1—-A=A
A—=1=1
1—-A=A

37/ 47

Adding products

For combinators we should add
P-A—-B—AxB P,:AxB—A P,:AxB—A T:1

along with the obvious equations

38/ 47

Adding products

For combinators we should add
P-A—-B—AxB P,:AxB—A P,:AxB—A

along with the obvious equations

S(K(S(K(S(KP1)))))(S(KS)(S(KP)))
S(K(S(K(S(KP2)))))(S(KS)(S(KP)))
S(S(KS)(S(K(S(KP)))(S(KP1)))(S(KP2))

K
Kl
I

1

38/ 47

The theorem

We have axiomatized cartesian closed categories.

Theorem

There is a bijection between
- terms -t : A modulo equality (in contexts containing only type definitions),
- \-terms of type A modulo pn-equality.

Proof.

= Pasting types are contractible so they correspond to (unique) A-terms.

< A-terms can be implemented with combinators, which can be derived

in CCCaTT. O

39/ 47

Categorical combinators
AAg:

(Ass)

(1dL.)

(IdR)

(dpair)
(app)
(Quote,)
(Quote,)

(XTT 0 TR e T R =xe (yoz)

7= Fox®> T yo="

X7 Id T T =x

Fst™2o (x7= 1, 37"y = x

Snd e (x7=, p TRy = p

XTI, YT R0z = (Xoz, yoz)

App” e {A(XTTTITR), p TR =xo0 (1T, y)
A(XT* =)0 y7 7= A(x o { poFst™?, Snd™72))
A(App®*) =Ide==lo=x

(Fsto, Sndo*y = [d7*T=7x*
(X770 p7=00) 27 = x(yz)

Fst?t2(x™, y")=x
Snd ™ (x™,) =y
(x7TE YIRS 2= (xz, yz)
App™(x* 75 p7) = xy

A(Fst™72) x7 oy =2 = 4(Fst™") x

Appa1,53 ° <xrr<> (o2=03) A(FS[G‘J‘) yo’ za|<-52> =xpoz

40/ 47

Abstraction vs meta-abstraction

Because of ap we have that if we have a coherence
l-coh:A—B

then we have a coherence
x:AFcoh:B

cohap fab: .} (f:a->b) (x:a :b
cohI{a: .} :a->a
let id fa : .} (x : a) :=ap I x

w7

Abstraction vs meta-abstraction

Because of ap we have that if we have a coherence
l-coh:A—B

then we have a coherence
x:AFcoh:B

cohap fab: .} (f:a->b) (x:a :b
cohI{a: .} :a->a
let id fa : .} (x : a) :=ap I x

The converse is true, but at the “meta-level”, which corresponds to A-abstraction!

w7

Unbiasing equalities

Equalities are (for now) imposed to be congruences, e.g.

t=u FrFu=v
lt=v

or
lFt=u M=t =u, ... M=ty =up

r|_t<t1,...,tn>:u<U1,...,Un>
e.g.
coh ap-cong
{fab: .}

{tt> : a-=Db} {uw : a}
(p:t=1t) (@:u=1u’) :aptu=apt’” w

42 [47

Unbiasing equalities

Equalities are (for now) imposed to be congruences, e.g.

t=u FrFu=v
lt=v

or
lFt=u M=t =u, M=ty =up

r|_t<t1,...,tn> - U<U1,...,Un>
eg.

coh ap-cong
{ab: .}
{tt> :a-=b}{uw :a}
(p:t=1t) (@:u=1u’) :aptu=apt’” w

which is biased...

42 [47

Unbiasing equalities

Equalities are (for now) imposed to be congruences, e.g.

t=u FrFu=v
lt=v

or
lFt=u M=t =u, M=ty =up

r|_t<t1,...,tn> - U<U1,...,Un>
eg.

coh ap-cong
{ab: .}
{tt’>:a-=+0b}{uw : a}
(p:t=1t) (@:u=1u’) :aptu=apt’” w

which is biased...We can also give unbiased rules!

42 [47

Interesting subsystems

Interesting subsystems can be defined including
- monoidal categories
- symmetric monoidal categories
- cartesian categories

43/ 47

Part IlI

Conclusion

L | 47

We have defined simply-typed A-calculus without anything which looks like
reduction / evaluation / substitution.

45/ 47

This is implemented at

o]0,
e

https://cccatt.mimram.fr/

0
s
[=]

46 [47

https://cccatt.mimram.fr/
https://cccatt.mimram.fr/

Questions?

471 47

	A type theory for weak higher categories
	Unbiased cartesian closed categories
	Conclusion

