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I have tried to pick a research subject mixing extensions of what you have seen in
category theory and type theory.

Sorry for not being able to be present physically!
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Toward weak ω-categories

The notion of category is very useful but should be generalized

• we would like to capture higher-dimensional morphisms
(morphism between morphisms, etc.)

• we would like our structure to be weak
(we want to ban strict equality!)

The resulting structure is quite difficult to define:
I will propose a type-theoretic definition.

This is joint work with Eric Finster and Thibaut Benjamin.
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Graphs

A graph is a diagram

C0 C1
s

t

in Set.

For instance,

x y z w
f

g

h

p

q

r
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Graphs

A graph is a diagram

C0 C1
s

t

in Set.

We write
f : x → y

to indicate that we have f ∈ C1 with s(f ) = x and t(f ) = y.
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Categories

A category is a graph

C0 C1
s

t

together with a notion of

• identity: for every object x ∈ C0, we have idx : x → x,
• composition: for every f : x → y and g : y → z, we have f ∗ g : x → z,

such that

• composition is associative: (f ∗ g) ∗ h = f ∗ (g ∗ h)
• identities are neutral: id ∗f = f = f ∗ id
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Categories

This notion is pleasant because

• we can define the composition of n morphisms
(with n = 0, 1, 2, ...), e.g.

f1 ∗ f2 ∗ f3 ∗ f4 = f1 ∗ (f2 ∗ (f3 ∗ f4))

• all the reasonable ways of composing n morphisms are equal

f1 ∗ f2 ∗ f3 ∗ f4 = (f1 ∗ f2 ∗ f3) ∗ (id ∗f4)

Otherwise said, all compositions are defined
and do not depend on the choice of bracketing!
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Categorical concepts

The beauty of categories is that it allows generalizing concepts everywhere!
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Categorical concepts

The beauty of categories is that it allows generalizing concepts everywhere!

Two objects x, y are isomorphic when there are morphisms

f : x → y g : y → x

such that

f ∗ g = idx g ∗ f = idy

This definition makes sense in any category:
• in Set: isomorphism of sets,
• in Grp: isomorphism of groups,
• etc.
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Categorical concepts

The beauty of categories is that it allows generalizing concepts everywhere!

The product of two objects is defined by

C

A× B

A B
πA πB

Products in
• Set: cartesian product A× B,
• Vect: direct sum A⊕ B,
• Rel: disjoint union A ⊔ B. 7



2-categorical concepts

An equivalence of categories C and D consists of two functors

F : C → D G : D→ C

such that

F ∗ G ∼= IdC G ∗ F ∼= IdD

This definition makes sense in Cat. However, we cannot generalize it to other
categories, why?

There is no notion of “natural transformation” in general categories!
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2-categorical concepts

An adjunction between categories C and D consists of two functors

F : C → D G : D→ C

and two natural transformations

η : IdC → F ∗ G ε : G ∗ F → IdD

such that some conditions are satisfied.

This definition makes sense in Cat. However, we cannot generalize it to other
categories, why?

There is no notion of “natural transformation” in general categories!
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2-categories

In a

2-

category we have

x x y
f

x y
f

g
⇓ α

objects morphisms

2-cells

The typical 2-category is Cat:

• 0-cells: categories
• 1-cells: functors
• 2-cells: natural transformations

(but there are other examples)

9



2-categories

In a 2-category we have

x x y
f

x y
f

g
⇓ α

objects morphisms 2-cells

The typical 2-category is Cat:

• 0-cells: categories
• 1-cells: functors
• 2-cells: natural transformations

(but there are other examples)

9



2-categories

In a 2-category we have

x x y
f

x y
f

g
⇓ α

0-cells 1-cells 2-cells

The typical 2-category is Cat:

• 0-cells: categories
• 1-cells: functors
• 2-cells: natural transformations

(but there are other examples)

9



2-categories

In a 2-category we have

x x y
f

x y
f

g
⇓ α

0-cells 1-cells 2-cells

The typical 2-category is Cat:

• 0-cells: categories
• 1-cells: functors
• 2-cells: natural transformations

(but there are other examples)

9



2-graphs

A 2-graph is a diagram

C0 C1 C2
s0

t0

s1

t1

such that

s0 ◦ s1 = s0 ◦ t1 t0 ◦ s1 = t0 ◦ t1

For instance

x y z w
f

g
⇓ α

h

p

q

r

⇓ β

⇓ γ

we have
s0(s1(α)) = s0(f ) = x = s0(g) = s0(t1(α))
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2-categories: structure

A 2-category is a 2-graph

C0 C1 C2
s0

t0

s1

t1

together with

• compositions and identities for 1-cells (morphisms)

• we have two kinds of compositions for 2-cells:

• horizontal composition:

x y z
f

f ′
⇓ α

g

g′
⇓ β ⇝ x z

f∗0g

f ′∗0g′

⇓ α ∗0 β

• vertical composition:

x y

f

g

h

⇓ α

⇓ β
⇝ x y

f

h

⇓ α ∗1 β

• identities:

x yf
⇝ x y

f

f

⇓ idf
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2-categories: axioms

There are axioms to be satisfied such as

• composition of 1-cells is associative and unital
• horizontal composition of 2-cells is associative and unital
• vertical composition of 2-cells is associative and unital

x y

f

g

h

i

⇓ α

⇓ β

⇓ γ

⇝ (α ∗1 β) ∗1 γ = α ∗1 (β ∗1 γ)

x y
f

f ′
⇓ α ⇝ idf ∗1α = α = α ∗1 idg
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There are axioms to be satisfied such as
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x y z w
f g h ⇝ (f ∗0 g) ∗0 h = f ∗0 (g ∗0 h)

x y
f

⇝ idx ∗0f = f = f ∗0 idy
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x y
f
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x y z w
f

f ′
⇓ α

g

g′
⇓ β

h

h′
⇓ γ ⇝ (α ∗0 β) ∗0 γ = α ∗0 (β ∗0 γ)

x y
f

f ′
⇓ α ⇝ ididx ∗0α = α = α ∗0 ididy

x x y
idx

⇓ididx
idx

f

f ′
⇓ α = x y

f

f ′
⇓ α = x y y

f

f ′
⇓ α

idy

⇓ididy
idy

• vertical composition of 2-cells is associative and unital
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2-categories: axioms

There is still one axiom missing: can you spot which one?

Consider a situation such as

x y z

f

g

h

⇓ α

⇓ β

f ′

g′

h′

⇓ α′

⇓ β′

x z

f∗0f ′

g∗0g′

h∗0h′

⇓α∗0α′

⇓β∗0β′
x y z

f

h

⇓α∗1β

f ′

h′

⇓α′∗1β′
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2-categories: axioms

There is still one axiom missing: we want that any composable collections of
arrows can be composed in a unique way.
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2-categories: axioms

There is still one axiom missing: we want that any composable collections of
arrows can be composed in a unique way.

Consider a situation such as

x y z

f

g

h

⇓ α

⇓ β

f ′

g′

h′

⇓ α′

⇓ β′

The exchange law should be satisfied:

(α ∗0 α′) ∗1 (β ∗0 β′) = (α ∗1 β) ∗0 (α′ ∗1 β
′)

13



2-categories: coherence

It can be shown that given a collection of composable arrows, all the ways to
compose them coincide.

For instance,

x y z

f

g

h

i

⇓ α

⇓ β

⇓ γ

i

j

⇓ δ

(α ∗1 (β ∗1 γ)) ∗0 δ = (α ∗0 idi) ∗1 (β ∗0 δ) ∗1 (γ ∗0 idj)
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Adjunctions in 2-categories

An adjunction in a 2-category consists of

• two 0-cells x and y,
• two 1-cells f : x → y and g : y → x,
• two 2-cells η : idx ⇒ f ∗0 g and ε : g ∗0 f ⇒ idy

• such that ...

In particular, an adjunction in the 2-category Cat is an adjunction in the usual
sense, but there are many other interesting examples!
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The Eckmann-Hilton observation

The exchange law has a surprising consequence: given two 2-cells

x x
idx

idx

⇓α x x
idx

idx

⇓β

with identity source and target 1-cells, their vertical and horizontal composition
coincide and are commutative:

x x

id

id

⇓α
⇓β
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Generalizing 2-categories

In order to take in account more situations we can further generalize

• by increasing the dimension (easy)
• by weakening the axioms (hard)
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n-categories

Of course, there is no reason to stop at dimension 2.

An n-graph, or globular set, is

C0 C1 C2 · · · Cn−1 Cn
s0

t0

s1

t1

s2

t2

sn−1

tn−1

sn

tn

such that

si ◦ si+1 = si ◦ ti+1 ti ◦ si+1 = ti ◦ ti+1

We now have

x x y
f

x y
f

g
⇓ α x y

f

g

α⇓
A
⇛⇓β . . .

0-cells 1-cells 2-cells 3-cells . . .
18
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An n-category is an n-graph such that the k-cells can be composed in k − 1 ways
satisfying suitable axioms.

We can also define the notion of ω-category by letting n go to ∞.

An important point: I could write the definition of ω-categories in one page.
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Weak n-categories

The notion of higher-dimensional category we obtain is very nice,

but there are important examples which are not n-categories,
and the problems already show up for n = 2.
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Weak 2-categories

In 2-categories, we have the intuition that

• vertical composition

x y

f

g

h

⇓ α

⇓ β

corresponds to sequential composition of morphisms
• horizontal composition

x y z
f

f ′
⇓ α

g

g′
⇓ β

corresponds to putting morphisms in “parallel”
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Set as a 2-category

We thus expect that we can see Set as a 2-category in the following way:

• there is one 0-cell ⋆
• the 1-cells are sets

⋆ ⋆
A

• the 2-cells are functions

⋆ ⋆

A

B

⇓ f

so that

• vertical composition ⋆ ⋆

A

B

C

⇓f
⇓g

is the usual composition of functions,

• horizontal composition correspond to taking cartesian products:

⋆ ⋆ z
A

A′
⇓f

B

B′
⇓g ⇝ ⋆ z

A×B

A′×B′

⇓f×g
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Set as a 2-category

Most of the axioms of 2-categories are satisfied excepting for associativity and
unitality of 0-cells: given

⋆ ⋆ ⋆ ⋆
A B C

the two possible compositions do not coincide:

(A× B)× C vs A× (B× C)
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Set as a 2-category

Most of the axioms of 2-categories are satisfied excepting for associativity and
unitality of 0-cells: given

⋆ ⋆ ⋆ ⋆
A B C

the two possible compositions do not coincide:

(A× B)× C vs A× (B× C)

For instance, in OCaml we do not have

(int * int) * int = int * (int * int)

This can be observed by typing

compare ((3,4),5) (3,(4,5));;

Error: This expression has type int but an expression was expected of type

int * int
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Set as a 2-category

Most of the axioms of 2-categories are satisfied excepting for associativity and
unitality of 0-cells: given

⋆ ⋆ ⋆ ⋆
A B C

the two possible compositions do not coincide:

(A× B)× C vs A× (B× C)

What we however have is that

(A× B)× C ∼= A× (B× C)
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Bicategories

The notion of bicategory is defined almost as for 2-categories, excepting that we
replace the requirement that composition of 1-cells is associative and unital by

• weak associativity: given

x y z wa b c

there is an invertible 2-cell, the associator,

αa,b,c : (a ∗0 b) ∗0 c⇒ a ∗0 (b ∗0 c)

• weak unitality: given
x ya

there are invertible 2-cells, the left and right unitors,

λa : idx ∗0a⇒ a ρa : a ∗0 idy ⇒ a
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Bicategories: axioms

We also need to ensure that those satisfy suitable axioms,
the pentagon and the triangle:

((a ∗ b) ∗ c) ∗ d (a ∗ (b ∗ c)) ∗ d

a ∗ ((b ∗ c) ∗ d)

(a ∗ b) ∗ (c ∗ d) a ∗ (b ∗ (c ∗ d))

αa∗b,c,d

αa,b,c∗d

αa,b∗c,d

a∗αb,c,d

αa,b,c∗d

(a ∗ id) ∗ b a ∗ (id ∗b)

a ∗ b
ρa∗b

αa,id,b

a∗ρb

25



Bicategories: coherence

This notion is pleasant because

Theorem (Mac Lane’s coherence theorem)
Any two ways of composing 1-cells are isomorphic and there is one such
structural isomorphism.

For instance,
f1 ∗ (f2 ∗ (f3 ∗ f4)) ∼= (f1 ∗ f2 ∗ f3) ∗ (id ∗f4)

26



Bicategories vs 2-categories

The morale of this is that equality is evil.

We do not want axioms such as associativity

(f ∗ g) ∗ h = f ∗ (g ∗ h)

we rather higher cells which are witnesses for associativity

αf ,g,h : (f ∗ g) ∗ h ∼⇒ f ∗ (g ∗ h)

27



Bicategories vs 2-categories

Did we really gain something by passing from 2-categories to bicategories?

No.

Theorem (Mac Lane’s coherence theorem v2)
Any bicategory is equivalent to a 2-category.

But this will not generalize to higher dimensions:

Observation (Gordon,Power,Street’95)
Not every tricategory is equivalent to a 3-category.
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Tricategories

Defining tricategories can be done starting from the definition of 3-categories
and

1. replacing all equalities between 0-, 1- and 2- cells by 1-, 2- and 3- cells,
2. making those coherent by adding the suitable axioms.

For instance, we replace associativity of composition between 1-cells

(f ∗0 g) ∗0 h = f ∗0 (g ∗0 h)

by an invertible associator 2-cell

αf ,g,h : (f ∗0 g) ∗0 h⇒ f ∗0 (g ∗0 h)

but by “invertible”, we mean here that αf ,g,h should be an equivalence:

η : Id⇛ αf ,g,h ∗1 αf ,g,h ε : αf ,g,h ∗1 αf ,g,h ⇛ Id

and so on...
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Tricategories

The definition of tricategories takes roughly 4 pages with axioms such as

=

30



Tetracategories

The process can be generalized to define weak n-categories.

No one has ever tried to give a definition of a pentacategory in this way.

Instead of explicitly trying to give the axioms of weak higher categories, one
should try to find a systematic way of generating those..

If we go all the way, we obtain weak ω-categories aka (∞,∞)-categories.

In those, we never have axioms, only higher cells. This can be thought of as very
constructive definition: we want to have witnesses for all the laws.
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constructive definition: we want to have witnesses for all the laws.
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Weak higher categories are closely related to geometry.
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Reversible cells

Suppose that we have managed to define the notion of weak ω-category.

An n-cell f : x → y is reversible when it is weakly invertible, this means that
there exists f : y → y such that

f ∗ f = id f ∗ f = id

NB: this is a coinductive definition!
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Reversible cells

Suppose that we have managed to define the notion of weak ω-category.

An n-cell f : x → y is reversible when it is weakly invertible, this means that
there exists f : y → y and (n+ 1)-cells

η : f ∗ f → id ε : f ∗ f → id

which are isomorphisms.

NB: this is a coinductive definition!
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∞-groupoids

An ∞-groupoid is a weak ω-category in which every cell is reversible.

Any topological space X induces an ∞-groupoid whose

• 0-cells are the points of X
• 1-cells are the (continuous) paths
• 2-cells are the homotopies (deformations) between paths
• etc.

X
x y

f

g

We have identities, compositions, inverses, etc...
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Weak ∞-groupoids

• In 1983, Alexander Grothendieck gave a definition of ∞-groupoids and with
the conjecture that those are “the same as” spaces.

• In 2007, Maltsiniotis proposed a modified definition for weak ω-categories.
• In 2017, Finster and I managed to encode this definition as a type system.

[there are many more works than this on the subject...]
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The braiding

With the geometric point of view, we can provide an explanation why tricategories
are not equivalent to 3-categories:
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The braiding

With the geometric point of view, we can provide an explanation why tricategories
are not equivalent to 3-categories:

̸=
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Why is this useful

• We have a simple definition
(no advanced categorical concepts, a few inference rules)

• We have a syntax
(we can reason by induction, etc.)

• We have tools
(we can have the machine check our terms)

• A step toward directed homotopy type theory?
(we are still far from handling variance, univalence, etc.)

37



A
TYPE-THEORETIC

DEFINITION
OF

CATEGORIES
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Dependent type theory

As a first example, we are going to give a type theory for 1-categories.

This theory will be defined from three things:

• terms, which will comprise variables
(those will correspond to objects and morphisms of our category)

• types, which can depend on terms
• contexts, which are lists of pairs of variables and types

Γ = x1 : A1, . . . , xn : An

39



Judgments in type-theory

• Γ is a well-formed context:
Γ ⊢

• A is a well-formed type in context Γ:

Γ ⊢ A

• t is a term of type A in context Γ:

Γ ⊢ t : A

• t and u are equal terms of type A in context Γ:

Γ ⊢ t = u : A

40



A type-theoretic definition of categories

Cartmell, 1984:

• type constructors:

Γ ⊢

Γ ⊢ ⋆

Γ ⊢ x : ⋆ Γ ⊢ y : ⋆

Γ ⊢ x → y

• term constructors:

x : ⋆ ⊢ id(x) : x → x

x : ⋆, y : ⋆, f : x → y, z : ⋆,g : y → z ⊢ comp(f ,g) : x → z

• axioms:
Γ ⊢ f : x → y

Γ ⊢ comp(id(x), f ) = f

Γ ⊢ f : x → y

Γ ⊢ comp(f , id(y)) = f
. . .

• plus “standard rules” (contexts, weakening, substitutions, . . . )
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Models of the type theory

A model of the type theory consists in interpreting

• closed types as sets,
• closed terms as elements of their type,

in such a way that axioms are satisfied.

A model of the previous type theory consists of

• a set J⋆K
• for each x, y ∈ J⋆K, a set J→Kx,y
• for each x ∈ J⋆K, an element JidKx ∈ J→Kx,x
• . . .

In other words, a model of the type theory is precisely a category
(and a morphism is a functor).
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Going higher

We could gradually implement weak n-categories:

• bicategories
• tricategories
• tetracategories
• pentacategories
• ...

The problem is that

• the number of axioms is exploding
• nobody knows the definition excepting in low dimensions
• we would like to have a “uniform” definition
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Unbiased definition

Since the composition is associative for categories, the composite of any diagram
like

x0
f1
// x1

f2
// . . .

fn
// xn

is uniquely defined.

So, instead of having a binary composition and identities, we could have a more
general rule

x0 : ⋆, x1 : ⋆, f1 : x0 → x1, . . . , xn : ⋆, fn : xn−1 → xn ⊢ comp(f1, . . . , fn) : x0 → xn
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Unbiased definition

We can axiomatize categories with n-ary composition.

• This is very redundant, for instance

comp(comp(f ,g),h) = comp(f ,g,h) = comp(f , comp(g,h))

or even
comp(f ) = f

• We have to characterize what we want to compose exactly. For instance,
should be able to compose

x0
f1
// x1

f2
// . . .

fn
// xn

but not
x

f
(( y

g
hh z or x f

// y zg
oo

• However, this generalizes nicely in higher dimensions!
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A
TYPE-THEORETIC

DEFINITION
OF

GLOBULAR SETS
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Graphs

Recall that we defined a graph to be a diagram

C0 C1
s

t

in Set.

Alternatively, we can define a graph as

• a set C0,
• for every x, y ∈ C0, a set Cxy .

The n-graphs, aka globular sets, can be defined in the same way.
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Globular sets
Definition
A globular set consists of

• a set G, and
• for every x, y ∈ G, a globular set Gxy .

Example

x
f
((

g
66ϕ⇓ y h // z

corresponds to

G = {x, y, z} Gxy = {f ,g} (Gxy)
f
g = {ϕ} ((Gxy)

f
g)

ϕ
ϕ = ∅ . . .
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Globular sets
Definition
A globular set consists of

• a set G, and
• for every x, y ∈ G, a globular set Gxy .

Alternatively, this can be defined as
• a sequence of sets Gn of n-cells for n ∈ N,
• with source and target maps

sn, tn : Gn+1 → Gn

satisfying suitable axioms.
48



Globular sets
Proposition
Globular sets are precisely the models of the type theory

Γ ⊢

Γ ⊢ ⋆

Γ ⊢ t : A Γ ⊢ u : A
Γ ⊢ t→

A
u

. . .
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Globular sets
Proposition
Globular sets are precisely the models of the type theory

Γ ⊢

Γ ⊢ ⋆

Γ ⊢ t : A Γ ⊢ u : A
Γ ⊢ t→

A
u

. . .

Remark
A finite globular set

x
f
%%

g
99⇓α y zhoo

can be encoded as a context

x : ⋆, y : ⋆, z : ⋆, f : x →
⋆
y,g : x →

⋆
y,h : z→

⋆
y, α : f →

x→
⋆
y
g
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Globular sets
Proposition
Globular sets are precisely the models of the type theory

Γ ⊢

Γ ⊢ ⋆

Γ ⊢ t : A Γ ⊢ u : A
Γ ⊢ t→

A
u

. . .

Proposition
The syntactic category (of contexts and substitutions) of this type theory is the
opposite of the category of finite globular sets.
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PASTING
SCHEMES
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Pasting schemes

We now want to define pasting schemes which are diagrams for which we expect
to have a composition. For instance,

x

f

��⇓α
f ′ //
⇓β

f ′′

DD
y g

// z h // w

is a pasting scheme, but not

x
f
(( y

g
hh z or x f

// y zg
oo
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Disks

Given n ∈ N, the n-disk Dn is the globular set corresponding to a general n-cell:

x x // y x ((
66⇓ y x ((

66⇓⇛⇓ y

D0 D1 D2 D3

Those are basic building blocks of globular sets: any globular set can be obtained
by gluing such disks.
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Pasting schemes

A pasting scheme is a globular set

x

f

��⇓α
f ′ //
⇓β

f ′′

DD
y g

// z h // w

• Grothendieck: which can be obtained as a particular colimit of disks

x

f

��⇓α
f ′ // y x f ′ //

⇓β

f ′′

DD
y y g

// z z h // w

x f ′ // y y z

^^ @@
VV HH VV HH
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Pasting schemes

A pasting scheme is a globular set

x

f

��⇓α
f ′ //
⇓β

f ′′

DD
y g

// z h // w

• Batanin: which is described by a particular tree

x2
0

α

x2
1

β

x1
0f

f ′

f ′′ x1
1

g

x1
2

h

x0
0x

y z

w

53



Pasting schemes

A pasting scheme is a globular set

x

f

��⇓α
f ′ //
⇓β

f ′′

DD
y g

// z h // w

• Finster-Mimram: which is “totally ordered”
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Order relation

We can define a preorder ◁ on the cells of a globular set by

source(x) ◁ x and x ◁ target(x)

For the globular set

x

f

��⇓α
f ′ //
⇓β

f ′′

DD
y g

// z h // w

we have

x ◁ f ◁ α ◁ f ′ ◁ β ◁ f ′′ ◁ y ◁ g ◁ z ◁ h ◁ w
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Characterization of pasting schemes

Theorem
A globular set is a pasting scheme if and only if it is

• non-empty,
• finite, and
• the relation ◁ is a total order.
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Construction of pasting schemes

A pointed globular set is a globular set with a distinguished cell.

Theorem
A pasting scheme is a pointed globular set which can be constructed as follows:

• we start from a 0-cell x
• we can add a new (n+1)-cell and its new target,

its source being the distinguished n-cell

x

f
!!

y ⇝ x

f
!!

g
==

α⇓ y

• or the distinguished cell becomes the target of the previous one

x

f
!!

g
==

α⇓ y ⇝ x

f
!!

g
==

α⇓ y
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Construction of pasting schemes

The construction of the pasting scheme

x

⇓α

⇓β
y z w

corresponds to its order

x

◁ f ◁ α ◁ f ′ ◁ β ◁ f ′′ ◁ y ◁ g ◁ z ◁ h ◁ w
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Type-theoretic pasting schemes

Now, recall that a pasting scheme

x

f

��⇓α
f ′ //
⇓β

f ′′

DD
y g

// z h // w

can be seen as a context

x : ⋆, y : ⋆, f : x → y, f ′ : x → y,
α : f → f ′, f ′′ : x → y, β : f ′ → f ′′,
z : ⋆,g : y → z,w : ⋆,h : z→ w
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Type-theoretic pasting schemes

A context Γ (seen as a globular set) is a pasting scheme iff

Γ ⊢ps

is derivable with the rules

x : ⋆ ⊢ps x : ⋆
Γ ⊢ps x : ⋆

Γ ⊢ps

Γ ⊢ps x : A
Γ, y : A, f : x →

A
y ⊢ps f : x →

A
y

Γ ⊢ps f : x →
A
y

Γ ⊢ps y : A
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Type-theoretic pasting schemes

Note that with those rules

• the order of cells matters:

x
f
&&

⇓α

f ′
88 y

g
// z

• because of this we can easily check
• proofs are canonical
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Source and targets

A pasting scheme Γ has

x

f

��⇓α
f ′ //
⇓β

f ′′

DD
y g

// z h // w

• a source ∂−(Γ):

x

f

��

y g
// z h // w

• a target ∂+(Γ):
x

f ′′

DD
y g

// z h // w

both of which can be defined by induction on contexts. 61



A
TYPE-THEORETIC

DEFINITION
OF

ω-CATEGORIES
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Type-theoretic ω-categories

We expect that in an ω-category every pasting scheme has a composite:

Γ ⊢ps Γ ⊢ A
Γ ⊢ cohΓ,A : A

You can derive expected operations, such as composition:

x : ⋆, y : ⋆, f : x →
⋆
y, z : ⋆,g : y →

⋆
z ⊢ coh : x →

⋆
z

However, you can derive too much:

x : ⋆, y : ⋆, f : x →
⋆
y ⊢ coh : y →

⋆
x

We have in fact a definition of ω-groupoids
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Type-theoretic ω-categories

We need to take care of side-conditions and in fact split the rule in two:

• operations:

Γ ⊢ps Γ ⊢ t→
A
u ∂−(Γ) ⊢ t : A ∂+(Γ) ⊢ u : A

Γ ⊢ cohΓ,t→
A
u : t→

A
u

whenever

FV(t) = FV(∂−(Γ)) and FV(u) = FV(∂+(Γ))

• coherences:
Γ ⊢ps Γ ⊢ A
Γ ⊢ cohΓ,A : A

whenever
FV(A) = FV(Γ)
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Type-theoretic ω-categories

Definition
An ω-category is a model of this type theory.

Conjecture
This definition coincides with Grothendieck-Maltsiniotis’.
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65



Type-theoretic ω-categories

A typical example of operation is composition

x

f

��
g //

h

BB

α⇓

β⇓
y ⊢ coh : x

f

��

y → x

h

BB
y

(this coherence is noted “comp” in the following).
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Type-theoretic ω-categories

A typical example of coherence is associativity

x f
// y g

// z h // w
⊢

coh : x
comp(comp(f ,g),h)

// w → x
comp(f ,comp(g,h))

// w

67



Coherences are reversible

Note that if we derive a coherence
Γ ⊢ps Γ ⊢ A
Γ ⊢ cohΓ,A : A

with FV(A) = FV(Γ)

where
A = t→ u ,

there is also one with
A = u→ t .

Definition
An n-cell f : x → y is reversible when there exists

• an n-cell g : y → x and
• reversible (n+1)-cells

α : f ∗n−1 g→ idx β : g ∗n−1 f → idy
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Implementation(s)

There are currently three implementations:

• https://github.com/ericfinster/catt

• follows closely the rules of the article
• https://github.com/smimram/catt

• has support for implicit arguments and various small extensions
• has a web interface

• https://github.com/ThiBen/catt

• best of both worlds
• many more extensions

In practice,

• you simply enter a list of coherences
(there is no reduction, etc.),

• if the program does not complain then they are valid operations in weak
ω-categories.
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“Demo”

• identity 1-cells
coh id (x : *) : * | x -> x ;

• composition of 1-cells:
coh comp (x : *) (y : *) (f : * | x -> y)

(z : *) (g : * | y -> z)

: * | x -> z ;

• associativity of composition of 1-cells:
coh assoc

(x : *) (y : *) (f : * | x -> y) (z : *)

(g : * | y -> z) (w : *) (h : * | z -> w)

: * | x -> w

| comp x z (comp x y f z g) w h ->

comp x y f w (comp y z g w h) ;

• . . .
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“Demo”

Only defining the Eckmann-Hilton morphism takes 300 lines

x

id

��

id //

id

AA

α⇓

β⇓
x ⇛ x

id

��

id //

id

AA

β⇓

α⇓
x

because you have to

• define usual operations and coherences,
• explicitly insert and remove identities,
• take care of bracketing of composites
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let eh (X : Hom) (x : X) (a : id x -> id x) (b : id x -> id x)

: (comp’ a b -> comp’ b a) =

comp11 (comp’ (unitl’- a) (unitr’- b)) (assoc3 _ _ _ _)

(compl2r’ _ _ (unitlr x) _) (compl2’ _ _ (comp3 (assoc- _ _ _) (comp’ (unitr+- (id x)) (id _)) (unitl _)))

(compl’ _ (assoc- _ _ _)) (complr’ _ (ich b a) _)

(complr’ _ (compr’ (comp (unitr- _) (compl’ _ (unitr+-- _))) _) _)

(comp (complr’ _ (assoc3 _ _ _ _) _) (compl’ _ (assoc4 _ _ _ _ _)))

(comp’ (unitlr- x) (compl’ _ (compl’ _ (comp’ (unitrl- x) (compl’ _ (unitrl x))))))

(assoc3- _ _ _ _)

(comp’ (unitr’ b) (unitl’ a))

72



“Demo”

• no inverses:
coh inv (x : *) (y : *) (f : * | x -> y)

: * | y -> x ;

produces
Checking coherence: inv

Valid tree context

Src/Tgt check forced

Source context: (x : *)

Target context: (y : *)

Failure: Source is not algebraic for y : *
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CONCLUSION
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Current work

Many things remain to be done:

• understand more exotic features
(implicit arguments, reduction, etc.)

• some work has been started by Finster and Vicary to make associativity and
unitality implicit
thanks to this they have been able to construct the syllepsis 5-cell

• we should study the relationship with homotopy type theory
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