A TYPE-THEORETICAL DEFINITION OF WEAK ω -CATEGORIES

Samuel Mimram

École Polytechnique

ENS Rennes

January 26, 2024

I have tried to pick a research subject mixing extensions of what you have seen in category theory and type theory.

Sorry for not being able to be present physically!

Toward weak ω -categories

The notion of category is very useful but should be generalized

- we would like to capture **higher-dimensional morphisms** (morphism between morphisms, etc.)
- we would like our structure to be weak (we want to ban strict equality!)

The resulting structure is quite difficult to define: I will propose a *type-theoretic definition*.

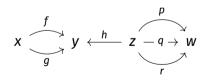
This is joint work with Eric Finster and Thibaut Benjamin.

Graphs

A graph is a diagram

in **Set**.

For instance,



Graphs

A graph is a diagram

in Set.

We write

$$f: x \rightarrow y$$

to indicate that we have $f \in C_1$ with s(f) = x and t(f) = y.

A category is a graph

A category is a graph

$$C_0 \stackrel{s}{\underset{t}{\overleftarrow{\qquad}}} C_1$$

together with a notion of

- identity: for every object $x \in C_0$, we have $id_x : x \to x$,
- composition: for every $f: x \rightarrow y$ and $g: y \rightarrow z$, we have $f * g: x \rightarrow z$,

A category is a graph

$$C_0 \stackrel{s}{\underset{t}{\longleftarrow}} C_1$$

together with a notion of

- identity: for every object $x \in C_o$, we have $id_x : x \to x$,
- composition: for every $f: x \to y$ and $g: y \to z$, we have $f * g: x \to z$,

such that

- composition is associative: (f * g) * h = f * (g * h)
- identities are **neutral**: id * f = f = f * id

This notion is pleasant because

• we can define the composition of n morphisms (with n = 0, 1, 2, ...), e.g.

$$f_1 * f_2 * f_3 * f_4 = f_1 * (f_2 * (f_3 * f_4))$$

This notion is pleasant because

• we can define the composition of n morphisms (with n = 0, 1, 2, ...), e.g.

$$f_1 * f_2 * f_3 * f_4 = f_1 * (f_2 * (f_3 * f_4))$$

• all the reasonable ways of composing *n* morphisms are equal

$$f_1 * f_2 * f_3 * f_4 = (f_1 * f_2 * f_3) * (id * f_4)$$

This notion is pleasant because

• we can define the composition of n morphisms (with n = 0, 1, 2, ...), e.g.

$$f_1 * f_2 * f_3 * f_4 = f_1 * (f_2 * (f_3 * f_4))$$

• all the reasonable ways of composing *n* morphisms are equal

$$f_1 * f_2 * f_3 * f_4 = (f_1 * f_2 * f_3) * (id * f_4)$$

Otherwise said, all compositions are defined and do not depend on the choice of bracketing!

Categorical concepts

The beauty of categories is that it allows generalizing concepts everywhere!

Categorical concepts

The beauty of categories is that it allows generalizing concepts everywhere!

Two objects *x*, *y* are **isomorphic** when there are morphisms

$$f: x \to y$$
 $g: y \to x$

such that

$$f * g = id_x$$
 $g * f = id_y$

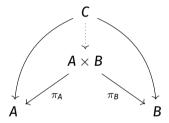
This definition makes sense in any category:

- in Set: isomorphism of sets,
- in Grp: isomorphism of groups,
- etc.

Categorical concepts

The beauty of categories is that it allows generalizing concepts everywhere!

The **product** of two objects is defined by



Products in

- Set: cartesian product $\textbf{A} \times \textbf{B}$,
- Vect: direct sum $A \oplus B$,
- Rel: disjoint union A \sqcup B.

2-categorical concepts

An equivalence of categories C and D consists of two functors

$$F: C \rightarrow D$$
 $G: D \rightarrow C$

such that

$$F * G \cong \mathsf{Id}_C$$
 $G * F \cong \mathsf{Id}_D$

This definition makes sense in **Cat**. However, we cannot generalize it to other categories, why?

2-categorical concepts

An equivalence of categories C and D consists of two functors

$$F: C \rightarrow D$$
 $G: D \rightarrow C$

such that

$$F * G \cong \mathsf{Id}_C$$
 $G * F \cong \mathsf{Id}_D$

This definition makes sense in **Cat**. However, we cannot generalize it to other categories, why?

There is no notion of "natural transformation" in general categories!

2-categorical concepts

An adjunction between categories C and D consists of two functors

 $F: C \rightarrow D$ $G: D \rightarrow C$

and two natural transformations

 $\eta: \mathsf{Id}_{\mathsf{C}} \to \mathsf{F} * \mathsf{G} \qquad \qquad \varepsilon: \mathsf{G} * \mathsf{F} \to \mathsf{Id}_{\mathsf{D}}$

such that some conditions are satisfied.

This definition makes sense in **Cat**. However, we cannot generalize it to other categories, why?

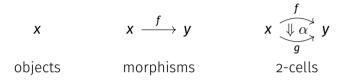
There is no notion of "natural transformation" in general categories!

In a category we have

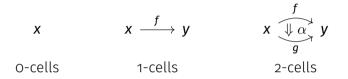
$$x \qquad x \xrightarrow{f} y$$

objects morphisms

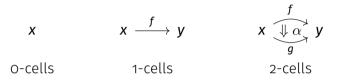
In a **2**-category we have



In a **2**-category we have



In a **2**-category we have



The typical **2**-category is **Cat**:

- **o**-cells: categories
- 1-cells: functors
- **2**-cells: natural transformations

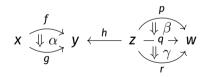
(but there are other examples)

2-graphs

A **2-graph** is a diagram

$$C_0 \stackrel{s_0}{\longleftarrow} C_1 \stackrel{s_1}{\longleftarrow} C_2$$

For instance



2-graphs

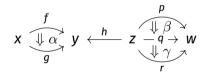
A **2-graph** is a diagram

$$C_0 \stackrel{s_0}{\longleftarrow} C_1 \stackrel{s_1}{\longleftarrow} C_2$$

such that

$$s_0 \circ s_1 = s_0 \circ t_1$$
 $t_0 \circ s_1 = t_0 \circ t_1$

For instance



2-graphs

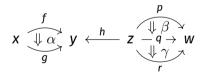
A **2-graph** is a diagram

$$C_0 \stackrel{s_0}{\longleftarrow} C_1 \stackrel{s_1}{\longleftarrow} C_2$$

such that

$$s_0 \circ s_1 = s_0 \circ t_1$$
 $t_0 \circ s_1 = t_0 \circ t_1$

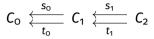
For instance



we have

$$\mathsf{s}_{\mathsf{O}}(\mathsf{s}_{\mathsf{I}}(\alpha)) = \mathsf{s}_{\mathsf{O}}(f) = \mathsf{x} = \mathsf{s}_{\mathsf{O}}(g) = \mathsf{s}_{\mathsf{O}}(\mathsf{t}_{\mathsf{I}}(\alpha))$$

A **2-category** is a **2**-graph



A **2-category** is a **2**-graph

$$C_0 \stackrel{s_0}{\longleftarrow} C_1 \stackrel{s_1}{\longleftarrow} C_2$$

together with

• compositions and identities for 1-cells (morphisms)

$$x \xrightarrow{f} y \xrightarrow{g} z \longrightarrow x \xrightarrow{f*_0g} z$$

 $x \xrightarrow{\sim} x \xrightarrow{\operatorname{id}_x} x$

A **2-category** is a **2**-graph

$$C_0 \stackrel{s_0}{\longleftarrow} C_1 \stackrel{s_1}{\longleftarrow} C_2$$

- compositions and identities for 1-cells (morphisms)
- we have two kinds of compositions for **2**-cells:

A 2-category is a 2-graph

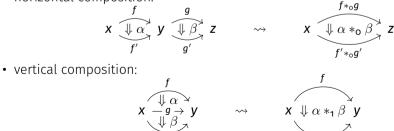
$$C_0 \rightleftharpoons c_1 \rightleftharpoons c_1 \lor c_1$$

- compositions and identities for **1**-cells (morphisms)
- we have two kinds of compositions for **2**-cells:
 - horizontal composition:

A 2-category is a 2-graph

$$C_0 \stackrel{s_0}{\underset{t_0}{\longleftarrow}} C_1 \stackrel{s_1}{\underset{t_1}{\longleftarrow}} C_2$$

- compositions and identities for **1**-cells (morphisms)
- we have two kinds of compositions for **2**-cells:
 - horizontal composition:

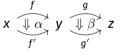


A 2-category is a 2-graph

$$C_0 \stackrel{s_0}{\leftarrow} C_1 \stackrel{s_1}{\leftarrow} C_2$$

together with

- compositions and identities for **1**-cells (morphisms)
- we have two kinds of compositions for **2**-cells:
 - horizontal composition:



- vertical composition: ...
- identities:

$$x \xrightarrow{f} y \longrightarrow x \underbrace{\Downarrow_{f}^{f}}_{f} y$$

 \rightsquigarrow

There are axioms to be satisfied such as

• composition of 1-cells is associative and unital

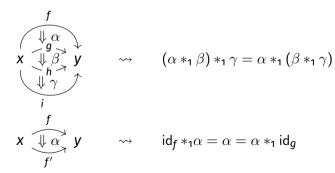
- composition of **1**-cells is associative and unital
- horizontal composition of 2-cells is associative and unital

$$x \underbrace{\underset{f'}{\Downarrow \alpha}}^{f} y \underbrace{\underset{g'}{\Downarrow \beta}}^{g} z \underbrace{\underset{h'}{\Downarrow \gamma}}^{h} w \longrightarrow (\alpha *_{o} \beta) *_{o} \gamma = \alpha *_{o} (\beta *_{o} \gamma)$$
$$x \underbrace{\underset{f'}{\oiint \alpha}}^{f} y \longrightarrow id_{id_{x}} *_{o} \alpha = \alpha = \alpha *_{o} id_{id_{y}}$$

х

- composition of **1**-cells is associative and unital
- horizontal composition of 2-cells is associative and unital

- composition of **1**-cells is associative and unital
- horizontal composition of 2-cells is associative and unital
- vertical composition of 2-cells is associative and unital

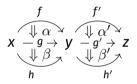


There is still one axiom missing: can you spot which one?

There is still one axiom missing: we want that any composable collections of arrows can be composed in a unique way.

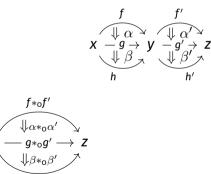
There is still one axiom missing: we want that any composable collections of arrows can be composed in a unique way.

Consider a situation such as



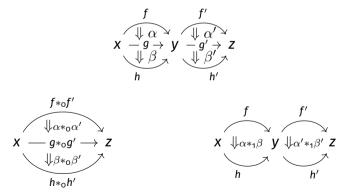
There is still one axiom missing: we want that any composable collections of arrows can be composed in a unique way.

Consider a situation such as



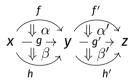
There is still one axiom missing: we want that any composable collections of arrows can be composed in a unique way.

Consider a situation such as



There is still one axiom missing: we want that any composable collections of arrows can be composed in a unique way.

Consider a situation such as



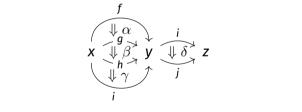
The exchange law should be satisfied:

$$(\alpha *_{\mathsf{o}} \alpha') *_{\mathsf{i}} (\beta *_{\mathsf{o}} \beta') = (\alpha *_{\mathsf{i}} \beta) *_{\mathsf{o}} (\alpha' *_{\mathsf{i}} \beta')$$

2-categories: coherence

It can be shown that given a *collection of composable arrows*, all the ways to compose them coincide.

For instance,



$$(\alpha *_1 (\beta *_1 \gamma)) *_0 \delta = (\alpha *_0 \mathsf{id}_i) *_1 (\beta *_0 \delta) *_1 (\gamma *_0 \mathsf{id}_j)$$

Adjunctions in 2-categories

An adjunction in a 2-category consists of

- two **o**-cells **x** and **y**,
- two 1-cells f: x
 ightarrow y and g: y
 ightarrow x,
- two **2**-cells $\eta : \operatorname{id}_X \Rightarrow f *_{\mathsf{O}} g$ and $\varepsilon : g *_{\mathsf{O}} f \Rightarrow \operatorname{id}_y$
- such that ...

Adjunctions in 2-categories

An adjunction in a 2-category consists of

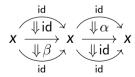
- two **o**-cells **x** and **y**,
- two 1-cells f: x
 ightarrow y and g: y
 ightarrow x,
- two **2**-cells $\eta : \operatorname{id}_X \Rightarrow f *_{\mathsf{O}} g$ and $\varepsilon : g *_{\mathsf{O}} f \Rightarrow \operatorname{id}_y$
- such that ...

In particular, an adjunction in the **2**-category **Cat** is an adjunction in the usual sense, but there are many other interesting examples!

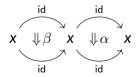
The exchange law has a surprising consequence: given two 2-cells

$$\mathbf{x} \underbrace{\overset{\mathsf{id}}{\underset{\mathsf{id}}{\Downarrow \beta \prec}}}_{\mathsf{id}} \mathbf{x}$$

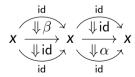
The exchange law has a surprising consequence: given two 2-cells



The exchange law has a surprising consequence: given two 2-cells



The exchange law has a surprising consequence: given two 2-cells



The exchange law has a surprising consequence: given two 2-cells

In order to take in account more situations we can further generalize

- by increasing the dimension (easy)
- by weakening the axioms (hard)

Of course, there is no reason to stop at dimension 2.

An *n*-graph, or globular set, is

$$C_0 \begin{array}{c} \underset{t_0}{\overset{s_0}{\longleftarrow}} C_1 \begin{array}{c} \underset{t_1}{\overset{s_1}{\longleftarrow}} C_2 \begin{array}{c} \underset{t_2}{\overset{s_2}{\longleftarrow}} \cdots \begin{array}{c} \underset{t_{n-1}}{\overset{s_{n-1}}{\longleftarrow}} C_{n-1} \begin{array}{c} \underset{t_n}{\overset{s_n}{\longleftarrow}} C_n \end{array}$$

such that

$$\mathbf{s}_i \circ \mathbf{s}_{i+1} = \mathbf{s}_i \circ \mathbf{t}_{i+1}$$
 $\mathbf{t}_i \circ \mathbf{s}_{i+1} = \mathbf{t}_i \circ \mathbf{t}_{i+1}$

We now have

18

. . .

. . .

Of course, there is no reason to stop at dimension 2.

An *n*-graph, or globular set, is

$$C_0 \begin{array}{c} \stackrel{s_0}{\longleftarrow} & C_1 \begin{array}{c} \stackrel{s_1}{\longleftarrow} & C_2 \end{array} \begin{array}{c} \stackrel{s_2}{\longleftarrow} & \cdots \end{array} \begin{array}{c} \stackrel{s_{n-1}}{\longleftarrow} & C_{n-1} \end{array} \begin{array}{c} \stackrel{s_n}{\longleftarrow} & C_n \end{array}$$

such that

$$\mathbf{s}_i \circ \mathbf{s}_{i+1} = \mathbf{s}_i \circ t_{i+1}$$
 $t_i \circ \mathbf{s}_{i+1} = t_i \circ t_{i+1}$

An *n*-category is an *n*-graph such that the *k*-cells can be composed in k - 1 ways satisfying suitable axioms.

Of course, there is no reason to stop at dimension 2.

An *n*-graph, or globular set, is

$$C_0 \begin{array}{c} \stackrel{s_0}{\longleftarrow} & C_1 \begin{array}{c} \stackrel{s_1}{\longleftarrow} & C_2 \end{array} \begin{array}{c} \stackrel{s_2}{\longleftarrow} & \cdots \end{array} \begin{array}{c} \stackrel{s_{n-1}}{\longleftarrow} & C_{n-1} \end{array} \begin{array}{c} \stackrel{s_n}{\longleftarrow} & C_n \end{array}$$

such that

$$s_i \circ s_{i+1} = s_i \circ t_{i+1}$$
 $t_i \circ s_{i+1} = t_i \circ t_{i+1}$

An *n*-category is an *n*-graph such that the *k*-cells can be composed in k - 1 ways satisfying suitable axioms.

We can also define the notion of ω -category by letting n go to ∞ .

Of course, there is no reason to stop at dimension 2.

An *n*-graph, or globular set, is

$$C_0 \begin{array}{c} \underset{t_0}{\overset{s_0}{\longleftarrow}} C_1 \begin{array}{c} \underset{t_1}{\overset{s_1}{\longleftarrow}} C_2 \begin{array}{c} \underset{t_2}{\overset{s_2}{\longleftarrow}} \cdots \begin{array}{c} \underset{t_{n-1}}{\overset{s_{n-1}}{\longleftarrow}} C_{n-1} \begin{array}{c} \underset{t_n}{\overset{s_n}{\longleftarrow}} C_n \end{array}$$

such that

$$\mathbf{s}_i \circ \mathbf{s}_{i+1} = \mathbf{s}_i \circ \mathbf{t}_{i+1}$$
 $\mathbf{t}_i \circ \mathbf{s}_{i+1} = \mathbf{t}_i \circ \mathbf{t}_{i+1}$

An *n*-category is an *n*-graph such that the *k*-cells can be composed in k - 1 ways satisfying suitable axioms.

We can also define the notion of ω -category by letting n go to ∞ .

An important point: I could write the definition of ω -categories in one page.

14.2.1 Definition. A strict ω -category is given by a globular set C together with a family of partial binary composition operations $(*_i)_{i \in \mathbb{N}}$ and identity operations $(1^i)_{i \in \mathbb{N} \setminus \{0\}}$ subject to the following conditions:

- if 0 ≤ i < k and x, y are k-cells such that t_i(x) = s_i(y) (in which case we say that x and y are i-composable) there is a k-cell x *_i y,
- if k > 0 and x is a (k 1)-cell, there is a k-cell 1_x^k , and more generally, if $i \ge 0$ and x is an *i*-cell, we may define recursively on k > i a k-cell 1_x^k by $1_x^k = 1_{k-1}^k$.

Compositions and units are subject to:

- 1. positional conditions prescribing the source and target of composites and units, namely
 - if 0 ≤ i < j, then $s_j(x *_i y) = s_j(x) *_i s_j(y)$ and $t_j(x *_i y) = t_j(x) *_i t_j(y)$,

$$s_j(x *_i y) = s_j(x) *_i s_j(y)$$
 and $t_j(x *_i y) = t_j(x) *_i t_j(y)$,

- if $0 \le j \le i$, then

$$s_j(x *_i y) = s_j(x)$$
 and $t_j(x *_i y) = t_j(y)$,

- if $0 \le i < k$ and x is an *i*-cell, then

$$s_i(1_x^k) = x = t_i(1_x^k),$$

- 2. computational conditions of
 - associativity: if i < k and x, y, z are k-cells such that $t_i(x) = s_i(y)$ and $t_i(y) = s_i(z)$, then

$$(x *_i y) *_i z = x *_i (y *_i z),$$

– neutrality of units: if 0 ≤ i < k and x is a k-cell, then</p>

$$1_{s_{i}(x)}^{k} *_{i} x = x *_{i} 1_{t_{i}(x)}^{k} = x,$$

- exchange: if i < j < k and x, y, z, v are k-cells such that $t_j(x) = s_j(y)$, $t_j(z) = s_j(v)$ and $t_i(x) = s_i(z)$, then also $t_j(y) = s_j(v)$, and

$$(x *_{i} y) *_{i} (z *_{i} v) = (x *_{i} z) *_{i} (y *_{i} v),$$

 compatibility of units: if 0 ≤ i < j < k and x, y are i-composable j-cells, then

$$1_{x*_iy}^k = 1_x^k *_i 1_y^k.$$

The notion of higher-dimensional category we obtain is very nice,

The notion of higher-dimensional category we obtain is very nice, but there are important examples which are not *n*-categories, The notion of higher-dimensional category we obtain is very nice, but there are important examples which are not *n*-categories, and the problems already show up for n = 2.

Weak 2-categories

In 2-categories, we have the intuition that

• vertical composition

corresponds to sequential composition of morphisms

• horizontal composition

$$x \underbrace{ \bigoplus_{f'}^{f} y \bigoplus_{g'}^{g} z}_{f'} z$$

corresponds to putting morphisms in "parallel"

We thus expect that we can see **Set** as a **2**-category in the following way:

- there is one $o\text{-cell}\,\star$
- the **1**-cells are sets

$$\star \stackrel{\mathsf{A}}{\longrightarrow} \star$$

• the **2**-cells are functions

$$\star \underbrace{\Downarrow f}_{B}^{A} \star$$

We thus expect that we can see **Set** as a **2**-category in the following way:

- there is one $o\text{-cell}\,\star$
- the **1**-cells are sets
- the **2**-cells are functions

so that

• vertical composition
$$\begin{array}{c} A \\ \downarrow f \\ -B \rightarrow \star \\ \downarrow g \\ c \end{array}$$
 is the usual composition of functions,

We thus expect that we can see **Set** as a **2**-category in the following way:

- there is one $o\mbox{-cell}\,\star$
- the 1-cells are sets
- the **2**-cells are functions

so that

• vertical composition
$$\begin{array}{c} A \\ \downarrow f \\ -B \rightarrow \star \\ \downarrow g \\ C \end{array}$$
 is the usual composition of functions,

• horizontal composition correspond to taking cartesian products:

Most of the axioms of **2**-categories are satisfied excepting for associativity and unitality of **0**-cells: given

$$\star \xrightarrow{A} \star \xrightarrow{B} \star \xrightarrow{C} \star$$

the two possible compositions do not coincide:

$$(\mathbf{A} \times \mathbf{B}) \times \mathbf{C}$$
 vs $\mathbf{A} \times (\mathbf{B} \times \mathbf{C})$

Most of the axioms of **2**-categories are satisfied excepting for associativity and unitality of **0**-cells: given

$$\star \xrightarrow{A} \star \xrightarrow{B} \star \xrightarrow{C} \star$$

the two possible compositions do not coincide:

$$(\mathbf{A} \times \mathbf{B}) \times \mathbf{C}$$
 vs $\mathbf{A} \times (\mathbf{B} \times \mathbf{C})$

For instance, in OCaml we do not have

```
(int * int) * int = int * (int * int)
```

This can be observed by typing

Most of the axioms of **2**-categories are satisfied excepting for associativity and unitality of **0**-cells: given

$$\star \xrightarrow{A} \star \xrightarrow{B} \star \xrightarrow{C} \star$$

the two possible compositions do not coincide:

$$(\mathbf{A} \times \mathbf{B}) \times \mathbf{C}$$
 vs $\mathbf{A} \times (\mathbf{B} \times \mathbf{C})$

What we however have is that

$$(\mathsf{A} \times \mathsf{B}) \times \mathsf{C} \cong \mathsf{A} \times (\mathsf{B} \times \mathsf{C})$$

Bicategories

The notion of **bicategory** is defined almost as for **2**-categories, excepting that we replace the requirement that composition of **1**-cells is associative and unital by

• weak associativity: given

$$x \xrightarrow{a} y \xrightarrow{b} z \xrightarrow{c} w$$

there is an invertible 2-cell, the associator,

$$\alpha_{a,b,c}: (a *_{o} b) *_{o} c \Rightarrow a *_{o} (b *_{o} c)$$

Bicategories

The notion of **bicategory** is defined almost as for **2**-categories, excepting that we replace the requirement that composition of **1**-cells is associative and unital by

• weak associativity: given

$$x \xrightarrow{a} y \xrightarrow{b} z \xrightarrow{c} w$$

there is an invertible 2-cell, the associator,

$$\alpha_{a,b,c}:(a*_{o}b)*_{o}c\Rightarrow a*_{o}(b*_{o}c)$$

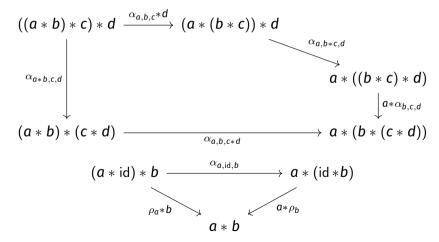
• weak unitality: given

$$x \xrightarrow{a} y$$

there are invertible 2-cells, the left and right unitors,

$$\lambda_a : \operatorname{id}_x *_{\mathsf{o}} a \Rightarrow a \qquad \qquad \rho_a : a *_{\mathsf{o}} \operatorname{id}_y \Rightarrow a$$

We also need to ensure that those satisfy suitable axioms, the **pentagon** and the **triangle**:



This notion is pleasant because

Theorem (Mac Lane's coherence theorem)

Any two ways of composing 1-cells are isomorphic and there is one such structural isomorphism.

For instance,

$$f_1 * (f_2 * (f_3 * f_4)) \cong (f_1 * f_2 * f_3) * (id * f_4)$$

Bicategories vs 2-categories

The morale of this is that **equality is evil**.

We do not want axioms such as associativity

$$(f * g) * h = f * (g * h)$$

we rather higher cells which are witnesses for associativity

$$lpha_{f,g,h}: (f * g) * h \stackrel{\sim}{\Rightarrow} f * (g * h)$$

Bicategories vs 2-categories

Did we really gain something by passing from 2-categories to bicategories?

Bicategories vs 2-categories

Did we really gain something by passing from **2**-categories to bicategories? No.

Did we really gain something by passing from **2**-categories to bicategories? No.

Theorem (Mac Lane's coherence theorem v2) Any bicategory is equivalent to a 2-category. Did we really gain something by passing from **2**-categories to bicategories? No.

Theorem (Mac Lane's coherence theorem v2) Any bicategory is equivalent to a 2-category.

But this will not generalize to higher dimensions:

Observation (Gordon, Power, Street'95) Not every tricategory is equivalent to a **3**-category.

Defining **tricategories** can be done starting from the definition of **3**-categories and

- 1. replacing all equalities between 0-, 1- and 2- cells by 1-, 2- and 3- cells,
- 2. making those coherent by adding the suitable axioms.

Defining **tricategories** can be done starting from the definition of **3**-categories and

- 1. replacing all equalities between O-, 1- and 2- cells by 1-, 2- and 3- cells,
- 2. making those coherent by adding the suitable axioms.

For instance, we replace associativity of composition between 1-cells

$$(f *_{\circ} g) *_{\circ} h = f *_{\circ} (g *_{\circ} h)$$

by an invertible **associator 2**-cell

$$\alpha_{f,g,h}:(f*_{\circ}g)*_{\circ}h\Rightarrow f*_{\circ}(g*_{\circ}h)$$

Defining **tricategories** can be done starting from the definition of **3**-categories and

- 1. replacing all equalities between O-, 1- and 2- cells by 1-, 2- and 3- cells,
- 2. making those coherent by adding the suitable axioms.

For instance, we replace associativity of composition between 1-cells

$$(f *_{\circ} g) *_{\circ} h = f *_{\circ} (g *_{\circ} h)$$

by an invertible **associator 2**-cell

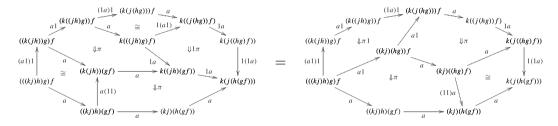
$$\alpha_{f,g,h}: (f *_{o} g) *_{o} h \Rightarrow f *_{o} (g *_{o} h)$$

but by "invertible", we mean here that $\alpha_{f,g,h}$ should be an equivalence:

$$\eta:\mathsf{Id} \Rrightarrow \alpha_{\!f,g,h} *_1 \overline{\alpha}_{\!f,g,h} \qquad \qquad \varepsilon: \overline{\alpha}_{\!f,g,h} *_1 \alpha_{\!f,g,h} \Rrightarrow \mathsf{Id}$$

and so on ...

The definition of tricategories takes roughly 4 pages with axioms such as



The process can be generalized to define weak *n*-categories.

The process can be generalized to define **weak** *n*-categories.

No one has ever tried to give a definition of a **pentacategory** in this way.

The process can be generalized to define **weak** *n*-categories.

No one has ever tried to give a definition of a **pentacategory** in this way.

Instead of explicitly trying to give the axioms of weak higher categories, one should try to find a systematic way of generating those.

The process can be generalized to define **weak** *n*-categories.

No one has ever tried to give a definition of a **pentacategory** in this way.

Instead of explicitly trying to give the axioms of weak higher categories, one should try to find a systematic way of generating those..

If we go all the way, we obtain weak ω -categories aka (∞, ∞)-categories.

In those, we never have axioms, only higher cells. This can be thought of as very constructive definition: we want to have witnesses for all the laws.

Weak higher categories are closely related to geometry.

Suppose that we have managed to define the notion of weak ω -category.

An *n*-cell $f : x \to y$ is **reversible** when it is weakly invertible, this means that there exists $\overline{f} : y \to y$ such that

$$f * \overline{f} = \operatorname{id}$$
 $\overline{f} * f = \operatorname{id}$

Suppose that we have managed to define the notion of weak ω -category.

An *n*-cell $f : x \to y$ is **reversible** when it is weakly invertible, this means that there exists $\overline{f} : y \to y$ and (n + 1)-cells

$$\eta: \boldsymbol{f} * \overline{\boldsymbol{f}}
ightarrow \operatorname{id} arepsilon : arepsilon + arepsilo + arepsilon + arepsil$$

which are isomorphisms.

Suppose that we have managed to define the notion of weak ω -category.

An *n*-cell $f : x \to y$ is **reversible** when it is weakly invertible, this means that there exists $\overline{f} : y \to y$ and (n + 1)-cells

$$\eta: f * \overline{f}
ightarrow \operatorname{id} \qquad \qquad \varepsilon: \overline{f} * f
ightarrow \operatorname{id}$$

which are reversible.

Suppose that we have managed to define the notion of weak ω -category.

An *n*-cell $f : x \to y$ is **reversible** when it is weakly invertible, this means that there exists $\overline{f} : y \to y$ and (n + 1)-cells

$$\eta: f * \overline{f}
ightarrow \operatorname{id} arepsilon: arepsilon: arepsilon : arepsilon * arepsilon
ightarrow \operatorname{id} arepsilon: arep$$

which are *reversible*.

NB: this is a <u>co</u>inductive definition!

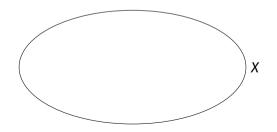
$\infty\text{-}\mathsf{groupoids}$

An ∞ -groupoid is a weak ω -category in which every cell is reversible.

$\infty\text{-}\mathsf{groupoids}$

An ∞ -groupoid is a weak ω -category in which every cell is reversible.

Any topological space X induces an ∞ -groupoid whose

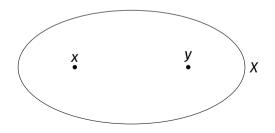


$\infty\text{-}groupoids$

An ∞ -groupoid is a weak ω -category in which every cell is reversible.

Any topological space X induces an ∞ -groupoid whose

• o-cells are the points of **X**

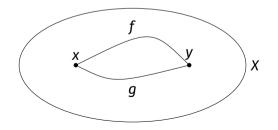


∞ -groupoids

An ∞ -groupoid is a weak ω -category in which every cell is reversible.

Any topological space X induces an ∞ -groupoid whose

- o-cells are the points of **X**
- 1-cells are the (continuous) paths

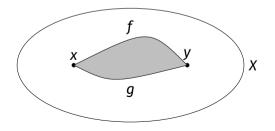


$\infty\text{-}\mathsf{groupoids}$

An ∞ -groupoid is a weak ω -category in which every cell is reversible.

Any topological space X induces an ∞ -groupoid whose

- o-cells are the points of **X**
- 1-cells are the (continuous) paths
- 2-cells are the homotopies (deformations) between paths

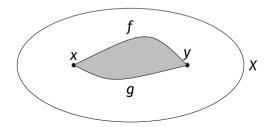


$\infty\text{-}\mathsf{groupoids}$

An ∞ -groupoid is a weak ω -category in which every cell is reversible.

Any topological space X induces an ∞ -groupoid whose

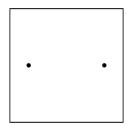
- o-cells are the points of **X**
- 1-cells are the (continuous) paths
- 2-cells are the homotopies (deformations) between paths
- etc.

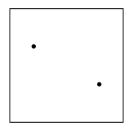


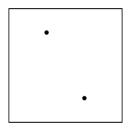
We have identities, compositions, inverses, etc...

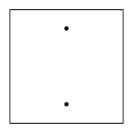
- In 1983, Alexander Grothendieck gave a definition of ∞ -groupoids and with the conjecture that those are "the same as" spaces.
- In 2007, Maltsiniotis proposed a modified definition for weak ω -categories.
- In 2017, Finster and I managed to encode this definition as a type system.

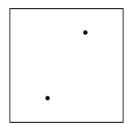
[there are many more works than this on the subject...]

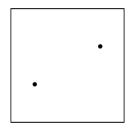


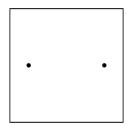


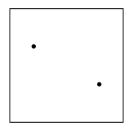


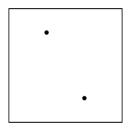


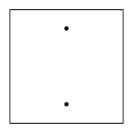


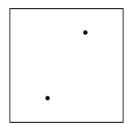


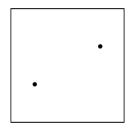


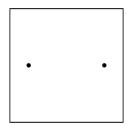


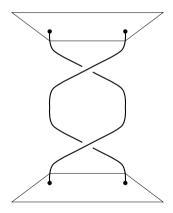


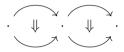


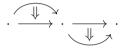


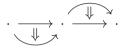


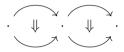


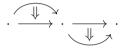


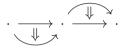


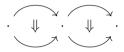












Why is this useful

• We have a simple definition

(no advanced categorical concepts, a few inference rules)

- We have a **syntax** (we can reason by induction, etc.)
- We have **tools** (we can have the machine check our terms)
- A step toward **directed homotopy type theory**? (we are still far from handling variance, univalence, etc.)

A TYPE-THEORETIC DEFINITION OF CATEGORIES

Dependent type theory

As a first example, we are going to give a type theory for 1-categories.

This theory will be defined from three things:

- **terms**, which will comprise variables (those will correspond to objects and morphisms of our category)
- types, which can depend on terms
- contexts, which are lists of pairs of variables and types

$$\Gamma \qquad = \qquad x_1:A_1,\ldots,x_n:A_n$$

Judgments in type-theory

- $\boldsymbol{\Gamma}$ is a well-formed context:

Г⊢

• A is a well-formed type in context Γ :

 $\Gamma \vdash A$

• **t** is a term of type **A** in context **Γ**:

 $\Gamma \vdash t : A$

• *t* and *u* are equal terms of type *A* in context Γ:

 $\Gamma \vdash t = u : A$

Cartmell, 1984:

• type constructors:

$$\frac{\Gamma \vdash}{\Gamma \vdash \star} \qquad \qquad \frac{\Gamma \vdash x : \star \quad \Gamma \vdash y : \star}{\Gamma \vdash x \to y}$$

Cartmell, 1984:

• type constructors:

$$\frac{\Gamma \vdash}{\Gamma \vdash \star} \qquad \qquad \frac{\Gamma \vdash x : \star \quad \Gamma \vdash y : \star}{\Gamma \vdash x \to y}$$

• term constructors:

$$x: \star \vdash \mathsf{id}(x): x \to x$$

 $x: \star, y: \star, f: x \rightarrow y, z: \star, g: y \rightarrow z \vdash \mathsf{comp}(f, g): x \rightarrow z$

Cartmell, 1984:

• type constructors:

$$\frac{\Gamma \vdash}{\Gamma \vdash \star} \qquad \qquad \frac{\Gamma \vdash x : \star \quad \Gamma \vdash y : \star}{\Gamma \vdash x \to y}$$

• term constructors:

$$x: \star \vdash \mathsf{id}(x): x \to x$$

 $x:\star,y:\star,f:x
ightarrow y,z:\star,g:y
ightarrow zdash \mathsf{comp}(f,g):x
ightarrow z$

• axioms:

$$\frac{\Gamma \vdash f : x \to y}{\Gamma \vdash \operatorname{comp}(\operatorname{id}(x), f) = f} \qquad \qquad \frac{\Gamma \vdash f : x \to y}{\Gamma \vdash \operatorname{comp}(f, \operatorname{id}(y)) = f}$$

. . .

Cartmell, 1984:

• type constructors:

$$\frac{\Gamma \vdash}{\Gamma \vdash \star} \qquad \qquad \frac{\Gamma \vdash x : \star \quad \Gamma \vdash y : \star}{\Gamma \vdash x \to y}$$

• term constructors:

$$x: \star \vdash \mathsf{id}(x): x \to x$$

 $x:\star,y:\star,f:x
ightarrow y,z:\star,g:y
ightarrow zdash \mathsf{comp}(f,g):x
ightarrow z$

• axioms:

Г

$$\frac{\Gamma \vdash f : x \to y}{\vdash \operatorname{comp}(\operatorname{id}(x), f) = f} \qquad \qquad \frac{\Gamma \vdash f : x \to y}{\Gamma \vdash \operatorname{comp}(f, \operatorname{id}(y)) = f}$$

• plus "standard rules" (contexts, weakening, substitutions, ...)

. . .

Models of the type theory

A model of the type theory consists in interpreting

- closed types as sets,
- closed terms as elements of their type,

in such a way that axioms are satisfied.

Models of the type theory

A model of the type theory consists in interpreting

- closed types as sets,
- closed terms as elements of their type,

in such a way that axioms are satisfied.

A model of the previous type theory consists of

- a set [[*]]
- for each $x, y \in \llbracket \star \rrbracket$, a set $\llbracket
 ightarrow \rrbracket_{x,y}$
- for each $x \in [\![\star]\!]$, an element $[\![id]\!]_x \in [\![
 ightarrow]_{x,x}$

Models of the type theory

A model of the type theory consists in interpreting

- closed types as sets,
- closed terms as elements of their type,

in such a way that axioms are satisfied.

A model of the previous type theory consists of

- a set [[*]]
- for each $x, y \in \llbracket \star \rrbracket$, a set $\llbracket
 ightarrow \rrbracket_{x,y}$
- for each $x \in [\![\star]\!]$, an element $[\![id]\!]_x \in [\![o]\!]_{x,x}$

• ...

In other words, a model of the type theory is precisely a **category** (and a morphism is a functor).

Going higher

We could gradually implement weak *n*-categories:

- bicategories
- tricategories
- tetracategories
- pentacategories
- ...

The problem is that

- the number of axioms is exploding
- nobody knows the definition excepting in low dimensions
- we would like to have a "uniform" definition

Since the composition is associative for categories, the composite of any diagram like

$$X_0 \xrightarrow{f_1} X_1 \xrightarrow{f_2} \dots \xrightarrow{f_n} X_r$$

is uniquely defined.

So, instead of having a binary composition and identities, we could have a more general rule

$$x_{o}: \star, x_{1}: \star, f_{1}: x_{o} \to x_{1}, \ldots, x_{n}: \star, f_{n}: x_{n-1} \to x_{n} \vdash \operatorname{comp}(f_{1}, \ldots, f_{n}): x_{o} \to x_{n}$$

We can axiomatize categories with *n*-ary composition.

• This is very redundant, for instance

comp(comp(f,g),h) = comp(f,g,h) = comp(f,comp(g,h))

or even

comp(f) = f

We can axiomatize categories with *n*-ary composition.

• This is very redundant, for instance

```
comp(comp(f,g),h) = comp(f,g,h) = comp(f,comp(g,h))
```

or even

$$\operatorname{comp}(f) = f$$

• We have to characterize what we want to compose exactly. For instance, should be able to compose

but not
$$x_0 \xrightarrow{f_1} x_1 \xrightarrow{f_2} \dots \xrightarrow{f_n} x_n$$

 $x \xrightarrow{f} y \quad z \quad \text{or} \quad x \xrightarrow{f} y \xleftarrow{g} z$

We can axiomatize categories with *n*-ary composition.

• This is very redundant, for instance

```
comp(comp(f,g),h) = comp(f,g,h) = comp(f,comp(g,h))
```

or even

$$\operatorname{comp}(f) = f$$

• We have to characterize what we want to compose exactly. For instance, should be able to compose

but not
$$x_0 \xrightarrow{f_1} x_1 \xrightarrow{f_2} \dots \xrightarrow{f_n} x_n$$

 $x \xrightarrow{f} y \qquad z \qquad \text{or} \qquad x \xrightarrow{f} y \xleftarrow{g} z$

• However, this generalizes nicely in higher dimensions!

A TYPE-THEORETIC DEFINITION OF GLOBULAR SETS

Graphs

Recall that we defined a graph to be a diagram

$$C_0 \stackrel{s}{\underset{t}{\overleftarrow{\leftarrow}}} C_1$$

in Set.

Graphs

Recall that we defined a graph to be a diagram

$$C_0 \stackrel{s}{\underset{t}{\longleftarrow}} C_1$$

in Set.

Alternatively, we can define a graph as

- a set **C**o,
- for every $x, y \in C_o$, a set C_y^x .

Graphs

Recall that we defined a graph to be a diagram

$$C_0 \stackrel{s}{\underset{t}{\longleftarrow}} C_1$$

in Set.

Alternatively, we can define a graph as

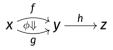
- a set **C**o,
- for every $x, y \in C_o$, a set C_y^x .

The *n*-graphs, aka **globular sets**, can be defined in the same way.

Definition A globular set consists of

- a set **G**, and
- for every $x, y \in G$, a globular set G_y^x .

Example



corresponds to

$$G = \{x, y, z\} \qquad G_y^x = \{f, g\} \qquad (G_y^x)_g^f = \{\phi\} \qquad ((G_y^x)_g^f)_\phi^\phi = \emptyset \qquad \dots$$

Definition A globular set consists of

- a set **G**, and
- for every $x, y \in G$, a globular set G_y^x .

Alternatively, this can be defined as

- a sequence of sets G_n of n-cells for $n \in \mathbb{N}$,
- with source and target maps

$$\mathbf{s}_n, \mathbf{t}_n: \mathbf{G}_{n+1} \to \mathbf{G}_n$$

satisfying suitable axioms.

Proposition Globular sets are precisely the models of the type theory

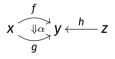
 $\frac{\Gamma \vdash}{\Gamma \vdash \star} \qquad \qquad \frac{\Gamma \vdash t : A \quad \Gamma \vdash u : A}{\Gamma \vdash t \xrightarrow{A} u}$

. . .

Proposition Globular sets are precisely the models of the type theory

 $\frac{\Gamma \vdash}{\Gamma \vdash \star} \qquad \frac{\Gamma \vdash t : A \quad \Gamma \vdash u : A}{\Gamma \vdash t \xrightarrow{}_{A} u}$

Remark A finite globular set



. . .

can be encoded as a context

$$x:\star,y:\star,z:\star,f:x\xrightarrow{\star} y,g:x\xrightarrow{\star} y,h:z\xrightarrow{\star} y,\alpha:f\underset{x\xrightarrow{\star} y}{\to} g$$

Proposition Globular sets are precisely the models of the type theory

 $\frac{\Gamma \vdash}{\Gamma \vdash \star} \qquad \qquad \frac{\Gamma \vdash t : A \quad \Gamma \vdash u : A}{\Gamma \vdash t \xrightarrow{} u}$

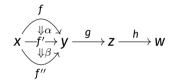
. . .

Proposition

The syntactic category (of contexts and substitutions) of this type theory is the opposite of the category of finite globular sets.

PASTING SCHEMES

We now want to define **pasting schemes** which are diagrams for which we expect to have a composition. For instance,

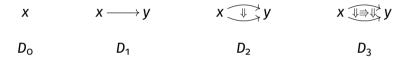


is a pasting scheme, but not

$$x \xrightarrow{f} y$$
 z or $x \xrightarrow{f} y \xleftarrow{g} z$

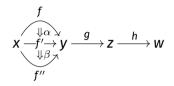
Disks

Given $n \in \mathbb{N}$, the *n*-disk D_n is the globular set corresponding to a general *n*-cell:

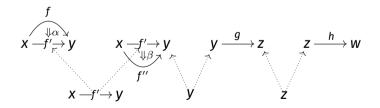


Those are basic building blocks of globular sets: any globular set can be obtained by gluing such disks.

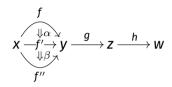
A pasting scheme is a globular set



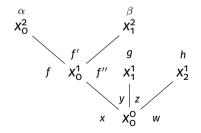
• Grothendieck: which can be obtained as a particular colimit of disks



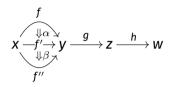
A pasting scheme is a globular set



• Batanin: which is described by a particular tree



A pasting scheme is a globular set

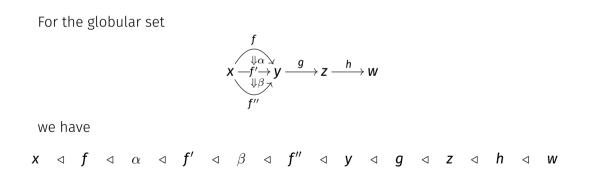


• Finster-Mimram: which is "totally ordered"

Order relation

We can define a preorder <> on the cells of a globular set by

source(x) $\triangleleft x$ and $x \triangleleft target(x)$



Characterization of pasting schemes

Theorem

A globular set is a *pasting scheme* if and only if it is

- non-empty,
- finite, and
- the relation \triangleleft is a total order.

A pointed globular set is a globular set with a distinguished cell.

A pointed globular set is a globular set with a distinguished cell.

Theorem

A pasting scheme is a pointed globular set which can be constructed as follows:

A pointed globular set is a globular set with a distinguished cell.

Theorem

A pasting scheme is a pointed globular set which can be constructed as follows:

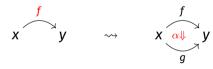
• we start from a **o**-cell **x**

A pointed globular set is a globular set with a distinguished cell.

Theorem

A pasting scheme is a pointed globular set which can be constructed as follows:

- we start from a o-cell x
- we can add a new (n+1)-cell and its new target, its source being the distinguished n-cell



A *pointed globular set* is a globular set with a distinguished cell.

Theorem

A *pasting scheme* is a pointed globular set which can be constructed as follows:

- we start from a o-cell x
- we can add a new (n+1)-cell and its new target, its source being the distinguished n-cell

• or the distinguished cell becomes the target of the previous one

The construction of the pasting scheme

Х

corresponds to its order

Х

The construction of the pasting scheme

corresponds to its order

 $x \triangleleft f$

The construction of the pasting scheme

$$\mathbf{X} \triangleleft \mathbf{f} \triangleleft \alpha$$

The construction of the pasting scheme

$$\mathbf{X} \triangleleft \mathbf{f} \triangleleft \alpha \triangleleft \mathbf{f}'$$

The construction of the pasting scheme

$$\mathbf{X} \triangleleft \mathbf{f} \triangleleft \alpha \triangleleft \mathbf{f}' \triangleleft \beta$$

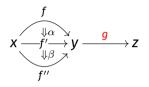
The construction of the pasting scheme

$$\mathbf{X} \triangleleft \mathbf{f} \triangleleft \alpha \triangleleft \mathbf{f}' \triangleleft \beta \triangleleft \mathbf{f}''$$

The construction of the pasting scheme

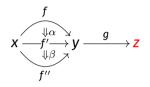
$$\mathbf{X} \triangleleft \mathbf{f} \triangleleft \alpha \triangleleft \mathbf{f}' \triangleleft \beta \triangleleft \mathbf{f}'' \triangleleft \mathbf{y}$$

The construction of the pasting scheme



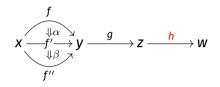
$$\mathbf{x} riangle \mathbf{f} riangle lpha riangle \mathbf{f}'' riangle \mathbf{g}$$

The construction of the pasting scheme



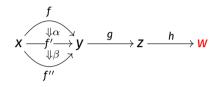
$$\mathbf{x} riangle \mathbf{f} riangle \mathbf{\alpha} riangle \mathbf{f}' riangle \mathbf{\beta} riangle \mathbf{f}'' riangle \mathbf{y} riangle \mathbf{g} riangle \mathbf{z}$$

The construction of the pasting scheme



$$\mathbf{x} \triangleleft \mathbf{f} \triangleleft \alpha \triangleleft \mathbf{f}' \triangleleft \beta \triangleleft \mathbf{f}'' \triangleleft \mathbf{y} \triangleleft \mathbf{g} \triangleleft \mathbf{z} \triangleleft \mathbf{h}$$

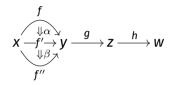
The construction of the pasting scheme



$$\mathbf{x} \triangleleft \mathbf{f} \triangleleft \alpha \triangleleft \mathbf{f}' \triangleleft \beta \triangleleft \mathbf{f}'' \triangleleft \mathbf{y} \triangleleft \mathbf{g} \triangleleft \mathbf{z} \triangleleft \mathbf{h} \triangleleft \mathbf{w}$$

Type-theoretic pasting schemes

Now, recall that a pasting scheme



can be seen as a context

$$\begin{aligned} \mathbf{x} &: \star, \mathbf{y} : \star, \mathbf{f} : \mathbf{x} \to \mathbf{y}, \mathbf{f}' : \mathbf{x} \to \mathbf{y}, \\ \alpha &: \mathbf{f} \to \mathbf{f}', \mathbf{f}'' : \mathbf{x} \to \mathbf{y}, \beta : \mathbf{f}' \to \mathbf{f}'', \\ \mathbf{z} &: \star, \mathbf{g} : \mathbf{y} \to \mathbf{z}, \mathbf{w} : \star, \mathbf{h} : \mathbf{z} \to \mathbf{w} \end{aligned}$$

Type-theoretic pasting schemes

A context Γ (seen as a globular set) is a **pasting scheme** iff

Γ ⊢_{ps}

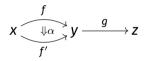
is derivable with the rules

 $\frac{\Gamma \vdash_{ps} x : \star}{\Gamma \vdash_{ps} x : \star} \qquad \frac{\Gamma \vdash_{ps} x : \star}{\Gamma \vdash_{ps}}$ $\frac{\Gamma \vdash_{ps} x : A}{\Gamma, y : A, f : x \underset{A}{\rightarrow} y \vdash_{ps} f : x \underset{A}{\rightarrow} y} \qquad \frac{\Gamma \vdash_{ps} f : x \underset{A}{\rightarrow} y}{\Gamma \vdash_{ps} y : A}$

Type-theoretic pasting schemes

Note that with those rules

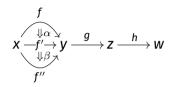
• the order of cells matters:

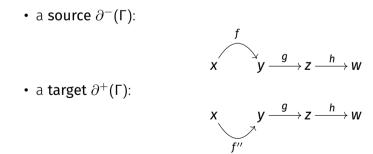


- because of this we can easily check
- proofs are canonical

Source and targets

A pasting scheme Γ has





both of which can be defined by induction on contexts.

A TYPE-THEORETIC DEFINITION OF ω -CATEGORIES

We expect that in an ω -category every pasting scheme has a composite:

 $\frac{\Gamma \vdash_{ps} \quad \Gamma \vdash A}{\Gamma \vdash \mathsf{coh}_{\Gamma,A} : A}$

We expect that in an ω -category every pasting scheme has a composite:

 $\frac{\Gamma \vdash_{ps} \quad \Gamma \vdash A}{\Gamma \vdash coh_{\Gamma,A} : A}$

You can derive expected operations, such as composition:

$$x:\star,y:\star,f:x \xrightarrow{\star} y,z:\star,g:y \xrightarrow{\star} z \vdash \operatorname{coh}:x \xrightarrow{\star} z$$

We expect that in an ω -category every pasting scheme has a composite:

 $\frac{\Gamma \vdash_{ps} \quad \Gamma \vdash A}{\Gamma \vdash coh_{\Gamma,A} : A}$

You can derive expected operations, such as composition:

$$x:\star,y:\star,f:x \xrightarrow{\star} y,z:\star,g:y \xrightarrow{\star} z \vdash \mathsf{coh}:x \xrightarrow{\star} z$$

However, you can derive too much:

$$x:\star,y:\star,f:x\xrightarrow{\star}y\vdash\mathsf{coh}:y\xrightarrow{\star}x$$

We have in fact a definition of ω -groupoids

We need to take care of side-conditions and in fact split the rule in two:

• operations:

$$\frac{\Gamma \vdash_{\mathsf{ps}} \quad \Gamma \vdash t \xrightarrow{\rightarrow} u \quad \partial^{-}(\Gamma) \vdash t : A \quad \partial^{+}(\Gamma) \vdash u : A}{\Gamma \vdash \mathsf{coh}_{\Gamma, t \xrightarrow{\rightarrow} u} : t \xrightarrow{\rightarrow} u}$$

whenever

$$FV(t) = FV(\partial^{-}(\Gamma))$$
 and $FV(u) = FV(\partial^{+}(\Gamma))$

• coherences:

$$\frac{\Gamma \vdash_{ps} \quad \Gamma \vdash A}{\Gamma \vdash \mathsf{coh}_{\Gamma,A} : A}$$

whenever

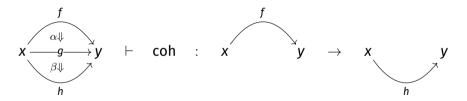
$$FV(A) = FV(\Gamma)$$

Definition An ω -category is a model of this type theory.

Definition An ω -category is a model of this type theory.

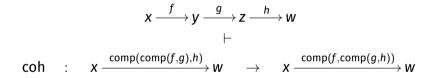
Conjecture This definition coincides with Grothendieck-Maltsiniotis'.

A typical example of **operation** is composition



(this coherence is noted "comp" in the following).

A typical example of **coherence** is associativity



Coherences are reversible

Note that if we derive a coherence

$$\frac{\Gamma \vdash_{ps} \quad \Gamma \vdash A}{\Gamma \vdash \operatorname{coh}_{\Gamma,A} : A} \qquad \text{with} \qquad FV(A) = FV(\Gamma)$$

where

$$\mathsf{A} = \mathsf{t} o \mathsf{u}$$
 ,

there is also one with

$$A = u \rightarrow t$$
.

Coherences are reversible

Note that if we derive a coherence

$$\frac{\Gamma \vdash_{ps} \quad \Gamma \vdash A}{\Gamma \vdash coh_{\Gamma,A} : A} \qquad \text{with} \qquad FV(A) = FV(\Gamma)$$

where

$$\mathsf{A} = \mathsf{t} o \mathsf{u}$$
 ,

there is also one with

$$A = u \rightarrow t$$
.

Definition An *n*-cell $f : x \rightarrow y$ is **reversible** when there exists

- an *n*-cell $g: y \rightarrow x$ and
- reversible (*n*+1)-cells

Implementation(s)

There are currently three implementations:

- https://github.com/ericfinster/catt
 - follows closely the rules of the article
- https://github.com/smimram/catt
 - has support for implicit arguments and various small extensions
 - has a web interface
- https://github.com/ThiBen/catt
 - best of both worlds
 - many more extensions

In practice,

- you simply enter a list of coherences (there is no reduction, etc.),
- if the program does not complain then they are valid operations in weak ω -categories.

• identity 1-cells

coh id (x : *) : * | x -> x ;

• identity 1-cells

coh id (x : *) : * | x -> x ;

• composition of 1-cells:

coh comp (x : *) (y : *) (f : * | x -> y) (z : *) (g : * | y -> z) : * | x -> z ;

• identity 1-cells

coh id (x : *) : * | x -> x ;

• composition of 1-cells:

coh comp (x : *) (y : *) (f : * | x -> y) (z : *) (g : * | y -> z) : * | x -> z ;

• associativity of composition of **1**-cells:

coh assoc

• identity 1-cells

coh id (x : *) : * | x -> x ;

• composition of 1-cells:

coh comp (x : *) (y : *) (f : * | x -> y) (z : *) (g : * | y -> z) : * | x -> z ;

• associativity of composition of **1**-cells:

coh assoc

• . . .

Only defining the Eckmann-Hilton morphism takes 300 lines

because you have to

- define usual operations and coherences,
- explicitly insert and remove identities,
- take care of bracketing of composites

let eh (X : Hom) (x : X) (a : id $x \rightarrow id x$) (b : id $x \rightarrow id x$) : $(comp' a b \rightarrow comp' b a) =$ comp11 (comp' (unitl'- a) (unitr'- b)) (assoc3 ____) (compl2r' _ (unitlr x) _) (compl2' _ (comp3 (assoc- _ _) (comp' (compl'_(assoc-___)) (complr'_(ich b a)_) (complr' _ (compr' (comp (unitr- _) (compl' _ (unitr+-- _))) _) _) (comp (complr' _ (assoc3 _ _ _) _) (compl' _ (assoc4 _ _ _ _))) (comp' (unitlr- x) (compl' _ (compl' _ (comp' (unitrl- x) (compl' _ (unitrl- x)) (assoc3-) (comp' (unitr' b) (unitl' a))

• no inverses:

```
coh inv (x : *) (y : *) (f : * | x -> y)
: * | y -> x ;
```

produces

Checking coherence: inv Valid tree context Src/Tgt check forced Source context: (x : *) Target context: (y : *) Failure: Source is not algebraic for y : *

CONCLUSION

Current work

Many things remain to be done:

- understand more exotic features (implicit arguments, reduction, etc.)
- some work has been started by Finster and Vicary to make associativity and unitality implicit

thanks to this they have been able to construct the syllepsis 5-cell

• we should study the relationship with homotopy type theory