
REAL WORLD
ANALYSIS OF
CONCURRENT
PROGRAMS

Samuel Mimram
École Polytechique

1 / 92



Many possible approaches:
I dynamic detection / post mortem techniques
I testing
I static analysis

I abstract interpretation
I model checking
I typing

I will present some approaches:
I obtained by randomly browsing the internet
I does not follow historical order
I does not follow impact order
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LOCKSET
ANALYSIS
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Race conditions

We want to detect race conditions: unprotected concurrent
access to memory (one of which is a write).
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Eraser
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Locksets: Eraser

Lockset analysis is based on the idea that every accessed shared
variable should have a lock associated to it. It was introduced in
I Eraser: A dynamic data race detector for multithreaded

programs, Savage & Burrows & Nelson & Sobalvarro, ACM
Transactions on Computer Systems, 1997 (1443¢).

They use a dynamic analysis:

Let locks_held(t) be the set of locks held by thread t.
For each v , initialize C (v) to the set of all locks.
On each access to v by thread t,
set C (v) := C (v) ∩ locks_held(t);
if C (v) = { }, then issue a warning.
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Locksets: Eraser
This has to be improved a bit, but the idea is here:
I Initialization: shared variables are frequently initialized

without holding a lock.
I Read-Shared Data: Some shared variables are written during

initialization only and are read-only thereafter. These can be
safely accessed without locks.

I Read-Write Locks: Read-write locks allow multiple readers to
access a shared variable, but allow only a single writer to do
so.

7 / 92



Locksets: Eraser

They can run on unmodified binaries and found bugs in
I the SPIN operating system
I the HTTP server and indexing engine of AltaVista
I students homework
I etc.

We see that, of course, this can be turned into a static analysis.
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Let’s study locking mechanisms in the Linux kernel...
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Mutexes
The linux kernel provides mutexes:

struct mutex {
atomic_t count;
spinlock_t wait_lock;
struct list_head wait_list;

};

where
I count is the state:

I 1: available
I 0: locked
I -1: locked with other processes waiting

I wait_list is the list of waiting processes
I wait_lock protects wait_list

They are not reentrant.
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Mutexes

I create a mutex
void mutex_init(struct mutex *lock);

I sleep until a mutex is available and lock it
void mutex_lock(struct mutex *lock);
int mutex_lock_interruptible(struct mutex *lock);
int mutex_trylock(struct mutex *lock);

I unlock a mutex
void mutex_unlock(struct mutex *lock);

I check the state of a mutex
int mutex_is_locked(struct mutex *lock);
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Sleeping

When we sleep, the current thread gets paused and other can
run.

There are other function which are sleepy:
I mutexes: mutex_lock
I waiting for I/O: wait_event / poll_wait / etc.
I memory allocation: kmalloc(..., GFP_KERNEL)
I interaction with userspace: get_user / put_user
I explicit scheduling: schedule
I etc.
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Spinlocks

When we lock a locked mutex, the scheduler might schedule
another thread instead, which is costly (context switch). For
small and quick portions of code (e.g. modifying one variable),
another primitive called spinlocks is available.

It is faster, but restricted to atomic code:
I locking disables preemption,
I optionally disables interrupts,
I the guarded section is supposed to never sleep.

Those are not reentrant.

Note: other pieces of code make such assumptions such as
interrupt handlers.
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Spinlocks
note: mirlin[1083] exited with preempt_count 1
BUG: scheduling while atomic: mirlin/1083/0x40000002
Modules linked in: g_cdc_ms musb_hdrc nop_usb_xceiv irqk edmak dm365mmap cmemk
Backtrace:
[<c002a5a0>] (dump_backtrace+0x0/0x110) from [<c028e56c>] (dump_stack+0x18/0x1c)
r6:c1099460 r5:c04ea000 r4:00000000 r3:20000013

[<c028e554>] (dump_stack+0x0/0x1c) from [<c00337b8>] (__schedule_bug+0x58/0x64)
[<c0033760>] (__schedule_bug+0x0/0x64) from [<c028e864>] (schedule+0x84/0x378)
r4:c10992c0 r3:00000000

[<c028e7e0>] (schedule+0x0/0x378) from [<c0033a80>] (__cond_resched+0x28/0x38)
[<c0033a58>] (__cond_resched+0x0/0x38) from [<c028ec6c>] (_cond_resched+0x34/0x44)
r4:00013000 r3:00000001

[<c028ec38>] (_cond_resched+0x0/0x44) from [<c0082f64>] (unmap_vmas+0x570/0x620)
[<c00829f4>] (unmap_vmas+0x0/0x620) from [<c0085c10>] (exit_mmap+0xc0/0x1ec)
[<c0085b50>] (exit_mmap+0x0/0x1ec) from [<c0037610>] (mmput+0x40/0xfc)
r9:00000001 r8:80000005 r6:c04ea000 r5:00000000 r4:c0427300

[<c00375d0>] (mmput+0x0/0xfc) from [<c003b5e4>] (exit_mm+0x150/0x158)
r5:c10992c0 r4:c0427300

[<c003b494>] (exit_mm+0x0/0x158) from [<c003cd44>] (do_exit+0x198/0x67c)
r7:c03120d1 r6:c10992c0 r5:0000000b r4:c10992c0

...
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Spinlocks

I initialization
void spin_lock_init(spinlock_t *lock);

I locking
void spin_lock(spinlock_t *lock);

I releasing
void spin_unlock(spinlock_t *lock);
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Spinlocks implementation

locked: ; The lock variable.
dd 0

spin_lock:
mov eax, 1 ; Set the EAX register to 1.

xchg eax, [locked] ; Atomically swap the EAX register with the lock variable.
; This will always store 1 to the lock, leaving the previous
; value in the EAX register.

test eax, eax ; Test EAX with itself. Among other things, this will
; set the processor’s Zero Flag if EAX is 0.
; If EAX is 0, then the lock was unlocked and we just locked it.
; Otherwise, EAX is 1 and we didn’t acquire the lock.

jnz spin_lock ; Jump back to the MOV instruction if the Zero Flag is
; not set; the lock was previously locked, and so
; we need to spin until it becomes unlocked.

ret ; The lock has been acquired, return to the calling function.

spin_unlock:
mov eax, 0 ; Set the EAX register to 0.

xchg eax, [locked] ; Atomically swap the EAX register with the lock variable.

ret ; The lock has been released.
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Detecting scheduling while atomic

Let’s find some bugs in the kernel!

I Static deadlock detection in the Linux kernel,
Breuer & MG Valls, International Conference on Reliable
Software, 2004 (25¢).

I Detecting deadlock, double-free and other abuses in a million
lines of linux kernel source,
Breuer & Pickin & Petrie, 30th Annual IEEE/NASA
Software Engineering Workshop, 2006 (13¢).
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Detecting scheduling while atomic

A function may sleep if
I it calls a sleepy function (wait_event, etc.)
I it calls a function which may sleep

This is easy to infer by “abstract interpretation”
(= simple propagation)!

18 / 92



Detecting scheduling while atomic

A portion of code is spinlocked if it is of the form

spin_lock(...);
... // no spinlock-related function
spin_unlock(...);
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Detecting scheduling while atomic
A crude approximation can be obtained by computing an
over-estimation of the number of locked variables:

N(c) : N → N

defined by
I N(a; b)(n) = N(b)(N(a)(n))

I N(spin_lock(...))(n) = n + 1
I N(spin_unlock(...))(n) = n − 1
I N(f(...))(n) = n
I N(ifa then b else c)(n) = max(N(b)(n),N(c)(n))

I N(while a b)(n) = max(n,N(b)(n)×∞)

This is really too crude, one can do better if we suppose that
loops are conservative, and take breaks and returns in account,
but you get the idea.
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Detecting scheduling while atomic

If we combine the two we can detect potential scheduling in
spinlocked regions.
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Double locks

It can be adapated in order to detect “double locks”:

spin_lock(x);
...
spin_lock(x);

Instead of counting the number of locks, we can remember about
which lock has been taken: locksets.

This is difficult, so we should remember about some information
about the locks:
I global locks,
I for non-global locks, we abstract those by the type of the

structure the lock belongs to.
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Bugs that you can find

In snd_sb_csp_load() in sb16_csp.c:

...
spin_lock_irqsave(&p->chip->reg_lock, flags);
...
unsigned char *kbuf, *_kbuf;
_kbuf = kbuf = kmalloc (size, GFP_KERNEL);
...

(fixed in 2.6.11)
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Bugs that you can find

In midi_outc() of sound/oss/sequencer.c:

spin_lock_irqsave(&lock,flags);
while (n && !midi_devs[dev]->outputc(dev, data)) {

interruptible_sleep_on_timeout(&seq_sleeper, ...);
n--;

}
spin_unlock_irqrestore(&lock, flags);
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RacerX
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More on locksets: RacerX
A similar analysis is performed in
I RacerX: effective, static detection of race conditions and

deadlocks, Engler & Ashcraft, ACM SIGOPS Operating
Systems Review, 2003 (674¢).

In RacerX they
I compute locksets (locks are abstracted by their type)

they compute all possible locksets as output of a function
I cache results for each function

(lockset before → locksets after)
I they compute possible ordering of locks

i.e. whether b can be locked while a is
along with a small trace (to display error paths)

I and find cycles in dependencies
I they have a ranking of errors
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Boum
ERROR: 2 thread global-global deadlock.

<rtc_lock>-><rtc_task_lock> occurred 1 time
<rtc_task_lock>-><rtc_lock> occurred 1 time

<rtc_lock>-><rtc_task_lock> =
depth = 1:

linux-2.5.62/drivers/char/rtc.c:rtc_register:723
->rtc_register:728

int rtc_register(rtc_task_t *task) {
if (task == NULL || task->func == NULL)

return -EINVAL;
spin_lock_irq(&rtc_lock);
if (rtc_status & RTC_IS_OPEN) {

spin_unlock_irq(&rtc_lock);
return -EBUSY;

}
spin_lock(&rtc_task_lock);
if (rtc_callback) {

spin_unlock(&rtc_task_lock);
spin_unlock_irq(&rtc_lock);
return -EBUSY;

<rtc_task_lock>-><rtc_lock> =
depth = 1:

linux-2.5.62/drivers/char/rtc.c:rtc_unregister:749
->rtc.c:rtc_unregister:755

int rtc_unregister(rtc_task_t *task) {
spin_lock_irq(&rtc_task_lock);
if (rtc_callback != task) {

spin_unlock_irq(&rtc_task_lock);
return -ENXIO;

}
rtc_callback = NULL;
spin_lock(&rtc_lock); 27 / 92



Signaling mutexes

Semaphores can have two uses:
I mutual exclusion
I wait for signals

In the second case, we generally have
I a producer

up(s); // signal ready
I a consumer

lock(l);
down(s); // wait for result
unlock(l);
...
lock(l);

It looks like there is a possible deadlock between two consumers.
We can use belief analysis to distinguish between the two cases.
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Sleeping under spinlocks

We can also detect the “sleeping under spinlock” error:

//linux-2.5.62/net/atm/common.c:556:atm_ioctl:ERROR:BLOCK
// calling blocking function <put_user> w/ lock held!
spin_lock (&atm_dev_lock);
vcc = ATM_SD(sock);
switch (cmd) {
case SIOCOUTQ:

...
ret_val = put_user(...); // ERROR: can block.

29 / 92



It is interesting to notice that rarely executed code suffer from
such problems...
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Leap second bugs
The length of a day isn’t exactly 24h so we have to insert seconds
at the end of the day from time to time:
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Leap second bugs
From ntp_leap_second of kernel/time/ntp.c:

write_seqlock(&xtime_lock);
switch (time_state) {
case TIME_INS:
timekeeping_leap_insert(-1);
time_state = TIME_OOP;
clock_was_set();
printk(KERN_NOTICE "Clock: inserting leap second 23:59:60 UTC\n");
break;

case TIME_DEL:
timekeeping_leap_insert(1);
time_state = TIME_WAIT;
clock_was_set();
printk(KERN_NOTICE "Clock: deleting leap second 23:59:59 UTC\n");
break;

// (more cases omitted ...)
}
write_sequnlock(&xtime_lock);
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Leap second bugs

There where (at least) four bugs1 related to the xtime_lock
spinlock:

1. clock_was_set calls smp_call_function (to retrigger
CPU local events), which can sleep
⇒ remove clock_was_set()

2. printk needs to schedule logging, which can check the timer
under heavy load, and thus lock xtime_lock again

3. ntp_lock was split from xtime_lock, with a deadlock2

4. actually removing clock_was_set() was not a good idea
because it made sub-second high-resolution timers to
immediately return, which causes userspace applications that
use them in loops to instead run in tight loops eating up CPU

5. ...

1
http://winningraceconditions.blogspot.fr/2012/07/linuxs-leap-second-deadlocks.html

2
https://git.kernel.org/cgit/linux/kernel/git/torvalds/linux.git/commit/?id=

6b43ae8a619d17c4935c3320d2ef9e92bdeed05d
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Note that previous analysis are not safe because they compute
over-approximations of locksets:

lock((struct*)->mutex);
...
unlock((struct*)->mutex);

We should keep track of mutexes that must be held instead.
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Locksmith

35 / 92



Detecting race conditions: Locksmith

An interesting safe functional programming language approach:
I Locksmith: context-sensitive correlation analysis for race

detection, Pratikakis & Foster & Hicks, ACM SIGPLAN
Notices, 2006 (219¢).

Basic idea of correlation analysis: ensure that for every shared
memory location there is a lock protecting it.
I they use a polymorphic λ-calculus for this (with C backend)
I Locksmith is implemented in OCaml
I open-source3

3http://www.cs.umd.edu/projects/PL/locksmith/
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Correlation between locks and memory locations
Typical example:

pthread_mutex_t L1 = ..., L2 = ...;
int x, y, z;

void munge(pthread_mutex_t *l, int *p) {
pthread_mutex_lock(l);
*p = 3;
pthread_mutex_unlock(l);

}
...
munge(&L1, &x);
munge(&L2, &y);
munge(&L2, &z);

The correlation is

x . L1 y . L2 z . L2
37 / 92



Typing system

They have a typing system (with subtyping) with rules of the form

C ; Γ ` e : τ ; ε

where
I C is a set of constraints
I Γ is a list of type assumptions
I e is an expression
I τ a type
I ε an effect

An algorithm propagates the constraints (which takes care of
aliasing) and ensure that they are satisfiable.
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Finding bugs
They run on medium-sized C programs, e.g. the Aget ftp client:

Possible data race on
&bwritten(aget_comb.c:943)

References:
dereference at aget_comb.c:1079
locks acquired at dereference:
&bwritten_mutex(aget_comb.c:996)

in: FORK at aget_comb.c:468 ->
http_get aget_comb.c:468

dereference at aget_comb.c:984
locks acquired at dereference:
(none)

in: FORK at aget_comb.c:193 ->
signal_waiter(aget_comb.c:193) ->
sigalrm_handler(aget_comb.c:957)

39 / 92



Goblint
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Goblint
Another example of safe tool is Goblint:
I Goblint: Path-sensitive data race analysis, Vojdani & Vene,

Annales Univ. Sci. Budapest., 2009 (24¢).
it is
I programmed in OCaml
I open-source456

I Eclipse compatible

4http://goblint.in.tum.de/
5https://github.com/goblint/analyzer
6https://github.com/goblint/bench
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Typical example

int global;

void race() { global++; }
void nice() { printf("mu"); }
void (*f)() = nice;

void *tfun(void *arg) {
f();
return NULL;

}

int main() {
pthread_create(tfun);
f = race;
global++;
return 0;

}
42 / 92



Idea

I We analyze each thread in separation, identifying the effect
it has on the rest of the program (through modification of
variables).

I When updating variables, trigger re-evaluation of impacted
portions of code.

In our example,
I tfun is claimed to be safe at the first analysis, but we note it

depends on f
I when the main updates f we re-analyze tfun and join the

result of this analysis with the previous one
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In practice

I They have some (simple) abstract interpretation (e.g.
cofinite sets of N).

I They use a general-purpose constraint solver in order to
compute the fixpoint.
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TODO

TODO:
I Fast and Accurate Static Data-Race Detection for

Concurrent Programs, Kahlon & Yang & Sankaranarayanan
& Gupta, CAV, 2007 (77¢).

I Conditional Must Not Aliasing for Static Race Detection,
Naik & Aiken, POPL, 2007 (186¢).
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SYSTEMATIC
EXPLORATION
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Race freedom is not enough
Consider the bank program:

int balance;

synchronized void deposit(int n) { balance += n; }

synchronized int read() { return balance; }

void withdraw(int n) {
int r = read();
synchronized(this) { balance -= n; }

}

Consider the possible executions of

deposit(10) ‖ withdraw(10)

Note that it is race-free!
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A bug in java.lang.StringBuffer (jdk 1.4)
The methods of StringBuffer are synchronized but7...

public final class StringBuffer {
private int count;
private char[] value;

public synchronized StringBuffer append (StringBuffer sb) {
int len = sb.length();
int newcount = count + len;
if (newcount > value.length) expandCapacity(newcount);
sb.getChars(0, len, value, count); // bad len!!??
count = newcount;
return this;

}
public synchronized int length() { return count; }
public synchronized void getChars(...) { ... }

}
7http://bugs.java.com/bugdatabase/view_bug.do?bug_id=4810210
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Exploring all the schedules

The basic idea is to explore all the schedules (or a representative
set of schedules) in order to ensure that things cannot go wrong.

We have to find a way to limit the number of interleavings.

Also, we have to assume deterministic inputs, a reproducible set
of tests, etc.
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Finding bugs by exploration

A possible approach to find bugs is to explore schedulings. In
I SKI: Exposing Kernel Concurrency Bugs through Systematic

Schedule Exploration, Fonseca & Rodrigues & Brandenburg,
11th USENIX Symposium on Operating Systems Design and
Implementation, 2014 (10¢).

This tool
I is a VM to run various schedulings of a (unmodified) kernel
I detects liveness of threads and randomizes schedulings
I monitors kernel’s error messages
I monitors fs corruption (through fsck)
I detects racing memory accesses: pauses a threads at a read

and see whether other read at the same location
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Finding bugs by exploration

Bug Kernel FS Function Detector / Failure E FS Status
1 3.11.1 Btrfs btrfs find all root() Crash: Null-pointer 41 0.030 Fixed
2 3.11.1 Btrfs run clustered refs() Crash: Null-pointer + Warning 26 0.020 Fixed
3 3.11.1 Btrfs record one backref() Warning 74 0.030 Fixed
4 3.11.1 Btrfs NA Fsck: Refs. not found 11 0.200 Reported
5 3.12.2+p Btrfs btrfs find all root() Crash: Null pointer 61 0.060 Fixed
6 3.12.2 Btrfs inode tree add() Warning 53 0.010 Fixed
7 3.13.5 Logfs indirect write alias() Crash: Null pointer 31 0.065 Reported
8 3.13.5 Logfs btree write alias() Crash: Invalid paging 142 0.020 Reported
9 3.13.5 Jfs lbmIODone() Crash: Assertion 74 0.005 Reported
10 3.13.5 Ext4 ext4 do update inode() Data race 32 0.005 Fixed
11 3.13.5 VFS generic fillattr() Data race 125 0.005 Reported

where
I E: number of schedules to expose the bug
I FS: fraction of schedules exposing the bug
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CHESS

The purpose of CHESS is to explore a representative number of
scheduling (but not in the safe sense)
I Iterative Context Bounding for Systematic Testing of

Multithreaded Programs, Musuvathi & Qadeer, PLDI, 2007
(370¢).

I Finding and Reproducing Heisenbugs in Concurrent
Programs, Musuvathi & Qadeer & Ball & Basler & Nainar
Arumuga & Neamtiu, OSDI, 2008 (443¢).

It is apparently extensively used at Microsoft.
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Preemptive context switches

There are two kind of context (=thread) switches:
I non-preemptive: at a point where the thread yields explicitly

(a yield, locking a locked mutex, waiting for an input, etc.)
I preemptive: at any time (kernel is the king)

Idea of iterative context-bounding: explore all the traces by
increasing number of preemptive context-switches (which are
placed at accesses to variables).

Observation: bugs usually manifest with few (less than 3)
preemptions.

55 / 92



Preemptive context switches

There are two kind of context (=thread) switches:
I non-preemptive: at a point where the thread yields explicitly

(a yield, locking a locked mutex, waiting for an input, etc.)
I preemptive: at any time (kernel is the king)

Idea of iterative context-bounding: explore all the traces by
increasing number of preemptive context-switches (which are
placed at accesses to variables).

Observation: bugs usually manifest with few (less than 3)
preemptions.

55 / 92



Results
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Variants

There are variants such as delay bounding: we take a
deterministic scheduler and count the number of time we can
switch to next available thread. Both are compared in
I Concurrency Testing Using Schedule Bounding: an Empirical

Study, Thomson & Donaldson & Betts, PPoPP, 2014 (29¢).

who used some benchmarks which are available on the web

http://sites.google.com/site/sctbenchmarks
https://github.com/sctbenchmarks/sctbenchmarks
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Results
Bugs found:

I IPB: preemption bounding
I IDB: delay bounding
I DFS: depth-first search
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Remark

Some other interesting benchmarks can be found here

https://github.com/sosy-lab/sv-benchmarks

(from the SV-COMP competition on software verification)
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RaceFuzzer
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RaceFuzzer

Another idea is to orient the scheduler in order to favor bugs:
I Race Directed Random Testing of Concurrent Programs,

Sen, PLDI, 2008 (270¢).

what they call race-directed random testing.
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Algorithm

I find pairs of read / write which could potentially occur
together (a rough approximation is enough, you can use
happens-before relation in order to remove those which can
trivially never occur at the same time)

I for each of those pairs, randomly schedule until one of the
two occurs:
I if one occurs, block the tread and hope that the other tread
will perform the other action.
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Example

I x/x: there is no race on x
I z/z: there is a race on z
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Results
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PARTIAL
ORDER

REDUCTION
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Happens-before
An important point tool is happens-before relation defined in
I Time, clocks, and the ordering of events in a distributed

system, Lamport, Communications of the ACM, 1978
(9914¢).

Key property: a ≤ b implies T (a) ≤ T (b) 66 / 92



Race freedom

In order to check that a program is race-free, we can check that
any two write and reads at same location are ordered, for any
happens before relation (sequentializing blocking sections, or
send/receives).
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DPOR
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Partial order reduction

I Partial-order methods for the verification of concurrent
systems: an approach to the state-explosion problem,
Godefroid, Springer, 1996 (1098¢).

I Dynamic Partial-Order Reduction for Model Checking
Software, Flanagan & Godefroid, POPL, 2005 (506¢).
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An example
With n threads tid inserting message w in hash table:

while (true) {
w := getmsg();
h := hash(w);
while (cas(table[h],0,w) == false) {h := (h+1) % size;}

}

int getmsg() {
if (m < max ) {return (++m) * 11 + tid;}
else {exit();}

}

int hash(int w) {
return (w * 7) % size;

}

Alias analysis is impossible because is depends on messages.
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Notations

Given a trace S (a sequence of transitions)
I Si : i-th transition
I dom(S): number of transitions in S
I pre(S , i): source state of Si

I last(S): target state of S

It induces a happens-before relation →S which is the smallest
partial order relation such that, for i ≤ j , Si and Sj are dependent
(do not commute) implies i →S j .

We also write i →S p when there exists j with i →S j and
proc(Sj) = p.
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The algorithm
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A simple example
Consider two processes

(x = 1; x = 2) ‖ (y = 1; x = 3)

I first exploration:

x = 1; x = 2; y = 1; x = 3

I before executing x = 3, we see that it depends with x = 2,
we thus backtrack:

x = 1; x = 3; x = 2; y = 1

I again x = 3 depends with x = 1 and we backtrack:

y = 1; x = 3; x = 1; x = 2
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An example: a file system

i := tid % NUMINODE;
acquire(locki[i]);
if (inode[i] == 0) {
b := (i*2) % NUMBLOCKS;
while (true) {
acquire(lockb[b]);
if (!busy[b]) {

busy[b] := true;
inode[i] := b+1;
release(lockb[b]);
break;

}
release(lockb[b]);
b := (b+1)%NUMBLOCKS;

}
}
release(locki[i]);
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An example: a file system
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ReEx
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Maximal causality: ReEx

It is noticed in
I Systematic Concurrency Testing with Maximal Causality,

Luo & Huang & Rosu, 2015.

that DPOR is sometimes “too local”.
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An example

For Error to happen:
I L2: L9 must be executed before L14
I L1: L2 must be executed between L7 and L8

With CHESS, we need 58478 schedules to hit it...
78 / 92



The algorithm

1. record the trace from one execution, recalling information to
construct the “maximal causal model”

2. generate causally different schedules: a read event reads new
data

3. execute the generated schedules
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The maximal causal schedule

To any trace τ (with fork/join) one can associate the maximal
set of causally consistent traces σ, with same events, which can
be encoded by a first-order formula:
I must happen-before: the events in a given thread of σ should

be in the same order as in τ
I locking constraints: two sequences of instructions protected

by the same lock cannot be interleaved
I read-write constraints: any read event in σ should read the

same value as in τ (read-write dependency)
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Schedule generation

I once a trace has been explored, it is not necessary to explore
another trace in the same maximally consistent set

I we thus explore a different trace, i.e. one in which a read
gets a different value

I they thus change a read-write pair and check whether it is
feasible (using the Z3 constraint solver)

I they prune before in order to exclude “obviously” unfeasible
schedules
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Remarks

I This is claimed to be better than DPOR because in

(x = 1; x = 2) ‖ (y = 1; x = 3)

only one trace has to be explored (since nobody reads...)
NB: but, one does usually write for nothing...

I This is claimed to be safe
I There is no sharing between schedulings
I Reminds me of Uli’s partial orders
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Lipton
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Lipton reduction

Another kind of reduction was proposed in
I Reduction: A Method of Proving Properties of Parallel

Programs, Lipton, Communications of the ACM, 1975
(404¢).

whose main idea is that some sequences of instructions can
sometimes be merged into one.
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Back to the bank

Going back to the bank / StringBuffer example, it is claimed in
I Atomizer: a dynamic atomicity checker for multithreaded

programs, Flanagan & Freund, POPL, 2004 (404¢).

that the property we want to ensure is atomicity, i.e. every
execution is equivalent to one where the synchronized methods
are executed atomically.

This is the kind of properties Lipton can help to show.
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Movers

An action a is a right-mover when if we execute a · b where b is
an action of a different thread, then executing b · a results in the
same state. Dually, a left-mover...

operation mover
lock right-mover
release left-mover
protected read/write both-mover
unprotected read/write non-mover

Theorem
An sequence of actions of the form

right-mover∗non-mover?left-mover∗

can be considered as atomic.
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Reduction through symmetry
Another way of reducing the state-space is presented in
I Better verification through symmetry, Ip & Dill, Formal

Methods in System Design, 1996 (421¢).
by considering its symmetries, i.e. quotienting it under
automorphisms.

Typically, an algorithm might not depend on the exact pid of a
process.
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TODO:
I Partial Orders for Efficient Bounded Model Checking of

Concurrent Software, Alglave & Kroening & Tautschnig.
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CONCLUSION
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How to publish
I have a (vaguely) new idea
I insist on the fact it’s new
I begin with the usual state-space explosion introduction
I end with a summary of new points
I you should have a big table of benchmarks
I if you go for POPL, have some semantics / inference rules
I remember that you are doing something new and better than

others:
I support this affirmation with well-chosen (or even crafted)
benchmarks

I be partial on bibliography
I don’t try to understand too deeply what you are doing or
other’s papers

I in the future you could be bester than the best

But anyway, most of them find real bugs in real programs.
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Criteria

I errors checked: data races / deadlocks / exception (*NULL)
I size of analyzed programs: toy examples / small programs /

the kernel
I static or dynamic?
I if static, is it safe?
I techniques: lockset / happens-before / Lipton / abstract

interpretation / POR / bug-directed / etc.
I do we have to write a test set?
I language analyzed: C / Java / some esoteric DSL
I open-source?
I language it is programmed in?
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What can we do

I which criteria do we want to meet?
I we could think of other kind of verifications (cyber-physical

systems?)
I homotopy depends on observations ⇒ a general framework?
I many explorer don’t share between traces or consider only

local properties (DPOR)
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