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Motivation

Idea (Bödigheimer, Visy)

Use appropriate normal forms to understand group homology.

Group homology

Group homology of G
= homology of the space BG

= homology of the chain complex B∗G

Hope

Find a “small” model for BG or B∗G

Homotopy

Construct out of normal form set a homotopy equivalence from
BG to a smaller CW complex.
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Factorability structure

Set of geodesic normal forms with additional properties

Gives small chain complex for homology

Relates to rewriting systems

Relates to quadratic normalisation
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Word Length

Reminder: Word Length

G group, E generating system.

NE(x) = min{n | x = an . . . a1, ai ∈ E}
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Factorability

Factorability: Idea

For a given group and generating system, prescribe a way to split
off a generator.

Definition

Let G be a group and E a generating set.

A factorability
structure is a map

η : G → G × G

g 7→ (g , g ′)

g

g ′g

s.t.:

g ′ ∈ E for g 6= 1

g · g ′ = g

NE(g) + NE(g ′) = NE(g)

Compatibility with multiplication holds
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Compatibility with Multiplication

M × E

M

µ

M × Ẽη

M × Ẽ × E
η × id

M ×M

id×µ

M × Ẽ × Ẽ
id×η

µ× id

graded =
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M × Ẽ × E
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M × Ẽ × E
η × id

M ×M

id×µ

M × Ẽ × Ẽ
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First Examples

Examples

Group G with generating system G \ {1}:

Set η(g) = (1, g).

Free group Fn = 〈x1, x2, . . . , xn〉 with generating system
{x1, x2, . . . , xn, x−11 , . . . , x−1n }:

Split off the last letter!

Non-example: Z/k with generating system {+1,−1} for
k > 3.
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Visy Complex

Theorem (Visy, Wang, Heß)

For a factorable group G, there is a small chain complex
computing the homology groups of G.

Modules: Free with basis

[an| . . . |a1]

with ai ∈ E and (ai+1, ai ) unstable.

Differentials: Complicated but explicit.
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Unstable pairs

b c

bc

x y

different from (b,c)
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Symmetric Groups

Example (Visy)

Symmetric group Sn with generating set of all transpositions.

Factorization map

(
1 2 . . . k k + 1 . . . n − 1 n

σ(1) σ(2) . . . σ(k) σ(k + 1) . . . σ(n − 1) σ(n)

)

Prefix

Find the largest non-fixed value

k

Split (k, σ−1(k)) off

−→ Makes k fixed!
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Example

Example (
1 2 3 4 5 6
2 4 5 1 3 6

)

(
1 2 3 4 5 6
2 4 3 1 5 6

)

(3 5)

(2 4)

(
1 2 3 4 5 6
2 1 3 4 5 6

)
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Orthogonal Groups

Example (Bödigheimer, O.)

O(n) with generating system of all reflections R is factorable.

Factorability structure

Find the base vector ek not fixed by A with maximal index k

A−1(ek)

ek
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Example (Bödigheimer, O.)

O(n) with generating system of all reflections R is factorable.

Factorability structure

Find the base vector ek not fixed by A with maximal index k

A−1(ek)

ek



Motivation Factorability Structures Braid Groups String Rewriting Relation to Quadratic Normalisation

Orthogonal Groups
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Orthogonal Groups: Remarks

Remarks on the proof

First considered by Brady and Watt

Rely on their results

Crucial for A ∈ O(n) (Brady-Watt):

NR(A) = dim im(A− 1n)
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Finite Coxeter Groups

Question

What about other finite Coxeter groups?

Proposition (O.)

The factorability structure on O(n) restricts to a factorability
structure on Bn ⊆ O(n).

The factorability structure on O(4) does not descend to a
factorability structure on D4.
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Finite Coxeter Groups II

Coxeter Generators

What about Coxeter generators?

Theorem (Rodenhausen)

A factorable monoid (M, E , η) admits a presentation of the form

M ∼= 〈E|(a, b) = η(ab) for all a, b ∈ E〉 .

Observation

One cannot break the braid relations in the symmetric group
without introducing new generators.
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Braid Groups

Definition

A braid on n strands is an embedding

{1, . . . , n} × [0, 1]→ R2 × [0, 1]

s.t.

Strands go downwards

Strands start and end in marked points
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Braid Groups

Braid groups

Bn =

〈
σ1, σ2, . . . , σn−1

∣∣∣∣∣∣ σiσj = σjσi for |i − j | ≥ 2,

σiσi+1σi = σi+1σiσi+1

〉

Factorability

Are braid groups factorable?
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Braid Groups and Factorability

First Answer: No

The braid group Bn is not factorable w.r.t. {σ±11 , . . . , σ±1n−1}.

Problem

Same problem as with symmetric groups: too long relations.

Question

What is an appropriate enlargement of the generating system?

Idea

Use Garside theory by Garside, Dehornoy, Lafont, . . .
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Monoids

Monoids

Often easier to consider monoids!

Group of fractions

M = 〈S |R〉Mon

 G = 〈S |R〉Gr

Ore condition

If M satisfies the Ore condition, then H∗(M) ∼= H∗(G ) holds.
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Braid Groups and Factorability

Divisibility in Monoids

a ∈ M is right-divisible by b ∈ M if there is a c ∈ M such that
a = cb.

Advantage of Monoids

In a group, any element is right-divisible by any other element.

In (N, ·), obtain usual divisibility.

Strange Properties

In general, not a partial order

: need cancellativity and no
invertible elements 6= 1 for antisymmetry.

Least common multiples do not exist in general!

Example

In a free monoid, x1 and x2 do not have common multiples.
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Ore condition

Definition

A monoid M satisfies Ore condition if it is cancellative and

for any
a, b ∈ M there exist x , y ∈ M with

ax = by

Idea

One-sided common multiples exist.

Group of fractions

Element in a group of fractions of an arbitrary monoid M:
a−11 a2a

−1
3 . . . a−1k−1ak , ai ∈ M.

In an Ore monoid, cd−1, c , d ∈ M, suffices
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Ore monoids

Observation (Garside)

Can transfer word and conjugacy problems of a group of fractions
of an Ore monoid into the monoid.

Monoid homology

For a monoid M, one can define a CW complex BM and look at
its homology H∗(M).

Fact (Folklore)

If M is Ore and G (M) its group of fractions, BM → BG (M) is
homotopy equivalence.
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Braid Groups and Factorability

Braid monoids

Consider positive braids: Braids with only over-crossings.

Theorem (Garside)

Braid monoid satisfies Ore condition and forms a lattice with
respect to divisibility.

Right generating system

Take set of all divisors D of a “half-twist”.
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Factorability Structure on Braid Monoid

Theorem (O.)

There is a factorability structure on (B+
n ,D) and on (Bn,D∪D−1).

Comments on the Proof

1 Based on Garside structure on B+
n .

2 D ∪ {1} is also a lattice.

3 η on B+
n splits off the largest right-divisor of x lying in D.

Generalization

One can use similar arguments for any Garside group.
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Example B+
3

B+
3

Half-twist σ1σ2σ1

= σ2σ1σ2

Right-divisors σ1, σ2σ1, σ1σ2σ1

and σ2, σ1σ2

σ1σ2σ1

σ2σ1 σ1σ2

σ1 σ2
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Rewriting Systems

Idea

Give a direction to defining relations of a monoid.

Complete Rewriting Systems

A rewriting system is complete if it is strongly minimal, confluent
and noetherian.

w

w ′ w ′′

z

Normal Forms

Complete rewriting systems yield nice normal forms.
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Homology and String Rewriting

Theorem (Brown)

If M has a complete rewriting system (S ,R), then there is a
quotient map BM → Y to a smaller complex Y which is a
homotopy equivalence.

The cells of Y are given by [xn| . . . |x1] ∈ Mn with following
conditions:

Let wi ∈ S∗ be the normal form of xi .

w1 ∈ S,

The word wi+1wi is reducible for every 1 ≤ i ≤ n − 1,

For every 1 ≤ i ≤ n − 1, any proper (right) prefix of wi+1wi is
irreducible.

Corollary (Brown)

If M has a finite complete rewriting system, then BM is homotopy
equivalent to a complex with finitely many cells in each dimension.
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Homology and String Rewriting

Theorem (Brown)

If M has a complete rewriting system (S ,R), then there is a
quotient map BM → Y to a smaller complex Y which is a
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The word wi+1wi is reducible for every 1 ≤ i ≤ n − 1,

For every 1 ≤ i ≤ n − 1, any proper (right) prefix of wi+1wi is
irreducible.

Corollary (Brown)

If M has a finite complete rewriting system, then BM is homotopy
equivalent to a complex with finitely many cells in each dimension.
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Factorability and String Rewriting

Theorem (Rodenhausen)

A factorable monoid (M, E , η) admits a presentation of the form

M ∼= 〈E|(a, b) = η(ab) for all a, b ∈ E〉 .

Rewriting Systems

This rewriting system is strongly minimal and confluent.

Noetherianity

This rewriting system is not always noetherian.

Can strengthen compatibility with multiplication to establish
noetherianity.
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Compatibility with Multiplication

M × E

M

µ

M × Ẽη

M × Ẽ × E
η × id

M ×M

id×µ

M × Ẽ × Ẽ
id×η

µ× id

graded =
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M × Ẽ × Ẽ
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Quadratic Normalisation

Quadratic Normalisation (Dehornoy, Guiraud)

Generating system and normal form maps

Generalizes Garside structures

Yields under appropriate assumptions a complete rewriting
system

Relation to Factorability

Strengthened factorability seems to be a special case of quadratic
normalisation.
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Thank you

Thank you!
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