Factorability Structures

Viktoriya Ozornova joint with A. Heß

Universität Bremen

June 11, 2015 Homotopy in Concurrency and Rewriting

Relation to Quadratic Normalisation

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Relation to Quadratic Normalisation

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

- 2 Factorability Structures
- **3** Braid Groups

Relation to Quadratic Normalisation

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

- 2 Factorability Structures
- Braid Groups
- 4 String Rewriting

Relation to Quadratic Normalisation

- 2 Factorability Structures
- **3** Braid Groups
- 4 String Rewriting
- 5 Relation to Quadratic Normalisation

Relation to Quadratic Normalisation

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Motivation

Idea (Bödigheimer, Visy)

Use appropriate normal forms to understand group homology.

Motivation

Idea (Bödigheimer, Visy)

Use appropriate normal forms to understand group homology.

Group homology

Group homology of G = homology of the space BG

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Motivation

Idea (Bödigheimer, Visy)

Use appropriate normal forms to understand group homology.

Group homology

Group homology of G	= homology of the space BG
	= homology of the chain complex B_*G

Relation to Quadratic Normalisation

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Motivation

Idea (Bödigheimer, Visy)

Use appropriate normal forms to understand group homology.

Group homology

Group homology of G	= homology of the space BG
	$=$ homology of the chain complex B_*G

Hope

Find a "small" model for BG or B_*G

Motivation

Idea (Bödigheimer, Visy)

Use appropriate normal forms to understand group homology.

Group homology

Group homology of G	= homology of the space BG
	$=$ homology of the chain complex B_*G

Hope

Find a "small" model for BG or B_*G

Homotopy

Construct out of normal form set a homotopy equivalence from BG to a smaller CW complex.

Factorability structure

• Set of geodesic normal forms with additional properties

Factorability structure

- Set of geodesic normal forms with additional properties
- Gives small chain complex for homology

Factorability structure

- Set of geodesic normal forms with additional properties
- Gives small chain complex for homology
- Relates to rewriting systems

Factorability structure

- Set of geodesic normal forms with additional properties
- Gives small chain complex for homology
- Relates to rewriting systems
- Relates to quadratic normalisation

Relation to Quadratic Normalisation

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 … のへで

Word Length

Reminder: Word Length

 ${\it G}$ group, ${\it {\cal E}}$ generating system.

Relation to Quadratic Normalisation

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 … のへで

Word Length

Reminder: Word Length

G group, \mathcal{E} generating system.

$$N_{\mathcal{E}}(x) = \min\{n \mid x = a_n \dots a_1, a_i \in \mathcal{E}\}$$

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 … のへで

Factorability

Factorability: Idea

For a given group and generating system, prescribe a way to split off a generator.

Relation to Quadratic Normalisation

・ロト ・四ト ・ヨト ・ヨト

æ.

Factorability

Definition

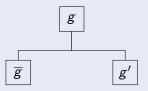
Let G be a group and \mathcal{E} a generating set.

Factorability

Definition

Let G be a group and \mathcal{E} a generating set. A **factorability structure** is a map

$$\begin{array}{rccc} \eta \colon G & \to & G \times G \\ g & \mapsto & (\overline{g},g') \end{array}$$

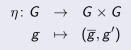


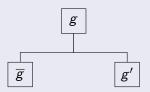
▲ロト ▲御 ト ▲ 臣 ト ▲ 臣 ト の Q @

Factorability

Definition

Let *G* be a group and \mathcal{E} a generating set. A **factorability structure** is a map





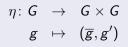
s.t.:

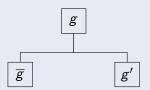
• $g' \in \mathcal{E}$ for $g \neq 1$

Factorability

Definition

Let G be a group and \mathcal{E} a generating set. A **factorability structure** is a map





s.t.:

• $g' \in \mathcal{E}$ for $g \neq 1$ • $\overline{g} \cdot g' = g$

Factorability

Definition

Let G be a group and \mathcal{E} a generating set. A **factorability structure** is a map

s.t.:

• $g' \in \mathcal{E}$ for g
eq 1

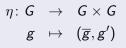
•
$$\overline{g} \cdot g' = g$$

•
$$N_{\mathcal{E}}(\overline{g}) + N_{\mathcal{E}}(g') = N_{\mathcal{E}}(g)$$

Factorability

Definition

Let G be a group and \mathcal{E} a generating set. A **factorability structure** is a map



s.t.:

• $g' \in \mathcal{E}$ for g
eq 1

•
$$\overline{g} \cdot g' = g$$

•
$$N_{\mathcal{E}}(\overline{g}) + N_{\mathcal{E}}(g') = N_{\mathcal{E}}(g)$$

• Compatibility with multiplication holds

Motivation

Factorability Structures

Braid Groups

String Rewriting

Relation to Quadratic Normalisation

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Compatibility with Multiplication

 $M \times \mathcal{E}$

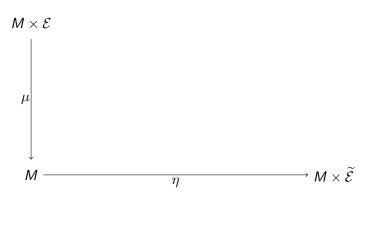
Motivation

Braid Groups

String Rewritin

Relation to Quadratic Normalisation

Compatibility with Multiplication



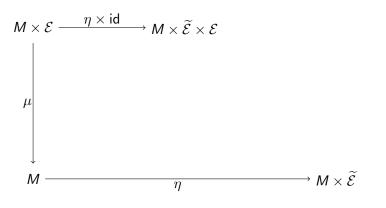
◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへ⊙

Braid Groups

String Rewriting

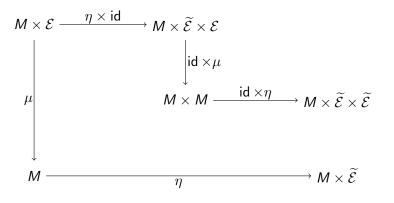
Relation to Quadratic Normalisation

Compatibility with Multiplication



Relation to Quadratic Normalisation

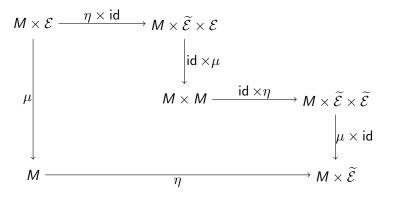
Compatibility with Multiplication



◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

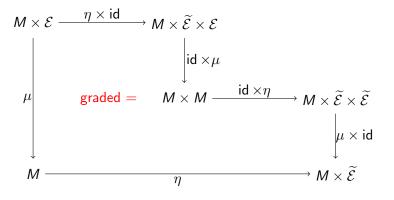
Relation to Quadratic Normalisation

Compatibility with Multiplication



Relation to Quadratic Normalisation

Compatibility with Multiplication



◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ○ □ ○ ○ ○ ○

Relation to Quadratic Normalisation

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

First Examples

Examples

• Group G with generating system $G \setminus \{1\}$:

▲ロト ▲御 ト ▲ 臣 ト ▲ 臣 ト の Q @

First Examples

Examples

• Group G with generating system $G \setminus \{1\}$: Set $\eta(g) = (1, g)$.

Relation to Quadratic Normalisation

First Examples

Examples

- Group G with generating system $G \setminus \{1\}$: Set $\eta(g) = (1, g)$.
- Free group $F_n = \langle x_1, x_2, \dots, x_n \rangle$ with generating system $\{x_1, x_2, \dots, x_n, x_1^{-1}, \dots, x_n^{-1}\}$:

First Examples

Examples

- Group G with generating system $G \setminus \{1\}$: Set $\eta(g) = (1, g)$.
- Free group $F_n = \langle x_1, x_2, \dots, x_n \rangle$ with generating system $\{x_1, x_2, \dots, x_n, x_1^{-1}, \dots, x_n^{-1}\}$: Split off the last letter!

First Examples

Examples

- Group G with generating system $G \setminus \{1\}$: Set $\eta(g) = (1, g)$.
- Free group $F_n = \langle x_1, x_2, \dots, x_n \rangle$ with generating system $\{x_1, x_2, \dots, x_n, x_1^{-1}, \dots, x_n^{-1}\}$: Split off the last letter!
- Non-example: \mathbb{Z}/k with generating system $\{+1, -1\}$ for k > 3.

Braid Groups

String Rewriting

Relation to Quadratic Normalisation

Normal Forms

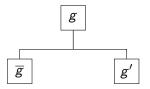
M	0	tι	v	tι	0	n

Braid Groups

String Rewriting

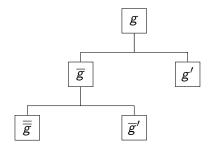
Relation to Quadratic Normalisation

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?



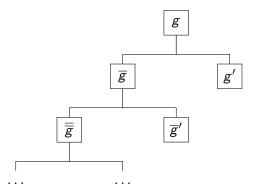
Relation to Quadratic Normalisation

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?



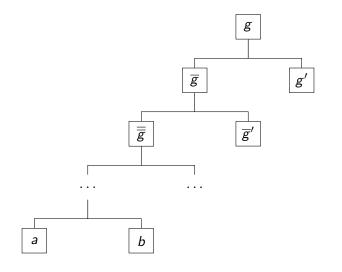
Relation to Quadratic Normalisation

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

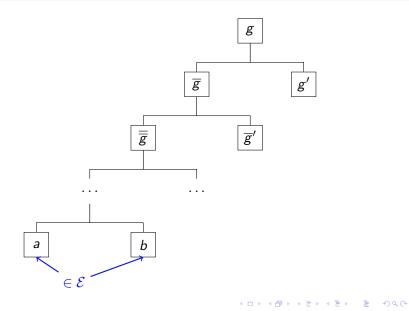


Relation to Quadratic Normalisation

Normal Forms



◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?



Visy Complex

Theorem (Visy, Wang, Heß)

For a factorable group G, there is a small chain complex computing the homology groups of G.

Modules: Free with basis

 $[a_n|\ldots|a_1]$

with $a_i \in \mathcal{E}$ and (a_{i+1}, a_i) unstable.

Relation to Quadratic Normalisation

Visy Complex

Theorem (Visy, Wang, Heß)

For a factorable group G, there is a small chain complex computing the homology groups of G.

Modules: Free with basis

 $[a_n|\ldots|a_1]$

with $a_i \in \mathcal{E}$ and (a_{i+1}, a_i) unstable.

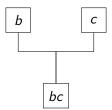
Differentials: Complicated but explicit.

Motivation	Factorability Structures	Braid Groups	String Rewriting	Relation to Quadratic Normalisation
Unstat	ole pairs			
		b	C	

▲□▶ ▲□▶ ▲三▶ ▲三▶ ▲□ ● ● ●

Relation to Quadratic Normalisation

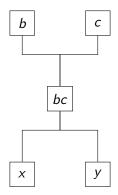
Unstable pairs



Relation to Quadratic Normalisation

◆□▶ ◆圖▶ ◆臣▶ ◆臣▶ ─ 臣

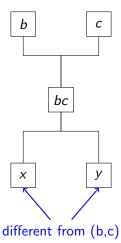
Unstable pairs



Relation to Quadratic Normalisation

◆□▶ ◆圖▶ ◆臣▶ ◆臣▶ ─ 臣

Unstable pairs



Relation to Quadratic Normalisation

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Symmetric Groups

Example (Visy)

Symmetric group \mathfrak{S}_n with generating set of all transpositions.

Relation to Quadratic Normalisation

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Symmetric Groups

Example (Visy)

Symmetric group \mathfrak{S}_n with generating set of all transpositions.

Factorization map

$$\begin{pmatrix} 1 & 2 & \dots & k & k+1 & \dots & n-1 & n \\ \sigma(1) & \sigma(2) & \dots & \sigma(k) & \sigma(k+1) & \dots & \sigma(n-1) & \sigma(n) \end{pmatrix}$$

Relation to Quadratic Normalisation

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Symmetric Groups

Example (Visy)

Symmetric group \mathfrak{S}_n with generating set of all transpositions.

Factorization map

$$\begin{pmatrix} 1 & 2 & \dots & k & k+1 & \dots & n-1 & n \\ \sigma(1) & \sigma(2) & \dots & \sigma(k) & \sigma(k+1) & \dots & \sigma(n-1) & \sigma(n) \end{pmatrix}$$

Prefix

Relation to Quadratic Normalisation

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Symmetric Groups

Example (Visy)

Symmetric group \mathfrak{S}_n with generating set of all transpositions.

Factorization map

$$\begin{pmatrix} 1 & 2 & \dots & k & k+1 & \dots & n-1 & n \\ \sigma(1) & \sigma(2) & \dots & \sigma(k) & \sigma(k+1) & \dots & \sigma(n-1) & n \end{pmatrix}$$

Prefix

Relation to Quadratic Normalisation

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Symmetric Groups

Example (Visy)

Symmetric group \mathfrak{S}_n with generating set of all transpositions.

Factorization map

$$\begin{pmatrix} 1 & 2 & \dots & k & k+1 & \dots & n-1 & n \\ \sigma(1) & \sigma(2) & \dots & \sigma(k) & \sigma(k+1) & \dots & n-1 & n \end{pmatrix}$$

Prefix

Relation to Quadratic Normalisation

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Symmetric Groups

Example (Visy)

Symmetric group \mathfrak{S}_n with generating set of all transpositions.

Factorization map

$$\begin{pmatrix} 1 & 2 & \dots & k & k+1 & \dots & n-1 & n \\ \sigma(1) & \sigma(2) & \dots & \sigma(k) & k+1 & \dots & n-1 & n \end{pmatrix}$$

Prefix

Relation to Quadratic Normalisation

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Symmetric Groups

Example (Visy)

Symmetric group \mathfrak{S}_n with generating set of all transpositions.

Factorization map

$$\begin{pmatrix} 1 & 2 & \dots & k & k+1 & \dots & n-1 & n \\ \sigma(1) & \sigma(2) & \dots & \sigma(k) & k+1 & \dots & n-1 & n \end{pmatrix}$$

Prefix

Relation to Quadratic Normalisation

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Symmetric Groups

Example (Visy)

Symmetric group \mathfrak{S}_n with generating set of all transpositions.

Factorization map

$$\begin{pmatrix} 1 & 2 & \dots & k & k+1 & \dots & n-1 & n \\ \sigma(1) & \sigma(2) & \dots & \sigma(k) & k+1 & \dots & n-1 & n \end{pmatrix}$$

Prefix

- Find the largest non-fixed value k
- Split (k, σ⁻¹(k)) off

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Symmetric Groups

Example (Visy)

Symmetric group \mathfrak{S}_n with generating set of all transpositions.

Factorization map

$$\begin{pmatrix} 1 & 2 & \dots & k & k+1 & \dots & n-1 & n \\ \sigma(1) & \sigma(2) & \dots & \sigma(k) & k+1 & \dots & n-1 & n \end{pmatrix}$$

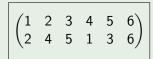
Prefix

- Find the largest non-fixed value k
- Split $(k, \sigma^{-1}(k))$ off \rightarrow Makes k fixed!

Relation to Quadratic Normalisation

Example

Example

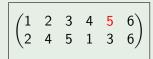


◆□▶ ◆圖▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Relation to Quadratic Normalisation

Example

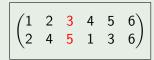
Example



Relation to Quadratic Normalisation

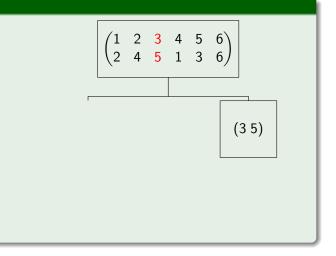
Example

Example



◆□▶ ◆圖▶ ◆臣▶ ◆臣▶ 臣 のへぐ

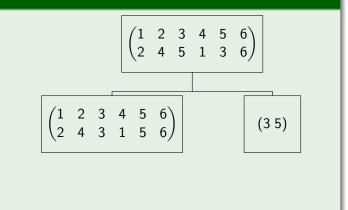
Example



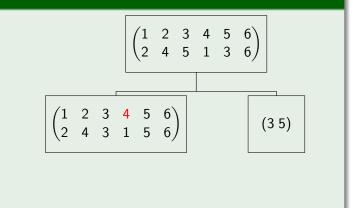
▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 … のへで

Example

Example

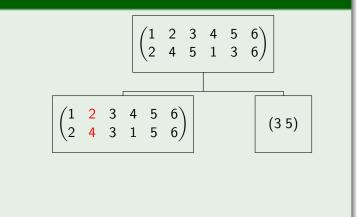


Example



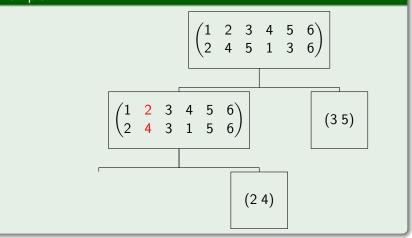
◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ─臣 ─ のへで

Example



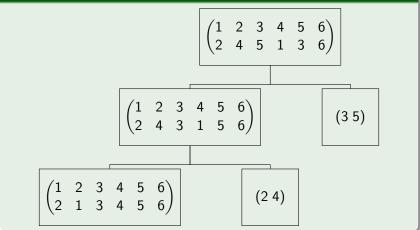
◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ─臣 ─ のへで

Example



◆□ > ◆□ > ◆臣 > ◆臣 > ─ 臣 ─ のへで

Example



Relation to Quadratic Normalisation

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Orthogonal Groups

Example (Bödigheimer, O.)

O(n) with generating system of all reflections $\mathcal R$ is factorable.

Relation to Quadratic Normalisation

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Orthogonal Groups

Example (Bödigheimer, O.)

O(n) with generating system of all reflections \mathcal{R} is factorable.

Factorability structure

Relation to Quadratic Normalisation

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Orthogonal Groups

Example (Bödigheimer, O.)

O(n) with generating system of all reflections $\mathcal R$ is factorable.

Factorability structure

Relation to Quadratic Normalisation

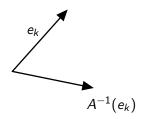
・ロト ・ 同 ト ・ ヨ ト ・ ヨ ・ うへの

Orthogonal Groups

Example (Bödigheimer, O.)

O(n) with generating system of all reflections \mathcal{R} is factorable.

Factorability structure



Relation to Quadratic Normalisation

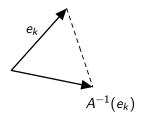
Orthogonal Groups

Example (Bödigheimer, O.)

O(n) with generating system of all reflections \mathcal{R} is factorable.

Factorability structure

• Find the base vector e_k not fixed by A with maximal index k



◆□ → ◆個 → ◆目 → ◆目 → ● ● ●

Relation to Quadratic Normalisation

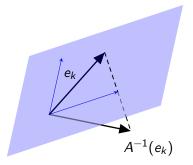
▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Orthogonal Groups

Example (Bödigheimer, O.)

O(n) with generating system of all reflections $\mathcal R$ is factorable.

Factorability structure



Motivation

Braid Groups

String Rewriting

Relation to Quadratic Normalisation

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Orthogonal Groups: Remarks

Remarks on the proof

• First considered by Brady and Watt

Motivation

String Rewriting

Relation to Quadratic Normalisation

Orthogonal Groups: Remarks

Remarks on the proof

- First considered by Brady and Watt
- Rely on their results

Relation to Quadratic Normalisation

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Orthogonal Groups: Remarks

Remarks on the proof

- First considered by Brady and Watt
- Rely on their results
- Crucial for $A \in O(n)$ (Brady-Watt):

 $N_{\mathcal{R}}(A) = \dim \operatorname{im}(A - \mathbb{1}_n)$

Motivation

String Rewriting

Relation to Quadratic Normalisation

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 … のへで

Finite Coxeter Groups

Question

What about other finite Coxeter groups?

Relation to Quadratic Normalisation

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Finite Coxeter Groups

Question

What about other finite Coxeter groups?

Proposition (O.)

 The factorability structure on O(n) restricts to a factorability structure on B_n ⊆ O(n).

Relation to Quadratic Normalisation

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Finite Coxeter Groups

Question

What about other finite Coxeter groups?

Proposition (O.)

- The factorability structure on O(n) restricts to a factorability structure on B_n ⊆ O(n).
- The factorability structure on O(4) does not descend to a factorability structure on D₄.

Relation to Quadratic Normalisation

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 … のへで

Finite Coxeter Groups II

Coxeter Generators

What about Coxeter generators?

Relation to Quadratic Normalisation

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへ⊙

Finite Coxeter Groups II

Coxeter Generators

What about Coxeter generators?

Theorem (Rodenhausen)

A factorable monoid (M, \mathcal{E}, η) admits a presentation of the form $M \cong \langle \mathcal{E} | (a, b) = \eta(ab)$ for all $a, b \in \mathcal{E} \rangle$.

Relation to Quadratic Normalisation

Finite Coxeter Groups II

Coxeter Generators

What about Coxeter generators?

Theorem (Rodenhausen)

A factorable monoid (M, \mathcal{E}, η) admits a presentation of the form $M \cong \langle \mathcal{E} | (a, b) = \eta(ab)$ for all $a, b \in \mathcal{E} \rangle$.

Observation

One cannot break the braid relations in the symmetric group without introducing new generators.

Relation to Quadratic Normalisation

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Braid Groups

Definition

A braid on *n* strands is an embedding

$$\{1,\ldots,n\}\times[0,1]\to\mathbb{R}^2\times[0,1]$$

s.t.

Relation to Quadratic Normalisation

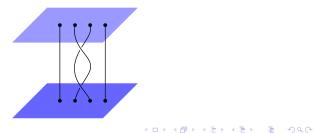
Braid Groups

Definition

A braid on *n* strands is an embedding

$$\{1,\ldots,n\}\times[0,1]\to\mathbb{R}^2\times[0,1]$$

s.t.



Braid Groups

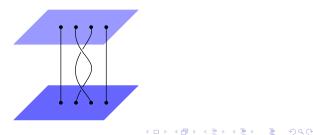
Definition

A braid on n strands is an embedding

$$\{1,\ldots,n\}\times[0,1]\to\mathbb{R}^2\times[0,1]$$

s.t.

• Strands go downwards



Braid Groups

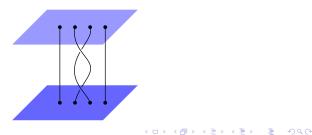
Definition

A braid on n strands is an embedding

$$\{1,\ldots,n\}\times[0,1]\to\mathbb{R}^2\times[0,1]$$

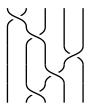
s.t.

- Strands go downwards
- Strands start and end in marked points



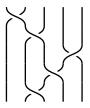
Relation to Quadratic Normalisation

Braid Groups



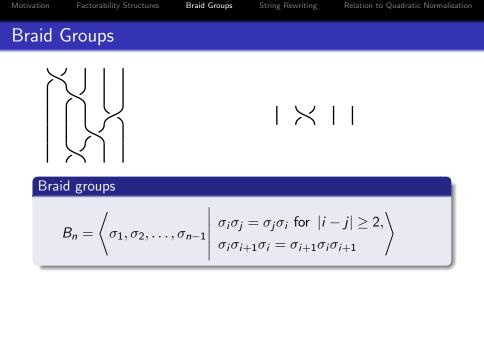
◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

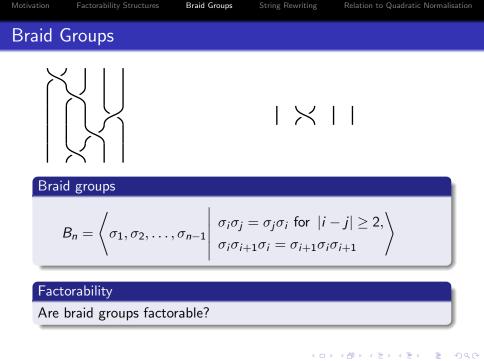
Braid Groups



Braid groups

$$B_n = \left\langle \sigma_1, \sigma_2, \dots, \sigma_{n-1} \middle| \begin{array}{c} \sigma_i \sigma_j = \sigma_j \sigma_i \text{ for } |i-j| \ge 2, \\ \sigma_i \sigma_{i+1} \sigma_i = \sigma_{i+1} \sigma_i \sigma_{i+1} \end{array} \right\rangle$$





Relation to Quadratic Normalisation

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへ⊙

Braid Groups and Factorability

First Answer: No

The braid group B_n is not factorable w.r.t. $\{\sigma_1^{\pm 1}, \ldots, \sigma_{n-1}^{\pm 1}\}$.

Relation to Quadratic Normalisation

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Braid Groups and Factorability

First Answer: No

The braid group B_n is not factorable w.r.t. $\{\sigma_1^{\pm 1}, \ldots, \sigma_{n-1}^{\pm 1}\}$.

Problem

Same problem as with symmetric groups: too long relations.

Relation to Quadratic Normalisation

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Braid Groups and Factorability

First Answer: No

The braid group B_n is not factorable w.r.t. $\{\sigma_1^{\pm 1}, \ldots, \sigma_{n-1}^{\pm 1}\}$.

Problem

Same problem as with symmetric groups: too long relations.

Question

What is an appropriate enlargement of the generating system?

Braid Groups and Factorability

First Answer: No

The braid group B_n is not factorable w.r.t. $\{\sigma_1^{\pm 1}, \ldots, \sigma_{n-1}^{\pm 1}\}$.

Problem

Same problem as with symmetric groups: too long relations.

Question

What is an appropriate enlargement of the generating system?

Ide<u>a</u>

Use Garside theory by Garside, Dehornoy, Lafont, ...

Monoids

Monoids

Often easier to consider monoids!

◆□▶ ◆圖▶ ◆臣▶ ◆臣▶ = ● のへで

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Monoids

Monoids

Often easier to consider monoids!

Group of fractions

 $M=\langle S|R
angle_{\mathsf{Mon}}$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Monoids

Monoids

Often easier to consider monoids!

Group of fractions

$$M = \langle S | R
angle_{\mathsf{Mon}} \ \rightsquigarrow G = \langle S | R
angle_{\mathsf{Gr}}$$

Monoids

Monoids

Often easier to consider monoids!

Group of fractions

$$M = \langle S | R
angle_{\mathsf{Mon}} \ \rightsquigarrow G = \langle S | R
angle_{\mathsf{Gr}}$$

Ore condition

If M satisfies the Ore condition, then $H_*(M) \cong H_*(G)$ holds.

Relation to Quadratic Normalisation

Braid Groups and Factorability

Divisibility in Monoids

$a \in M$ is right-divisible by $b \in M$ if there is a $c \in M$ such that a = cb.

Relation to Quadratic Normalisation

Braid Groups and Factorability

Divisibility in Monoids

$a \in M$ is right-divisible by $b \in M$ if there is a $c \in M$ such that a = cb.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Braid Groups and Factorability

Divisibility in Monoids

 $a \in M$ is right-divisible by $b \in M$ if there is a $c \in M$ such that a = cb.

Advantage of Monoids

• In a group, any element is right-divisible by any other element.

Braid Groups and Factorability

Divisibility in Monoids

 $a \in M$ is right-divisible by $b \in M$ if there is a $c \in M$ such that a = cb.

Advantage of Monoids

- In a group, any element is right-divisible by any other element.
- In (\mathbb{N}, \cdot) , obtain usual divisibility.

Braid Groups and Factorability

Divisibility in Monoids

 $a \in M$ is right-divisible by $b \in M$ if there is a $c \in M$ such that a = cb.

Advantage of Monoids

- In a group, any element is right-divisible by any other element.
- In (\mathbb{N}, \cdot) , obtain usual divisibility.

Strange Properties

In general, not a partial order

Braid Groups and Factorability

Divisibility in Monoids

 $a \in M$ is right-divisible by $b \in M$ if there is a $c \in M$ such that a = cb.

Advantage of Monoids

- In a group, any element is right-divisible by any other element.
- In (\mathbb{N}, \cdot) , obtain usual divisibility.

Strange Properties

• In general, not a partial order: need cancellativity and no invertible elements $\neq 1$ for antisymmetry.

Braid Groups and Factorability

Divisibility in Monoids

 $a \in M$ is right-divisible by $b \in M$ if there is a $c \in M$ such that a = cb.

Advantage of Monoids

- In a group, any element is right-divisible by any other element.
- In (\mathbb{N}, \cdot) , obtain usual divisibility.

Strange Properties

- In general, not a partial order: need cancellativity and no invertible elements $\neq 1$ for antisymmetry.
- Least common multiples do not exist in general!

Braid Groups and Factorability

Divisibility in Monoids

 $a \in M$ is right-divisible by $b \in M$ if there is a $c \in M$ such that a = cb.

Advantage of Monoids

- In a group, any element is right-divisible by any other element.
- In (\mathbb{N}, \cdot) , obtain usual divisibility.

Strange Properties

- In general, not a partial order: need cancellativity and no invertible elements $\neq 1$ for antisymmetry.
- Least common multiples do not exist in general!

Example

In a free monoid, x_1 and x_2 do not have common multiples.

Relation to Quadratic Normalisation

Ore condition

Definition

A monoid M satisfies Ore condition if it is cancellative and

Ore condition

Definition

A monoid M satisfies Ore condition if it is cancellative and for any $a, b \in M$ there exist $x, y \in M$ with

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

ax = by

Ore condition

Definition

A monoid M satisfies Ore condition if it is cancellative and for any $a,b\in M$ there exist $x,y\in M$ with

$$ax = by$$

Idea

One-sided common multiples exist.

Ore condition

Definition

A monoid M satisfies Ore condition if it is cancellative and for any $a, b \in M$ there exist $x, y \in M$ with

$$ax = by$$

Idea

One-sided common multiples exist.

Group of fractions

 Element in a group of fractions of an arbitrary monoid M: a₁⁻¹a₂a₃⁻¹...a_{k-1}⁻¹a_k, a_i ∈ M.

Ore condition

Definition

A monoid M satisfies Ore condition if it is cancellative and for any $a, b \in M$ there exist $x, y \in M$ with

$$ax = by$$

Idea

One-sided common multiples exist.

Group of fractions

- Element in a group of fractions of an arbitrary monoid M: a₁⁻¹a₂a₃⁻¹...a_{k-1}⁻¹a_k, a_i ∈ M.
- In an Ore monoid, cd^{-1} , $c, d \in M$, suffices

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Ore monoids

Observation (Garside)

Can transfer word and conjugacy problems of a group of fractions of an Ore monoid into the monoid.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Ore monoids

Observation (Garside)

Can transfer word and conjugacy problems of a group of fractions of an Ore monoid into the monoid.

Monoid homology

For a monoid M, one can define a CW complex BM and look at its homology $H_*(M)$.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへ⊙

Ore monoids

Observation (Garside)

Can transfer word and conjugacy problems of a group of fractions of an Ore monoid into the monoid.

Monoid homology

For a monoid M, one can define a CW complex BM and look at its homology $H_*(M)$.

Fact (Folklore)

If *M* is Ore and G(M) its group of fractions, $BM \rightarrow BG(M)$ is homotopy equivalence.

Relation to Quadratic Normalisation

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Braid Groups and Factorability

Braid monoids

Consider positive braids: Braids with only over-crossings.

Relation to Quadratic Normalisation

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Braid Groups and Factorability

Braid monoids

Consider positive braids: Braids with only over-crossings.

Theorem (Garside)

Braid monoid satisfies Ore condition and forms a lattice with respect to divisibility.

Relation to Quadratic Normalisation

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Braid Groups and Factorability

Braid monoids

Consider positive braids: Braids with only over-crossings.

Theorem (Garside)

Braid monoid satisfies Ore condition and forms a lattice with respect to divisibility.

Right generating system

Take set of all divisors \mathcal{D} of a "half-twist".

(日)、(四)、(E)、(E)、(E)

Braid Groups and Factorability

Braid monoids

Consider positive braids: Braids with only over-crossings.

Theorem (Garside)

Braid monoid satisfies Ore condition and forms a lattice with respect to divisibility.

Right generating system

Take set of all divisors \mathcal{D} of a "half-twist".

Relation to Quadratic Normalisation

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Factorability Structure on Braid Monoid

Theorem (O.)

There is a factorability structure on (B_n^+, \mathcal{D}) and on $(B_n, \mathcal{D} \cup \mathcal{D}^{-1})$.

Relation to Quadratic Normalisation

(日)、(四)、(E)、(E)、(E)

Factorability Structure on Braid Monoid

Theorem (O.)

There is a factorability structure on (B_n^+, \mathcal{D}) and on $(B_n, \mathcal{D} \cup \mathcal{D}^{-1})$.

Comments on the Proof

Relation to Quadratic Normalisation

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Factorability Structure on Braid Monoid

Theorem (O.)

There is a factorability structure on (B_n^+, \mathcal{D}) and on $(B_n, \mathcal{D} \cup \mathcal{D}^{-1})$.

Comments on the Proof

1 Based on Garside structure on B_n^+ .

Relation to Quadratic Normalisation

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Factorability Structure on Braid Monoid

Theorem (O.)

There is a factorability structure on (B_n^+, \mathcal{D}) and on $(B_n, \mathcal{D} \cup \mathcal{D}^{-1})$.

Comments on the Proof

1 Based on Garside structure on B_n^+ .

2 $\mathcal{D} \cup \{1\}$ is also a lattice.

Factorability Structure on Braid Monoid

Theorem (O.)

There is a factorability structure on (B_n^+, \mathcal{D}) and on $(B_n, \mathcal{D} \cup \mathcal{D}^{-1})$.

Comments on the Proof

- **1** Based on Garside structure on B_n^+ .
- 2 $\mathcal{D} \cup \{1\}$ is also a lattice.
- **③** η on B_n^+ splits off the largest right-divisor of x lying in \mathcal{D} .

Factorability Structure on Braid Monoid

Theorem (O.)

There is a factorability structure on (B_n^+, \mathcal{D}) and on $(B_n, \mathcal{D} \cup \mathcal{D}^{-1})$.

Comments on the Proof

- **1** Based on Garside structure on B_n^+ .
- 2 $\mathcal{D} \cup \{1\}$ is also a lattice.
- **③** η on B_n^+ splits off the largest right-divisor of x lying in \mathcal{D} .

Generalization

One can use similar arguments for any Garside group.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 … のへで

B_{3}^{+}

- Half-twist $\sigma_1 \sigma_2 \sigma_1$
- Right-divisors $\sigma_1, \sigma_2\sigma_1, \sigma_1\sigma_2\sigma_1$

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 … のへで

B_{3}^{+}

- Half-twist $\sigma_1 \sigma_2 \sigma_1 = \sigma_2 \sigma_1 \sigma_2$
- Right-divisors $\sigma_1, \sigma_2\sigma_1, \sigma_1\sigma_2\sigma_1$

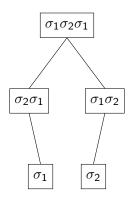
▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 … のへで

B_3^+

- Half-twist $\sigma_1 \sigma_2 \sigma_1 = \sigma_2 \sigma_1 \sigma_2$
- Right-divisors $\sigma_1, \sigma_2 \sigma_1, \sigma_1 \sigma_2 \sigma_1$ and $\sigma_2, \sigma_1 \sigma_2$

B_3^+

- Half-twist $\sigma_1 \sigma_2 \sigma_1 = \sigma_2 \sigma_1 \sigma_2$
- Right-divisors $\sigma_1, \sigma_2\sigma_1, \sigma_1\sigma_2\sigma_1$ and $\sigma_2, \sigma_1\sigma_2$



◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Rewriting Systems

Idea

Give a direction to defining relations of a monoid.

Rewriting Systems

Idea

Give a direction to defining relations of a monoid.

Complete Rewriting Systems

Rewriting Systems

Idea

Give a direction to defining relations of a monoid.

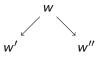
Complete Rewriting Systems

Rewriting Systems

Idea

Give a direction to defining relations of a monoid.

Complete Rewriting Systems

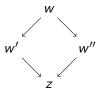


Rewriting Systems

Idea

Give a direction to defining relations of a monoid.

Complete Rewriting Systems



Rewriting Systems

Idea

Give a direction to defining relations of a monoid.

Complete Rewriting Systems

A rewriting system is complete if it is strongly minimal, confluent and noetherian.

Normal Forms

Complete rewriting systems yield nice normal forms.

Homology and String Rewriting

Theorem (Brown)

If M has a complete rewriting system (S, \mathcal{R}) , then there is a quotient map $BM \rightarrow Y$ to a smaller complex Y which is a homotopy equivalence.

Homology and String Rewriting

Theorem (Brown)

If *M* has a complete rewriting system (S, \mathcal{R}) , then there is a quotient map $BM \rightarrow Y$ to a smaller complex *Y* which is a homotopy equivalence. The cells of *Y* are given by $[x_n| \dots |x_1] \in M^n$ with following conditions:

Homology and String Rewriting

Theorem (Brown)

If *M* has a complete rewriting system (S, \mathcal{R}) , then there is a quotient map $BM \to Y$ to a smaller complex *Y* which is a homotopy equivalence. The cells of *Y* are given by $[x_n| \dots |x_1] \in M^n$ with following conditions: Let $w_i \in S^*$ be the normal form of x_i .

•
$$w_1 \in S$$
,

Homology and String Rewriting

Theorem (Brown)

If *M* has a complete rewriting system (S, \mathcal{R}) , then there is a quotient map $BM \to Y$ to a smaller complex *Y* which is a homotopy equivalence. The cells of *Y* are given by $[x_n| \dots |x_1] \in M^n$ with following conditions: Let $w_i \in S^*$ be the normal form of x_i .

•
$$w_1 \in S$$
,

• The word $w_{i+1}w_i$ is reducible for every $1 \le i \le n-1$,

Homology and String Rewriting

Theorem (Brown)

If *M* has a complete rewriting system (S, \mathcal{R}) , then there is a quotient map $BM \to Y$ to a smaller complex *Y* which is a homotopy equivalence. The cells of *Y* are given by $[x_n| \dots |x_1] \in M^n$ with following conditions: Let $w_i \in S^*$ be the normal form of x_i .

- $w_1 \in S$,
- The word $w_{i+1}w_i$ is reducible for every $1 \le i \le n-1$,
- For every 1 ≤ i ≤ n − 1, any proper (right) prefix of w_{i+1}w_i is irreducible.

Homology and String Rewriting

Theorem (Brown)

If *M* has a complete rewriting system (S, \mathcal{R}) , then there is a quotient map $BM \to Y$ to a smaller complex *Y* which is a homotopy equivalence. The cells of *Y* are given by $[x_n| \dots |x_1] \in M^n$ with following conditions: Let $w_i \in S^*$ be the normal form of x_i .

- $w_1 \in S$,
- The word $w_{i+1}w_i$ is reducible for every $1 \le i \le n-1$,
- For every $1 \le i \le n-1$, any proper (right) prefix of $w_{i+1}w_i$ is irreducible.

Corollary (Brown)

If M has a finite complete rewriting system, then BM is homotopy equivalent to a complex with finitely many cells in each dimension.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Factorability and String Rewriting

Theorem (Rodenhausen)

A factorable monoid (M, \mathcal{E}, η) admits a presentation of the form $M \cong \langle \mathcal{E} | (a, b) = \eta(ab)$ for all $a, b \in \mathcal{E} \rangle$.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Factorability and String Rewriting

Theorem (Rodenhausen)

A factorable monoid (M, \mathcal{E}, η) admits a presentation of the form $M \cong \langle \mathcal{E} | (a, b) \rightarrow \eta(ab)$ for all $a, b \in \mathcal{E} \rangle$.

Factorability and String Rewriting

Theorem (Rodenhausen)

A factorable monoid (M, \mathcal{E}, η) admits a presentation of the form $M \cong \langle \mathcal{E} | (a, b) \rightarrow \eta(ab)$ for all $a, b \in \mathcal{E} \rangle$.

Rewriting Systems

This rewriting system is strongly minimal and confluent.

Factorability and String Rewriting

Theorem (Rodenhausen)

A factorable monoid (M, \mathcal{E}, η) admits a presentation of the form $M \cong \langle \mathcal{E} | (a, b) \to \eta(ab)$ for all $a, b \in \mathcal{E} \rangle$.

Rewriting Systems

This rewriting system is strongly minimal and confluent.

Noetherianity

• This rewriting system is not always noetherian.

Factorability and String Rewriting

Theorem (Rodenhausen)

A factorable monoid (M, \mathcal{E}, η) admits a presentation of the form $M \cong \langle \mathcal{E} | (a, b) \to \eta(ab)$ for all $a, b \in \mathcal{E} \rangle$.

Rewriting Systems

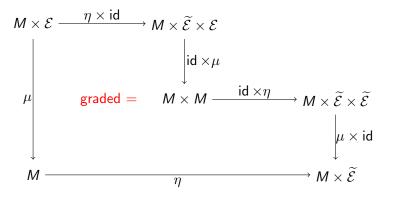
This rewriting system is strongly minimal and confluent.

Noetherianity

- This rewriting system is not always noetherian.
- Can strengthen compatibility with multiplication to establish noetherianity.

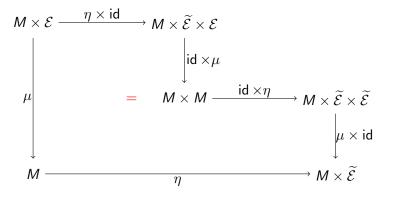
Relation to Quadratic Normalisation

Compatibility with Multiplication



Relation to Quadratic Normalisation

Compatibility with Multiplication



▲ロト ▲御 ト ▲ 臣 ト ▲ 臣 ト の Q @

Quadratic Normalisation

Quadratic Normalisation (Dehornoy, Guiraud)

• Generating system and normal form maps

Relation to Quadratic Normalisation

Quadratic Normalisation

Quadratic Normalisation (Dehornoy, Guiraud)

- Generating system and normal form maps
- Generalizes Garside structures

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Quadratic Normalisation

Quadratic Normalisation (Dehornoy, Guiraud)

- Generating system and normal form maps
- Generalizes Garside structures
- Yields under appropriate assumptions a complete rewriting system

Quadratic Normalisation

Quadratic Normalisation (Dehornoy, Guiraud)

- Generating system and normal form maps
- Generalizes Garside structures
- Yields under appropriate assumptions a complete rewriting system

Relation to Factorability

Strengthened factorability seems to be a special case of quadratic normalisation.

Relation to Quadratic Normalisation

◆□▶ ◆圖▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Thank you!