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Abstract

Automatically processing and analyzing 3D shapes is an active area in modern re-
search with implications in various fields. A key challenge in shape analysis lies in
e�ciently comparing shapes, for example to detect abnormalities in scans of organs,
which often requires automatically deforming one shape into another, or establishing
correspondences between surfaces. In this context, the functional map framework,
based on spectral shape analysis, o�ers a flexible approach to representing and
computing these correspondences, serving as a foundation for subsequent analysis.
Unfortunately, despite its flexibility, this framework has seen limited applications
outside of computer graphics, as some properties such as the smoothness of corre-
spondences or the scalability of the algorithms to real-world shapes have not been
explicitly tackled.

This thesis seeks to address the limitations of existing spectral methods, with
the ultimate goal to achieve robust and e�cient shape comparisons applicable to
real-world data. In the first part, we concentrate on assessing deformations between
shapes e�ectively. Leveraging recent advancements in functional maps, we introduce
a descriptor of di�erences between shapes, capturing information about the distor-
tion around each point, without explicitly deforming the shape. Next, we apply
similar tools on a set of skull scans for craniofacial disease detection, highlighting
the specific requirements of shape matching practitioners. Notably, we underscore
the significance of correspondence smoothness and scalability to dense meshes, often
overlooked in shape correspondence research.

In the second part, we address these needs by extending existing functional map
methods. Firstly, we introduce a novel shape correspondence pipeline, which explic-
itly promotes smoothness of computed correspondences, alongside a new challenging
shape matching dataset. Secondly, we focus on enhancing the scalability of func-
tional map pipelines to handle real-world dense meshes. For this, we present an
approximation of the functional map, enabling the computation of correspondences
on meshes with hundreds of thousands of vertices in a fraction of the processing
time required by standard algorithms. Finally, we introduce a new learning-based
approach, by modifying existing techniques for functional map computations, elim-
inating the need for large dense matrix storage in GPU memory, thereby improving
scalability and numerical stability.

Overall, our work contributes e�cient tools for analyzing di�erences between
shapes and provides general methods to simplify and accelerate correspondence com-
putations, facilitating downstream applications.
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Chapter 1

Introduction

In recent years, there has been a notable surge in the accessibility of 3D data
across diverse domains, encompassing fields such as medical imaging [168, 218],
autonomous vehicles [85, 20], computer graphics [29, 124], and scientific investiga-
tions at the microscopic and molecular levels [106, 41]. This data, as depicted in
Figure 1.1, is remarkably diverse, ranging from individual subjects to intricate real-
world environments. While some datasets, such as ShapeNet objects [42] or real
scans in ScanNet [56], can be straightforward for analysis when rendered as an im-
age, others pose notable challenges, particularly volumetric data like MRI scans [137]
or intricate protein structures [106]. The manual processing of such complex data
places a considerable burden, highlighting the demand for e�cient tools to facilitate
rapid analysis in 3D.

In response to these demands, the field of 3D data analysis has undergone rapid
development, achieving notable breakthroughs, particularly in areas such as protein
folding [106] and scene representation from images [108]. Geometry Processing [33],
the subdomain of 3D data analysis focusing on curved surfaces, has also had con-
siderable success in tasks such as rendering, animating, or deforming shapes. Unlike
general unstructured 3D data such as point clouds, shapes are often represented
as surfaces embedded in 3D, which o�ers rich additional information compared to
mere points in space. Leveraging decades of mathematical research in di�erential
geometry studying such objects [82, 228], the field of geometry processing has devel-
oped powerful tools dedicated to shape analysis [33]. However, in practice, many of
these tools still struggle to perform consistently across all types of shapes in a fully
automatic manner. For example, tasks like comparing shapes to detect di�erences,
such as diseases in organs, without human annotation, present significant challenges
to the research community.

In practice, 3D shapes often belong to coherent collections, either tied to spe-
cific acquisition devices [206, 218] or belonging to particular groups like anatomical
structures [137, 218] or animal models [247, 124]. Analyzing such collections au-
tomatically and quickly, even in the presence of a limited number of shapes, is a
fundamental research direction crucial for providing meaningful tools to practition-
ers.

Recent advances in Artificial Intelligence (AI), particularly in domains like im-
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Figure 1.1: Example existing 3D data. Left: 3D scan of an indoor scene from
the ScanNet dataset [56], Middle: Hand-made animation of a raccoon from the
DeformingThings4D dataset [124], Right: Slices of a single volumetric MRI scan,
from the OASIS dataset [137].

age and text generation, have been notable, with the emergence of powerful tools
such as StableDi�usion [183], BLIP2 [122], and large language models [221, 104]
that are now widely accessible. Given this progress, it is natural to contemplate the
potential application of such methods to 3D shapes. However, AI has so far found
success in only specific areas of shape analysis. This limitation can be attributed,
in part, to the fact that 3D shapes typically lack the regular and structured rep-
resentation found in images and text, where pixels form a grid and words follow a
sequential order. In contrast, shapes often have a surface structure, represented,
in practice, as triangle meshes. This makes direct adaptation of text and image
processing tools ine�cient. As a result, specialized AI tools are being developed to
leverage this unique structure [43, 171, 232, 205, 198], but are yet to reach the level
of performance of image analysis networks. A second limitation of the success of AI
in 3D lies in the slow, complex, and costly nature of 3D data acquisition, leading
to limited data availability compared to image and text data. Modern networks
therefore seek to explicitly enforce geometric constraints to cater for this potential
lack of data [198, 205]. Consequently, the field of artificial intelligence is still rapidly
evolving to address the unique problems posed by surfaces.

In this thesis, we aim to contribute to the development of e�cient tools, whether
axiomatic or AI-powered, for shape analysis within the context of relatively small
collections of shapes. Moreover, the focus will extend to ensuring their scalability
to real-world objects that can have high levels of detail and contain hundreds of
thousands to millions of individual primitives (points, triangles, etc.).
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Figure 1.2: Shape matching seeks to find corresponding points (x and y) on similar
shapes M and N , here extracted from the dataset of [176]. Finding correspondences
for all points on one shape amounts to computing a function T , that maps points
on shape M to points on shape N .

1.1 Context

1.1.1 Shape Analysis and Shape Matching
Shape analysis is a central problem in geometry processing [33]. It focuses specifi-
cally on the automated processing and modification of 3D shapes, defined as curved
surfaces lying in the ambient space.

Historically, geometry processing has been associated with (or emerging from)
with computer graphics, a domain focused on the display and manipulation of im-
ages. However, with the recent proliferation of 3D scanning devices [206, 163], its
influence has spread across diverse disciplines, notably in the medical domain, where
anatomical structures are digitized into 3D scans for subsequent comparative anal-
ysis [218, 90]. Another noteworthy field embracing 3D shape analysis is biology,
where cellular structures are now subjected to 3D scanning [170, 41], occasionally
in sequential fashion, resulting in sets of 4D videos [102].

In these di�erent fields, 3D shape analysis serves multiple purposes. This can
take place in two di�erent scenarios: single shape analysis and multi-shape anal-
ysis. While these scenarios are inherently related, as analysis of a single shape is
usually necessary for comparison with others, their distinct focus merits separate
exploration.

Single-shape analysis usually leverages the surface structure of a shape to syn-
thesize information or simplify its manipulation [33]. For instance, surface parame-
terization [67, 121, 207], a significant challenge in this domain, seeks to map a shape
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onto a plane, which often is used for its visualization or the manipulation of its
texture. Given a parametrization, users can, for example, apply or modify textures
on the surface using simple images [91] instead of directly manipulating the shape
itself [6]. Another line of research focuses on shape modification, where surfaces can
be smoothed [215, 210, 101], and anomalies addressed, such as closing holes [194, 14].
The domain of shape modification is furthermore closely related to shape deforma-
tion and animation, where transformations respecting certain constraints, like fixed
positions, are sought [9, 209]. Without robust automated deformation models, man-
ual redesign of surfaces post-transformation would be required, making such tasks
highly time-consuming. At their core, shape processing methods heavily rely on
e�cient computations of geometric quantities [33, 167, 146] such as vertex normals,
curvature, or geodesic distances [192, 53], which additionally provide meaningful
insights into the shapes, including their total area, number of components, and even
the number of holes. While still an active field of research, satisfying automated
approaches have been developed for many of those tasks, enabling them to be used
to analyze groups of shapes in a faster manner.

Multi-shape analysis entails a comprehensive comparison of shapes. This can
involve both a simple pair or a larger collection. Analyzing a collection often aims
to extract meaningful signals from shapes, enabling, for instance, subgroup classifi-
cation or detection [203]. For example, in biological science, tasks such as disease
detection or species clustering based on phenotype could be performed automati-
cally [89, 217]. This typically first requires establishing relations between shapes,
such as describing di�erences between pairs of shapes in the collection. Employ-
ing statistical analysis of these relations can then provide broader insights into the
collection as a whole. However, comparing pairwise shapes can have multiple mean-
ings, and the problem and is often approximated depending on the downstream
task [186, 89]. Moreover, even using approximations, obtaining these pairwise rela-
tions automatically poses significant challenges. Such relations involve, for instance,
detecting similar zones on two shapes or performing segmentation on surfaces to
extract shared parts [198, 169, 21]. Some approaches also involve detecting points
of interest, or landmarks, rather than entire regions [244]. Detecting these similar
points aids in guiding deformation from one shape to another, or in automatically
comparing distances between landmarks, which can be cumbersome when done man-
ually on real objects. Another useful tool when working with collections of shapes
is shape registration to a template [22, 28, 138], which involves relating all shapes
in the collection to a simplified and known shape, called a template, often using
deformations. This is particularly beneficial when the same shape has been inde-
pendently scanned multiple times using the same or di�erent scanning devices, as
when filming a 3D video [29, 124]. Using a template usually facilitates downstream
analysis or animation, with simplified statistics or visualization.

A notable subject of research in shape analysis focuses on shape correspon-
dence [224, 59], particularly dense shape correspondence, commonly known as shape
matching. This process aims to establish, for every point on one shape, a correspond-
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ing point on another shape, as presented in Figure 1.2. While shape correspondence
itself may not be directly usable for statistical analysis, it serves as a fundamen-
tal component in most pairwise shape analysis methods, as it forms the basis of
shape comparison by establishing relations between local points. For instance some
problems, such as landmarks detection or segmentation, can be naturally derived
from shape correspondence [198], many other tasks easily leverage such results. No-
tably, having dense correspondence between two shapes simplifies the process of
deforming one shape into another, as it can be formulated as finding the optimal
deformation aligned with the computed correspondences [9, 209]. Conversely, com-
puting the deformation between two shapes can be used to obtain correspondences
between overlapping points [69], highlighting the inherent connection between these
two problems. Most shape deformation methods, therefore, explicitly or implicitly
rely on shape matching computation at their core. Other problems can also be
framed as shape correspondence, for instance, landmarks tracking in a 3D video can
be described as obtaining correspondences between successive frames of the video.
Deformation is however not always necessary to obtain correspondences [109, 159],
and some works have devised methods to characterize geometric di�erences between
shapes directly based on correspondences [186, 98, 76], without relying on any de-
formation models.

While useful in many downstream applications, computing correspondences can
be challenging. First, obtaining shape correspondence through human annotation
is prohibitively costly, leading to a growing interest in the automatic derivation of
correspondences. However, deriving high-quality shape correspondence introduces
conceptual challenges, necessitating the development of several priors and approxi-
mations [109, 5, 159]. Notably, the definition of shape matching can vary depending
on the context, imposing diverse criteria on its quality across di�erent applications.
For instance, in tracking scenarios, emphasis is placed on the smoothness of corre-
spondences to ensure a seamless progression of points over time. Texture transfer
requires high-quality, angle-preserving, and reversible maps for aesthetically pleasing
results [77, 76, 190, 191]. In the case of shape deformation, precision in correspon-
dences may have reduced significance, provided there are no discontinuous patches
that could significantly impact the final outcomes. As a result, distinct approaches
have emerged to address these challenges, reflecting the nuanced requirements of
di�erent applications.

1.1.2 Shape Matching Approaches
Numerous approaches have been employed for shape matching across various appli-
cations. Traditionally, these methods fall into two main categories: extrinsic match-
ing, primarily relying on the 3D coordinates of the shape, and intrinsic matching,
which instead aims to leverage local information on the surface while remaining ag-
nostic to the embedding..

Extrinsic matching typically involves obtaining correspondences by computing
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a reasonable deformation between multiple shapes. Various models have been de-
veloped for this purpose, ranging from simple rigid transformations [22] to more
involved deformations [9, 209, 236]. Volumetric deformation models, which deform
the ambient space rather than the surface itself [64, 57, 69], have found substantial
application in the medical imaging field, particularly relying on discrete di�eomor-
phism [16, 17, 57, 58]. Earlier works tried to transport one point cloud into another,
using optimal transport [54] or Gaussian mixture models [147], but usually ignoring
the surface structure of the data. While extrinsic matching algorithms demonstrate
significant power and intuitive interpretation, they exhibit sensitivity to initializa-
tion and can be computationally slow. Notably, in the absence of hand-placed
landmarks, the pre-alignment of shapes, a non-trivial task without human interven-
tion, is often necessary for optimal performance.

In contrast, intrinsic matching relies on local surface information that usually
remains invariant under isometry, i.e. transformations preserving distances between
points (e.g., rotations or translations). Several works have attempted to compute
these intrinsic maps, often relying on initial signals [109] such as local surface de-
scriptors [211, 219, 15], while minimizing distortion metrics like area distortion or the
intrinsic Dirichlet energy [77, 76]. Another approach attempts to preserve pairwise
geodesic distances between pairs of points before and after matching [227, 208], but
su�ers from slow algorithms heavily reliant on good initialization. To achieve pre-
cise and visually coherent texture transfer, novel formulations of discrete di�eomor-
phism [190, 191, 213] have been developed, as well as formulations for geometrically
consistent shape matching [239, 238, 182]. However, these methods are only applica-
ble to shapes with a limited number of vertices and can only handle shapes with the
same topology, defined by the number of holes and handles in the surfaces. In com-
parison, the functional map framework [159, 153, 154, 145, 177, 162], a significant
focus of this thesis, relaxes the problem of shape correspondence and instead aims
to e�ciently transfer functions between shapes while advocating several geometric
constraints such as area preservation. This relaxed formulation can easily accommo-
date shapes with di�erent topologies and can be adapted to the challenging setting
of partial shape matching [181, 128, 13]. Moreover, recent advancements, leverag-
ing powerful neural networks [198, 60, 13, 40, 212], have obtained state-of-the-art
results on standard shape matching benchmarks, bringing this flexible framework
into the spotlight. However, despite their inherent invariance under rigid transfor-
mations, intrinsic matching methods remain highly sensitive to intrinsic symmetries
of shapes, missing parts, and sometimes topology changes such as holes. It is worth
noting that some intrinsic matching approaches have attempted to leverage extrin-
sic matching models to enhance their performance [70, 71, 72], but these remain
unstable without additional initial information such as pre-alignment.
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1.1.3 Limitations of existing approaches

Despite their considerable achievements, shape matching methods encounter limi-
tations, not only in terms of performance but also in their scope of applications.

Extrinsic approaches, primarily deformation-based, have had success in the med-
ical imaging community [64]. However, intrinsic shape matching methods, typically
associated with computer graphics, have seen limited application beyond the eval-
uation of shape correspondence and texture transfer. This emphasis on pure shape
correspondence often neglects essential properties crucial for downstream applica-
tions, such as the smoothness of correspondences, which can significantly impact the
statistical analysis of results, although it might degrade the precision of the corre-
spondences. Addressing and promoting such properties presents ongoing challenges
for the shape matching community.

The methodologies employed often depend on the datasets used for evaluation.
Current benchmarks primarily focus on shape matching tasks [28, 29, 10, 247, 144,
124], featuring human or animal shapes derived from either registered real scans [28]
or purely synthetic shapes [124]. However, these datasets mostly consist of very sim-
ilar shapes, which lack the intricate details found in real-world data and typically
comprise shapes with a low number of vertices, sometimes further downsampled
when evaluated [174]. Moreover, while some datasets incorporate shapes with holes
and missing parts, they do not capture the complexities of acquisition noise or occlu-
sion encountered in real scans. Assessing the performance of current shape matching
methods on more diverse data divergent from existing benchmarks, potentially real-
world data, holds significant promise for advancing the field.

Despite achieving impressive performance, existing methods still have room for
improvement when dealing with highly non-isometric shapes, particularly in sce-
narios lacking prior knowledge such as rigid alignment or landmarks. Furthermore,
the synergy between the intrinsic and extrinsic approaches in shape matching has
been largely unexplored [70, 71]. Leveraging artificial intelligence tools, particularly
recent deep neural networks [232, 198, 60], shows promise in addressing these chal-
lenges. However, such learning-based approaches still su�er from poor generalization
performance on novel surfaces [184, 60, 40, 212]. Additionally, while these methods
have shown e�cacy on small-scale data, they often struggle with computational ef-
ficiency when applied to dense real 3D scans [123, 212]. Thus, beyond enhancing
performance, adapting these approaches to real data remains a crucial challenge.

In this thesis, our aim is to augment the stability and applicability of shape
matching methods, with a specific emphasis on enhancing their scalability to com-
plex shapes and suitability for real-world scenarios.



8 CHAPTER 1. INTRODUCTION

1.2 Contributions
This thesis addresses multiple challenges in shape comparison, leveraging and signif-
icantly extending modern spectral shape matching methods. Our contributions are
guided by the requirements of underlying downstream tasks utilizing shape match-
ing, particularly in scenarios where high-resolution meshes are needed. The organi-
zation of the thesis is as follows:

First Part: Local Analysis of Di�erences. The initial chapter focuses on
locally characterizing the di�erences between two shapes. Obtaining meaningful
signals about parts of the surface that undergo significant variations between two
shapes is a very challenging problem, key to tasks like anomaly detection or dis-
ease detection. Specifically, in Chapter 3, we provide an extensive analysis of Shape
Di�erence Operators [186, 160], which use functional maps to describe all intrinsic
deformations between shapes. We derive a local descriptor for deformations be-
tween shapes, and demonstrate its consistency across collections undergoing similar
deformations, enabling shape matching between these collections.

Second Part: Analysis of a Cohort of Patients. Chapter 4, a collaborative
work with surgeons from Necker Hospital in Paris, uses modern functional map
methods to analyze a collection of skulls in young children. The primary goal is
to automatically detect trigonocephaly, a disease partly characterized by a trian-
gular forehead. While successful, this project highlights areas for improvement in
functional map methods, particularly emphasizing the importance of smooth corre-
spondences over precise accuracy. Furthermore, the data consisted of high resolution
meshes, highlighting the speed bottlenecks of spectral shape matching methods. The
following chapters thus will tackle such issues.

Third Part: Enforcing Smoothness. Chapter 5 aims at deriving a novel shape
matching pipeline, based on the Discrete Optimization framework [177], by explicitly
enforcing the smoothness of correspondences. Existing benchmarks for shape corre-
spondence perform well under the assumption of near-isometry, but we introduce a
more challenging non-isometric dataset, a remeshed version of the DeformingTh-

ings4D dataset [124], where most baselines struggle without an explicit smoothness
constraint, while highlighting the significant improvement brought by our approach.

Fourth Part: Functional Maps on Dense Meshes. In Chapter 6, we address
the computational ine�ciency of functional map methods on dense meshes. We
therefore develop an e�cient estimator of the functional map using only a sparse
set of points on the shape, and provide a theoretical upper bound on the estimation
error. This approach yields comparable results to classical methods, with sub-sample
accuracy, and in a fraction of the processing time, without the need for explicit
resolution downscaling.
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Fifth Part: Scalable Functional Map Learning. The final section, covered
in Chapter 7, focuses on novel shape matching methods employing deep neural net-
works and functional maps. Our approach employs e�cient GPU methods for kernel
computations [44], eliminating the need to store dense quadratic matrices in mem-
ory. Additionally, we implement GPU porting of an existing refinement algorithm,
removing the necessity for unstable di�erentiation through a linear system. This
implementation allows for the use of very dense shapes during training or testing,
overcoming the scalability challenges associated with current methods.

Sixth Part: Conclusion. Chapter 8 concludes the manuscript, providing first an
overview of the evolution of the field of geometry processing and the impact of our
work during the time of this thesis. We then discuss the current existing challenges
in the field as well as promising direction for future works.

Despite the apparent simplicity of spectral shape matching methods, they often
present challenges in implementation and the complexity of their use. To address
this, all our implementations are available online, and we have developed a Python
package named pyfmaps with minimal requirements, providing the implementa-
tion of numerous approaches. This package, available at https://github.com/
RobinMagnet/pyFM, has garnered reasonable success, with several parts of the code
being utilized in other works [123, 92]. Notably, all our contributions leverage this
package.

1.3 Publication Record
The content of our work relies on the following publications:

• R. Magnet and M. Ovsjanikov. DWKS : A Local Descriptor of Deformations
Between Meshes and Point Clouds. In 2021 IEEE/CVF International Con-
ference on Computer Vision (ICCV), 2021 [130]. Presented in Chapter 3.

• R. Magnet, K. Bloch, M. Taverne, S. Melzi, M. Geo�roy, R. H. Khonsari, and
M. Ovsjanikov. Assessing craniofacial growth and form without landmarks: A
new automatic approach based on spectral methods. Journal of Morphology,
2023 [134]. Presented in Chapter 4.

• R. Magnet, J. Ren, O. Sorkine-Hornung, and M. Ovsjanikov. Smooth Non-
Rigid Shape Matching via E�ective Dirichlet Energy Optimization. In 2022
International Conference on 3D Vision (3DV), 2022 [133]. Won the best paper
award, and presented in Chapter 5.

• R. Magnet and M. Ovsjanikov. Scalable and E�cient Functional Map Com-
putations on Dense Meshes. Computer Graphics Forum, 2023 [131]. Presented
in Chapter 6.

https://github.com/RobinMagnet/pyFM
https://github.com/RobinMagnet/pyFM
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• R. Magnet and M. Ovsjanikov. Memory-Scalable and Simplified Functional
Map Learning. In 2024 IEEE/CVF Conference on Computer Vision and Pat-
tern Recognition (CVPR), 2024 [132]. Presented in Chapter 7.



Chapitre 2

Introduction en français

Ces dernières années, les données 3D sont de plus en plus accessibles dans de nom-
breux domaines, notamment pour l’imagerie médicale [168, 218], les véhicules auto-
nomes [85, 20], l’infographie [29, 124], et les analyses scientifiques à l’échelle micro-
scopique et moléculaire [106, 41]. Ces données, dont certains exemples sont présentés
sur la Figure 2.1, sont d’une remarquable diversité, présentant tout autant des su-
jets individuels créés informatiquement que des environnements complexes du monde
réel. Si certaines données, telles que les objets de ShapeNet [42] ou les captures de
scènes d’intérieur de ScanNet [56], peuvent être facilement analysés lorsqu’ils sont
observés sur une image, d’autres sont beaucoup plus complexes à appréhender de
cette façon, par exemple les données IRM [137] ou les structures de protéines [106].
Le traitement et l’analyse manuelle de ces données 3D représentent une charge de
travail considérable, ce qui souligne la nécessité de disposer d’outils e�caces pour
faciliter leur analyse.

Via cette accessibilité accrue, le domaine de l’analyse des données 3D a connu
un développement rapide, réalisant des percées notables, en particulier dans des
domaines tels que le repliement des protéines [106] et la représentation de scènes
à partir d’images [108]. Le traitement automatique de la géométrie [33], le sous-
domaine de l’analyse des données 3D axé sur les surfaces courbes, a connu un suc-
cès considérable dans des tâches telles que le rendu, l’animation ou la déformation
des formes. Contrairement aux données 3D générales non structurées telles que les
nuages de points, les formes sont représentées par des surfaces, qui o�rent de nom-
breuses informations supplémentaires par rapport à de simples points dans l’espace.
S’appuyant sur des décennies de recherche mathématique en géométrie di�érentielle
qui étudie ces objets [82, 228], de puissants outils dédiés à l’analyse des formes ont
été développés [33]. Cependant, dans la pratique, beaucoup de ces outils ont encore
du mal à fonctionner de manière cohérente sur toutes les variétés de formes, de
manière automatique. Par exemple, des tâches telles que la comparaison de formes,
sans annotation humaine, pour la détection de di�érences, comme une maladie dans
un organe, représentent encore des défis importants pour le milieu.

Dans la pratique, les formes 3D se présentent souvent au sein de collections co-
hérentes, soit liées à du matériel d’acquisition spécifique [206, 218] ou appartenant à
des groupes sémantiques particuliers comme des structures anatomiques [137, 218]
ou des modèles animaux [247, 124]. L’analyse automatique et rapide de ces collec-
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Figure 2.1 : Exemple de données 3D existantes. À gauche : scan 3D d’une scène
d’intérieur provenant du jeu de données ScanNet [56], au milieu : animation manuelle
d’un raton laveur provenant du jeu de données DeformingThings4D [124], à
droite : coupes d’un scan IRM volumétrique unique, provenant du jeu de données
OASIS [137] : Tranches d’une IRM volumétrique unique, provenant de l’ensemble
de données OASIS [137].

tions, même en présence d’un nombre limité d’éléments, est un axe de recherche
fondamental afin de fournir des outils pratiques aux praticiens.

Les progrès récents de l’intelligence artificielle (IA) sont impressionnants, en par-
ticulier dans des domaines tels que la génération d’images et de textes, avec l’émer-
gence d’outils puissants tels que StableDi�usion [183], BLIP2 [122], et les grands
modèles de langage [221, 104] qui sont aujourd’hui facilement accessibles. Compte
tenu de ces progrès, il est naturel d’envisager l’application potentielle de ces mé-
thodes aux formes 3D. Cependant, jusqu’à présent, l’IA n’a réussi à s’imposer que
dans des domaines spécifiques de l’analyse des formes. Cette limitation peut être
attribuée, en partie, au fait que les formes 3D ne présentent généralement pas la re-
présentation régulière et structurée que l’on trouve dans les images et les textes, où
les pixels forment une grille et les mots suivent un ordre séquentiel. En revanche, les
formes présentent une structure de surface, dont la représentation, généralement sous
forme d’ensembles de triangles, rend ine�cace l’adaptation directe des outils de trai-
tement de texte et d’image. Par conséquent, des outils d’IA spécialisés sont en cours
de développement pour tirer parti de cette structure unique [43, 171, 232, 205, 198],
et n’ont pas encore atteint le niveau de performance des réseaux d’analyse d’images.
Une deuxième limite au succès de l’IA en 3D réside dans la nature lente, complexe
et coûteuse de l’acquisition de données 3D, ce qui conduit à une disponibilité limitée
par rapport aux données d’image et de texte. Les réseaux modernes cherchent donc
à appliquer explicitement des contraintes géométriques pour pallier ce manque po-
tentiel de données [198, 205]. Par conséquent, le domaine de l’intelligence artificielle
continue d’évoluer rapidement pour répondre aux problèmes uniques posés par les
surfaces.

Dans cette thèse, nous visons à contribuer au développement d’outils e�caces,
qu’ils soient axiomatiques ou alimentés par l’intelligence artificielle, pour l’analyse
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Figure 2.2 : La correspondance de formes cherche à trouver des points correspon-
dants (x et y) sur des formes similaires M et N , ici extraites du jeu de données
de [176]. Trouver des correspondances pour tous les points d’une même forme re-
vient à calculer une fonction T , qui donne, pour tous les points sur M , un point sur
N .

des formes dans le contexte de collections de formes relativement petites. En outre,
l’accent sera mis sur l’extensibilité de ces outils aux formes du monde réel qui pré-
sentent des niveaux de détail élevés.

2.1 Contexte

2.1.1 Analyse de Formes et Mise en Correspondance
L’analyse des formes est un problème central du domaine du traitement automa-
tique de la géométrie [33]. Ce problème se concentre spécifiquement sur le traitement
et la modification automatisés des formes 3D, définies comme des surfaces courbes
situées dans l’espace ambiant.

Historiquement, le traitement automatique de la géométrie est lié à à l’infogra-
phie, un domaine centré sur l’a�chage et la manipulation d’images numériques.
Toutefois, avec la récente prolifération des dispositifs de numérisation 3D [206, 163],
son influence s’est étendue à de multiples disciplines, notamment dans le domaine
médical, où les structures anatomiques font l’objet de numérisations en vue d’une
analyse comparative ultérieure [218, 90]. En biologie, l’analyse des formes en 3D
gagne également en popularité : des structures cellulaires sont désormais soumises à
des captures 3D [170, 41], parfois de manière séquentielle, ce qui produit des vidéos
3D, appelées captures 4D [102].

Dans ces di�érents domaines, l’analyse des formes en 3D a de multiples objec-
tifs, qui se divisent essentiellement deux catégories : l’analyse d’une unique forme et



14 CHAPITRE 2. INTRODUCTION EN FRANÇAIS

l’analyse d’un ensemble de formes. Bien que ces catégories soient intrinsèquement
liées, puisque analyser une forme seule est généralement nécessaire pour la compa-
rer à d’autres, leurs objectifs restent distincts et méritent d’être explorés séparément.

L’analyse d’une forme unique exploite généralement la structure de surface de la
forme afin d’obtenir des informations ou pour simplifier sa manipulation [33]. Par
exemple, la paramétrisation de la surface [67, 121, 207], un défi important dans ce
domaine, cherche à cartographier une forme sur un plan 2D, ce qui facilite souvent
sa visualisation ou la manipulation de sa texture. Grâce à cette paramétrisation,
les utilisateurs peuvent, par exemple, appliquer ou modifier des textures sur la sur-
face en utilisant de simples images [91] au lieu de manipuler directement la forme
elle-même [6]. Une autre ligne de recherche se concentre sur la modification de la
forme elle-même, où les surfaces peuvent être lissées [215, 210, 101], ou les anomalies
traitées, par exemple en fermant des trous [194, 14]. Le domaine de la modification
des formes est en outre étroitement lié à la déformation et à l’animation de celles-ci,
où l’on recherche des transformations respectant certaines contraintes, comme des
positions attitrées pour certaines parties de la surface [9, 209]. En l’absence de mo-
dèles de déformation automatisés et robustes, il faudrait redessiner manuellement les
surfaces après la transformation, ce qui prendrait beaucoup de temps. Les méthodes
d’analyse de forme reposent essentiellement sur des calculs e�caces de quantités
géométriques [33, 167, 146] telles que les normales des sommets, la courbure ou les
distances géodésiques [192, 53], qui fournissent en outre des informations impor-
tantes sur les formes, notamment leur surface totale, le nombre de composants et
même le nombre de trous. Bien qu’il s’agisse encore d’un domaine de recherche actif,
des approches automatisées satisfaisantes ont été développées pour bon nombre de
ces tâches, ce qui leur permet d’être utilisées pour analyser des groupes de formes
de manière plus rapide.

L’analyse de groupes de formes implique donc une comparaison complète des
formes, qu’il s’agisse d’une simple paire ou d’une collection plus large. L’analyse
d’une collection vise souvent à extraire des signaux significatifs des formes, per-
mettant par exemple la classification ou la détection de sous-groupes [203]. En
sciences biologiques, des tâches telles que la détection de maladies ou le regrou-
pement d’espèces sur la base du phénotype peuvent alors être e�ectuées automati-
quement [89, 217]. En règle générale, il s’agit d’abord d’établir des relations entre
les formes, par exemple en décrivant les di�érences entre les paires de formes de la
collection. L’analyse statistique de ces relations peut ensuite fournir des informa-
tions plus générales sur la collection dans son ensemble. Cependant, la comparaison
des formes par paire n’a pas de formulation mathématique unifiée et fait souvent
l’objet d’approximations, en fonction de la tâche en aval [186, 89]. En outre, même
en utilisant des approximations, l’obtention automatique de ces relations par paires
pose des défis importants. Ces relations consistent, par exemple, en la détection de
zones similaires sur deux formes ou en la segmentation commune des surfaces pour
extraire les parties partagées [198, 169, 21]. Certaines approches impliquent égale-
ment la détection de points d’intérêt, ou points de repères, plutôt que de régions



2.1. CONTEXTE 15

entières [244]. La détection de ces points similaires permet par exemple de guider
la transformation d’une forme vers une autre, ou de comparer automatiquement les
distances entre les points de repère, ce qui peut s’avérer fastidieux lorsqu’on le fait
manuellement sur des objets réels. Un autre outil utile pour travailler avec des col-
lections de formes est l’enregistrement des formes sur un modèle [22, 28, 138], qui
consiste à relier toutes les formes de la collection à un modèle 3D simplifié et connu,
souvent à l’aide de déformations. Cette méthode est particulièrement utile lorsque la
même forme a été scannée indépendamment plusieurs fois à l’aide du même disposi-
tif d’acquisition ou de dispositifs di�érents, comme lors du tournage d’une vidéo en
3D [29, 124]. L’utilisation d’un modèle 3D facilite généralement l’analyse ou l’ani-
mation en aval en proposant des statistiques et des visualisations simplifiées.

L’un des principaux sujets de recherche dans le domaine de l’analyse des formes
est la mise correspondance des formes [224, 59], en particulier la mise correspon-
dance dense de formes. Ce processus vise à établir, pour chaque point d’une forme,
son point correspondant sur une autre forme, comme présenté dans la Figure 2.2.
Bien que la correspondance des formes ne soit pas directement utilisable pour l’ana-
lyse statistique, elle constitue un élément fondamental de la plupart des méthodes
d’analyse des formes par paire, car elle est la base de la comparaison des formes
en établissant des relations entre les points. Par exemple, certains problèmes, tels
que la détection de points de repère ou la segmentation, sont naturellement dérivés
de la correspondance des formes, et de nombreuses autres tâches tirent facilement
parti de ces résultats. Une correspondance dense entre deux formes simplifie no-
tamment le processus de déformation d’une forme en une autre, puisqu’il s’agit
essentiellement de trouver la déformation optimale alignée sur les correspondances
calculées [9, 209]. Inversement, le calcul de la déformation entre deux formes fournit
finalement des correspondances entre des points qui se chevauchent [69], ce qui met
en évidence le lien inhérent entre ces deux problèmes. La plupart des méthodes de
déformation de formes reposent donc explicitement ou implicitement sur le calcul de
correspondances. D’autres problèmes peuvent également être définis comme des cor-
respondances de formes. Par exemple, le suivi de points de repère dans une vidéo 3D
peut être décrit comme l’obtention de correspondances entre des images successives
de la vidéo. La déformation n’est cependant pas toujours nécessaire pour obtenir
des correspondances [109, 159], et certains travaux ont conçu des méthodes pour
caractériser les di�érences géométriques entre les formes directement basées sur les
correspondances [186, 98, 76], sans s’appuyer sur des modèles de déformation.

Bien que particulièrement puissante, l’obtention de correspondances de formes
par l’annotation humaine est d’un coût prohibitif, ce qui a conduit à un intérêt
croissant pour leur dérivation automatique. Cependant, l’obtention d’une corres-
pondance de forme de haute qualité présente des défis conceptuels, nécessitant le
développement de plusieurs approximations [109, 5, 159]. Notamment, la définition
de la correspondance des formes peut varier en fonction du contexte, imposant di-
vers critères de qualité pour di�érentes applications. Par exemple, dans les scénarios
de suivi de points de repère, l’accent est mis sur la continuité des correspondances
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afin de garantir une progression continue des points dans le temps. Le transfert de
textures nécessite des correspondances de haute qualité, inversibles, préservant les
angles afin d’obtenir des résultats esthétiques. Dans le cas de la déformation des
formes, la précision des correspondances a une importance réduite, à condition qu’il
n’y ait pas de zones discontinues susceptibles d’avoir un impact significatif sur les
résultats finaux. En conséquence, des approches distinctes sont apparues pour au-
tomatiser ce problème, reflétant les exigences nuancées des di�érentes applications.

2.1.2 Méthodes de Mise en Correspondence
Di�érentes approches ont été employées pour la mise en correspondance des formes
dans diverses applications. Traditionnellement, ces méthodes se répartissent en deux
grandes catégories : l’appariement extrinsèque, qui s’appuie principalement sur la
position 3D de la forme dans l’espace et l’appariement intrinsèque, qui vise plutôt
à exploiter les informations locales tout en restant indépendant de ces coordonnées.

L’appariement extrinsèque consiste généralement à obtenir des correspondances
en calculant une déformation raisonnable entre plusieurs formes. Divers modèles ont
été développés à cette fin, allant de simples transformations rigides [22] à des dé-
formations plus complexes [9, 209, 236]. Les modèles de déformation volumétrique,
qui déforment l’espace ambiant plutôt que la surface elle-même [64, 57, 69], sont
également largement utilisés dans le domaine de l’imagerie médicale, en s’appuyant
notamment sur le formalisme des di�éomorphismes discrets [16, 17, 57, 58]. Des
travaux antérieurs ont tenté de transporter un nuage de points vers un autre, en uti-
lisant le transport optimal [54] ou des modèles de mélange gaussien [147], mais en
ignorant généralement la structure surfacique des données. Bien que les algorithmes
d’appariement extrinsèque soient très puissants et intuitifs, car ils déforment visuel-
lement la surface, ils restent sensibles à l’initialisation et peuvent être très lents.
Notamment, en l’absence de points de repère placés à la main, le pré-alignement
des formes, une tâche non triviale sans intervention humaine, est souvent nécessaire
pour obtenir des performances optimales.

En revanche, l’appariement intrinsèque s’appuie sur des informations de surface
locales qui restent généralement invariantes sous isométrie, c’est-à-dire des trans-
formations préservant les distances entre les points (par exemple, des rotations ou
des translations). Plusieurs travaux ont tenté de calculer ces correspondances intrin-
sèques, en s’appuyant souvent sur des signaux initiaux [109] tels que des descripteurs
de surface locaux [211, 219, 15], tout en minimisant les mesures de distorsion telles
que la distorsion d’aire ou l’énergie de Dirichlet intrinsèque [77, 76]. Une autre ap-
proche tente de préserver les distances géodésiques entre les paires de points avant et
après l’appariement [227, 208], mais produit des algorithmes très lents, qui dépendent
fortement de l’initialisation. Afin d’obtenir un transfert de texture précis et visuelle-
ment cohérent, de nouvelles formulations de di�éomorphismes discrets [190, 191, 213]
ont été développées, ainsi que des formulations pour la mise en correspondance géo-
métriquement cohérente [239, 238, 182]. Cependant, ces méthodes ne sont appli-
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cables qu’aux formes ayant un nombre limité de points et ne peuvent traiter que les
formes ayant la même topologie, définie par le nombre de trous et de poignées dans
les surfaces. En comparaison, les cartes fonctionnelles [159, 153, 154, 145, 177, 162],
un sujet essentiel dans cette thèse, simplifie le problème de la correspondance des
formes et vise plutôt à transférer e�cacement les fonctions entre les formes tout en
préconisant plusieurs contraintes géométriques telles que la préservation de l’aire.
Cette formulation assouplie s’adapte facilement à des formes ayant des topologies dif-
férentes et peut être adaptée au sujet di�cile de la mise en correspondance partielle
des formes [181, 128, 13]. En outre, des avancées récentes, tirant parti de puissants
réseaux neuronaux [198, 60, 13, 40, 212], ont permis d’obtenir des résultats de pointe
sur des benchmarks de correspondance de formes standard, plaçant cette méthode
comme l’approche privilégiée pour résoudre ces problèmes. Cependant, malgré leur
invariance aux transformations rigides, les méthodes de mise en correspondance in-
trinsèque restent très sensibles aux symétries intrinsèques des formes, aux parties
manquantes et parfois aux changements de topologie tels que les trous. Il convient
de noter que certaines approches d’appariement intrinsèque ont tenté d’exploiter des
modèles d’appariement extrinsèques pour améliorer leurs performances [70, 71, 72],
mais elles restent instables sans informations initiales supplémentaires, telles que le
pré-alignement.

2.1.3 Limites des Méthodes Actuelles
Malgré leur succès considérable, les méthodes de mise en correspondance de formes
rencontrent des limites, non seulement en termes de performances, mais aussi en
termes de champ d’application.

Les approches extrinsèques, principalement basées sur la déformation, ont eu
beaucoup de succès dans le domaine de l’imagerie médicale [64]. Cependant, les mé-
thodes intrinsèques de mise en correspondance des formes, typiquement associées
à l’infographie, ont vu leur application limitée en dehors de l’évaluation de perfor-
mance pure ou du transfert de texture. L’accent mis sur la correspondance de forme
pure néglige souvent des propriétés, comme la continuité des correspondances, es-
sentielles pour les applications en aval et ayant un impact significatif sur l’analyse
statistique des résultats, bien qu’elle puisse dégrader la précision des correspon-
dances. La prise en compte et la promotion de ces propriétés constituent des défis
importants pour la communauté de la mise en correspondance des formes.

Les méthodes employées sont souvent spécifiquement développées pour les en-
sembles de données utilisés en évaluation. Les tests de référence actuels se concentrent
principalement sur les tâches de correspondance de formes [28, 29, 10, 247, 144, 124],
présentant des formes humaines ou animales dérivées de scans réels enregistrés [28]
ou de formes purement synthétiques [124]. Cependant, ces ensembles de données
sont principalement constitués de formes très similaires, qui ne possèdent pas le ni-
veau de détails que l’on trouve dans les données du monde réel, et ne comprennent
généralement que des formes avec un faible nombre de sommets, parfois encore sous-
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échantillonnées lors de l’évaluation [174]. En outre, bien que certains ensembles de
données intègrent des formes avec des trous et des parties manquantes, ils ne cap-
turent pas les complexités du bruit d’acquisition ou de l’occlusion rencontrées dans
les scans réels. L’évaluation des performances des méthodes actuelles de correspon-
dance de formes sur des données plus variées, di�érentes des références existantes, et
potentiellement provenant du monde réel, est une évolution nécessaire du domaine.

Malgré des performances impressionnantes, les méthodes existantes peuvent en-
core largement être améliorées lors du traitement des formes fortement non isomé-
triques, en particulier dans les scénarios dans lesquels peu d’informations préalables
sont données, telles que l’alignement rigide ou des points de repère. En outre, la co-
existence des domaines intrinsèque et extrinsèque dans l’appariement des formes a
été largement sous-exploité [70, 71], entravant potentiellement les possibilités d’amé-
liorer les résultats en tirant parti des points forts de chaque domaine. L’utilisation
d’outils d’intelligence artificielle, en particulier les récents réseaux neuronaux pro-
fonds [232, 198, 60], s’avère prometteuse pour relever ces défis. Cependant, ces ap-
proches “profondes” sou�rent encore d’une faible performance de généralisation sur
de nouvelles surfaces [184, 60, 40, 212]. En outre, si ces méthodes se sont révélées
e�caces sur des données à petite échelle, elles se heurtent souvent à des problèmes
d’e�cacité de calcul lorsqu’elles sont appliquées à des scans 3D réels de grande
taille [123, 212]. Ainsi, au-delà de l’amélioration des performances, l’adaptation de
ces approches à l’extensibilité des données réelles reste un défi crucial.

Dans cette thèse, notre objectif est d’accroître la stabilité et l’applicabilité des
méthodes de correspondance des formes, en mettant l’accent sur l’amélioration de
leur extensibilité et de leur adéquation avec les scénarios du monde réel.

2.2 Contributions
Cette thèse aborde plusieurs défis en matière de comparaison de formes, en utili-
sant et améliorant des méthodes modernes de comparaison spectrale de formes. Nos
contributions sont guidées par les exigences des tâches en aval utilisant la comparai-
son de formes, en particulier dans les scénarios dans lesquels des maillages de haute
résolution sont utilisés. L’organisation de la thèse est la suivante :

Première partie : Analyse Locale des Di�érences. Le premier chapitre se
concentre sur la caractérisation locale des di�érences entre deux formes. L’obtention
d’information sur les zones de di�érences entre deux surfaces est un problème très
di�cile, essentiel pour des sujets tels que la détection d’anomalies ou la détection
de maladies.

Deuxième partie : Analyse d’une Cohorte de Patients. Le Chapitre 4 pré-
sente un travail collaboratif avec des chirurgiens de l’hôpital Necker à Paris, où nous
utilisons des méthodes modernes de cartes fonctionnelles afin d’analyser une collec-
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tion de crânes de jeunes enfants. L’objectif principal est de détecter automatique-
ment la trigonocéphalie, une maladie caractérisée en partie par un front triangulaire.
Malgré la réussite du projet, ce chapitre met en évidence des domaines dans lesquels
les méthodes de cartographie fonctionnelle peuvent être améliorées, notamment en
soulignant l’importance des correspondances continues par rapport à la précision.
En outre, les données étaient constituées de maillages à haute résolution, ce qui
a souligné les goulots d’étranglement en matière de vitesse des méthodes de cor-
respondance spectrale des formes. Les chapitres suivants cherchent à améliorer ces
sujets.

Troisième partie : Renforcement de la Continuité. Dans le Chapitre 5, nous
présentons un nouvel algorithme de mise en correspondance de formes, fondé sur le
cadre de l’optimisation discrète [177], où nous renforçons explicitement la continuité
des correspondances. Les méthodes existantes pour la correspondance des formes
fonctionnant déjà bien dans le cadre de surfaces isométriques, nous introduisons
un ensemble de données non isométriques plus complexe, qui est une version re-
travaillée de l’ensemble de données DeformingThings4D [124], où la plupart des
algorithmes de références ne produisent pas de résultats satisfaisants en l’absence
de contrainte sur la continuité des correspondances.

Quatrième partie : Cartes Fonctionnelles sur Maillage Dense . Dans le
Chapitre 6, nous nous penchons sur l’ine�cacité calculatoire des méthodes de cartes
fonctionnelles sur des maillages denses. Nous développons alors un estimateur e�-
cace de la carte fonctionnelle en utilisant seulement un ensemble épars de points sur
la surface, et nous fournissons une limite supérieure théorique sur l’erreur d’estima-
tion. Cette approche donne des résultats comparables aux méthodes classiques, avec
une précision identique, et ce dans une fraction du temps de traitement standard,
sans avoir besoin de ré-échantillonnage explicite de la surface.

Cinquième partie : Apprentissage de Cartes Fonctionnelles. La dernière
section, couverte par le Chapitre 7, se concentre sur de nouvelles méthodes de
correspondance de formes utilisant des réseaux neuronaux profonds et des cartes
fonctionnelles. Notre approche utilise des méthodes GPU e�caces, développées pour
le calcul des méthodes à noyaux [44], et qui éliminent le besoin de stocker d’énormes
matrices denses en mémoire. En outre, proposons le portage GPU d’un algorithme
de ra�nement existant, en supprimant la nécessité d’une di�érenciation instable à
travers un système linéaire. Cette implémentation permet d’utiliser des formes de
très haute résolution, pendant l’entraînement ou le test, ce qui permet de surmonter
les problèmes d’applicabilité des méthodes actuelles.

Sixième partie : Conclusion. Le chapitre 8 conclut le manuscrit, proposant tout
d’abord un aperçu de l’évolution du domaine du traitement de la géométrie et de
l’impact de notre travail pendant la durée de cette thèse. Nous discutons ensuite des
défis actuels dans le domaine ainsi que des directions prometteuses pour les travaux
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futurs.

Malgré leur simplicité apparente, les méthodes d’analyse spectrale de forme
posent souvent des problèmes d’implémentation. Pour y remédier, toutes nos implé-
mentations sont disponibles en ligne, et nous avons développé un paquetage Python
nommé pyfmaps, facilitant l’utilisation de nombreuses méthodes. Ce paquetage,
disponible à l’adresse https://github.com/RobinMagnet/pyFM, a connu un suc-
cès décent, avec plusieurs parties du code utilisées dans d’autres travaux [123, 92].
Notamment, toutes nos contributions s’appuient sur cette implémentation.

2.3 Publications
Le contenu de cette thèse s’appuie sur les publications suivantes :

• R. Magnet and M. Ovsjanikov. DWKS : A Local Descriptor of Deformations
Between Meshes and Point Clouds. In 2021 IEEE/CVF International Confe-
rence on Computer Vision (ICCV), 2021 [130]. Présenté dans le Chapitre 3.

• R. Magnet, K. Bloch, M. Taverne, S. Melzi, M. Geo�roy, R. H. Khonsari, and
M. Ovsjanikov. Assessing craniofacial growth and form without landmarks : A
new automatic approach based on spectral methods. Journal of Morphology,
2023 [134]. Présenté dans le Chapitre 4.

• R. Magnet, J. Ren, O. Sorkine-Hornung, and M. Ovsjanikov. Smooth Non-
Rigid Shape Matching via E�ective Dirichlet Energy Optimization. In 2022
International Conference on 3D Vision (3DV), 2022 [133]. Cet article a gagné
le prix du meilleur article de la conférence 3DV. Présenté dans le Chapitre 5.

• R. Magnet and M. Ovsjanikov. Scalable and E�cient Functional Map Com-
putations on Dense Meshes. Computer Graphics Forum, 2023 [131]. Présenté
dans le Chapitre 6.

• R. Magnet and M. Ovsjanikov. Memory-Scalable and Simplified Functional
Map Learning. In 2024 IEEE/CVF Conference on Computer Vision and Pat-
tern Recognition (CVPR), 2024 [132]. Présenté dans le Chapitre 7.

https://github.com/RobinMagnet/pyFM


Chapter 3

DWKS: A Local Descriptor of

Deformations Between

Meshes and Point Clouds

We propose a novel pointwise descriptor, called DWKS, aimed at finding correspon-
dences across two deformable shape collections. Unlike the majority of existing de-
scriptors, rather than capturing local geometry, DWKS captures the deformation
around a point within a collection in a multi-scale and informative manner. This,
in turn, allows computing inter-collection correspondences without using landmarks.
To this end, we build upon the successful spectral WKS descriptors, but rather than
using the Laplace-Beltrami operator, show that a similar construction can be per-
formed on shape di�erence operators, that capture di�erences or distortion within
a collection. By leveraging the collection information, our descriptor facilitates dif-
ficult non-rigid shape matching tasks, even in the presence of strong partiality and
significant deformations. We demonstrate the utility of our approach across a range
of challenging matching problems on both meshes and point clouds. The code for
this chapter can be found at https://github.com/RobinMagnet/DWKS.

3.1 Introduction
Shape matching is a ubiquitous problem in 3D computer vision, with various ap-
plications like texture and deformation transfer. Numerous methods have therefore
been developed during the last decade to compute correspondences between sur-
faces, relying on simple rigid deformations to more recent learning-based models
[224, 188].

While these methods have shown impressive results on several datasets, there
remain some very challenging scenarios, especially when dealing with symmetries
and non-isometric shapes. The existence of intrinsic symmetries in non-rigid shapes
(e.g. left-right symmetry in a human shape) can be handled in multiple ways, us-
ing an orientation preserving constraint on shape descriptors [174], exploring the
space of maps [175], or adding priors through learning-based methods [127, 184, 60].
These methods respectively require the existence of precise shape descriptors, an
automatic selection of symmetric and non-symmetric map, and large datasets for
neural network training. The case of non-isometric shapes is typically addressed

https://github.com/RobinMagnet/DWKS
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Figure 3.1: Our method uses two collections of noisy point-clouds with roughly
similar deformations (left) and outputs a point-wise inter-collection map (right).

either by requiring user-specified landmarks [7, 77, 190] or, again, through extensive
neural network training [87], among many other approaches. In the specific case of
partial non-rigid shape matching, several methods have been developed [181, 128],
relying on theoretical properties of the changes to the Laplace-Beltrami operator
under partiality.

Remarkably, while 3D shapes often come in the context of a collection, very few
methods [193, 48] have tried to leverage the commonality of the deformations that
exist within the collections to facilitate matching across them, e.g. to disambiguate
such symmetries or address partiality. Notably, while matching two human shapes
in resting pose can su�er from their intrinsic symmetry ambiguity, using information
from the deformed version of these shapes with e.g. their left knee up could help
disambiguate their symmetries. Figure 3.1 exhibits how local deformations of the
knees when jumping on one leg allow to compute correspondences between two
human shapes, even when the upper-half of the body is missing.

In this work, we propose to develop a local descriptor of di�erences between
surfaces and point clouds. Our method is inspired by successful spectral point-
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based descriptors extracted from the Laplace-Beltrami operator [211, 15]. Our main
insight is that a similar construction can be performed on other functional operators,
leading to informative descriptors that capture di�erent properties of shapes and
collections. In our work, we use shape di�erence operators [186] that have been used
for both analyzing deformations within a collection [98] and even shape synthesis
[99]. In the context of cross-collection mapping, shape di�erence operators have been
used in [193, 48] as global objectives within the functional map framework, which
can limit their utility to achieve shape matching. Instead, we demonstrate that
pointwise spectral descriptors can successfully be extracted from shape di�erence
operators. Our descriptor, termed DWKS, thus combines the power and flexibility of
local descriptors with the information of shape distortion present in shape di�erence
operators, which, as we demonstrate below, makes it applicable in partial cross-
collection matching scenarios. We also exploit recent advances in constructing robust
operators [197] to enable accurate and e�cient matching across shapes represented
as both meshes and point clouds.

Our main contributions can be summarized as follows: 1. we introduce a novel
pointwise descriptor that reflects deformation around a point within a collection, 2.
we demonstrate how spectral methods, and specifically the WKS descriptors can be
extended beyond the Laplacian to shape di�erence operators, and 3. we demonstrate
how di�cult matching scenarios with partiality and symmetry ambiguity, on both
point clouds and meshes, can strongly benefit from our descriptor without landmarks
or neural network training.

3.2 Related Work
The shape matching literature is very vast, and we will only highlight existing meth-
ods that are most relevant to our setting. We refer the reader to a recent survey [188]
on the subject for more information. We base our method on the functional map
framework defined in [159] which seeks to match functional spaces on the shapes in-
stead of the shapes themselves, and has led to impressive results in the last decade.
Several follow-up works [153, 230, 174, 95, 145, 175] have brought substantial im-
provements on the original pipeline, and all heavily rely on the existence of consistent
descriptor functions of shapes which are functions supposed to be preserved by the
mapping, based either on local descriptors [211, 15, 51] or landmarks. Generating
informative and robust descriptors in a fully automatic way remains a very chal-
lenging problem, and often requires near-isometric shapes without symmetries. To
alleviate this issue, recent works have sought to learn descriptors using neural net-
works, either from usual descriptors [127, 184] or directly from raw data [60, 196].
This allows to incorporate prior information into descriptors, and possibly disam-
biguate symmetries like left and right for a human shape.

A more demanding setting lies in partial shape matching, which is a simple
case of non-isometric shape matching. A remarkable adaptation of the original
framework was introduced in [181, 128], based on the theoretical insights of the
relation between the Laplace-Beltrami operators of a shape and a compact subset
of it.
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Methods computing correspondences using functional maps can typically pro-
duce somewhat noisy correspondences, which then serve as initialization for refine-
ment algorithms. The original refinement technique uses a variant the ICP algo-
rithm [159] which supposes shapes to be isometric, but new more general approaches
have then been developed [75, 174, 77, 145, 100]. The ZoomOut algorithm [145] is
of particular interest as it starts from very rough correspondences to obtain high
quality maps through spectral up-sampling. While it also relies on a strong near-
isometry assumption, the theoretical background developed in [181] can be used to
adapt the algorithm to partial shapes in practice.

More related to our contribution are multiple works on shape collections. Several
methods have been developed to refine intra-collection correspondences using cycle
consistency constraints, e.g. [150, 93, 199, 100, 83] among many others. These meth-
ods also leverage information within shape collections, but are typically not aimed
at computing cross-collection maps and often still rely on pairwise map estimation
as a building block. Extracting information about the variability of shapes within a
collection was brought about by the introduction of shape di�erence operators [186],
which summarize intrinsic distortion between a pair or a collection of shapes as two
functional operators using simply rough correspondences between two shapes repre-
sented as functional maps. These two “di�erence” operators, together with a source
shape, have been shown to be su�cient to reconstruct the deformed version up to
isometric deformations [49], and up to rigid motion using additional extrinsic shape
di�erences [49, 99]. Shape di�erence operators provide a powerful tool for sum-
marizing the variability within shape collections, which has motivated their use in
computing cross-collection shape correspondences. Our work is directly inspired by
the excellent results shown in [193, 48] where corresponding shape di�erence opera-
tors are matched together to compute cross-collection functional maps. The solving
procedure, however, relies on SVD, which su�ers both from sign ambiguity and pos-
sible instability. Furthermore, the method supposes the global deformations to be
matched to correspond, which breaks down in the case of partiality.

In this work we focus on computing local or pointwise descriptors from shape
di�erences, which can be used both within the functional maps pipeline and be-
yond [15, 159]. We show that while shape di�erence operators [186] capture the
global di�erence between shapes, their properties allow pointwise information to be
extracted in the form of vertex-wise descriptors. This information can be used either
in conjunction with the pipeline of [193, 48] in the case of complete shapes, or even
directly, in the case of partial shapes.

3.3 Background

3.3.1 Functional Maps
Our work falls within the functional map framework originally introduced in [159]
and that we review below briefly for completeness. Given two surfaces M and N , a
point-wise correspondence T : N æ M can be equivalently represented as a linear
(functional) map F : L

2(M) æ L
2(N ) between the space of squared integrable
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functions on each shape.
Using an appropriate basis for the two functional spaces, the functional map

F can be represented as a possibly infinite matrix. Specifically, eigenfunctions of
the Laplace-Beltrami operator of each shape have had a lot of success in spectral
shape analysis [120, 179, 159] and can be interpreted as Fourier basis for functions
on surfaces, and enable basis truncation due to their multiscale nature.

3.3.2 Shape Matching
The standard functional correspondence pipeline [162] between shapes M and N
looks for a functional map C œ RkN ◊kM from L

2(M) to L
2(N ), where kM and kN

represent the size of the corresponding (truncated) basis.
Given a set of descriptor functions on each shape {(fi, gi)}p

i=1 with fi œ L
2(M)

and gi œ L
2(N ), expected to be preserved under the functional map, we encode

them in their respective basis as two matrices A œ RkM◊p and B œ RkN ◊p. Standard
choices are HKS [211] or WKS [15] descriptors.

Denoting �M (resp. �N ) the Laplace-Beltrami operator on shape M (resp. N ),
expressed in their respective basis as diagonal matrices, the functional correspon-
dence problem is written as:

arg min
CœRkN ◊kM

ÎCA ≠ BÎ2
F

+ µlÎC�M ≠ �N CÎ2
F

(3.1)

with Î · ÎF the Frobenius norm. Here the first term ensures descriptor preservation,
while the second one favors isometric maps, and µl œ R is a manually set scaling
factor.

Among many extensions to this basic pipeline, e.g. [181, 117, 230, 84, 174] a
notable one, introduced in [153] and that we use below, proposed a term promoting
the functional maps to arise from pointwise correspondences. For this, a functional
operator is associated to each input descriptor �fi , �gi , that acts on other functions
through multiplication. These operators are then introduced into the optimization
objective from Equation (3.1), by promoting commutativity with them, namely
µdc

q
i ÎC�fi ≠ �giCÎ2

F
. While this pipeline can produce accurate correspondences

given appropriate descriptors, it su�ers from multiple issues. Namely, it does not
allow disambiguating symmetries, requires specific adaptation for partial matching
and more broadly does not take into account information about collections that
shapes often naturally are part of.

3.3.3 Shape Di�erence Operators
Our work also heavily relies on shape di�erence operators introduced in [186], that
intuitively capture di�erences or distortion across a pair or within a collection of
shapes. Specifically given shapes M1 and M2 with known correspondences encoded
as a functional map F between them, and inner products È·, ·ÍM1 and È·, ·ÍM2 on
each shape, the associated shape di�erence operator is defined as the unique linear
operator D acting on L

2(M1) so that

Èf, DgÍM1 = ÈF (f), F (g)ÍM2 ’f, g œ L
2(M1) (3.2)
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Figure 3.2: Examples of DWKS descriptors for meshes. The left part displays the
source meshes and their deformed version. The right part displays for each mesh the
DWKS descriptors at 3 fixed energy levels shown at the bottom (seen as a function
of the mesh). Notice that descriptors remain somewhat consistent even in the case
of partiality.

This operator can be seen as compensating the distortion induced by F with
respect to the given inner products. Note that shape di�erence operators sharing
both a common source shape and inner product can all be compared as they all act
on the same functional space.

The original work [186] introduced two shape di�erence operators, which capture
the complete intrinsic distortion across shapes. The first one VM1,M2 , is associated
to the standard L

2 inner product on both shapes Èf, gÍL2(S) =
s

S f(x)g(x)dµ
S on a

shape S. The second one, denoted RM1,M2 , is associated to the H
1
0 inner product

Èf, gÍH
1
0 (S) = ÈÒf, ÒgÍL2(S).

The two operators VM1,M2 and RM1,M2 are called respectively area-based and
conformal shape di�erences, since they equal identity if the underlying maps are
respectively area-preserving and conformal [186].

Using the spectral basis of size k1 and k2 to encode the F into C œ Rk2◊k1 , the
shape di�erence operators can be computed directly as k1 ◊ k1 matrices

VM,N = C€C (3.3)

RM,N =
1
�M

2†
C€�N C (3.4)

with † denoting the Moore-Penrose pseudo inverse.

3.3.4 Matching with Shape Di�erence Operators
Although originally shape di�erence operators were introduced for shape analysis,
they also have been used for solving cross-collection shape correspondence prob-
lems [193, 48]. Specifically, given two shape collections {Mi}n

i=0 and {Ni}n

i=0, where
deformation between M0 and Mi are similar to deformation between N0 and Ni

for any i œ {1, . . . , n}, the goal is to compute a cross-collection map between M0
and N0 which we denote as M and N .
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With similar di�erences between these pairs of shapes, we expect their associated
shape di�erence operators DM

i
and DN

i
to act similarly, where D denotes any of the

area or conformal shape di�erence operator and the index indicates the operator is
associated to the deformation between shape 0 and shape i. In the functional map
framework, this is equivalent to expecting the sought functional map to commute
with these operators, that is CDM

i
ƒ DN

i
C. This leads to the optimization problem

solved in the recent approach of [48] (which extends the method in [193]):

arg min
CœRkN ◊kM

ÎCÎF =1

nÿ

i=1
Ei(C) + –ÎC�M ≠ �N CÎ2

F
(3.5)

where – œ R is a scaling factor and

Ei(C) = ÎCRM
i

≠ RN
i

CÎ2
F

+ ÎCVM
i

≠ VN
i

CÎ2
F

(3.6)

Note that unlike the standard functional matching pipeline (3.1), the optimiza-
tion objective (3.5) does not rely on the existence of coherent descriptors. Moreover,
without the constraint ÎCÎF = 1 the trivial solution C = 0 would give zero error.
The authors of [193, 48] solve the problem in Equation (3.5) using SVD, which
results both in sign ambiguity for the solution and instability in practice. Moreover,
the second term of the objective (3.5) acts as a powerful regularizer in the case of
near-isometric shapes but fails in more challenging settings, including partiality.

In this work, we build on this pipeline and use local pointwise descriptors ex-
tracted from the shape di�erence operators. This allows both to use standard opti-
mization techniques, thus avoiding the costly SVD associated with ÎCÎF = 1 regu-
larization, and to remove the need for near-isometric regularization. Ultimately, our
framework is both more e�cient and leads to significant improvements, especially
in the case of partial shapes.

3.4 Our approach – DWKS

Algorithm 1 Computing DWKS descriptors
Require: Shape Di�erence Operator D in the reduced basis, eigenvectors � on

source shape, energy values (ej)j, scale parameter ‡

1: Compute the eigenvectors U and the eigenvalues (⁄i)i of D
2: Compute � = �U the eigenvectors of D in the canonical basis.
3: Use �, (⁄i)i and ‡ to compute the DWKS descriptor for each ej using Eq. (3.7).
4: Return One DWKS descriptors for each energy value.

3.4.1 Motivation and Overview
The standard functional correspondence pipeline described in Section 3.3.2 relies
on both commutativity with the Laplacian operators and alignment of local de-
scriptors. Interestingly, spectral descriptors such as HKS or WKS [211, 36, 15] are
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Algorithm 2 Aggregate DWKS descriptors for a collection

Require: Functional maps {Ci}n

i=0 between the base shape and each shape i, eigen-
vectors � on source shape, diagonal matrices {�i} of eigenvalues of the Lapla-
cian for each shape, energy values (ej)j, scale parameter ‡

1: for i = 1 to n do
2: Compute Vi and Ri using Eqs. (3.3) and (3.4) with Ci, �0 and �i.
3: Compute DWKS of Vi and Ri using Algo. 1 with ‡, � and (ej)p

j=1
4: end for
5: Return DWKS descriptors for the complete collection

extracted from the same Laplacian operators. Nevertheless, their use in the opti-
mization problem of Equation (3.1) both helps to prevent trivial solutions and in-
jects local information into the process. Our main goal is to mimic this construction
for cross-collection matching, but using shape di�erence operators. Interestingly,
commutativity with shape di�erences has already been advocated in [193, 48]. We
seek to extend this construction by also extracting pointwise descriptors from shape
di�erence operators, similarly to the way WKS is extracted from the Laplacian.

Unfortunately, such an adaptation is not straightforward primarily because un-
like the Laplace-Beltrami operators whose spectral properties are well-understood
and have intuitive physical interpretations, shape di�erence operators are much less
studied, and it is therefore not clear whether pointwise spectral descriptors can be
extracted in the same manner. We thus start with the following key observation
(with proof given in the supplementary materials):

Theorem 3.1. Given a non-degenerate functional map F , both the area-based and
conformal shape di�erence operators are positive (semi)-definite, provided that the
area and sti�ness matrices of the Laplacian are positive (semi)-definite.

This theorem, which interestingly was not demonstrated in the original shape
di�erence work [186], provides the first insight into the possibility of applying spec-
tral approaches to shape di�erence operators, since, similarly to the Laplacian, their
eigenvalues are guaranteed to be non-negative. Moreover, we remark that shape dif-
ference operators enjoy both locality and composition or functoriality properties
(see, respectively, propositions 4.2.3 and 4.2.4 in [50]). The former remark resonates
with the more general property of shape di�erence operators in [186], which states
these two operators act on functions depending on the local distortion induced by
the underlying correspondence map.

While the eigenfunctions of the Laplace-Beltrami operator capture the “smoothest”
possible functions on the surface, the eigenfunctions of the shape di�erence opera-
tors, intuitively, capture areas of distortion between the shapes (see [186, 96] for a
discussion of this property). Moreover, functions that are preserved by the shape
di�erences Df = f (and thus correspond to eigenvalue 1) correspond to areas of no
distortion (see Theorem 4.2.1 in [50]). One can draw a parallel with the constant
function, corresponding to the zero eigenvalue of the Laplacian. Moreover, shape dif-
ferences naturally enjoy the multiplicative algebra [186] (see also Proposition 4.2.4 in



3.4. OUR APPROACH – DWKS 29

Figure 3.3: Our pipeline takes two collections as input, with given base shapes.
DWKS descriptors for each deformation are aggregated to smooth out the noise,
and are then used for point-wise map computation.

[50]), which means, for example, that DN ,M = (DM,N )≠1 and DM,N = DM,PDP,N
for any shape di�erence operator D and shapes M, N and P (up to the appropriate
change of basis).

The two observations above suggest that the spectrum of shape di�erence op-
erators is more naturally expressed using the log-scale. This way, the undeformed
regions correspond to log(1) = 0 log-eigenvalues. Moreover, the log-eigenvalues of
the operator that captures the inverse deformation are simply negative of that of the
direct deformation. Finally, in some cases (e.g., when deformations commute) the
composition of di�erence operators leads to log-eigenvalues being sums of individual
di�erence operators. We expand upon these observations and provide a more formal
treatment in the supplementary materials.

A final but essential remark is that the shape di�erence operators we use in
practice are all expressed using the truncated basis of Laplace-Beltrami eigenfunc-
tions using Equations (3.3) and (3.4). The eigenfunctions of shape di�erences can
therefore only represent very smooth functions and in particular cannot represent a
Dirac delta function on the mesh but rather a heat kernel centered around a point.
s

3.4.2 Definition

Using these remarks and inspired by the definition of WKS descriptors [15], we
define the DWKS descriptor of a given shape di�erence operator D acting on shape
M as
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Figure 3.4: Visualization of the fitting pipeline. Starting from descriptors, a first
point-wise map is computed, which is then projected into a low-dimension func-
tional map ignoring some outlier vertices. This functional map is then refined using
ZoomOut algorithm [145].

DWKS(D) : M ◊ R æ R

(x, e) ‘æ C

kMÿ

k=1
⁄k>0

e
≠ (e≠log(⁄k))2

2‡2 Âk(x)2 (3.7)

with (⁄k)
k

and (Âk)
k

respectively the eigenvalues and eigenvectors of the operator
D, ‡ a manually set parameter, and C ensures that

s
R ÎDWKS(D)(·, e)ÎMde = 1.

DWKS can be interpreted as a Gaussian blur of the spectrum of the operator,
where the parameter ‡ defines the spread of eigenvectors on the log scale. Remarks
from Section 3.4.1 motivate the choice of a constant ‡ across all energy levels.

Note that in order to compute a DWKS descriptor we assume to be given either
a pair or a collection of shapes with functional maps between them. The functional
maps are represented in the truncated Laplacian eigenbasis, which leads to small-
size shape di�erence operator matrices. Note that DWKS also produces a separate
pointwise descriptor for each (area-based and conformal) shape di�erence operator,
and can be extended to any shape di�erence operator by applying the construction
described in Algorithm 1.

Examples of DWKS descriptors of the area shape di�erence operator, seen as
functions of the shape at a given energy level, are displayed on Figure 3.2. Each line
displays descriptors for similar deformations of a cat and a lion, which do not share
either similar geometry or number of vertices. Note that the descriptors seem quite
similar up to some noise, as with e = log 1.2. The bottom line demonstrates that
the descriptors remain stable even in the case of partiality, as they capture local
information.
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3.4.3 Stability of descriptors
As seen from Figure 3.2, DWKS descriptors seem to remain stable even in the case
of partial shapes, but the reason might be unclear.

When comparing DWKS descriptors between two complete and two partial
shapes, two phenomena occur. On the one hand, eigenfunctions of shape di�er-
ence operators and therefore the associated DWKS descriptors are more localized
in the partial case since the spectral basis can represent more precise elements, as
shown in [181]. On the other hand, only a fraction of the less localized eigenfunc-
tions in the complete case are located on the zone represented by the partial shape.
Eventually, we observe in practice that these two e�ects get averaged out by the
Gaussian blur.

In practice, DWKS descriptors provide partial information on shape deformation
and therefore use additional regularization to obtain more meaningful point-to-point
correspondences. In the following we present one possible pipeline, illustrated on
Figure 3.3 to obtain point-wise maps from DWKS descriptors.

3.4.4 Matching Pipeline
We suppose being given two similar collections of shapes (Mi)n

i=0 and (Ni)n

i=0,
aligned in the sense that the deformation between M0 and Mi is similar to the
one between N0 and Ni for all i. Note that this information can be automatically
retrieved from unaligned collections of di�erent size using the pipeline from [48].
We also assume to have access to approximate intra-collection maps, which can be
computed using known near-isometric shape matching technique.

For simplicity, we equivalently write M (resp. N ) or M1 (resp. N1). Our
matching pipeline proceeds in four steps, shown in Figure 3.4:

1. Compute shape di�erence operators of dimension kM and kN for each col-
lection, and aggregate DWKS descriptors for each of them in matrices A œ
RnM◊np and B œ RnN ◊np.

2. Compute an approximate point-wise map using DWKS descriptors.

3. Project the point-wise map into a low dimension functional map, using only a
subset of the vertices.

4. Refine the functional map using e.g. the ZoomOut [145] algorithm.

In the first step, we use p evenly spaced energy values (e1, . . . , ep) and compute
descriptors using Algorithm 2.

In the second step, we firstly combine the standard functional map pipeline
described in Section 3.3.2 with the commutativity terms introduced in [193, 48]:

Cú = arg min
CœRkN ◊kM

Ed(C) + µdcEdc(C) + µlEl(C)

+ µcEc(C) + µaEa(C)
(3.8)
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with Ed(C) = ÎCA ≠ BÎ2
F

the descriptor preservation term where A and B are
matrix A and B projected in the spectral basis, Edc(C) promotes commutativity
with operators built from individual descriptors described in Section 3.3.2, El(C)
the standard commutativity with the Laplace-Beltrami Operator ÎC�M ≠�N CÎ2

F
,

Ec and Ea respectively enforcing commutativity with the conformal and area-based
shape di�erence operators i.e. q

i ÎCRM
i

≠RN
i

CÎ2
F

and q
i ÎCVM

i
≠VN

i
CÎ2

F
where

Ri is the i-th conformal shape di�erence operator and Vi the i-th area one. The
result Cú from problem (3.8) is then transformed into a point-wise map T

F : N æ
M using the standard method from [159].

In Step 3., we seek to project the point-wise map T into a low-dimensional
functional map. To do so, we first discard the fraction – of vertices of N with the
largest descriptor distance defined for vertex j as d(j) = ÎlT F (j)(A) ≠ lj(B)Î2 where
lm denotes the m-th line of a matrix. This usually ignores vertices near cuts and
holes where descriptors are less precise, as seen on Figure 3.4.

In step 4., we refine the low-dimensional functional map using the ZoomOut
algorithm [145]. Note that the absence of a refinement algorithm tailored for partial
matching makes results particularly sensitive to the refinement parameters. During
the first iterations, we ignore vertices of N belonging to the previous subsample and
use the complete set of vertices for the last few iterations.

3.5 Experiments
Parameters. Unless stated otherwise, the parameters for DWKS are fixed across
all experiments. The energy values are set to 200 linearly-spaced values between
≠ log 3 and log 3. The standard deviation parameter ‡ is set to 1.2% of the total
range. The size of the computed shape di�erence operators is set to kM = kN = 50
and the functional map used to compute them are of size 3kM ◊ kM as advocated
in [48]. Parameters for optimization problem (3.8) are µdc = 10, µl = 0, and
µa = µc = 10≠4. All the terms of Equation (3.8) have been introduced separately
in previous works [159, 153, 48], and we refer the reader to these articles or to the
supplementary material for a more in depth discussion on their e�ect. The low-
dimension functional map is a 15 ◊ 15 matrix for complete shape, and a 15 ◊ ⁄15
matrix for partial shape with ⁄ the estimated slope of the slanted diagonal of the
functional map as described in [181]. We set – = 20% in the case of partial shapes,
and – = 5% in the case of complete shapes, where the amount of noise is reduced.
More details about the parameters values can be found in the supplementary ma-
terial. The implementations of our method and of the baselines are available at
https://github.com/RobinMagnet/DWKS.

Cats and Lions. This first experiment uses synthetic data to evaluate the stability
of our method in the standard settings used in [48], and show how our pipeline can
handle partiality where the matching technique from [48] might struggle. The two
collections consist of 10 similar versions of a cat and a lion meshes as those displayed
on Figure 3.2. We also manually create a collection of lions cut in half, as seen in

https://github.com/RobinMagnet/DWKS
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Figure 3.5: Results on the Sumner dataset using the complete shapes. We show our
method obtains similar results as [48] in this case.

Figure 3.6. Using standard parameters and subsampling 1 out of 3 descriptors for
faster computation, Figure 3.5 shows our method achieves similar accuracy than [48]
on complete shapes without the need for a costly SVD solver. Figure 3.6 displays
our results in the case of partial before and after the refinement step, compared to
those from [48] where we set µl = 0 in their objective (3.5) for fairness since the near-
isometry assumption fails. We additionally show results obtained by the standard
functional map pipeline [153] using WKS descriptors, described in Section 3.3.2.

Synthetic face dataset. We use a similar setting on another synthetic dataset [186]
consisting of two collections with 10 faces with multiple expressions. As we wish
to focus on real noisy scans in the following experiment, we refer the reader to the
supplementary material for illustrations of results on this dataset.

DFaust. We finally tested our pipeline on the DFaust dataset [29], which con-
sists of multiple similar collections of real scans of human shapes, which we see as
point clouds. This dataset is especially challenging since real data contains notable
holes and outlier vertices, which forces us to use approximate intra-collection maps.
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Figure 3.6: Results on the Sumner dataset. While our method doesn’t achieve a
visually perfect result due to the absence of tailored refinement, it outperforms usual
methods. Digits on the legend describe the average geodesic error for each method.

Using a recent formulation of a Laplacian for point clouds [197], we apply our com-
plete pipeline to collections of complete and partial shapes. Note that the method
from [48] can be similarly adapted to work with point clouds and still serves as a
baseline. In the case of partial shapes, we again do not apply ICP refinement to
results from [48] for fairness. A pointwise map obtained when matching the two
collections of humans in jumping motion are shown in Figure 3.1. In Figure 3.7, we
provide both a qualitative and quantitative evaluation. Our pipeline brings signifi-
cant improvement to [48] both in the complete and partial setting even without the
refinement step, which demonstrates its robustness to noise and applicability to real
scenarios. Results from [48], by contrast, do not achieve satisfying results even in
the isometric case. Additional quantitative and qualitative results on this dataset as
well as comparisons to other baselines are available in the supplementary material.

3.6 Conclusion and future work
In this chapter, we introduced a pointwise descriptor of deformation between sur-
faces, able to e�ciently encode information about local distortion within a collec-
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Figure 3.7: Results on the DFaust dataset. We match two collections of 6 meshes
representing humans in jumping motion. The bottom row represents accuracy curves
of pointwise maps in the complete (left) and partial (right) cases. Numbers in the
legend give the average accuracy multiplied by 103.

tion at a vertex-level. Our pipeline enables to leverage the common deformations
of meshes and point clouds to compute maps in challenging scenarios, including
symmetry and partiality.

Our approach however su�ers from some limitations, as it only focuses on in-
trinsic deformations of shapes. Furthermore, the absence of robust refinement algo-
rithms in the case of partial shapes makes our method very sensitive to the param-
eters of these algorithms. Finally, while the parameters were set as constants across
our experiments, they still might have to be manually set by the user.

In the future, it will be interesting to exploit meaningful extrinsic shape di�erence
operators in the vein of [99], and to potentially overcome the choice of a base shape
through the introduction of consistent latent spaces [98].
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Chapter 4

Assessing Craniofacial Growth and

Form Without Landmarks:

A New Automatic Approach

Based on Spectral Methods

Here we present a novel method for the morphometric analysis of series of 3D shapes,
and demonstrate its relevance for the detection and quantification of two craniofacial
anomalies: trigonocephaly and metopic ridges, using CT-scans of young children.
Our approach is fully automatic, and does not rely on manual landmark placement
and annotations. Our approach furthermore allows to di�erentiate shape classes,
enabling successful di�erential diagnosis between trigonocephaly and metopic ridges,
two related conditions characterized by triangular foreheads. These results were ob-
tained using recent developments in automatic non-rigid 3D shape correspondence
methods and specifically spectral approaches based on the functional map framework.
Our method can capture local changes in geometric structure, in contrast to methods
based, for instance, on global shape descriptors. As such, our approach allows per-
forming automatic shape classification and provides visual feedback on shape regions
associated with di�erent classes of deformations. The flexibility and generality of
our approach paves the way for the application of spectral methods in quantitative
medicine.

4.1 Introduction
Trigonocephaly is a puzzling congenital craniofacial malformation secondary to a
premature fusion of the metopic suture, located between the two frontal bones.
Trigonocephaly is characterized by a triangular, keel-shaped forehead, biparietal
widening and hypotelorism [116]. Interestingly, the usual theories on craniofacial
growth are of little help to understand the mechanisms leading to this malformation,
and there is currently no clear explanation accounting for the striking increase in its
prevalence in the last three decades [223]. Trigonocephaly requires surgical correc-
tion before one year of age for aesthetic and functional imperatives. In this context,
early and reliable diagnosis is key in the management of trigonocephaly [141].

Numerous anthropometric measurements have been proposed in the literature
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to help diagnose this condition [107, 38], and also to di�erentiate trigonocephaly
from metopic ridges, a minor anomaly due to an excessive ossification of the metopic
suture, without orbital deformation or biparietal widening, that does not generally
require surgical correction. Quantifying morphological di�erences between trigono-
cephaly and metopic ridges can be hard to perform reliably. Instead, distinguishing
between these two conditions is typically performed using purely subjective, qualita-
tive analysis. Furthermore, even though the di�erences between these two conditions
are three-dimensional, most of the metrics proposed in the literature to di�erentiate
them are two-dimensional [26, 25], and few are three-dimensional [47].

The quantification of three-dimensional shapes requires the use of specific statis-
tical approaches such as geometric morphometrics [31, 114, 88]. These approaches
are now commonly used in biomedical sciences, to better describe phenotypes, study
growth, and evaluate treatment outcomes [187]. Usual morphometric approaches
rely on the placement of landmarks, and subsequent analysis of their variability
using rigid and non-rigid registration [30, 31, 115, 32, 204, 235, 3]. This proce-
dure presents many indisputable advantages including the preservation of homology
of anatomical regions throughout datasets encompassing great inter-specific varia-
tion [135, 86, 165], or along di�erent developmental stages [155, 234, 78]. Although
intra-operator biases related to the manual placement of reference points exist, they
have been extensively studied [11, 229, 55, 233], allowing for their detailed quan-
tification. However, inter-operator biases are still more di�cult to assess, and this
could be important in the era of big data. Also, classical geometric morphometrics
may face some other limitation like missing data and/or topological discrepancies.
Several attempts of applying landmark-free approaches to shape assessment have
been recently proposed in the literature [24, 188, 220]. Among all 3D shape assess-
ment methods with or without landmarks, spectral techniques [159, 162], originally
developed for computer graphics, have rarely been applied to the medical field to
date.

Unlike standard geometric approaches, spectral shape analysis goes beyond the
3D geometry of a surface and analyzes functions defined on the shapes, which
comes with a rich and flexible mathematical framework. In particular, functional
maps [159] and their numerous extensions [145, 100] allow to compute highly accu-
rate dense point-to-point correspondences, and can be adapted to a wide range of
settings and deformation models [177].

Notable previous works [151, 113, 112, 201, 152] have used partly outdated spec-
tral methods for medical data analysis, and especially the so-called shape DNA
descriptors [179]. These methods typically relied on restricted deformation models
such as near-isometries, and, importantly, only enabled global shape comparison, by
associating a single descriptor vector to each shape. Unfortunately, as we demon-
strate below, this is insu�cient to reliably distinguish subtle di�erences that might
exist across di�erent shape categories.

In contrast, functional maps provide a general and flexible framework that has
proven capable of e�ciently obtaining accurate fully-automatic landmark-free local
correspondences between shapes, leading to state-of-the-art results even in challeng-
ing settings like partiality [181, 13] or non-isometry [174, 65]. Unlike global shape
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embeddings, local correspondences enable more accurate analysis of shape collec-
tions, highlighting precise regions associated with shape changes, and even building
task-specific deformation models. Furthermore, spectral methods can be used to
refine noisy initial correspondences obtained through rigid alignment, as we demon-
strate in this chapter.

In this work we leveraged these recent state-of-the-art fully automatic shape
correspondence methods, which we adapted to fit within a morphometric analysis
pipeline to study morphological di�erences between trigonocephaly, metopic ridges
and controls. Our results pave the way for the use of this new set of methods in
quantitative medicine.

4.2 Materials and Methods

4.2.1 Overview

Algorithm 3 General pipeline for our algorithm
Require: Input: Collection of shapes

1: Compute initial correspondences (Sec. 2.4)
2: Refine correspondences (Sec 2.4)
3: Extract a template and deformations (Sec 2.5)
4: Perform deformation analysis (Sec 2.5)

We used a template-based morphometric analysis framework, where deforma-
tions between the template and each shape were defined using dense vertex-to-vertex
correspondences - that is, assigning a point on the target shape for each point on the
template. Both the correspondences and the template were obtained automatically
using a landmarks-free approach by adapting recent developments in the functional
map framework [145, 100]. The proposed pipeline is fast, fully automatic, flexible as
it can handle di�erent types of deformations, and provides visual feedback on zones
undergoing the most important shape modifications. In the following, Section 4.2.2
presents the dataset, Section 4.2.3 provides some background on functional maps,
while Sections 4.2.4 and 4.2.5 describe our extension of spectral methods to mor-
phometrics.

Our work, briefly described on Algorithm 3, builds on a variety of recent works [98,
100], for which we here only provide a detailed description of the necessary modi-
fications. We refer the interested reader to the original publications for a complete
description of the methods. A complete implementation of our approach, that can
be used by other researchers is available at https://github.com/RobinMagnet/
Morpho_FMaps.

https://github.com/RobinMagnet/Morpho_FMaps
https://github.com/RobinMagnet/Morpho_FMaps
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Figure 4.1: Visualization of the inner and outer surfaces of a mesh in horizontal
section.

4.2.2 Data
This study relies on the reuse of retrospective data acquired during standard pa-
tient care and complies to MR-004 (CNIL1818709X, 2018-155, #110, 03.05.2018).
All patients were informed of the reuse of their personal data for this specific study.
Our dataset included all patients with non-syndromic trigonocephaly that benefited
from fronto-orbital advancement at Necker - Enfants Malades Hospital (Assistance
Publique - Hôpitaux de Paris), at the National Reference Center for Craniosynos-
toses and Craniofacial Malformations (CRMR CRANIOST, Filière Maladies Rares
TeteCou) from 2004 to 2019 with an available digital pre-operative CT-scan. In ad-
dition, all patients diagnosed with metopic ridges managed in the same center during
the same period, with an available digital CT-scan, were also included. For metopic
ridges, all scans were performed for diagnostic purposes before patients were sent to
our center, radiological examination being of little use in this condition in the vast
majority of cases. This cohort of patients with metopic ridges thus corresponded to a
specific subset of patients that raised diagnostic questions with trigonocephaly, and
was interesting in the context of the assessment of a classification method. The final
di�erential diagnosis between trigonocephaly and metopic ridges was based on the
expert opinion of the craniofacial surgeons of the National Reference Center. Con-
trol age-matched patients were included, with available digital CT-scans performed
in the emergency department of the same hospital (for acute headache, soft-tissue
infections, epilepsy, or trauma). All control CT-scans were assessed by two inde-
pendent reviewers (craniofacial surgeon and pediatric radiologist), to ensure that
only scans without skull fractures, craniofacial anomalies, structural abnormalities,
and of su�cient quality for 3D reconstruction were included. Age and gender were
noted for all patients. The dataset consisted in N = 155 CT-scans of skulls includ-
ing nt = 85 patients with trigonocephaly (mean age 219.3 ± 81.4 days), nm = 27
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Figure 4.2: The dataset included highly non-isometric deformations (top and middle
row) as well as topological dissimilarities around the orbital cavity (bottom row).

patients with a metopic ridge (mean age 379.25 ± 224.7 days), and nc = 43 con-
trol patients (mean age 218.7 ± 107.8 days). The detailed age distribution for each
group is provided in the supplementary material. The scans were segmented using
3D Slicer [79], and skulls were exported as 3D surface objects. The surface objects
generated from segmentation masks consisted in watertight meshes composed of an
inner and an outer surface (Figure 4.1). Due to the segmentation process which
forced watertightness, scan quality, and variation in ossification across patients,
several skulls presented multiple either natural or artificial surface interruptions (es-
pecially around the orbital cavity and on the anterior skull base) connecting the
two layers of the surface at unusual places. This generated both severe topological
dissimilarities between the surfaces due to the addition of several holes, and highly
non-isometric transformations that distorted geodesic distances between inner and
outer surfaces (Figure 4.2). While addressing these changes can pose challenges
for certain shape analysis approaches, using the functional map framework proved
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e�ective in mitigating this issue. In particular, while Section 4.2.4 showed a small
adaptation to double-surface for initialization, we did not adapt the method to avoid
or explicitly handle topological challenges present in the data.

Each scan in the collection was remeshed to reach roughly 40 000 triangles, then
normalized and centered, and isolated components were automatically removed. The
eigenfunctions of the Laplace-Beltrami Operator, introduced in Section 4.2.3, were
precomputed separately for each shape.

4.2.3 Functional Maps
We based our approach on the Consistent ZoomOut algorithm [100], a landmark-
free method, which allows refining noisy initial correspondences in a collection of
shapes using functional maps.

Functional maps were introduced in [159] as an e�cient and adjustable way to
perform shape correspondence. While standard shape matching methods directly
optimized for point-wise correspondences between two surfaces, functional maps
considered instead transferring real-valued functions across shape pairs (Figure 4.3).

More precisely, the key idea of functional maps consisted in encoding functions
using a basis on each shape and then representing correspondences as linear op-
erators across basis functions of di�erent shapes. These linear operators could be
encoded as compact matrices (functional maps), that intuitively allowed to “trans-
late” across di�erent bases. Crucially the size of these functional maps was inde-
pendent of the number of vertices on each shape, and only depended on the chosen
basis size. In practice, the standard choice was to use the eigenfunctions of the
Laplace-Beltrami operator as the functional basis on each shape (Figure 4.4), as
they presented a natural generalization of Fourier analysis to general domains. In
practice, this meant that the standard functional maps pipeline [162] consisted in
first computing K ¥ 50≠100 basis functions on each shape, optimizing for a K ◊K

functional map matrix, and then converting this matrix to a dense point-to-point
correspondence. As greater values of K corresponded to more precise point-wise
maps, most recent algorithms [145, 100, 177] iteratively refined an initial small-sized
(blurry) functional map into a bigger one.

Functional maps have also been used to establish correspondences within shape
collections [100], which can lead to more accurate results, by exploiting collection-
wise consistency constraints. In particular, functional map networks (FMN) con-
sider collections of shapes (Si)N

i=1, related to each other with functional corre-
spondences, encoded as K ◊ K matrices, which together define a graph of corre-
spondences [150, 98, 100].Using an initial functional map network, the Consistent
ZoomOut algorithm [100] allows establishing consistent maps across any shape pair,
by constructing a virtual template referred to as a “limit shape”. The limit shape is
a purely algebraic construct (intuitively it corresponds to a space where functions
from all shapes get averaged out) and does not have a concrete geometric structure.
However, Consistent ZoomOut allows building functional maps between this limit
shape and every shape in the collection, leading to accurate correspondences be-
tween arbitrary shape pairs, even those not present in the original functional map
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Figure 4.3: Comparison of point-based and functional correspondences. Top: A
point on one shape was transferred to another shape using a vertex-to-vertex map
T . Bottom: A function was transferred using a functional map C. The image below
the arrow is a representation of the entries of the functional map matrix. Note that
these two transfers do not require T or C to be ground truth maps.

network.

4.2.4 Computing correspondences
Consistent ZoomOut [100] requires initial correspondences to build the network.
These initial correspondences can be very approximate as they are later refined by
the algorithm. In this work, we relied on a rigid alignment of the surfaces, which
was made possible as all skulls were roughly facing the same direction due to the
acquisition process. Note that our method tolerated noisy initial maps and no
manually placed anatomical landmarks were required.

Specifically, initial maps between a pair of shapes S1 and S2 were computed
as follows. We first applied an Iterative Closest Point (ICP) algorithm [22] for
approximate rigid alignment. Using this initialization, each vertex y œ S2 was then
associated to the nearest vertex x = T (y) œ S1 with a coherent normal, i.e., y æ
x = arg min

xiœS1, Ènxi ,nyÍ>0
Îxi ≠ yÎ2. This procedure ensured that even if the alignment

was not clinically relevant, the inner and outer surfaces (described in Section 4.2.2)
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Figure 4.4: Examples of low frequency (i.e. slowly varying) eigenfunctions of the
Laplace-Beltrami operator.

were di�erentiated as schematically explained in Figure 4.5. In Figure 4.5, without
normal consistency, point x1, which lied on the outer surface of S1 , was mapped to
point y2 on the inner surface of S2, and x2 was also mapped to y2. The obtained
correspondences T could then be transformed into a functional map C of size K◊K.
Note that these initial maps were of poor quality as they relied on an ICP alignment,
which may have poorly aligned clinically relevant areas of the skull. Furthermore,
the normal consistency procedure could have failed in zones with high curvature.
We thus refined them using Consistent ZoomOut before performing downstream
analysis tasks.

We have significantly improved the speed of both the initialization and refine-
ment steps by using only a small subset of 2000 randomly chosen pairs out of the
approximately 12000 possibilities. The initial functional correspondences were of
size K ◊ K, with K = 50, and using a spectral upsampling step of kstep = 5, these
maps were refined until dimension 100 was reached. The refined network then pro-
vided correspondences between any two shapes in the collection, even if the two
shapes were not directly connected by an edge inside the network. These correspon-
dences were of high quality and significantly improved those obtained by simple ICP
alignment, and were then used for our subsequent morphometric analysis.

4.2.5 Deformation Analysis

Unsupervised Analysis

As we sought to perform template-based morphometric analysis but only had access
to a “limit shape” [98] that did not correspond to any known geometry, we designed a
method to extract an actual shape from the collection that was the most intrinsically
similar to the limit shape. We defined the intrinsic dissimilarity between shape i

and the limit shape as ÎD
(i)
c

≠ IÎ2
H

1
0

where D
(i)
c

was the conformal characteristic
shape di�erence [186, 98], a K ◊ K matrix which captures the di�erences between
the limit shape and shape i, I was the identity matrix, and Î · ÎH

1
0

the norm in
the Sobolev space [186]. The shape that minimized this dissimilarity metric was
called T , and can be conceived as a median shape of the collection. Note that
correspondences between T and each shape in the collection were then available
thanks to the functional map network, mentioned above.
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Figure 4.5: Local significance of the normal consistency scheme for inner and outer
surfaces.

Using shape T , acting as a template, we generated for each shape Si a vertex-
wise deformation field d

(i) deforming T into Si. This deformation was defined by
first rigidly aligning the two shapes using the computed correspondences, and then
using the vertex-wise displacement in 3D provided by the same correspondences.
We further smoothed the deformation fields following the approach from [70, 71],
projecting d

(i) into the truncated Laplacian basis using Kd eigenvectors, with Kd =
100

Using deformation fields as embeddings for shapes, we performed a Principal
Component Analysis (PCA) to extract principal components (Dj)ppca

j=1 , which we
here called principal deformations. Note that projecting the deformation fields into
these components provided a new reduced embedding d̃

(i) œ Rppca for each shape Si.
Principal deformations can be thought of as deformations of the template T to R3,
and could be visualized by applying deformation tDj to the template T for various
values of t œ R.Note that we informally referred to as a positive (resp. negative)
deformation the visualization of tDj with t > 0 (resp. t < 0). This visualization
provided a qualitative feedback in addition to the standard projection on the first
components.

Supervised Analysis

The procedure up to the current point was fully unsupervised in the sense that no
manual intervention or labels were used. In order to validate the previous analysis,
we trained a logistic regression model to predict to which group a skull belonged,
using only

1
d̃

(i)
2

N

i=1
as input. This step demonstrated that the fully unsupervised

analysis generated a meaningful representation for each shape.
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Figure 4.6: Visualization of computed correspondences between two random pairs of
shapes in the collection. Top : correspondence between two nearly isometric scans.
bottom : correspondences between highly non-isometric scans. Vertices on the left
are given RGB colors depending on their XYZ coordinates, and corresponding ver-
tices between left and right are given the same color.

For each class, the logistic regression learned a vector — so that a high value of
Èd̃(i)

, —Í2 meant that d̃
(i) was predicted to belong to the given class. For visualization

purposes, we built the reference deformation D(—) = qppca
j=1 —jDj which corresponded

to the “canonical” deformation of the template associated with the given class. That
is, deformations of the template which aligned the most with D(—) were predicted
to be part of the given class, and thus the deformation D(—) provided a visual
representation of how the classification decision for each class is made.

We performed a PCA and computed logistic regression models using the first
ppca = 10 components. We fitted 5 types of logistic regressions : (1) trigonocephaly
vs controls (C-T), (2) (controls + metopic ridges) vs trigonocephaly ((C+M)-T),
(3) controls vs metopic ridges vs trigonocephaly (C-M-T) and (4) metopic ridges
vs trigonocephaly (M-T) (5) metopic ridges vs controls (C-M). We evaluate these
regressions using a 5-fold cross validation, weighting samples in order to compensate
for the non-uniform distribution of labels.

We compared our results to another fully unsupervised baseline, by applying a
similar logistic regression to the standard Shape-DNA descriptor [179]. This global
shape descriptor embeds the shape as the list of the first Kdna normalized eigenvalue
of its Laplace-Beltrami operator. We tested several values of Kdna, and obtained
the best results using 100 eigenvalues.
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Figure 4.7: Top : Surrogate template chosen as the closest to the limit shape.
Bottom : Corrected template by applying the average deformation to the template

4.3 Results

4.3.1 Functional Map Network
The refined networks allowed us to obtain per-vertex correspondences between any
pair of shapes (Figure 4.6) within the collection, which improved upon those ob-
tained by the initial ICP alignment. In Figure 4.6, we visualized the computed
point-to-point correspondences. Specifically, we first associated color (r, g, b) values
based on the (x, y, z) coordinates of each point on the leftmost shape. We then
transferred these color values using the computed correspondences onto the right-
most shape. Thus, points with same (r, g, b) values are seen as corresponding. Note
the overall smoothness of the transferred colors. This was a non-trivial task, and
obtaining visually satisfying correspondences was a necessary condition for quality.

4.3.2 Extrinsic analysis

Unsupervised Analysis.

To perform our analysis, we first extracted the implicit template T (Figure 4.7,
top), which can be deformed smoothly into any shape in the collection using the
network (Figure 4.8). Finally, adding the average deformation to the template
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Figure 4.8: Example of the computed deformation between the template and a shape
from the dataset.

Figure 4.9: Cumulative explained variance ratio of the PCA.

allowed the correction of its geometry (Figure 4.7, bottom). This correction step
was performed for visualization purposes only, as the PCA used in our quantitative
analysis automatically factored this average deformation out.

Logistic Regressions.

We provide average True Positive Rates (TPR) of the 5 types of logistic regressions
on the validation set in 4.1. For comparison, we added results of performing similar
regressions using the standard Shape-DNA descriptor [179] as input.

The principal components of the PCA carried deformations of the template and
were referred to as principal deformations (Section 4.2.5). The cumulative vari-
ances explained by the principal components were displayed in Figure 4.9, while
Figure 4.10 showed the projection of the dataset on the fourth and seventh com-
ponents, which displayed more separation than the first two. The theoretical de-
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Table 4.1: Average True Positive Rates (TPR) after cross-validation for multiple
logistic regression objectives, di�erentiating Control against Trigonocephaly (C-T),
Control and Metopic Crests together against Trigonocephaly ((C+M)-T), and even-
tually Control against Metopic Crests against Trigonocephaly (C-M-T).

Methods C-T (C+M)-T C-M-T M-T C-M

Shape-DNA 66.0% 64.4% 46.5% 69.2% 53.3%
Ours 92.9% 91.1% 76.4% 85.3% 72.2%

formation associated with the positive and negative values of each of the first two
principal components were displayed in Figure 4.11. As explained in 4.2.5, the lo-
gistic regression learned for each class a representative deformation of the template
in order to classify each skull which enables us to generate a “typical” skull for each
cohort, built by exaggerating the representative deformation. In 4.12, we displayed
such “typical” skulls for each class next to the template.

Computational e�ciency

After pre-processing, refining the functional map network made of 155 scans took
40 minutes, the main bottleneck lying in the eigendecomposition of a large sparse
matrix. Note that this can be improved by reducing the number of provided initial
correspondences. The downstream analysis takes a few minutes to compute.

4.4 Discussion

We showed (Table 4.1) that a landmark-free approach, based on state-of-the-art
spectral analysis tools, can reliably distinguish trigonocephaly from normal skulls
and skulls with metopic ridges. The specific diagnosis of metopic ridges was not
straightforward, especially compared to the control cohort, but the clinical rele-
vance of our results consisted in the fact that ridges were separated from trigono-
cephaly, which is the main practical issue when managing patients with “triangular
foreheads”. In contrast, the Shape-DNA based approach failed to make reliable pre-
dictions on the validation set. This is because the distinctions between di�erent
classes (and, in particular, trigonocephaly and metopic ridges) pertains to local ge-
ometrical characteristics. Thus, a method, based on a global shape descriptor, such
as the Shape-DNA, is unable to reliably extract the signal necessary for such a dis-
tinction. We identified two primary factors contributing to incorrect classification
in our experimental setup. Firstly, cases where the surfaces exhibited significant
issues, such as substantial missing or additional parts, were found to lead to mis-
classification (Figure 4.13). Secondly, incorrect correspondences between surfaces
resulted in outliers in the deformations, and this issue was observed to be influenced
by mesh quality, particularly in the orbital cavity region.
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Figure 4.10: Projection of the dataset on the fourth and seventh principal compo-
nents.

We also showed that our method could produce a clear representation of the clas-
sification outcomes (4.12). Notably, we observed that trigonocephaly was detected
when associated to pronounced deformations in both the forehead and the orbit re-
gions. In contrast, the deformation associated with metopic ridges lied between the
one for the control group and for the trigonocephaly group, with a relatively mini-
mal impact on orbital morphology, consistent with expectations from usual clinical
observations. Nevertheless, it is important to be cautious when analyzing such vi-
sualizations, as they only indicated the overall direction in which each deformation
were projected. Indeed, following 4.12, the model seemed to heavily rely on age as
a distinguishing factor. However, we demonstrated in the supplementary material
that this feature did not o�er a reliable signal.

We also highlight that our method directly ran on raw surfaces without specific
manual processing such as closing holes or smoothing, and did not require any
manual intervention such as annotated regions or landmarks. While this results in
several challenges for many approaches, the e�ciency of our method in this scenario
hints at its potential generality. These lower requirements, associated to a rather
simple underlying statistical model justified that the true positive rates for our
classifications were lower than similar works using this additional information.

While spectral methods have already been applied to biomedical data [151, 113,
112, 201, 152, 143], the pipeline proposed here is the first attempt to leverage the
recent functional maps-based methods for fully automatic dense point-to-point corre-
spondence computation, to a clinical question. Landmark-free approaches in general
are highly relevant in morphometrics, especially in a clinical context where simple
and objective tools have to be provided to medical practitioners. Spectral approaches
seem promising in designing shape-based diagnostic tools for craniofacial surgeons,
with the possibility to easily extend the dataset without major computational costs
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Figure 4.11: Visualization of the first principal deformations Dj for j = 1, 2. For
each component, the leftmost and rightmost shapes displayed the two opposite de-
formations. The color indicated the norm of the displacement Dj at each vertex.

and to include multiple diagnostic categories, as illustrated here. Regarding the
diagnosis of trigonocephaly, methods based on 3D data proposed in the literature
are still scarce [27, 189, 23], and spectral approaches could be an interesting alter-
native for designing diagnostic tools, assessing growth in temporal series, and for
evaluating results of medical or surgical treatments.

More broadly, this pipeline also appears interesting as it provides a very general
framework bringing together functional maps and morphometrics. It leverages first
the flexibility and generality of spectral methods, allowing to work at high calcu-
lation speeds and processing entire collections e�ciently, on datasets involving a
great variety of shapes undergoing potentially major deformations. Our approach
furthermore o�ers a clear visual feedback of the results, highlighting the main zones
of deformations across cohorts and enabling direct classification of diagnostic, over-
coming the burden of designing a template or manually specifying landmarks or
keypoints. Finally, as very minimal information about skulls themselves was used,
namely the rough pre-alignment and the normal consistency scheme, the complete
pipeline can easily be adapted to new collections of shapes with little adjustment.

4.5 Conclusion

In this work we applied recent spectral shape matching developments to the de-
tection of trigonocephaly in young children. Our method is fully automatic, and
especially does not require manual placement on landmarks on CT scans, and can
be generalized to other diseases. Results clearly outperform standard spectral meth-
ods as they detect local deformations of the skulls, which motivates the use of such
new methods to morphometric analysis.
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Figure 4.12: ‘Typical’ skull for each class, as detected by the logistic regression.
The deformation was exaggerated for visualization purposes. Note that these skulls
don’t represent an actual patient, but the deformations on which each embedding
is projected.

Figure 4.13: Example of misclassification due to a large missing part. This patient
was predicted to be a normal skull, while it belongs to the metopic group.
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Chapter 5

Smooth Non-Rigid Shape Matching via

E�ective Dirichlet Energy Optimization

We introduce pointwise map smoothness via the Dirichlet energy into the functional
map pipeline, and propose an algorithm for optimizing it e�ciently, which leads to
high-quality results in challenging settings. Specifically, we first formulate the Dirich-
let energy of the pulled-back shape coordinates, as a way to evaluate smoothness of a
pointwise map across discrete surfaces. We then extend the recently proposed discrete
solver and show how a strategy based on auxiliary variable reformulation allows us
to optimize pointwise map smoothness alongside desirable functional map properties
such as bijectivity. This leads to an e�cient map refinement strategy that simulta-
neously improves functional and point-to-point correspondences, obtaining smooth
maps even on non-isometric shape pairs. Moreover, we demonstrate that several
previously proposed methods for computing smooth maps can be reformulated as
variants of our approach, which allows us to compare di�erent formulations in a con-
sistent framework. Finally, we compare these methods both on existing benchmarks
and on a new rich dataset that we introduce, which contains non-rigid, non-isometric
shape pairs with inter-category and cross-category correspondences. Our work leads
to a general framework for optimizing and analyzing map smoothness, both concep-
tually and in challenging practical settings.

5.1 Introduction
Shape correspondence is a fundamental task in Geometry Processing, acting as a
building block for many downstream applications [224, 188, 59]. One of the key
challenges in designing a successful general-purpose shape matching method is the
choice of the objective function that should promote high quality correspondences
and, at the same time, be easy enough to optimize in order to be applicable on
complex, densely sampled geometric objects.

A widely acknowledged desirable objective in non-rigid shape matching is smooth-
ness, which intuitively promotes local consistency or continuity of computed corre-
spondences, while being less restrictive than, e.g., isometries or conformal maps.
Several works have incorporated smoothness into the map computation pipelines
either via auxiliary energy terms [77], or by structuring the search space privileging
continuous, often low frequency, correspondences or deformation fields, e.g., [69, 70].
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Source

Ini

ZoomOut

Ours

ED = 90.63 ED = 63.58 ED = 71.34

ED = 31.91 ED = 50.42 ED = 24.27

ED = 7.69 ED = 6.18 ED = 4.36

Figure 5.1: Our method can deal with noisy inputs and produce high-quality
and smooth pointwise maps for non-isometric shape pairs. As a comparison,
ZoomOut [145], the current state-of-the-art refinement method, cannot explicitly
control the map smoothness and can have large discontinuous patches in the ob-
tained maps. We report the smoothness metric ED for each map.

Despite the utility of smoothness as a supervising signal in map computation, exist-
ing approaches can either be di�cult to scale to dense meshes or are incorporated
in an ad-hoc manner. Moreover, there is no coherent framework for comparing dif-
ferent existing strategies for promoting map smoothness using a single consistent
computational and conceptual formalism.

In this chapter we focus on the functional map framework, which was origi-
nally proposed as a tool for near-isometric shape matching [159] and has since then
been significantly extended to di�erent tasks [186, 98] and correspondence models
[181, 117, 60], among many others. The key advantages of this framework are its
e�ciency and flexibility. The e�ciency of functional maps-based approaches stems
from representing maps as small matrices using a reduced basis, which leads to
small-scale optimization problems. At the same time, this framework is flexible and
can incorporate a wide range of desirable constraints using simple linear algebraic
formulations, e.g., [74, 153, 162].

Although originally functional map-based methods focused on constraints in the
functional (spectral) domain, recent works have started to highlight and exploit
links that exist between pointwise and functional map representations, while lever-
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Figure 5.2: DeformThings4D-Matching Dataset. We construct a new dataset
for non-isometric shape matching based on the DeformThings4D [124]. We show
some example humanoid shapes and visualize the cross/inter-category correspon-
dences via color transfer. Note that the shapes in the same category are remeshed
independently (zoom in to see the mesh wireframes).

aging the strengths of both [174, 77, 177]. Specifically, a recent discrete optimization
scheme was proposed in [177], demonstrating that many desirable map properties
can be optimized directly in the pointwise map representation. Unfortunately, while
the class of energies considered in [177] covers many existing functional map objec-
tives, such as bijectivity or commutativity with the Laplacian, it does not address
desirable pointwise map properties such as map smoothness. This can lead to local
inconsistencies, such as discontinuous mapped patches, thus severely limiting the
utility of the computed maps in practice.

In this chapter, we introduce a novel method that allows to explicitly promote
pointwise map smoothness within the functional map framework. Our method is
based on, first, formulating smoothness as the optimization of the Dirichlet energy
of the pointwise map, and second, an iterative method for solving this energy op-
timization by extending the method introduced in [177]. This allows our approach
to be used alongside other desirable objectives, while explicitly promoting smooth
and locally consistent maps. We therefore both extend the scope of discrete map
optimization to new energies not covered in [177] and use this insight to develop an
e�cient non-rigid shape matching approach that directly promotes pointwise map
smoothness.

In addition to introducing a novel method for promoting smooth maps within
the functional maps framework, we also investigate multiple previous approaches
for computing smooth maps in di�erent settings [77, 70, 209, 9] and show how they
can be interpreted as variants of each other and thus compared within a unified
formalism. This allows us to design a family of di�erent approaches, parametrized
by the choice of the smoothness energy and its associated optimization strategy.
We propose a coherent formalism within which various energies can be compared
and demonstrate their relative utility in di�erent settings. Finally, we observe that
most public datasets focus on near-isometric pairs, making it non-trivial to evalu-
ate accuracy and smoothness in more realistic scenarios, which can involve diverse
and non-isometric shapes. To fill this gap, we introduce a new challenging dataset
based on DeformThings4D [124], but with additional cross-category ground truth
maps (Fig. 5.2). We use this dataset alongside existing benchmarks in a comprehen-
sive comparison of various approaches to computing smooth correspondences. To
summarize, our key contributions include:

1. We show how pointwise map smoothness can be formulated and optimized
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within the functional map framework, by extending the discrete solver pro-
posed in [177].

2. Based on this construction, we introduce a simple and e�ective map refinement
method that is both computationally e�cient and leads to high-quality results
in non-isometric settings (Fig. 5.1).

3. We show how several previously proposed methods are intimately related both
to our approach and within themselves, and propose a coherent framework, al-
lowing us to directly compare ways to promote smoothness within a consistent
formalism and computational strategy.

4. We construct a new dataset for non-rigid shape matching tasks with inter-
category correspondences for animal shapes, and inter-/cross-category corre-
spondences for humanoid shapes that are independently remeshed.

5.2 Related Work

In this section, we briefly review the previous works of shape matching, commonly
used map evaluation metrics, and various map solvers, that are most related to this
work. We refer to recent surveys [59, 188, 24] for more thorough discussions of shape
matching.

Shape Matching Our work focuses on the problem of shape matching, that looks
for dense correspondences between two non-rigid 3D shapes. One solution to shape
matching is to solve for correspondences directly by minimizing an explicit and
carefully designed energy [34, 94, 158], which can lead to complex combinatorial
problems with high computational complexity. An alternative solution is to find
correspondences between parametric representations, where the input shapes are
mapped into a canonical domain [125, 8, 7]. Our work is based on the functional
map representation [159, 162], which computes correspondences between functions
defined on the shapes. Di�erent regularizers have been proposed to promote the
accuracy of functional maps [153, 154, 174, 84, 230, 231]. Computing a functional
map is usually reduced to solving a least-square system, which has a relatively low
computation cost, but recovering a point-wise correspondence from the computed
functional map is error-prone [180, 75, 177]. To further improve the accuracy of
the recovered point-wise correspondences, di�erent refinement methods have been
proposed as a post-processing step [208, 136, 227, 226]. A common technique for map
refinement in the functional maps framework is to iteratively update functional maps
and the underlying pointwise maps according to di�erent energies, such as Dirichlet
energy and bijectivity [159, 77, 174, 145, 175, 177]. In this work, we present a new
refinement method that can robustly deal with noisy input and e�ciently produce
smooth maps in the functional maps framework.
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Metrics for Map Quality Evaluation Di�erent criterion have been taken into
consideration to evaluate map quality, which are incorporated into map computa-
tion. The most commonly-used metric is the map accuracy, which is measured by
comparing the geodesic distance between the mapped position and the pre-specified
ground-truth position. Some previous work [9, 136, 84] adopt a landmark term to
enforce map accuracy. To achieve a fully automatic solution, other metrics such as
smoothness, bijectivity, conformality, and coverage are considered for map optimiza-
tion other than accuracy which needs manually specified landmarks. For example,
Reversible Harmonic Maps [77] proposes to optimize the Dirichlet energy together
with the bijectivity of the pointwise maps. Smooth Shells [70] adopts the ARAP
energy [209] to compute a smooth deformation field, which potentially leads to a
smooth pointwise map. [109] blends across multiple maps to get a smooth one.
[174] proposes heuristics to improve the bijectivity, smoothness, and coverage of
the pointwise map in both spatial and spectral domain. In this work, we observe
how several previous proposed approaches are closely related in formulating map
smoothness. We show di�erent variants can be compared in a coherent way within
a consistent formalism.

Map Solver Previous methods adopt di�erent search space for maps and hence
need di�erent solvers. For example, some work [80, 208, 66, 164] solve for maps that
are represented by doubly stochastic matrices. Functional maps framework [159,
153, 154, 174] usually solves a least-square system for functional maps. Quadratic-
splitting technique [75, 77] is also used to solve vertex-to-point (also called precise)
maps. [177] introduces a discrete solver to optimize commonly used functional map
energies constrained on the proper functional maps, which is a subset of functional
maps that are associated with pointwise maps. In this work, we introduce map
smoothness into functional map pipeline and present an e�cient algorithm to min-
imize the smoothness which extends the scope of discrete solver.

5.3 Notation & Background

Notation Given a triangle mesh S = (X, F ) with the vertex positions X and face
set F , we denote the cotangent weight matrix by W and the diagonal lumped mass
matrix by A [146]. By solving the generalized eigenvalue problem W„j = ⁄jA„j,
we can obtain the Laplace-Beltrami basis � by collecting the first k eigenfunctions
as columns, i.e., � =

Ë
„1...„k

È
and the corresponding eigenvalues in a diagonal

matrix, denoted as � = diag
1
⁄1...⁄k

2
. We then have �€

A� = I. A pointwise
map is denoted as �ij : Si æ Sj, where the subscript indicates the map direction.
Specifically, �ij œ {0, 1}ni◊nj (ni is the number of vertices in Si) is a binary matrix
indicating the correspondences between the two shapes. For example, if the p-th
vertex on Si is mapped to the q-th vertex on shape Sj, we then have �ij(p, q) = 1
and �ij(p, t) = 0 for ’t ”= q.
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Functional Maps Framework The goal of shape matching is to find a semanti-
cally meaningful and continuous pointwise map for a given shape pair. In this work,
we follow the functional map framework [159] and encode a point-wise map as a
linear transformation (called functional map) in the Laplace-Beltrami basis. Specif-
ically, for a pointwise map �ij : Si æ Sj, the associated functional map is given
as Cji = �†

i
�ij�j. Note that Cji a pull-back linear operator that maps functions

on shape Sj to functions on shape Si. In the original pipeline [159], a functional
map is computed by solving a least-squared system in the continuous linear opera-
tor space, i.e., C21 = arg min

CœRk1◊k2 E(C), where E(·) is a functional map energy
that preserves input descriptors or landmarks, surface area or angles, multiplicative
operators, or shape orientation [159, 154, 174, 95]. Solving for a function map in the
unconstrained search space simplifies the optimization problem, but can lead to er-
rors when converting the computed functional map to a pointwise one [180, 75, 177].
Thus, additional post-processing techniques are used to improve the quality of the
pointwise maps [174, 77, 145, 164].

Discrete Optimization A recent work [177] has proposed a discrete solver for
functional map pipeline which constrains the optimization problem to the space of
proper functional maps. Specifically, the functional map, C21 = arg min

CœP21 E(C),
is solved in a discrete search space P21 =

Ó
C21 | ÷�12 s.t. C21 = �†

1�12�2
Ô
, i.e.,

the set of functional maps arising from some pointwise correspondence. The general
strategy to solve this constrained problem, advocated in [177] mimics the Augmented
Lagrangian methods with variable splitting [81] and consists of the following two
main steps: (i) reformulate the energy E(·) by making C21 and �12 independent
variables, and adding a coupling term:

Ecouple(C21, �12) =
...C21 ≠ �†

1�12�2
...

2

F
, (5.1)

(ii) iteratively solve for C21 and �12 with the other variables fixed. This approach is
shown to be e�cient and leads to high-quality and well-regularized functional maps.
Key to the success of this strategy is the ability to reformulate the given functional
map energy so that the resulting optimization problems for C21 and �12 in step (ii)
can be solved in closed form. In [177], a range of energies is considered including
bijectivity, landmarks preservation, orthogonality, and Laplacian commutativity.

Dirichlet Energy Given two Riemannian manifolds S1 and S2, the Dirichlet en-
ergy of a map f : S1 æ S2 is defined as ED(f) = 1

2
s

S1 ÎdfÎ2
dµS1 , with df the map

di�erential, which intuitively acts as a measure of the stretch induced by the map
(see, e.g., [77] for a discussion). A smooth map f is therefore characterized as being
a minimizer of the Dirichlet energy. In the discrete setting, a map f : S1 æ S2
can be seen as a function between the two surface embeddings (i.e., f : R3 æ R3)
and is assumed to be a�ne on each face. We can then define the discrete Dirichlet
energy [167]:

ED (f) =
ÿ

(xi,xj)œE(S1)
wij

...f(xi) ≠ f(xj)
...

2
, (5.2)
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source ini ZoomOut DiscreteOp ours
ED=101.1 ED=107.4 ED=94.6 ED=3.91

Figure 5.3: Previous methods focus on improving map accuracy and do not have
explicit control over the map smoothness. Here we show an example of a non-
isometric pair. We report the Dirichlet energy (ED) of maps after refinement by
di�erent methods.

where E(S1) is the set of edges on S1 and wij the cotangent weight of edge (i, j).
We can rewrite Equation (5.2) in a more compact way: ED(f) = Trace(f€

W1f) :=...f

...
2

W1
, where W1 is the cotangent weight matrix of shape S1.

Note that in practice one only needs to store the value of f at each vertex of S1
and therefore if f is a pointwise map from S1 to S2, we can represent it in matrix
form f = �12X2, where the value at row i gives the coordinates f(xi). We therefore
define the Dirichlet energy of the map �12 as the Dirichlet energy of f , which is the
W -norm of the pull-back vertex coordinates:

ED (�12) =
...�12X2

...
2

W1
. (5.3)

Note that [77] adopts a similar formulation to measure the smoothness of a given
map, but pulls-back a high-dimensional embedding, in which the L

2 distance approx-
imates the geodesic distance, and that is computed via multidimensional scaling [52].

While the Dirichlet energy defines a measure of distortion induced by a map, we
note that mapping all vertices in S1 to a single vertex in S2 leads to zero energy, as
seen by setting f(xi) = y for some fixed y in Equation (5.2). The Dirichlet energy
thus only contains partial information about the quality of the map, and one needs
to use additional constraints to obtain a non-trivial smooth map.

5.4 Discrete Solver for Dirichlet Energy

While functional maps intrinsically represent correspondences using low frequency
eigenfunctions, thus inducing some smoothness, they do not provide any explicit
control over the pointwise map smoothness (see Fig. 5.3).The discrete solver pro-
posed in [177] has shown that many desirable map properties can be promoted
directly on the functional maps, including bijectivity, landmarks preservation or
conformality, the latter being unable to e�ectively promote smoothness as shown in
the supplementary material. In this work, we therefore seek to extend this frame-
work by introducing a pointwise map smoothness constraint that can be e�ciently
used alongside other objectives.
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5.4.1 Problem Formulation
As discussed in Section 5.3, the Dirichlet energy, seen as a measure of smoothness,
is globally minimized by constant maps. To avoid such trivial solutions, we propose
to couple a smoothness energy with bijectivity constraints, which can be enforced
in the spectral domain using the discrete optimization framework [177].

Specifically, given two shapes S1 and S2 we consider functional maps Cij and
pointwise maps �ij from both directions, where (i, j) œ {1, 2}2 indicates the map
direction. The discrete solver framework [177] introduces a bijectivity energy which
reads:

Ebij

1
�, C

2
=

ÿ

ij

...�ji�iCji ≠ �j

...
2

Aj
+ –

...�jCij ≠ �ji�i

...
2

Aj
(5.4)

where the first term is derived from a spectral bijectivity energy and the second is a
coupling term between functional maps Cij and pointwise maps �ji (note the change
in map directions). Note that variables � and C contain maps in both directions in
order to simplify notations. We refer the reader to [177] for a detailed derivation.

In this work, we augment this energy using smoothness constraints, acting on
the primal domain instead of the functional (dual) one, which reads:

min
C,�

Ebij(�, C) + “ Esmooth(�) (5.5)

where Esmooth penalizes non-smooth pointwise maps, its most basic version being the
sum of the Dirichlet energies of the pointwise maps Esmooth(�) = q

ij ED(�ij) with
ED being defined in Equation (5.3). In Section 5.5, we highlight how other common
energies for smoothness can be expressed as variations of this Dirichlet energy, thus
enabling their straightforward introduction within our formulation.

5.4.2 Smoothness-promoting Discrete Solver
We aim at solving Equation (5.5) using a similar algorithm to the standard discrete
solver discussed in Section 5.3. However, as long as the energy Esmooth includes
quadratic terms in �ij, for instance the Dirichlet energy, this solver cannot be applied
as it assumes row-separable variables (see Lemma 4.1 in [177]). Since quadratic
terms in the Dirichlet energy appear as W -norms of terms �ijXj, we introduce
auxiliary variables Yij as surrogate for products �ijXj, and add a corresponding
coupling term between the two, resulting in a new coupled smoothness energy:

E
c

sm(�, Y ) = Esmooth(�, Y ) + —
ÿ

ij

...Yij ≠ �ijXj

...
2

Ai
(5.6)

where the second term is a spatial coupling term and, using some abuse of notations,
Esmooth(�, Y ) is obtained by replacing products �ijXj in Esmooth(�) by Yij. In the
particular case where Esmooth = ED, the coupled smoothness energy is now row-
separable for �:

E
c

sm(�, Y ) =
ÿ

ij

...Yij

...
2

Wi
+ —

...Yij ≠ �ijXj

...
2

Ai
(5.7)
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Note that this particular half-quadratic splitting was used in [77] to handle sim-
ilar constraints. Furthermore, we will show in Section 5.5 that multiple common
energy for smoothness can benefit from this similar technique, resulting in a row-
separable problem for � in all cases.

Algorithm 4 Meta-algorithm
1: procedure MetaAlgorithm

2: Initialization: �(0)
ij

= �in
ij

, Y
(0)

ij
= �(0)

ij
Xj for i, j œ {1, 2}

3: while Not converged do
4: C

(k+1) = arg min
C

Ebij
1
�(k)

, C

2

5: Y
(k+1) = arg min

Y
E

c

sm

1
�(k)

, Y

2

6: �(k+1) = arg min� Eours
1
�, C

(k+1)
, Y

(k+1)
2

7: end while
8: end procedure

Total energy Eventually, the initial optimization problem, Equation (5.5), has
been relaxed into a problem of the form min

�,C,Y

Eours(�, C, Y ) with

Eours(�, C, Y ) = Ebij
1
�, C

2
+ “ E

c

sm

1
�, Y

2
(5.8)

Crucially, this reformulation makes the total energy row-separable w.r.t. the point-
wise maps �. We can therefore propose a general iterative method (summarized in
Algorithm 4) to minimize the total energy, in the spirit of the discrete solver, which
iteratively updates each variable �, C, Y with the other two sets fixed.

Solver The solver described in Algorithm 4 is divided in three optimization prob-
lems, for which we present the solution procedure. (1) Computing C

(k+1) from �(k)

reduces to a simple K ◊ K linear system, which has actually been introduced as
bijective ZoomOut in [175]. (2) Computing Y

(k+1) from �(k) also reduces to a sparse
linear system whose form depends on the choice of smoothness energy Esmooth, some
of which are given in Section 5.5. In the case of Esmooth = ED, computing Yij requires
solving (Wi + —Ai)Yij = —Ai�jiXj where the system can be prefactored to further
improve e�ciency. (3) Since introducing auxiliary variables leads to a row-separable
problem for �, computing �(k+1) from C

(k+1) and Y
(k+1) reduces to a simple nearest

neighbor search. Note that this step is done in a high-dimensional space obtained by
concatenating several terms, and can be heavily accelerated by only using coupling
terms from equations Equations (5.4) and (5.6), which significantly reduces the em-
bedding dimension on which to perform nearest neighbor Finally, following [177], we
also increase the size K of the functional map as iterations grow, which has shown
to be a great regularization procedure in many spectral algorithms.
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5.5 Smoothness Analysis in Unified Framework
In this section, we formulate several existing formulations for promoting map smooth-
ness, including non-rigid ICP (nICP) [9], as-rigid-as-possible (ARAP) [209], re-
versible harmonic maps (RHM) [77], and Smooth Shells [70]. Our first objective
is to provide a coherent formulation of various smoothness terms in the form of the
Dirichlet energy on either a map or a deformation. Secondly, we aim to show how
di�erent energy terms and solvers can ultimately be introduced in our smoothness-
promoting Discrete Solver. This will form the basis for our quantitative evaluation
in the next section, in which we compare di�erent terms within our solver. We
remain succinct regarding the following derivations and their incorporation in our
algorithm, and refer the interested reader to the supplementary material for a more
complete overview.

nICP was originally proposed to wrap a source shape S1 onto a target shape S2
via a per-vertex a�ne deformation field D. nICP implicitly maintains a pointwise
map �12 such that the deformed coordinates D¶X1 approximate the pointwise map
�12X2. The total energy reads

Enicp(�12, D) =
...D

...
2

W1
+ —

...D ¶ X1 ≠ �12X2
...

2

A1
(5.9)

with
...D

...
2

W1
= q

i≥j wij

...Di ≠ Dj

...
2

F
extends the Dirichlet energy to per-vertex ma-

trices. In our algorithm, this energy may be used as a surrogate for E
c

sm, given in
Equation (5.7).

ARAP is a commonly-used energy that aims at promoting local rigidity of the
shape deformation by enforcing the deformation to remain locally close to a rotation.
ARAP optimizes both for expected vertex coordinates Y12 and per-vertex rotations
R. The total reformulated energy reads:

Earap(Y12, R) =
...Y12

...
2

W1
+ ⁄E

rigid
arap (Y12, R), (5.10)

where E
rigid
arap is a bilinear term promoting local rigid deformations. One can augment

the energy using the coupling term from Equation (5.6) to use the ARAP energy in
our algorithm.

Smooth Shells models the deformation D as a simple per-vertex translation seen
as a function S1 æ R3, restricted to lie in the spectral basis of size K, i.e., D œ RK◊3.
In addition, smooth shells uses the ARAP energy to enforce the smoothness of the
deformation. Specifically, if Y12 = X1 + �1D denotes the updated vertex positions,
the shells energy is defined as

Eshells(D, R, �12) = Earap(Y12, R) (5.11)

which is augmented with a coupling term ÎX1 + �1D ≠ �12X2Î2
A1 to remain close

to given correspondences.
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Crypto v.s. Mannequin

Crypto v.s. SkeletonZombie

Source w/nICP w/ARAP w/Shells w/RHM ZoomOut DiscreteOp w/ D GT

map

map

ED

Figure 5.4: Qualitative evaluation on two pairs from DeformThings4D-

Matching. For a near-isometric shape pair shown on the top, all methods achieve
smooth maps. For a shape pair that is far from isometry shown on bottom, nICP,
ARAP, RHM, and Shells achieve relatively smooth maps but contain large patch
of back-to-front ambiguity. The maps obtained by ZoomOut and Discrete Solver
are locally smooth due to their spectral representation, but fail to maintain global
smoothness. As a comparison, our methods can be robustly generalized to non-
isometric shape maps and achieve globally smooth maps.

RHM directly minimizes the Dirichlet energy of a map without manipulating
deformation fields. To avoid making the map collapse, the authors look for bijec-
tive maps with the lowest possible Dirichlet energy. Specifically, using notations of
Sec. 5.4, smoothness is enforced by minimizing the same energy as in Equation (5.6)
extended with a pointwise bijectivity term q

ij

Î�ijYji ≠ XiÎAi , resulting in a slower
solver.

All these smoothness terms can be incorporated quickly within our solver, only
a�ecting steps 2. and 3. of Algorithm 4. Furthermore, note that, for fairness of
comparison, we ignored additional building blocks used in these works like normal
preservation, high-dimensional embeddings, etc. More details on these two points
can be found in the supplementary material.

5.6 Experiments

5.6.1 DeformThings4D-Matching Dataset
We propose DeformThings4D-Matching (Fig. 5.2), a new dataset based on
the DeformThings4D dataset [124], a rich synthetic dataset with significant
variations in both identities and types of motions, containing 1,972 animation se-
quences spanning 31 categories of humanoids and animals. However, using De-

formThings4D to evaluate shape matching is di�cult since: (1) most shape
models are disconnected; (2) the meshes belong to the same category are in the
same triangulation, which provides perfect ground-truth but can lead to over-fitting
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issues for matching algorithms [174], while cross-category ground truth is miss-
ing; (3) some meshes of the synthesized poses have unrealistic distortions such as
large self-intersections and unnatural twists. We therefore select 56 animal cate-
gories and 8 humanoid categories from DeformThings4D, each containing 15-
50 poses selected from di�erent motion clips, while ensuring large enough pose
variations. We then apply LRVD [243] to independently remesh all the meshes
in the same category. For the humanoid shapes, we further use the commercial
software 1

R3DS to non-rigidly fit one shape into another to get cross-category
correspondences. See Fig. 5.2 for some examples, where the corresponding ver-
tices are assigned the same color. See supplementary materials for more details
of how we construct the dataset and obtain the ground-truth correspondences be-
tween the remeshed shapes with di�erent triangulations. The dataset is available at
https://github.com/llorz/3DV22_DeformingThings4DMatching_dataset.

5.6.2 Comparison on Smoothness Formulation
We evaluate our method on the standard benchmark for non-isometric shape match-
ing TOSCA non-Isometric Dataset [35], and the cross-category humanoid shape
pairs from our DeformThings4D-Matching Dataset. Note that on standard
benchmarks like the FAUST dataset [28], existing methods already perform well
as shapes remain near-isometric. We provide some results in Table 5.2 to show
our method performs similarly in these simple cases, and refer to supplementary
material for additional discussions.

Evaluation Metrics We follow [174] to measure the accuracy, bijectivity, coverage
and runtime to compare di�erent methods. Additionally, We apply Equation (5.3)
to compute the Dirichlet energy on the obtained pointwise maps to evaluate the
smoothness. See supplementary materials for detailed definitions and discussions.

Initialization & Baselines Since the tested shape pairs are highly non-isometric
and challenging, standard shape descriptors failed to produce reasonable initializa-
tion, as shown in supplementary. We therefore compute each initial map from a
5 ◊ 5 functional map obtained by using 5 landmarks. Our baselines can be cate-
gorized into three groups: (1) We compare to ZoomOut (ZO) [145] and Discrete
Solver (DO) [177], the current-state-of-the-art refinement methods in functional
maps pipeline. (2) We compare the standard Dirichlet Energy with the di�erent
variants presented in Section 5.5, namely nICP [9], ARAP [209], Shells [70] and
RHM [77], all using the same algorithm. We highlight the Dirichlet energy (ours w/
D) and the RHM energy (ours w/ RHM) as respectively the simplest and globally
best performing energies within our algorithm, which we both advocate. (3) We also
include the results using original implementations of RHM and Shells for reference
only, since additional regularizers besides smoothness are included.

1https://www.russian3dscanner.com/

https://github.com/llorz/3DV22_DeformingThings4DMatching_dataset
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Table 5.1: DeformThings4D-Matching Dataset: Summary over 433 shape
pairs. We highlight the best two in blue, except those of Shells and RHM (see
text for details).

methods accuracy bijectivity smoothness coverage runtime (s)

Init 12.71 11.70 3.60 24.57% -

RHM 11.8 1.6 0.50 56.6%
Shells 11.4 5.1 1.50 50.8%

Ours w/ ARAP 12.16 11.70 0.71 31.0% 25.3
Ours w/ nICP 9.56 3.89 1.72 40.4% 100.8
Ours w/ Shells 8.41 2.59 2.18 51.7% 48.2

ZO 8.57 7.14 4.02 67.0% 17.5
DO 9.01 1.78 3.21 62.4% 40.9

Ours w/ D 8.19 2.63 1.56 50.4% 21.4
Ours w/ RHM 8.10 2.18 1.47 56.0% 42.1

Table 5.2: Results on a random subset of 200 pairs of the FAUST dataset. We
highlight the best two in blue.

methods accuracy bijectivity smoothness coverage

Init 6.45 5.51 2.67 38.47 %

ZO 3.95 2.16 0.79 82.16 %
DO 4.07 1.08 0.86 77.96 %

Ours w/ D 4.43 1.83 0.64 67.47 %
Ours w/ RHM 3.94 1.11 0.71 79.26 %
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Source Initial w/nICP w/ARAP w/Shells w/RHM ZoomOut DiscreteOp w/ D

Figure 5.5: Starting from a poor initial map, our method can produce a more smooth
and accurate map compared to the baseline methods.

Table 5.3: TOSCA Non-Isometric Dataset: Summary over 95 shape pairs. We
highlight the best two in blue, except those of Shells and RHM (see text for details).

methods accuracy bijectivity smoothness coverage runtime (s)

Init 7.51 7.23 1.94 26.9% -

RHM 9.20 1.37 1.55 54.3 % 818
Shells 10.20 6.72 5.58 45.6 % 29.0

ours w/ ARAP 7.55 8.35 0.83 48.6% 42.8
Ours w/ nICP 7.78 3.63 1.16 40.2% 178
Ours w/ Shells 11.85 7.40 1.18 37.8% 72.5

ZO 12.47 8.17 6.53 56.8% 33.7
DO 13.30 1.90 5.51 53.4% 79.2

Ours w/ D 7.25 3.02 1.22 42.2% 33.3
Ours w/ RHM 6.26 1.87 1.39 53.1% 40.1

DeformThings4D-Matching Dataset We report the average metrics over 433
cross-category shape pairs from the humanoid shapes from our DeformThings4D-

Matching dataset in Table 5.1. Among all the baseline methods, our method
achieves the best accuracy. Compared to ZoomOut (ZO) and Discrete Solver (DO),
our two selected energies achieve 3◊ better smoothness on average with comparable
bijectivity and coverage. It suggests that, our method, as an extended algorithm
of discrete solver by adding a smoothness term, is indeed e�ective to promote map
smoothness. In supplementary, we also report per-category map evaluation. We
show two qualitative examples in Figure 5.4, where the obtained maps are visualized
by color transfer. For the pair between Crypto and SkeletonZombie, we also
visualize the per-vertex smoothness error for each map. We additionally display
texture transfer for a di�cult pair in Figure 5.5, using [75] to obtain a vertex-to-
point map for each method to improve visualization. While this figure shows that our
maps clearly outperform standard spectral method starting from poor initialization,
there is room for improvement for all energies.

TOSCA Non-Isometric Dataset contains cross-category correspondences among
one gorilla shape (with 5 di�erent poses), one male shape (with 7 di�erent poses),
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and one female shape (with 12 di�erent poses). We use all 95 non-isometric shape
pairs between the gorilla shapes and the human (male and female) shapes. The
summary evaluation is shown in Table 5.3. See supplementary for qualitative ex-
amples. Enforcing the smoothness of the pointwise maps via Dirichlet energy (Ours
+ D) help us achieve much more accurate and 5◊ smoother maps. We additionally
highlight that adding extra pointwise bijectivity (ours w/ RHM) has a positive ef-
fect on the metrics, but results in a slower solver. Finally, while ARAP and nICP
energies perform quite well, the Shells energy seems to su�er from the high level of
non-isometry in the dataset as it mainly relies on spectral quantities.

5.6.3 Implementation & Parameters
We implemented all the baselines (based on their released code) and our methods
in Python to guarantee a fair comparison. We follow the discrete solver [177] to
adopt the progressive upsampling technique into our algorithm, which is introduced
in [145], and gradually increase the spatial coupling term weight “ to avoid over-
smoothing in the earlier iterations. Detailed parameters can be found in supplemen-
tary, or in the released version of the code at https://github.com/RobinMagnet/
smoothFM.

5.7 Conclusion, Limitations & Future Work

In this work, we extended the discrete solver formulation from [177] to optimize the
Dirichlet energy to promote map smoothness. We then proposed an e�cient algo-
rithm that can produce high-quality and smooth maps from noisy initial maps for
between non-isometric surfaces. Furthermore, we demonstrated that multiple pre-
viously proposed methods for computing smooth maps, including nICP [9], ARAP
[209], RHM [77], and Smooth Shells [70], can be reformulated in a coherent frame-
work. This allowed us to compare and analyze di�erent formulations for smoothness
using a single algorithm. Finally, to address the scarcity of evaluation data, we pro-
posed a new dataset based on DeformThings4D, with variable mesh structure,
and dense ground truth cross-category correspondences for eight challenging cate-
gories. We believe both our framework and this dataset can be helpful for the shape
matching community.

Our method still has some limitations. First, optimizing the Dirichlet energy
can indeed greatly improve the smoothness compared to spectral methods. This,
however, can come at the expense of loss of coverage, and we observe that our
maps can still collapse locally, as seen from the texture transfer of Figure 5.5. It
would be interesting to investigate techniques that to further prevent local collapse
and obtain a smooth map with high coverage. Second, our results show that the
proposed method improves significantly results from ZoomOut and discrete solver
on complete shapes, even for non-isometric cases. However, for the partial matching
setting, though our maps still outperform ZoomOut and discrete solver, there is still
a lot of room for further improvement. Finally, our energy is a weighted sum of

https://github.com/RobinMagnet/smoothFM
https://github.com/RobinMagnet/smoothFM
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a bijectivity and a smoothness term, which can become hard to balance across all
initialization quality.

In the future, we would like to study di�erent energies for partial matching and to
ways to prevent local map collapse. It will also be interesting to apply our approach
for computing dense correspondences in other domains, such as point clouds, graphs,
or even 2D images.

Acknowledgments The authors thank the anonymous reviewers for their valu-
able comments and suggestions. Parts of this work were supported by the ERC Start-
ing Grant No. 758800 (EXPROTEA), the ERC Consolidator Grant No. 101003104
(MYCLOTH), and the ANR AI Chair AIGRETTE.



Chapter 6

Scalable and E�cient

Functional Map Computations

on Dense Meshes

We propose a new scalable version of the functional map pipeline that allows to
e�ciently compute correspondences between potentially very dense meshes. Unlike
existing approaches that process dense meshes by relying on ad-hoc mesh simplifica-
tion, we establish an integrated end-to-end pipeline with theoretical approximation
analysis. In particular, our method overcomes the computational burden of both
computing the basis, as well the functional and pointwise correspondence computa-
tion by approximating the functional spaces and the functional map itself. Errors in
the approximations are controlled by theoretical upper bounds assessing the range
of applicability of our pipeline. With this construction in hand, we propose a scal-
able practical algorithm and demonstrate results on dense meshes, which approximate
those obtained by standard functional map algorithms at the fraction of the computa-
tion time. Moreover, our approach outperforms the standard acceleration procedures
by a large margin, leading to accurate results even in challenging cases.

6.1 Introduction
Processing and analyzing complex 3D objects is a major area of study with appli-
cations in computer graphics, medical imaging and other domains. The underlying
structure of such data can be highly detailed and require dense point sets and meshes
to capture important features. At the same time, shape analysis methods are often
designed to only handle objects that consist of tens of thousands of points, thus re-
quiring decimation algorithms to process meshes containing millions of points that
can arise in real-world applications. While mesh simplification can lead to good re-
sults, it su�ers from several drawbacks. First, the simplification process might lead
to artifacts and significant loss of detail. Second, for many applications, it remains
highly non-trivial to accurately transfer the results of analysis from the simplified
to original shapes. Finally, the transfer process can introduce errors and aliasing
artifacts.

In this work, we focus on computing correspondences between non-rigid shapes.
This is a long-standing problem in Geometry Processing and related fields, with a
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Figure 6.1: Our method produces point-to-point correspondences between dense
meshes e�ciently, using values only located at sparse samples, displayed in white.
The source and target shapes from the DeformingThings4D dataset [124] are
composed of roughly 100 000 vertices, and correspondences are displayed using tex-
ture transfer. The map computation (including all preprocessing) took 60 seconds
on a standard machine.

wide range of techniques developed in the past few years [59, 188]. A notable line of
work in this domain uses the so-called functional map framework, which is based on
manipulating correspondences as matrices in a reduced basis [159]. Methods based
on this framework have recently achieved high accuracy on a range of di�cult non-
rigid shape matching tasks [144, 145, 65]. Unfortunately, these approaches require
costly and time-consuming precomputation of the Laplacian basis and, potentially,
other auxiliary data-structures [174]. As a result, these techniques do not scale
well to densely sampled meshes and, thus, are most often applied to simplified
shapes. Moreover, while accelerated versions of some methods [145] have recently
been proposed, these lack theoretical approximation guarantees, and can be error-
prone.

At the same time, several approaches have recently been proposed for e�cient
approximation of the Laplace-Beltrami basis [149, 148]. These approaches can suc-
cessfully scale to very large meshes, and are especially e�ective for computing low fre-
quency eigenfunctions. While these methods have been shown to be e�cient when,
e.g., using approximated spectra as shape descriptors [178] or for individual shape
processing, they can come short when applied in shape correspondence scenarios.
Conceptually, this is because the objectives and guarantees in [149, 148] only apply
at a global scale of individual shapes, instead of the local function approximation or
function transfer required for functional and point-to-point map computation.

In this work, we make a step towards creating scalable and e�cient non-rigid
shape correspondence methods, which can handle very large meshes, and are backed
by theoretical approximation bounds. We focus on the functional map framework
[162] and especially its recent variants based on spectral upsampling, such as the
ZoomOut method [145] and its follow-up works [100, 240, 177]. These methods
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Figure 6.2: Overall pipeline of our method, using real data from [176]. Given
two dense input shapes, we first generate an approximate eigenbasis computation
by using a modified version of the approach introduced in [148] (Sec. 6.5.3). We
then propose a new, scalable version of ZoomOut (Sec. 6.5.4), which exploits our
functional map approximation (Sec. 6.5.1) and comes with theoretical approximation
bounds. Ultimately, this leads to dense pointwise correspondences between the two
input shapes visualized here via color transfer.

are based on iteratively updating functional and point-to-point maps and have been
shown to lead to high-quality results in a wide range of cases. Unfortunately, the two
major steps: basis pre-computation and iterative updating of the pointwise maps
can be costly for dense shapes.

To address this challenge, we propose an integrated pipeline that helps to make
both of these steps scalable and moreover comes with approximation guarantees. For
this, we first establish a new functional space inspired by [149], and demonstrate
how it can be used to define an approximation of functional maps without requiring
either a dense pointwise correspondence or even a basis on the dense meshes. We
then provide theoretical approximation bounds for this construction that, unlike the
original definition in [159] is fully agnostic to the number of points in the original
mesh. Following this analysis, we extend the approach introduced in [149] to improve
our functional map approximation, and present an e�cient and scalable algorithm
for map refinement, based on our constructions, which eventually produces accurate
results in the fraction of the time required for standard processing, as displayed on
Figure 6.2.

6.2 Related Works

Our main focus is on designing a scalable and principled approach for non-rigid
shape correspondence, within the functional map framework. We therefore review
works that are most closely related to ours, especially those using spectral techniques
for shape matching, and refer the interested readers to recent surveys [224, 214, 24,
188, 59] for a more comprehensive overview of other approaches.
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Spectral methods in shape matching The idea of using the spectral properties
of the Laplace-Beltrami, and especially its eigenfunctions for shape correspondence,
has been investigated in many existing works. Early approaches focused on directly
aligning the eigenfunctions, seen as descriptors, [140, 103] or using di�usion processes
to derive descriptors or embedding spaces, e.g. [195, 158], among others.

A more principled framework was introduced in [159], based on the idea of func-
tional maps. The overall strategy is to express the pull-back of functions as an
operator in a reduced basis, and to formulate objective functions based on desirable
properties of such an operator. The main advantage of this approach is that it leads
to small-scale optimization problems, with the number of unknowns independent of
the size of the underlying meshes.

Despite the simplicity of the original approach, its performance is strongly de-
pendent on accurate descriptors and hyperparameter tuning. As a result, this basic
strategy has been extended significantly in many follow-up works, based both on
geometric insights [117, 4, 161, 37, 74], improved optimization strategies [118, 153,
175, 177], and richer correspondence models going beyond isometries across complete
shapes, [181, 186, 128], among others.

Functional and pointwise maps While many approaches in the functional map
literature focus on the optimization in the spectral domain, it has also been observed
that the interaction between pointwise and functional correspondences can lead to
significant improvement in practice. This was used in the form of the Iterative
Closest Point (ICP) refinement in the original article and follow-up works [159, 139,
161] and has since then been extended to map deblurring and denoising [75], as well
as powerful refinement, and even map optimization strategies [145, 174, 100, 70, 177].
All of these works are based on the insight that manipulating maps in both the
spectral and spatial (primal) domains can lead to overall improvement in the quality
of the results.

Unfortunately, such approaches can often come at a cost of scalability, since the
complexity of pointwise maps is directly dependent on the mesh resolution, making
it di�cult to scale them to highly dense meshes.

Multi-resolution spectral approaches Our work is also related to multi resolu-
tion techniques for approximating spectral quantities, as, e.g., in [225], and especially
to recent developments for accurate and scalable eigen-solvers geared towards Lapla-
cian eigenfunctions on complex meshes [149, 148]. The latter set of methods have
been shown to lead to excellent performance and scalability on tasks involving indi-
vidual shapes, such as computing their Shape-DNA [178] descriptors, or performing
mesh filtering. Similarly, there exist several spectral coarsening and simplification
approaches [129, 119, 45] that explicitly aim to coarsen operators, such as the Lapla-
cian, while preserving their low frequency eigenpairs. Unfortunately, these methods
typically rely on the eigenfunctions on the dense shapes, while the utility of the
former approaches in the context of functional maps has not yet been fully analyzed
and exploited, in part, since, as we show below, this requires local approximation
bounds.
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Finally, we mention that our work is also related to hierarchical techniques,
including functional maps between subdivision surfaces proposed in [202], and even
more closely, to refinement via spectral upsampling [145]. However, the former
approach relies on a subdivision hierarchy, while the acceleration strategy of the
latter, as we discuss below, is based on a scheme that unfortunately can fail to
converge in the presence of full information.

Limitations of existing techniques and our contributions To summarize,
the scalability of existing functional maps-based methods is typically limited by
two factors: first, the pre-processing costs associated with the computation of the
eigenfunctions of the Laplace-Beltrami operator, and second, the complexity of si-
multaneously manipulating pointwise and functional correspondences.

In this context, our key contributions include:

1. We define an approximation of the functional map, which requires only a sparse
correspondence, and provide a theoretical basis for this construction.

2. We analyze the basis approximation approach in [149] for functional map com-
putation, obtaining explicit theoretical upper bounds. We then modify this
approach to improve the approximation guarantees, leading to more accurate
maps.

3. We present a principled and scalable algorithm for functional map refinement,
based on our constructions, which produces accurate results at a fraction of
the time of comparable methods.

6.3 Method Overview
As mentioned above, our overall goal is to design a scalable pipeline for non-rigid
shape matching that can handle potentially very dense meshes. We base our ap-
proach on the ZoomOut variant of the functional map framework [145]. However,
our constructions can be easily extended to other recent functional maps methods,
e.g., [175, 177], which share the same general algorithmic structure. Specifically,
ZoomOut and related methods are based on two main building blocks: computing
the eigenfunctions of the Laplace-Beltrami operator first, and then iterating between
updating the point-to-point and functional maps.

Our general pipeline is displayed on Figure 6.2 and consists of the following major
steps. First, we generate for each shape a sparse set of samples and a factorized
functional space using a modification of the approach introduced in [149], described
in Section 6.5.3. Secondly, we use the approximation of the functional map that
we introduce (Sec. 6.5.1) to define a scalable version of the ZoomOut algorithm,
producing a sparse pointwise map. Finally, we extend this sparse map to a dense
pointwise map with sub-sample accuracy, by using the properties of the functional
subspaces we consider.

The rest of the chapter is organized as follows: in Section 6.4 we introduce the
notations and background necessary for our approach.
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In Section 6.5.1, we introduce our functional map approximation based on the
basis construction approach in [149]. Section 6.5.2 provides explicit approximation
errors and Section 6.5.3 describes our modification of the method of [149], which
helps to improve the theoretical upper bounds we obtained for functional map com-
putation.

Given these constructions, we show in Section 6.5.4 how ZoomOut-like algo-
rithms can be defined, first by iteratively updating functional and pointwise maps
in the reduced functional spaces, and then how the computed functional map can
be extended onto the dense shapes e�ciently.

Section 6.5.5 provides implementation details, while Section 6.6 is dedicated to
extensive experimental evaluation of our approach.

6.4 Notations & Background

6.4.1 Notations
For a triangle mesh, we denote by W and A its sti�ness and mass matrices that to-
gether define the (positive semi-definite) Laplace-Beltrami Operator as L = A≠1W.
Given two shapes N and M with, respectively, n and m vertices, any vertex-to-
vertex map T : N æ M can be represented as a binary matrix � œ {0, 1}n◊m with
�ij = 1 if and only if T (xi) = yj, where xi denotes the i-th vertex on N and yj the
j-th vertex in M.

The eigenfunctions of the Laplace-Beltrami operator can be obtained by solving
a generalized eigenproblem:

WÂi = ⁄iAÂi, (6.1)

where, in practice, we typically consider the eigenfunctions corresponding to the K

smallest eigenvalues.

6.4.2 Functional Maps and the ZoomOut algorithm
Functional maps were introduced in [159] as a means to perform dense non-rigid
shape matching. The key insight is that any pointwise map T : N æ M can be
transformed into a functional map via composition FT : f œ F(M) ‘æ f ¶T œ F(N ),
where F(S) is the space of real-valued functions on a surface S. Since FT is linear,
it can be represented as a matrix in the given basis for each space

1
Â

M
i

2

i
and

1
Â

N
i

2

i
.

If the basis on shape N is orthonormal with respect to AN , the functional map
C can be expressed in the truncated basis of size K on each shape as a K ◊ K

matrix:
C =

1
�N

2€
AN ��M

, (6.2)

where each basis function on M (resp. N ) is stacked as a column of �M (resp.
�N ), � is the matrix representing the underlying pointwise map, and we use € to
denote the matrix transpose.
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ZoomOut Given the Laplace-Beltrami eigenbasis, the ZoomOut algorithm [145]
allows recovering high-quality correspondences starting from an approximate ini-
tialization, by iterating between two steps: (1) Converting a k ◊ k functional map
to a pointwise map, (2) converting the pointwise map to a functional map of size
k+1◊k+1. This method has also been extended to other settings, to both promote
cycle consistency [100] and optimize various energies [177] among others. Unfortu-
nately, although simple and e�cient, the scalability of this approach is limited, first,
by the precomputation of the Laplacian basis, and second by the pointwise map
recovery which relies on possibly expensive nearest-neighbor search queries across
dense meshes.

Several ad-hoc acceleration strategies have been proposed in [145]. However, as
we discuss below, these do not come with approximation guarantees and indeed can
fail to converge in the limit of complete information.

6.4.3 Eigenbasis approximation
To improve the scalability of spectral methods, recent works [149, 242] have tried
to develop approximations of the Laplace-Beltrami eigenbasis, via the reduction of
the search space. Specifically, in [149], the authors first sample a set of p points
S = {v1, . . . , vp} on shape M and create a set of p local functions (u1, . . . , up),
each centered on a particular sample point. Each function uj is built from an
unnormalized function ũj supported on a geodesic ball of radius fl around the sample
vj, which decreases with the geodesic distance from the center:

ũj : x œ M ‘æ ‰fl

1
d

M(x, vj)
2

œ R (6.3)

where d
M is the geodesic distance on shape M and ‰fl : R+ æ R is a di�erentiable

non-increasing function with ‰fl(0) = 1 and ‰fl(x) = 0 for x Ø fl. Choices for ‰

are discussed in Appendix D.1. Finally, local functions uj are defined to satisfy the
partition of the unity by using:

uj(x) = ũj(x)
q

k ũk(x) ’ x œ M (6.4)

Now only considering functions that lie in the Span {u1, . . . , up}, the original
eigendecomposition system in Equation (6.1) reduces to a generalized eigenproblem
of size p ◊ p:

W „
i

= ⁄̄iA „
i

(6.5)
with W = U€WU and A = U€AU where W and A are the sti�ness and area
matrices of M, and U a sparse matrix whose columns are values of functions

1
uj

2

j
.

Eigenvectors „
i

are p-dimensional vectors describing the coe�cients with respect to1
uj

2

j
, which define the approximated eigenvectors as Â

i
= U„

i
. Note that since

1
„

i

2

i
are orthonormal with respect to A, this implies that

1
Â

i

2

i
are orthonormal

with respect to A.
While the original work [149] focused on global per-shape applications such as

filtering and Shape-DNA [178] computation, we build on and modify this pipeline
in order to obtain reliable functions to perform dense shape correspondence.
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6.5 Our approach
In this section, we first present a functional map definition using the basis approxi-
mation strategy from of [149], and provide theoretical bounds on the approximation
error (Secs. 6.5.1 and 6.5.2 respectively). Based by these results, we then introduce
our modification of [149] in Section 6.5.3 which we use in our approach in order to
minimize the computed bound. Finally, we present our Extended ZoomOut algo-
rithm and provide implementation details in Sections 6.5.4 and 6.5.5.

6.5.1 Approximate Functional Map
As mentioned in, Section 6.4.3 the eigenfunctions computed using the approach
in [149] are, by construction, orthonormal with respect to the area matrix A. Thus,
they can be used to compute a functional map following Equation (6.2). This leads
to the following definition:

Definition 6.1. Given two shapes M and N , with approximated eigenfunctions1
�M

i

2

i
, stacked as columns of matrix �M (resp. with N ), the reduced functional

map associated to a pointwise map � : N æ M is defined as:

C =
1
�N 2€

AN ��M (6.6)

Note that this functional map definition uses the approximated bases. How-
ever, it still relies on the knowledge of a full point-to-point map between complete
(possibly very dense) shapes.

To alleviate this constraint, we introduce another functional map C that only
relies on maps between samples, independently of the original number of points:

Definition 6.2. Using the same setting as in Definition 6.1, with eigenfunctions
arising from Equation (6.5),

1
„

M
i

2

i
(resp. with N ) being stacked as columns of a

matrix �M (resp. with N ), given a point-wise map � : SN æ SM, our restricted
functional map FK(N ) is defined as:

‚C =
1
�N 2€

AN � �M (6.7)

Recall that, as mentioned in Section 6.4.3, S denotes the sparse set of samples
on each shape. Therefore, in order to define ‚C, we only need to have access to a
pointwise map between the sample points on the two shapes. This restricted func-
tional map ‚C is a pull-back operator associated to the reduced spaces Span

Ó
„

M
k

Ô

k

and Span
Ó
„

N
k

Ô

k
, since both families are orthonormal with respect to A. Further-

more, using the factorization � = U� on each shape in Eq. (6.6) as well as the
definition of A, we remark that going from Eq. (6.6) to Eq. (6.7) only requires the
approximation �UM ƒ UN �, for which we will later on derive an upper bound in
Proposition 6.2. Note that one might want to replace �M by �M in Equation (6.7)
so that the map � actually transports pointwise values rather than coe�cients. In
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practice, as evaluated in Appendix D.2, we did not observe any improvement using
this modification.

The first benefit of the approximated functional map in Equation (6.7) com-
pared to the exact one in Equation (6.6) is the exclusive use of small-sized matrices.
Observe that functions

1
„

i

2

i
, are associated with the area and sti�ness matrices

A and W, which define the L2 and W1 inner products, thus allowing to use all
functional map related algorithms in a straightforward way without using any extra
approximation or acceleration heuristics. Eventually, a dense pointwise map be-
tween complete shapes can be obtained by identifying the two pull-back operators
‚C and C, as described later in Section 6.5.4. As we will see, the resulting corre-
spondences outperform those obtained using remeshed versions of shape and nearest
neighbor extrapolation, as our functional map produces sub-sample accuracy.

Secondly, as shown in the following section, our approach is backed by strong
theoretical convergence guarantees, providing bounds on approximation errors. In
contrast, previous approaches, such as the accelerated version of ZoomOut [145]
(Sec. 4.2.3) might not converge to the true functional maps even when using all
available information. Namely, Fast ZoomOut indeed samples q points on shapes
M and N , and approximates C using

CF-ZO = arg min
X

ÎQN �N X ≠ �QM�MÎ2
F

(6.8)

where QN œ {0, 1}q◊n
N with QN

ij
= 1 if and only if xj is the i

th sample on shape N
(similarly for M). Using all points means Q matrices are identity. This approxima-
tion gives equal importance to all sampled points regardless of their area, and thus
fails to converge towards the underlying C as the number of samples increases. This
means a near uniform sampling strategy is required in practice, which is di�cult to
achieve on very dense meshes.

In the following section, we provide approximation error bounds for our func-
tional map definition, which we later use to modify the approach from [149] to reduce
these errors and obtain a more accurate and principled correspondence approach.

6.5.2 Approximation Errors
Most expressions above involve a given pointwise map � between surfaces N and
M. The following lemma provides simple assumptions to obtain a Lipschitz constant
for its associated functional map, which will be very useful to derive bounds on the
approximation errors of our estimators:

Lemma 6.1. Let M and N be compact surfaces and T : N æ M a di�eomorphism.
Then there exists BT œ R so that:

Îf ¶ TÎN Æ BT ÎfÎM ’ f œ L
2(M) (6.9)

the proof of which can be found in [97] (Proposition 3.3).
Our overall goal is to use the newly designed functional map C within a ZoomOut-

like functional map estimation algorithm. We therefore expect the approximated
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functional map to mimic the underlying map C when the computed eigenvectors
�k approximate well the true ones �k. The following proposition bounds the error
between the two functional maps:

Proposition 6.1. Let �N (resp. �M) and �N (resp. �M) the approximated and
true first K eigenvectors of the Laplacian on N (resp. M). Let C and C be the
original and reduced (see Eq. (6.6)) functional maps of size K, associated to the map
T . Suppose that T is a di�eomorphism, and let BT be the bound given by Lemma 6.1.
If there exists Á œ Rú

+ so that for any j œ {1, . . . , K} :

Î�N
j

≠ �N
j

ÎŒ Æ Á and Î�M
j

≠ �M
j

ÎŒ Æ Á

Then:
1
K

...C ≠ C
...

2

2
Æ Á

2
1
1 + B

2
T

2
(6.10)

The proof can be found in Appendix D.3. This proposition ensures that a good
estimation of the spectrum implies an accurate functional map approximation, and
thus its good behavior within matching algorithms.

A more fundamental error to control is the estimation error between the func-
tional maps C from Def. 6.1 and ‚C from Def. 6.2. As mentioned above, the esti-
mation relies on the identification ��M ƒ UN � �M, where � is a map between
the two sets of samples SN and SM, which we expect to be similar to � on these
spaces. This approximation treats equivalently the two following procedures: 1)
interpolating between values on SM then transferring using the map �, 2) trans-
ferring values on SM to values on SN using � and then interpolating on N . The
following proposition bounds the error of this approximation:

Proposition 6.2. Let T : N æ M be a pointwise map between the shapes repre-
sented by �, and let BT be the bound given by Lemma 6.1. Suppose that T|SN :
SN æ SM is represented by �.
Let – = minj u

M
j

(vj) œ [0, 1]. Suppose further that there exists Á > 0 so that for any
k œ {1, . . . , K} and x, y œ SM:

d
M(x, y) Æ fl

M ∆ |�M
k

(x) ≠ �M
k

(y)| Æ Á (6.11)

and
d

M(x, y) Æ fl
M ∆ |�M

k
(x) ≠ �M

k
(y)| Æ Á. (6.12)

Then
1
K

...��M ≠ UN � �M...
2

N
Æ Á

2(1 ≠ –) + Á
2
B

2
T

(6.13)

The proof is given in Appendix D.4. This proposition shows that the estimation
error depends on two parameters: 1) the variation Á of the eigenfunctions w.r.t to
the sample distance fl, 2) the self-weights uj(vj) from the local functions defined in
the basis approximation. Note that since the basis functions uj verify 0 Æ uj Æ 1
and satisfy the partition of unity, they can be interpreted as interpolation weights
from values at sampled points to values on the entire shape. This makes the depen-
dence in – more intuitive, as our approximation relies on the local identification of
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Figure 6.3: Example of a local function uj (red color) centered on vj (red vertex),
visualized without (Left) and with (Right) our adaptive radius strategy. Other
samples vk are displayed in black.

basis coe�cients with function values. A discussion on the numerical values of the
quantities used in Proposition 6.2 are provided in Appendix D.5.

In the following, we will therefore seek to modify the basis approximation [149]
in order to maximize – while retaining both the quality of the approximation of the
true Laplacian spectrum, necessary to apply functional maps-related algorithms.

6.5.3 Improved Eigenbasis Approximation
In this section, we propose a modification of the approach from [149], based on the
theoretical bounds introduced above. For the rest of this section, we focus on a
single shape, as the basis computations are done on each shape independently.

As seen from Proposition 6.2, high self weights allow stabilizing our functional
map approximation. Interestingly, with the construction in [149], the value uj(vj)
only depends on the geodesic distance between vj and other sampled points vi for
i ”= j:

uj(vj) = 1
1 + q

i”=j ũi(vj)
. (6.14)

where
1
ũi

2

i
are the unnormalized local functions. We modify the pipeline from [149]

in order to increase these values as follows: we first define a per-sample radius flj

for j œ {1, . . . , p}, instead of a single global value fl. Given a sample point vj with
a small self-weight uj(vj), radius flj is kept untouched as it has no influence on the
self-weight, but we instead reduce the radius fli of its most influential neighbor - that
is the radius of the point vi with the highest value ũi(vj). Following Equation (6.14)
this eventually increases the value of uj(vj). Note that this modification doesn’t
change the value ui(vi) and increase the self weights of all its neighbors. This way,
all self weights are non-decreasing during the algorithm, with at least one of them
increasing. This extra adaptation additionally comes at a negligible computational
cost, as it only requires re-evaluating uj at a set of fixed vertices. In particular,
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Figure 6.4: E�ect of the adaptive radius on functional map approximation. Top row
displays a pointwise map T from the right mesh to the left mesh using color transfer.
Bottom row displays C (Left), ‚C when using the pipeline from [149] (Middle) and
our functional map ‚C (Right).

this does not require additional local geodesic distance computations. More details
are provided in Section 6.5.5, and the algorithm to compute these new functions is
displayed in Algorithm 5. We observe that the adaptive radius strategy generates
better local functions than those introduced in [149], especially for non-uniform sam-
pling, as can be seen on a surface from the DFaust dataset [29] in Figure 6.3. Note
that since we focus on local analysis, a desirable property of the local interpolation
function is the consistency across di�erent shapes when only values at the samples
are provided. With a single global radius, we see on Figure 6.3 that these functions
can be heavily distorted by the normalization procedure, which is corrected by our
approach. However, increasing the self-weights too close to 1 also deteriorates the
results, as any vertex x within the radius of a single sample will be given the value
of the sample point. There thus exists a limit at which this procedure ceases to be
helpful, and the only solution then lies in increasing the number of samples on the
shape.

The positive e�ect of our adaptive radius algorithm for functional map estimation
is further visualized in Figure 6.4, where given a single pointwise map T , we display
the exact functional map on the approximated spaces C, and two approximated
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Algorithm 5 Computation of local functions with adaptive radius

Require: Mesh M, samples (vk)k, initial fl0, threshold Á

1: flj Ω fl0 ’j

2: Compute local functions U with radius fl : Equations (6.3) and (6.4)
3: Add sample points if necessary
4: while some k with uk(vk) < Á do
5: j Ω arg max

i”=k

ui(vk)

6: flj Ω flj/2
7: update all u using Equations (6.3) and (6.4)
8: end while
9: Add unseen vertices in the sample

functional maps ‚C, one being computed with a shared radius [149] and the other
with our adaptive radius scheme. We highlight that the ground truth functional
map actually di�er for each approximation ‚C as the reduced functional spaces are
modified, which makes values not directly comparable. However, we observe that the
two ground truth maps have nearly identical sparsity structure (see Appendix D.6),
which is why we only display one in Figure 6.4. Note that using the adaptive radius
strategy then generates a sparsity pattern on matrix ‚C very close to the ground
truth one.

6.5.4 Scalable ZoomOut
In light of the previous discussions and theoretical analysis, we now describe how to
use the approximated functional map ‚C within a standard ZoomOut pipeline [145].
Our complete pipeline is summarized in Algorithm 6, where the notation �1:k indi-
cates that we only use the first k column of matrix �1:k.

Algorithm 6 Scalable ZoomOut
Require: Meshes M and N , threshold Á, initial map

1: Sample SM and SN using Poisson Disk Sampling
2: Compute UM and UN using Algo. 5
3: Approximate eigenvectors �M and �M using Eq. (6.5)
4: Set �M = UM�M and �N = UN �N

5: Obtain � between samples using the initial map
6: for k = kinit:kfinal do
7: ‚C =

1
�N

1:k

2€
AN � �M

1:k

8: � = NNsearch
1
�M

1:k, �N
1:k

‚C
2

potentially using Eq. (6.16)
9: end for

10: � = NNsearch
1
�M

1:k, �N
1:k

‚C
2

11: Return �
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As mentioned earlier, using ‚C and matrices A and W allows applying the
ZoomOut algorithm directly, as if it was applied on remeshed versions of the shapes
with only p vertices. This results in a refined functional map ‚Cú and a refined
pointwise map between samples �ú. The last remaining non-trivial task consists in
converting the refined functional map into a global pointwise map �ú between the
original dense meshes.

Standard approaches using remeshed versions of the shapes extend maps via
nearest neighbors, resulting in locally constant maps. Instead, we identify ‚C and
C, which then allows us to compute the pointwise map �ú by solving the standard
least square problem:

�ú = arg min
�

Î�N ‚Cú ≠ ��MÎ2
AN . (6.15)

Since A is diagonal this problem reduces to a nearest neighbor search for each vertex
x œ N . This way, the obtained pointwise map is no longer locally constant which
results in a significant gain of quality with respect to typical approaches.

On meshes containing millions of vertices, this nearest neighbor search can, how-
ever, still be very slow. In these cases, we propose to use the computed pointwise
map � as a guide to reduce the search space as follows: for x œ N , we first select
the indices of its nearest sample points N(x) = {j | u

N
j

(x) > 0}, and create the set
of possible images as the points in M close to the image of this set under the map
�, that is

I(x) = {y | ÷j œ N(x), u
T̄ (j)(y) > 0} (6.16)

where T̄ is the function representation of �. Since local functions uj are compactly
supported, in practice, they are stored as sparse vectors and extracting the set of
possible images of a given vertex therefore can be done e�ciently through simple
indexing queries.

6.5.5 Implementation
We implement the complete algorithm in Python and provide the code at https:
//github.com/RobinMagnet/Scalable_FM, built on top of the pyFM library, found
at https://github.com/RobinMagnet/pyFM

Following [149], we generate sparse samples S using Poisson Disk sampling, and
run a fixed-radius Dijkstra algorithm starting at all sampled points vj to build local
functions uj. Values can be stored in a sparse n◊p matrix, where p is the number of
samples. Note that the adaptive radius algorithm presented in Section 6.5.3 does not
require additional geodesic distance computations. Furthermore, finding the set of
potential images for a point as described in Section 6.5.4 simply reduces to checking
non-zero indices in a sparse matrix. More details are provided in Appendix D.7.

6.6 Results
In this section, we evaluate our method, while focusing on two aspects. Firstly,
we verify that our method outperforms existing approaches in terms of speed at

https://github.com/RobinMagnet/Scalable_FM
https://github.com/RobinMagnet/Scalable_FM
https://github.com/RobinMagnet/pyFM
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Figure 6.5: Qualitative results on the SHREC19 dataset. Although processing time
di�er heavily, there is no significant di�erence between our method and results from
ZoomOut. However, remeshing the surface before ZoomOut results in locally con-
stant correspondences.

Table 6.1: Timing in seconds for di�erent methods when processing a pair with 50K
and 200K vertices and applying ZoomOut from spectral size 20 to 100

methods Preprocess LBO ZoomOut Conversion Total (s)

ZO 1 132 410 83 626
Fast ZO 10 132 1 44 187
R + ZO 14 2 3 1 21

Ours 10 7 5 44 65

all steps of the pipeline - that is, pre-processing as well as the ZoomOut algorithm.
Secondly, we show this gain in speed comes at a minimal cost in terms of quantitative
metrics. In particular, we verify that although our pipeline relies on sparse samples,
we eventually obtain clear sub-sample accuracy in the correspondences.

6.6.1 Timings
The method introduced in [149] aimed at approximating the spectrum of the Laplace-
Beltrami Operator e�ciently. As mentioned above, the additional building blocks
we introduced in Section 6.5.3 come at a nearly negligible computational cost as the
main bottleneck lies in local geodesic distances computations, which are not recom-
puted. The main benefit of our method appears when considering the processing
time of the ZoomOut algorithm. Indeed, since our algorithm does not involve any
n-dimensional matrices, its running time becomes entirely agnostic to the origi-
nal number of vertices. Only the final conversion step, which converts the refined
functional map into a dense point-wise map, scales with the number of vertices.
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Table 6.2: Evaluation of di�erent methods on the complete SHREC19 dataset. Blue
highlights the best two methods.

methods Accuracy Coverage Smoothness

Init 60.18 26.5 % 9.5

GT ≠ 33.0 % 10.43
ZO 26.84 61.5 % 6.2

R + ZO 28.57 18.0 % 15.0
Ours w/o radius 71.35 29 % 52.2
Ours + Fast ZO 29.5 59.7 % 6.4

Ours 27.78 56.7 % 5.6

Table 6.1 displays an example of timings when applying the ZoomOut algorithm
between two meshes with respectively 50 and 200 thousands vertices. We compare
the standard ZoomOut algorithm (ZO), the Fast ZoomOut algorithm (Fast ZO), the
standard ZoomOut applied to remeshed versions of the shapes with nearest neighbor
extrapolation (R+ZO) and our complete pipeline with p = 3000 samples on each
shape. Notice that farthest point sampling used in Fast ZoomOut can become quite
slow on dense meshes compared to Poisson sampling, which explains the similar
preprocessing timings between our method and Fast ZoomOut.

6.6.2 Evaluation
Dataset As most shape matching methods scale poorly with the number of ver-
tices, there are few benchmarks with dense meshes and ground truth correspon-
dences for evaluation. The SHREC19 dataset [144] consists of 430 pairs of human
shapes with di�erent connectivity, all of which come with initial correspondences.
Meshes in this dataset have on average 38 000 vertices, with the smallest and largest
number of vertices having respectively 4700 and 200 000 vertices. Due to the lim-
itations of existing shape matching methods, a remeshed version of this dataset is
commonly used. In contrast, we display results on the complete dense dataset, and
show that our method obtains similar results as ZoomOut [145] in only a fraction
of the required time.

Metrics We evaluate di�erent methods using standard metrics [174] for dense
shape correspondence, that is accuracy, coverage, and smoothness. The accuracy of
a computed dense map T : N æ M gives the average geodesic distance between
T (x) and T

ú(x) for all x œ N where T
ú denotes the ground truth map. Note that

since maps on SHREC19 are only evaluated on a small subset of 6890 points this
metric only captures partial information, and locally constant maps can still achieve
high accuracy. Coverage and smoothness metrics provide additional information on
the quality of correspondences and are sensitive to locally constant correspondences.
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Figure 6.6: Texture transfer using our scalable version of ZoomOut. Samples used
in the pipeline are shown as white dots.

Coverage is defined as the ratio of area covered by the pointwise map, and smooth-
ness is the Dirichlet energy defined as the squared L

2 norm of the gradient of the
transferred coordinates.

ZoomOut We compare our method (Ours) using 3000 samples first to the same al-
gorithm without adaptive radius (Ours w/o radius), to the standard ZoomOut [145]
algorithm applied on the dense meshes (ZO) and on remeshed versions with 3000 ver-
tices (R+ZO). We don’t compare to other standard shape matching baseline [70, 77]
first since we only wish to approximate results from ZoomOut, but also because these
baselines don’t scale to high number of vertices. Additionally, despite the lack of
theoretical guarantees, we evaluate a new version of Fast ZoomOut which uses func-
tional map approximation (6.8) on the approximated functional space F introduced
in Section 6.5.1 (Ours + Fast ZO). Table 6.2 shows the values of the evaluation
metrics on the SHREC19 dataset where the accuracy curves can be found on Fig-
ure 6.7, and Figure 6.5 shows an example of a map computed on two dense meshes.
We see that all methods but R+ZO produce similar metrics, although processing
times vary significantly. In contrast, the fastest method R+ZO produces locally
constant maps as seen on Figure 6.5, which results in poor coverage and smoothness
metrics. While our results are similar to ZoomOut and Fast ZoomOut, we stress
that our results were obtained at a fraction of the processing time of ZoomOut,
and come with theoretical upper bounds and control parameters on approximations
which Fast ZoomOut does not have.

Sub-sample accuracy One Figure 6.6, we provide a result using texture trans-
fer after applying our scalable ZoomOut on a pair of real scans of humerus bones
obtained using a CT scanner [186]. This figure shows how our algorithm obtain sub-
sample accuracy, as the transferred texture remains smooth even though samples
are quite sparse on each shape. We display similar results using texture transfer on
the SHREC19 dataset on Figure 6.8 and in Appendix D.8, which provides further
details on the shapes.
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Figure 6.7: Accuracy curves for di�erent methods presented in Table 6.2. Numbers
in the legend provide the average geodesic error (◊103).

Table 6.3: Norm of the estimation error � with and without adaptive radius on the
SHREC19 dataset

w/o radius Ours

� (◊10) 1.486 0.018

Adaptive Radius While results on Table 6.2 highlight the e�ciency of the adap-
tive radius scheme, we additionally evaluate how this heuristic allows improving the
estimation � = ÎC ≠ ‚CÎ presented in Section 6.5. For this, we simply compute C
and ‚C with K = 20 for all initial maps of the SHREC19 dataset, and evaluate the
norms of the estimation errors � which we provide in Table 6.3. In this experiment,
we notice our method improves the baseline by two orders of magnitude.

6.7 Conclusion, Limitations, and Future Work
In this chapter, we introduced a new scalable approach for computing correspon-
dences between non-rigid shapes, represented as possibly very dense meshes. Our
method is based on the e�cient approach for estimating the Laplace-Beltrami eigen-
basis [149] using optimization of coe�cients of local extension functions built from a
sparse set of samples. Key to our approach is careful analysis of the relation between
functional spaces on the samples and those on the original dense shapes. For this, we
extend this approach proposed in [149] and demonstrate how better behaved local
functions can be obtained with very little additional e�ort. We use this construction
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Figure 6.8: Texture transfer using our scalable version of ZoomOut on a pair of
the SHREC19 dataset. Samples used in the pipeline are shown as white dots.

to define a functional map approximation that only relies on information stored at
the samples, and provide theoretical guarantees for this construction. Finally, we
use these insights to propose a scalable variant of the ZoomOut algorithm [145],
which allows to compute high-quality functional and point-to-point maps between
very dense meshes at the fraction of the cost of the standard approach.

Although our method achieves high-quality results, it still has several limitations.
First, it relies heavily on the mesh structure, and is not directly applicable to other
representations, such as point clouds. Second, our method depends on a critical
hyperparameter, which is the number of samples. We have observed that 3000
samples perform well on a very wide range of settings, but it would be interesting
to investigate the optimal number, depending on the size of the spectral basis.
Furthermore, we use Poisson sampling as advocated in [149], which gives good results
in practice. However, the optimal choice of the sampling procedure, depending
on the geometric properties of shapes under consideration, would be an equally
interesting venue for investigation. Lastly, an out-of-core implementation, capable
of handling meshes with 10s of millions to billions of vertices, while possible in
principle, would be an excellent practical future extension of our approach.
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Chapter 7

Memory-Scalable and Simplified

Functional Map Learning

Deep functional maps have emerged in recent years as a prominent learning-based
framework for non-rigid shape matching problems. While early methods in this do-
main only focused on learning in the functional domain, the latest techniques have
demonstrated that by promoting consistency between functional and pointwise maps
leads to significant improvements in accuracy. Unfortunately, existing approaches
rely heavily on the computation of large dense matrices arising from soft pointwise
maps, which compromises their e�ciency and scalability. To address this limitation,
we introduce a novel memory-scalable and e�cient functional map learning pipeline.
By leveraging the specific structure of functional maps, we o�er the possibility to
achieve identical results without ever storing the pointwise map in memory. Further-
more, based on the same approach, we present a di�erentiable map refinement layer
adapted from an existing axiomatic refinement algorithm. Unlike many functional
map learning methods, which use this algorithm at a post-processing step, ours can
be easily used at train time, enabling to enforce consistency between the refined and
initial versions of the map. Our resulting approach is both simpler, more e�cient and
more numerically stable, by avoiding di�erentiation through a linear system, while
achieving close to state-of-the-art results in challenging scenarios.

7.1 Introduction
Automatically computing dense correspondences between non-rigid shapes is a clas-
sical problem in computer vision, forming the foundation of various downstream
applications like shape registration [29], deformation [209, 59], and analysis [188]. A
popular approach to tackle this problem involves the functional map pipeline [159],
which represents correspondences as linear operators between functional spaces de-
rived from the intrinsic Laplacian [146] on each shape. Numerous early methods [154,
174, 153] have leveraged this framework using handcrafted descriptors to generate
functional maps, which can lack fine detail. Many algorithms [145, 177, 75, 133]
have therefore successfully been developed in order to refine such imprecise maps
into high quality dense correspondences.

Building upon pioneering e�orts by [60], recent advancements [198, 71, 212] have
successfully explored the possibility of learning descriptors directly from data for
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Figure 7.1: Our method takes a set of point features as input, which can be learned
and uses a di�erentiable version of the ZoomOut algorithm to produce correspon-
dences. Due to its light memory cost and attractive processing time this can be
used while training a network, or when running the network on very dense meshes.

subsequent functional map computations, adapting the original pipeline introduced
by [159, 184]. Notably, the most recent developments in this area have observed
that promoting functional maps to be “proper” (i.e., functional maps arising from
pointwise ones) can lead to significant improvement in accuracy. The concept of
“proper” functional maps was introduced in the optimization setting [177] and then
quickly adopted within the learning context. Specifically, recent deep functional
map methods have constructed dual-branch networks [12, 123, 40, 212] that enforce
the connection between pointwise and functional maps and that have demonstrated
impressive performance across multiple datasets. Interestingly, these studies high-
lighted the necessity of retaining the original functional map branch [212] to achieve
optimal performance, despite its inherent instability when di�erentiating through
the linear system solver [68].

In all these works, however, the “properness’ of functional maps is enforced by
first computing a soft point-to-point map which is then converted to a functional map
using matrix multiplication. This heavily limits the scalability of these approaches,
as the dense pointwise map has to be stored in memory, which scales quadratically
with the number of vertices. While common shape matching benchmarks only use
meshes with low number of vertices, using these methods on real meshes is a serious
challenge.

To address this limitation, we propose an approach that can compute the func-
tional map associated with the soft p2p map, without ever storing the dense matrix
in memory. Key to our approach is the fact that the proper functional map is
defined as a matrix product between the soft pointwise map and the Laplacian ba-
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sis [159, 177]. By exploiting this structure and GPU acceleration [44], we show that
such matrix product can be computed directly without the necessity of storing the
pointwise map, thus significantly improving both the speed and scalability of related
approaches.

Our work additionally demonstrates the feasibility of discarding the original func-
tional branch while preserving result quality. Our approach involves the transforma-
tion of a widely adopted map refinement algorithm [145], originally implemented on
CPU, into a di�erentiable and memory-e�cient GPU version using a similar point-
wise map computation. Utilizing this refined map allows us to impose constraints
on the structure of the learned functional map through a form of self-supervision.
This, in turn, replaces the need for a consistency loss with the traditional functional
map branch as in [40, 212], providing a novel simple and e�cient solution for main-
taining result quality in the absence of the original functional branch. Overall, our
contributions can be summarized as follows:

• We propose e�cient GPU implementation of di�erentiable pointwise map or
functional map learning with minimal space complexity and numerical stabil-
ity.

• We use a novel GPU adapted refinement algorithm at train time to provide
self-supervision to the network.

• We introduce the first single-branch network for functional map learning with-
out di�erentiating through a linear system solver.

7.2 Related Works

Shape matching and in particular functional map correspondence computation is a
very wide and established a field of research. We here only review the works the
closest to our work, and refer the interested reader to [162, 188] for an in-depth
description of related works.

Functional Maps Our work is built upon the functional map framework, origi-
nally developed in [159] and later extended in various ways [154, 174, 145, 177, 61],
an overview being provided in [162]. This approach encodes correspondences be-
tween shapes as small sized matrices independently of the original number of vertices,
o�ering an e�cient way to compute maps. This then allows to e�ciently enforce
constraints on the correspondences such as bijectivity or area preservation using
simple linear algebra. The most e�ective functional map algorithms are map refine-
ment algorithms [145, 177, 133, 70], which take initial correspondences as input and
iteratively refine them. While highly robust, obtaining initialization without land-
marks often relies on the use of handcrafted descriptors such as HKS [36], WKS [15]
or SHOT [219].
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Deep Functional Maps A more recent line of research focus on learning descrip-
tor functions directly from the surface itself. Originating with FMNet [127, 184]
and further developed in [60, 198], these approaches typically take handcrafted de-
scriptors as inputs and yield refined descriptor functions. These functions are then
used in a standard functional map pipeline [159], and are usually post-processed at
test time using o�-the-shelf map refinement algorithms [145, 227, 75, 174]. Using
modern feature extractors for surfaces and point cloud [198, 216], these works ob-
tained impressive results despite the unstable di�erentiation through a linear system
solver [68]. While these initial approaches primarily focused on supervised learning,
contemporary research in functional map learning emphasizes unsupervised learn-
ing of correspondences [212, 39, 40, 123]. This is achieved using functional map
priors, that is, explicitly promoting structural properties on the learned functional
map such as orthogonality - which corresponds to area preservation in the spatial
domain. Recent advancements [177] have highlighted the importance of using extra
structural constraint in the form of “proper” functional maps, that are functional
maps obtained from pointwise correspondences, a guarantee not provided in the orig-
inal pipeline [159] or learning-based approaches [60]. This led to the development
of methods computing a second functional map at train-time using soft correspon-
dences, resulting in dual-branches networks [12, 212, 40, 39]. These approaches were
however recognized [212] as unable to scale to large meshes, due to large dense ma-
trix computations, and had to use mesh resampling to avoid memory and speed
issues.

Di�erentiable Refinement In a context also aligned with our work, it was noted
in [123] that proper functional maps were guaranteed by many map refinement al-
gorithms [145, 177, 133]. Subsequently, this refinement was partially integrated into
a network as a di�erentiable post-processing step for the initially learned functional
map. However, the design from [123] still relies on the original linear system solver,
and their adaptation of [145] was only partial. This partial adaptation was ne-
cessitated by the potential memory overflow resulting from numerous dense map
computations. Additionally, the output functional map was only a weighted sum of
proper functional maps, thus lacking a guarantee of being proper itself.

7.3 Background & Motivation
Our method builds upon the functional map framework [159], and in particular of
its recent development, using learning-based descriptors inspired by GeoFMaps [60].
Before describing our approach in Section 7.4, we provide an overview of the founda-
tion of this pipeline. Interested readers are encouraged to explore numerous related
works [12, 212, 123, 39, 40, 162] for additional insights into various adaptations and
nuances of this framework.

Notations We will suppose to be given two shapes S1 and S2 with respectively
n1 and n2 vertices. For each shape Si, we compute its intrinsic Laplacian [146], and
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Figure 7.2: Our pipeline takes as input two shapes and use a feature extractor
network to obtain pointwise features. These features are used to compute an initial
pointwise map and then fed to our Di�erentiable ZoomOut block. All the pointwise
maps � are our scalable dense maps, which are fast and memory e�cient.

store its eigenfunctions as columns of a matrix �i œ Rni◊K . We denote �†
i

= �€
i

Ai

its pseudo-inverse, with Ai being the diagonal vertex-area matrix. Given any matrix
B, we denote [B]i the vector consisting of the i-th line of B.

Deep Functional Maps The standard deep functional map pipeline [60] takes
2 shapes S1 and S2 as input, and use a feature extractor network F◊ to generate
p descriptor functions on each shape, stored as columns of matrices Fi = F◊(Si) œ
Rni◊p. Following the standard functional map pipeline [159] these descriptors are
first projected into the Laplacian basis Ai = �†

i
Fi œ RK◊p and a functional map is

obtained by solving the linear system:

arg min
C

ÎCA1 ≠ A2Î2
2. (7.1)

This linear system is further usually regularized using an extra Laplacian term [60,
173]. During training, losses are then imposed on the computed functional map
C

1
F◊(S1), F◊(S2)

2
. At test time, a pointwise map can be recovered from the map

C and the eigenfunctions �i using nearest neighbor search [159, 164].

Two branches networks Recent works in functional map literature [177] have
highlighted the positive e�ects of using proper functional maps. A functional map
is proper if it arises from some underlying pointwise map. Specifically, a proper
functional map is defined as the pull-back of a pointwise map T : S2 æ S1:

C = �†
2��1 (7.2)

where � œ {0, 1}n2◊n1 is the matrix representation of the map T . Several works [12,
212, 40] adopt a di�erentiable approach to compute � before deriving Cproper using
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Equation (7.2). Typically, the map � is computed from the features F1 and F2 using
a Gaussian kernel:

�ij = exp(”ij)q
k exp(”ik) (7.3)

with ”ij = ≠ 1
2‡2 Î[F2]i ≠ [F1]jÎ2 the distance between rows of the feature matrices,

where ‡ a temperature - or blur parameter. For training purposes, a consistency loss
between C, obtained with Eq. (7.1), and Cproper, derived using Eqs. (7.2) and (7.3),
is employed. This approach is taken in addition to the standard orthogonality or
bijectivity losses presented in [60].

ZoomOut A popular map refinement algorithm named ZoomOut [145] has often
been used to obtain high-quality correspondences from low quality initial functional
maps such as those obtained from learning pipelines. ZoomOut iteratively computes
functional maps using Eq. (7.2) and pointwise map using nearest neighbor search
between the rows of �1CT and �2. Note that due to its iterative nature, ZoomOut is
guaranteed to produce proper functional maps. A recent approximation [131] made
the algorithm scalable to dense meshes on CPU, but however relies on sampling, a
longer pre-processing and a final slow conversion from the samples back to the full
shapes.

Drawbacks and motivation Despite achieving high quality results on shape
matching benchmarks, the modern two-branches approaches presented above su�er
from three notable drawbacks. Firstly, computing � using Eq. (7.3) involves storing
and di�erentiating through a dense n2 ◊ n1 matrix, making the method scale poorly
in terms of memory. In particular, because of the linear system used in the other
branch, features are required to be of high dimension (usually 128 or 256) to ensure
invertibility of the feature matrix, thus heavily slowing down computations. Sec-
ondly, a naive implementation of Eq. (7.3) can result in underflows in the forward or
backward pass for low values of ‡. Thirdly, as remarked in some previous works [68]
despite its necessity for achieving satisfactory results, the original functional map
branch from [60] poses a risk of instability due to di�erentiation through the linear
system solver.

In this work, we seek to address these challenges by establishing soft point-wise
maps as a stable and memory-scalable option to learn functional maps, without
approximations such as those presented in [131]. A second goal lies in trying to
completely remove the spectral branch from the learning procedure. The necessity of
the spectral branch suggested in [212] hints that properness might not be a su�cient
constraint alone for e�cient learning of correspondences. To overcome this challenge,
we further refine the structural constraints by introducing the expectation that the
functional map aligns with its refined version, produced by [145]. This leads to the
first deep functional map method that completely avoids solving a linear system
inside the network, enables unsupervised training, is scalable, e�cient and leads to
high quality results.
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7.4 Method
In this section, we introduce our scalable approach to proper functional maps,
which we then apply to design a novel GPU based di�erentiable version of the
ZoomOut [145] algorithm. Finally, using these two elements, we introduce our new
single branch network for functional map learning without a linear system solver.

7.4.1 Scalable Dense Maps
In this section, we introduce our scalable approach to proper functional maps,
which we then apply to design a novel GPU based di�erentiable version of the
ZoomOut [145] algorithm. Finally, using these two elements, we introduce our new
single branch network for functional map learning without a linear system solver.

7.4.2 Scalable Dense Maps
The key observation to this work is that all dense pointwise maps computed in
deep functional map pipelines [123, 212, 13, 40] are used exclusively to compute
functional maps using Equation (7.2). In particular, they are invariably found in a
matrix product of the form ��1. Previous work did not seek to exploit this fact,
and instead computed the complete dense matrix � separately before performing
the matrix product. In contrast, we argue it is possible to compute the result of this
inner product without ever computing any dense n2 ◊ n1 matrix.

Observe first that we can explicitly write the i-th line of ��1, using Equa-
tion (7.3) as:

[��1]i =
n1ÿ

j=1

exp(”ij)q
k exp(”ik) [�1]j (7.4)

= L
≠1
i

n1ÿ

j=1
K

1
[F2]i, [F1]j

2
[�1]j. (7.5)

where K is an RBF Kernel, and Li the row normalization. By rewriting the proper
functional map definition in this kernel form, we can now leverage existing methods
for heavily scalable and fast GPU computation with kernels [185, 142, 44]. These
methods rely on, in particular, the fact that the entry (i, j) of the Kernel matrix K =1

exp(”ij)
2

ij
only depends on the vectors [F2]i and [F1]j. This allows to compute the

sum in Equation (7.5) in a block-wise manner, where the values of K are computed
during summation. This is highlighted in Figure 7.3, where we represent the dense
matrix on which summation in applied in Equation (7.5). The per-row sum can
then be computed first for each contiguous memory block before summing all the
outputs to obtain the value of ��1.

In practice, we rely on the Keops library [44], which applies such operations on
very large dense matrices whose entries can be described by mathematical formulas
applied to the inputs. Keops uses symbolic matrices, and computes reduction on-
the-fly using per-block operations for fast computation without ever fitting the dense
matrix in memory.
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Figure 7.3: Our scalable dense maps relies on the underlying structure of Eq. (7.5),
where the sum is computed for each contiguous memory block highlighted in the
image. The entries are evaluated on the fly while performing summation, and results
from each block are then accumulated to obtain the final per-rows values. The
implementation is provided by the Keops package [44].

Note that the normalization Li can additionally be handled using e�cient stabi-
lized logsumexp reductions and incorporated into the Kernel K to avoid underflow
or overflow in the exponential. Furthermore, the gradient of ��1 with respect to F1
and F2 can be computed using a similar trick [44].

At test time, a vertex-to-vertex map can be extracted from � by looking for
the indices of the per-row maximal value, which is equivalent to running nearest
neighbor search between the rows of F1 and the rows of F2. This can again be run
e�ciently on GPU without computing the dense distance matrix, using GPU-based
nearest neighbor implementations [44, 105].

Ultimately, our dense pointwise map only stores values for F1 and F2 as well as
a the type of Kernel we use, and has therefore a linear memory cost.
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7.4.3 Di�erentiable ZoomOut
As mentioned in Section 7.3, the ZoomOut algorithm [145] iteratively performs
pointwise map computations using nearest neighbor queries between rows of �1C€

12
and of �2, and functional map computations using Eq. (7.2), while increasing the size
K of the spectral basis. By replacing the nearest neighbor queries by di�erentiable
soft maps that we store using our scalable versions, we introduce Di�erentiable
ZoomOut, a fast and fully di�erentiable block, with negligible memory cost. The
algorithm is presented in detail in the supplementary material.

Since ZoomOut acts as a powerful map refinement algorithm, we would like to
enforce consistency between the output and input functional maps of the ZoomOut
algorithm in order to help training. We expect such a loss to provide meaningful
guidance to the features.

However, we note that the output functional map Crefine has a larger size than
the initial map Cinit. This is due to ZoomOut using an increasing size of spectral
basis. However, given a proper functional map of size K2 ◊ K1 associated to a
pointwise map �, the principal submatrix composed of its first K

Õ
2 rows and K

Õ
1

column from the proper functional map of size K
Õ
2 ◊ K

Õ
1 associated to the same map

�. This stems from the definition of proper functional maps [159], and we refer to
the supplementary for details on this aspect. Therefore, our new consistency loss
only uses a principal submatrix of the refined functional map:

Lconsist(Cinit, Crefine) = ÎCinit ≠ [Crefine]1:Kinit,1:KinitÎ2
2 (7.6)

where Kinit is the size of the input functional map.

7.4.4 Overall Pipeline and Implementation
We would first like to highlight that our scalable dense maps can be used in any
existing functional map base model using dense pointwise maps, with no impact on
the results. Furthermore, we present a novel single-branch network for functional
map prediction which exploits the structural properties of proper functional maps
and does not require solving or di�erentiating through a linear system. We therefore
present separate implementations first for our scalable dense maps and di�erentiable
ZoomOut at https://github.com/RobinMagnet/ScalableDenseMaps, and of our
entire pipeline at https://github.com/RobinMagnet/SimplifiedFmapsLearning.

As shown in Figure 7.2, our algorithm first extracts features from surfaces S1
and S2 using Di�usionNet [198]. This produces matrices of features F1 œ Rn1◊p

and F2 œ Rn2◊p. Importantly, we select p = 32 instead of the 128 or 256 Features
produced by standard pipelines [123, 39, 212, 40, 12], as our approach does not
require invertibility of a linear system obtained from the learned features.

An initial soft pointwise map �init is produced from the features using Equa-
tion (7.3), and then fed into our Di�erentiable ZoomOut algorithm presented in
Section 7.4.3 where we perform 10 iteration with a spectral step size of 10 starting
with Kinit = 30. This results in a refined map Cfinal of size Kfinal = 130. This
whole process uses a blur parameter ‡ = 10≠2, which is much lower than previous
implementations [200, 123, 212].

https://github.com/RobinMagnet/ScalableDenseMaps
https://github.com/RobinMagnet/SimplifiedFmapsLearning
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Train F S F+S

Test F S S19 F S S19 F S S19

BCICP [174] 6.1 - - - 11. - - - -
ZoomOut [145] 6.1 - - - 7.5 - - - -

SmoothShells [70] 2.5 - - - 4.7 - - - -
DiscreteOp [177] 5.6 - - - 13.1 - - - -

GeomFmaps [60] 3.5 4.8 8.5 4.0 4.3 11.2 3.5 4.4 7.1
Deep Shells [71] 1.7 5.4 27.4 2.7 2.5 23.4 1.6 2.4 21.1
NeuroMorph [72] 8.5 28.5 26.3 18.2 29.9 27.6 9.1 27.3 25.3
DUO-FMNet [62] 2.5 4.2 6.4 2.7 2.6 8.4 2.5 4.3 6.4

UDMSM [39] 1.5 7.3 21.5 8.6 2.0 30.7 1.7 3.2 17.8
ULRSSM [40] 1.6 6.4 14.5 4.5 1.8 18.5 1.5 2.0 7.9

ULRSSM (w/ fine-tune) [40] 1.6 2.2 5.7 1.6 1.9 6.7 1.6 2.1 4.6
AttentiveFMaps [123] 1.9 2.6 5.8 1.9 2.1 8.1 1.9 2.3 6.3
ConsistentFMaps [212] 2.3 2.6 3.8 2.5 2.4 4.5 2.2 2.3 4.3

Ours 1.9 2.4 4.2 1.9 2.4 6.9 1.9 2.3 3.6

Table 7.1: Mean geodesic errors (◊100) when training and testing on the Faust,
Scape and Shrec19 datasets. Best result is shown in bold.

Our unsupervised training loss consists in 3 terms. First, an orthogonality con-
straint Lorth(Cinit) = ÎC€

initCinit ≠ IÎ2
2 is applied to the initial functional map, with

a weight of 1. The ZoomOut consistency loss from Equation (7.6) is applied with
an initial weight of 10≠4, gradually increased to 10≠1. This term is therefore ignored
during the first epochs until decent initialization has been found. We refer to the
supplementary for more details on this aspect. We finally regularize the result using
a Laplacian commutativity term as presented in [173, 39], which is a residual from
the spectral branch we discarded. This final term receives a weight of 102. Eventu-
ally, we train our network using ADAM optimizer [110] with an initial learning rate
of 10≠3. We refer the reader to the supplementary for some more precise details on
the implementation.

7.4.5 Properties of learned features
An interesting aspect of the two-branches networks [12, 212, 40] is that each branch
o�ers a di�erent interpretation of the learned features. On the one hand, the stan-
dard functional map branch [159, 60] uses features F1 and F2 as functions on the
shapes, expected to correspond, and forces the functional map to e�ectively transfer
them when solving the linear system in Equation (7.1). On the other hand, the
pointwise-map based branch solely relies on distances between rows of the feature
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matrices (Eq. (7.3)), viewing features as pointwise embeddings only.
Using a consistency loss between the two branches enables to merge the two

e�ects, and, as highlighted in [212], removing the spectral branch has a serious
impact on the results. In our experiments in Section 7.5, we observe that features
learned without the spectral branch usually exhibited undesirable high-frequency
variations. As emphasized by [12], smoothness of features is a key aspect for the
generalization for functional map based methods. While all networks using the
spectral branch provide relatively smooth features, we show in Section 7.5.4 that
replacing this branch using a refinement consistency loss also promotes smoothness
in features in our pipeline.

7.5 Results
In this section, we conduct a series of experiments to assess various aspects of our
proposed method. In order to validate the capability of our entire pipeline, we
first compare our method to several other works on multiple shape matching bench-
marks. We additionally wish to highlight our scalable dense maps appear as a
valuable tool for many functional map based networks using dense pointwise maps,
independently of our complete pipeline. We therefore emphasize the memory scala-
bility of our GPU-based ZoomOut algorithm compared to existing implementations
of the algorithm.

Finally, inspired by [12] we analyze how our novel ZoomOut consistency loss we
introduced at train-time influences the features learned by our feature extractor.

7.5.1 Datasets
We evaluate the shape matching performance of our algorithm across four widely-
used human datasets, commonly employed as benchmarks. The evaluation includes
the remeshed [174] version FAUST dataset [28] which contains 100 shapes, split
in 80 and 20 shapes for training and testing as introduced in [60]. We also use
the remeshed [174] version of the SCAPE dataset [10] with 71 humans divided in
51 shapes for training and 20 for testing. For testing purposes only, the remeshed
version of the SHREC19 dataset [144], composed of 44 shapes, is also included.

While these datasets mostly contain near-isometric shapes, we also evaluate our
method on the remeshed [133] Deforming Things 4D dataset [124], a challenging
non-isometric dataset of humanoid shapes. In particular, we focus on the adapted
version DT4D-H defined in [123], which defines 198 shapes for training and 95 for
testing. Results on the SMAL [247] dataset, with PCK curves, can be found in the
supplementary material.

7.5.2 Shape Matching Results
In this work, we exclusively evaluate unsupervised learning performances, and there-
fore discard baselines focusing on pure supervised learning [222, 127, 87, 237]. As
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Train DT4D-H

Test intra-class inter-class

Deep Shells [71] 3.4 31.1
DUO-FMNet [62] 2.6 15.8

AttentiveFMaps [123] 1.2 14.6
ULRSSM [40] 0.9 4.4

ConsistentFMaps [212] 1.2 6.1

Ours 1.8 4.1

Table 7.2: Mean geodesic erros (◊100) on the DeformingThing4D dataset subset
from [123] (DT4D-H). Best results are highlighted in bold.

a reference, we provide results using axiomatic functional map algorithms such as
ZoomOut [145], Discrete Optimization [177], BCICP [174] and SmoothShells [70].

Our method can directly be compared to the following baselines: GeomFmaps [60],
DUO-FMNet [62], DeepShells [71], NeuroMorph [72], AttentiveFMaps [123], Con-
sistentFMaps [212], UDMSM [39], and ULRSSM [40]. Note that we all results are
presented without test time refinement for fairness. In particular, ULRSSM [40]
relies on fine-tuning the network for each shape in the test dataset independently,
which we turn o� to obtain the result. We provide results with fine-tuning using the
“w/ fine-tune” tag. Note that we provide comparison with a more complete set of
methods in the supplementary materials, as well as results of our pipeline without
using the consistency loss.

Table 7.1 provides the mean geodesic error for all the aforementioned baselines,
as well as for our pipeline described in Section 7.4.4. We evaluate our methods on
combinations of the Faust (F), Scape (S) and Shrec19 (S19), when training either
on Faust and Scape independently, or jointly (F+S). This table shows our simple
pipeline provides similar performance to state of the arts methods, all the while
being greatly scalable to large meshes and removing the need for di�erentiation
through a linear system solver.

In addition, we evaluate our network on the DeformingThings4D dataset,
and in particular on the subset provided in [123] for evaluation, as displayed on
Table 7.2. Our method achieves better performance than existing baselines on the
inter-class category, which shows its capabilities even in non-isometric scenarios.

7.5.3 Scalability to Dense Meshes
In this section, we discuss the memory e�ciency of our scalable maps, and highlight
its speed performance in the case of very dense meshes where standard methods
would go out of GPU-memory.

A first observation, provided in Figure 7.4 shows the GPU memory usage, us-
ing varying number of vertices, of current state-of-the-art methods for unsupervised
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Figure 7.4: GPU memory usage when processing a single pair of shapes, depending
on their vertex count. Note, e.g., that AttentiveFMaps [123] runs out of 24GB
memory after 11k vertices.

shape matching. In particular, we notice that AttentiveFMaps [123], due to its mul-
tiple dense pointwise map computations, quickly runs out of 24 GiB GPU memory.
On the other hand, while our method uses 11 di�erent pointwise maps, its memory
footprint remains significantly lower than competing methods [212, 40], in particular
for large number of vertices.

Secondly, we analyze our results on the standard axiomatic ZoomOut algo-
rithm [145], often used independently of learning pipelines, e.g. as a means to obtain
maps from simple landmarks. In that case, we observe that usual implementations
never leverage GPU acceleration and were only run on CPU, and we easily ported
the code to GPU using PyTorch.

In Table 7.3, we first compare the CPU, GPU, and our version of ZoomOut, and
show that the processing time in the presence of dense meshes remain reasonable.
Our version of ZoomOut (“Our ZoomOut”) uses the same tools used to implement
our Di�erentiable ZoomOut in Section 7.4.3, with a scalable version of brute force
nearest neighbor in Keops [44], which again does not require fitting the distance
matrix in memory. We additionally compare a naïve PyTorch implementation of
our Di�erentiable ZoomOut (Sec. 7.4.3) with one using our scalable dense maps.
Finally, we add results by porting the approximation from [131] to GPU and using
scalable dense maps (“Our + [131]”). More details on this mix and its usage are
provided in the supplementary material.

Table 7.3 presents the results of applying these algorithms to shapes of varying
sizes. In the initial experiment with meshes of around 5000 vertices, all methods
exhibit similar performance, significantly outperforming the CPU-based algorithm
due to GPU utilization. However, with denser meshes containing 105 vertices, con-
ventional methods encounter GPU memory limitations, while our scalable dense
maps o�er notable improvements over existing approaches. Moreover, our modifica-
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Sparse (5K) Dense (100k)

CPU ZoomOut 3.6 s 700 s
GPU ZoomOut 0.1 s OOM

GPU Di�. ZoomOut 0.1 s OOM
Our ZoomOut 0.1 s 2.4 s

Our Di�. ZoomOut 0.1 s 5 s
Our + [131] 0.1 s 0.4 s

Table 7.3: Average processing time in seconds, between CPU, naïve and scalable
GPU implementations of ZoomOut and Di�erentiable ZoomOut

tion of [131], which approximates the algorithm, presents the fastest results without
memory overloading. This solves the main speed bottleneck presented in [131], with
more details provided in the supplementary.

Our method therefore allows using several dense pointwise maps simultaneously,
or training and testing functional maps network directly on dense shapes. We refer
the interested reader to the supplementary material for such experiments on dense
meshes, including texture transfer visualization.

7.5.4 Learned Features
As highlighted in [12], analyzing the features learned in deep functional map net-
works valuable insights into their performance. In particular, it was shown that
achieving smooth features positively impacts the network’s generalization capabili-
ties.

The authors of [12] thus advocated explicitly enforcing features smoothness using
spectral projection. This was used in [212] as well as in AttentiveFMaps [123]. In
contrast, we do not enforce such constraints and no no loss in our pipeline directly
promotes smoothness. In particular, the dense pointwise map � built from the
features do not use any neighboring information.

However, we show that the consistency loss introduced in Section 7.4.3 actually
pushes the feature extractor to learn smooth features. To observe this, we retrain
our network on the Scape dataset while removing the consistency loss from Equa-
tion (7.6), and visualize the learned features on test datasets. Figure 7.5 shows
example of feature functions produced by the networks when trained with and with-
out the consistency loss on a random surface from the SHREC19 dataset. On the
left side of this image, we observe that without refinement consistency, the features
seem to highlight multiple small patches on the surface. In contrast, the feature
functions learned by our method, displayed on the rightmost part of the image,
present nicer patterns where large geodesic patches of the surfaces are highlighted.

We argue that obtaining an orthogonal functional map from a soft pointwise map
built with features does not require such features to exhibit smoothness. However,
the introduction of the consistency loss serves a dual purpose. While its primary
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Figure 7.5: Example of feature functions learned by our model, with or without
consistency loss. As noted by [12], smoother features are generally preferred for
generalization purposes.

role is to align the functional map with the output of a refinement algorithm, it in-
advertently acts as a compelling constraint that encourages the learning of smoother
features. As this property has been noted as key to performance [12, 212], these
result leads us to believe that incorporating such a loss into existing pipelines holds
significant promise for enhancing overall performance in functional map learning.

7.6 Conclusion, Limitations & Future Work
In this work, we presented a novel approach to compute functional maps using
soft pointwise map, without ever storing the dense matrix in memory. This novel
implementation enables use to derive a fast, di�erentiable and memory e�cient
version of the ZoomOut algorithm [145]. In turn, we use this algorithm while training
and derive a new consistency loss between the initial and refined version of the
predicted functional map. We notice this loss appears particularly e�ective and
allows us to use a new single-branch architecture for functional map learning, which
does not require di�erentiating through a linear system.

One major limitation of our method is its dependence on the computation of
the spectrum Laplacian of the input shapes, which can become prohibitively slow
with larger shapes. Furthermore, the ZoomOut algorithm, while particularly fit to
handle near-isometric shapes, is prone to fail in the presence of highly non-isometric
deformations or partiality [133]. The guidance provided by the consistency loss
would then be unfit for the problem.

Future research could therefore seek to handle meshes with higher di�erences
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such as partiality, noise or simply high distortion. This would potentially require
incorporating other refinement algorithms into the training pipeline. Investigating
the impact of our new consistency loss in various pipelines would also contribute to
a comprehensive understanding of its applicability and e�ectiveness.
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Chapter 8

Conclusion

Throughout this thesis, we presented our contributions to the field of shape match-
ing, particularly focusing on spectral shape matching. Our work began with Chap-
ter 3, where we proposed an approach for extracting local information about dif-
ferences between shapes using correspondences. Building upon this foundation,
Chapter 4 leveraged similar tools for disease detection using real scans, highlighting
the disparities between the practical needs of practitioners and the predominant
interests in shape correspondence within the research field.

Subsequent chapters expanded upon our contributions, with Chapter 5 explicitly
addressing the promotion of smoothness — an often overlooked aspect in traditional
methodologies. Chapters 6 and 7 were dedicated to the advancement of modern
functional map methods, aiming at enhancing their scalability to real-world dense
meshes.

8.1 Evolution of the Field and Impact of Our Work
The field of geometry processing has seen rapid advancements throughout the du-
ration of this thesis, with our research contributing to recent progress.

Our exploration of shape di�erences, detailed in Chapters 3 and 4, represents
one of the first e�orts in applying functional map methods to real-world data anal-
ysis [143, 176, 217]. This underscores the potential of recent advancements in
shape matching for novel applications in practical domains, such as disease de-
tection [73]. Following this, our introduction of smoothness-promoting functional
maps in Chapter 5 has established a framework for developing hybrid methods
that leverage both spatial and spectral information, o�ering significant potential
when applied to real data. The dataset we released, a remeshed version of the De-

formingThings4D dataset [124] with ground truth correspondences, continues to
serve as a standard challenging benchmark for evaluating modern shape matching
pipelines [39, 123, 40, 212]. Lastly, our research towards defining scalable func-
tional maps also represents some of the earliest attempts to explicitly tackle this
constraint [149], which is essential for providing usable tools across various types of
data.
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Throughout the duration of this thesis, the field of 3D shape analysis has also
evolved. Functional map methods have seen enhancements, including extensions
of computations to vector fields on shapes rather than solely real-valued func-
tions [61, 62], as well as the incorporation of novel extrinsic information using an
elastic energy basis [92, 19], among several others. Moreover, the domain of learning
on 3D data has witnessed significant success, with the development of specialized
architectures [198, 205] and learning strategies [241, 245] that have notably im-
proved the performance of shape matching pipelines, positioning functional maps
as the state-of-the-art framework to address this problem [123, 40, 212]. Alterna-
tive data representations such as implicit surfaces and signed distance fields have
also gained popularity [63, 46], particularly when used with deep neural networks.
Lastly, with the development of powerful networks for the analysis and generation of
images [156, 183, 111] and text [172, 122], a novel area of research seeks to leverage
such tools to perform shape analysis [1, 2].

8.2 Limitations and Future Work
Despite its quick evolution, it is important to acknowledge the existing limitations
and challenges faced by the field of shape matching and its applications. As we
conclude this thesis, we therefore highlight several avenues for future exploration
and development in this field.

Shape Matching
While significant advancements have been made in automating the process of es-
tablishing correspondences between objects, the field of shape matching continues
to face various challenges.

One prominent issue across all shape correspondence approaches, whether based
on deformations or intrinsic constraines like functional maps, is partial shape match-
ing. Existing methods primarily consider pairs of shapes in full correspondence, often
struggling with missing parts in one or both shapes. While some techniques address
partial matching, they often rely on ad hoc implementation strategies [9, 64] or ne-
cessitate prior knowledge about the pair with, for example, the area of the missing
part [145, 181, 128]. Introducing novel energies into the pipeline, as demonstrated in
Chapter 5 by employing smoothness constraints, holds promise for enhancing results
on partial data. Additionally, detecting shared parts in two shapes while computing
the correspondences could o�er a more general solution than partial shape match-
ing, an aspect rarely explored in the field [126, 13].

More generally, intrinsic methods, which aim to preserve geodesic distances be-
tween points before and after matching, encounter di�culties when dealing with
highly non-isometric shapes, as presented in Chapter 5. Hybrid approaches that
combine intrinsic and extrinsic information have recently shown some promise [70,
71, 92], hinting at a potential avenue for generating novel matching algorithms.
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Moreover, while many surface deformation models have been developed [9, 209], ex-
ploration of volume deformation methods for surface matching remains limited [64,
69].

Furthermore, modern shape matching methods often leverage deep neural net-
works to extract features from surfaces [232, 198]. Although these pipelines are
rapidly evolving [60, 40, 212], they still struggle with generalizing to new shapes.
Addressing the robustness of these methods to novel data presents a crucial area for
further research. In this direction, transfer learning in 3D poses unique challenges
compared to images, given the inconsistent e�ectiveness of pretraining networks on
3D data [241, 18, 246]. In contrast, leveraging powerful deep neural networks on
images [156, 111] and text [172, 122] to obtain features on shapes could also be a
promising direction.

Finally, an emerging direction in shape matching involves exploring alternative
surface representations, such as signed distance functions [157], which have gained
popularity, particularly in learning applications [166, 63]. This volumetric represen-
tation of surfaces enables using methods from volumetric data analysis [58], such as
MRI data processing. Integrating surface information and shape analysis tools into
these pipelines could potentially significantly improve the results.

Downstream Applications

Despite the e�ciency achieved in shape matching, leveraging these outcomes for
downstream applications still poses a considerable challenge.

A notable objective of many multi-shape analysis pipelines is to characterize
the disparity between two shapes using both a distance metric and visual feedback
on the localized areas of di�erence. In Chapter 3, we derived a local descriptor of
deformations based on a global embedding of intrinsic deformations, called shape
di�erence operators [186]. In Chapter 4, we used the same shape di�erence opera-
tors to define a meaningful metric between shapes. However, we had to resort to a
simple deformation model to e�ectively highlight zones of significant di�erence and
conduct statistical analyses.

Developing automated tools to analyze such disparities is imperative. These
tools should perform robustly even in scenarios with imprecise correspondences or
surfaces exhibiting defects, as demonstrated in Chapter 4.

Moreover, introducing more rigorous benchmarks with highly non-isometric shapes
and diverse downstream applications would significantly advance the field.
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Scalability
The scalability of shape matching methods has usually not been a primary con-
cern, as advancements in hardware performance have typically su�ced. However,
with diminishing improvements in CPU capabilities, there is now a pressing need
for faster correspondence processing, given that many of these methods are CPU-
dependent [109, 77]. Notably, since shape matching often serves as the initial step
in an analysis pipeline, e.g. applied to all pairs within a small collection, faster al-
gorithms enable using more complex data processing pipelines.

In Chapter 6, we introduced a method to scale the functional map pipeline to
very dense meshes containing hundreds of thousands of vertices. The approxima-
tions we presented rely on relatively loose bounds, and we believe that additional
or enhanced approximations tailored specifically to shape matching could be devel-
oped. Furthermore, obtaining the final dense correspondence remains a significant
speed bottleneck, and further methods could be developed in order to improve this
last step.

While CPUs are experiencing slower improvements, GPU performance is rapidly
increasing. A significant future direction involves porting shape analysis algorithms
to GPUs. However, shape matching methods for triangulated surfaces heavily de-
pend on sparse matrices and solving sparse linear systems [159, 77], which do not
benefit as much from GPUs as other matrix manipulations. Treating these sparse
matrices as dense ones on GPUs is not a viable solution due to their quadratic
scaling with the number of vertices. Thus, CPU-based algorithms remain partially
prevalent in this domain. In Chapter 7, we successfully ported a popular functional
map refinement algorithm to the GPU and utilized the specific structure of func-
tional map computations to avoid storing certain dense matrices in memory. We
believe that developing algorithms explicitly designed for GPUs represents a com-
pelling direction of research with substantial impact for practitioners.

However, even when using GPUs, processing 3D data remains slower than pro-
cessing 2D data. To improve processing time and performance, volumetric algo-
rithms employ multiscale accelerations using voxels, typically using image down-
scaling and upscaling algorithms [16, 17]. However, deriving such algorithms for
shapes, particularly integrating them into learning-based methods, poses significant
challenges. While some graph pooling layers have been developed, there remains a
lack of e�cient surface pooling methods, which could greatly enhance the scalability
of surface-based deep neural networks.

Ethical Impact
In light of the increasing utilization of artificial intelligence, it is important to address
the ethical implications of our work. We recognize the potential risks associated with
the use of 3D data, especially in contexts such as military applications of deepfakes.
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We do not endorse such use of our algorithms.
Furthermore, we believe that the primary beneficiaries of our research are prac-

titioners, in particular in the medical and 3D animation fields. This perspective
underscores our commitment to ethical considerations and responsible utilization of
AI technology.
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Appendix A

DWKS: A Local Descriptor of

Deformations Between

Meshes and Point Clouds:

Supplementary Material

A.1 Spectral Properties of SDO

A.1.1 Theoretical properties
Notations. Given two discrete shapes M and N , we note their respective Lapla-
cian L

M =
1
A

M
2≠1

W
M (resp. L

N =
1
A

N
2≠1

W
N ) with A being a diagonal matrix

filled with per-vertex areas, and W the sti�ness matrix (e.g. the standard cotangent
weight matrix [167]).

The discrete L
2(S) inner product on shape S is defined as

Èf, gÍL2(S) = f
€

A
S
g (A.1)

and the discrete H
1
0 (S) inner product as

Èf, gÍH
1
0 (S) = Èf, L

S
gÍL2(S) = f

€
W

S
g (A.2)

We recall Theorem 3.1:

Theorem 3.1. Given a non-degenerate functional map F , both the area-based and
conformal shape di�erence operators are positive (semi)-definite, provided that the
area and sti�ness matrices of the Laplacian are positive (semi)-definite.

Theorem 3.1 assumes the area-matrices A
M and A

N to be positive definite, which
means no vertex has a 0 area. The assumption for a semi definite sti�ness matrices
however means the kernel of W only consists in the space of constant functions on
the shape, which is the 0-set of the H

1
0 norm.

Proposition A.1. Under the assumptions of Theorem 3.1, the area-based shape
di�erence operator is positive definite.
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Proof. The area-based shape di�erence operator V is defined implicitly via

Èf, V gÍL2(M) = ÈFf, FgÍL2(N ) ’f, g œ L
2(M) (A.3)

Our discretized version of the L
2 inner product defines a positive-definite form,

since we suppose the area matrix A to be non-degenerate. V is therefore self-adjoint
operator with respect to the L

2 inner product.
Therefore, given f œ L

2(M),

Èf, V fÍL2(M) = ÎFfÎ2
L2(N ) Ø 0 (A.4)

where the last inequality is an equality if and only if f = 0 in L
2(M) since the

functional map F is supposed to be non-degenerate.
V is therefore self-adjoint positive-definite, and the spectral theorem states its

eigenvalues are real and positive.

Proposition A.2. Under the assumptions of Theorem 1, the conformal-based shape
di�erence operator is positive semi-definite.

Proof. The conformal-based shape di�erence operator R is defined implicitly via

Èf, RgÍH
1
0 (M) = ÈFf, FgÍH

1
0 (N ) ’f, g œ H

1
0 (M) (A.5)

Given non-degenerate matrices A and W , the H
1
0 inner product is positive defi-

nite (on H
1
0 ), and

Èf, RfÍH
1
0 (M) = ÎFfÎ2

H
1
0 (N ) Ø 0 (A.6)

for f œ H
1
0 (M) with equality if and only if f = 0 in H

1
0 (M), since F is supposed

to be non-degenerate.
R is therefore self-adjoint positive definite on H

1
0 , and the spectral theorem states

its eigenvalues are real and positive.
In practice, since the operator R is extended to the entire L

2 space by setting it
to 0 for constants, the operator is only positive semidefinite.

Proof of Theorem 3.1

Proof. Under the assumption of Theorem 3.1, Propositions A.1 and A.2 apply from
which the result follows.

A.1.2 Practical Computation
In practice, given two discrete shapes M and N with a low dimensional functional
map C œ RkN ◊kM between them, the shape di�erence operators are computed in
the spectral basis using the following formulas [186] :

V = C€C (A.7)

R =
1
�M

2†
C€�N C (A.8)



A.2. PARAMETERS 115

where �M and �N are diagonal matrices of the first kM (resp. kN ) eigenvalues of
the Laplace-Beltrami operator on M (resp. N ).

The area-based shape di�erence operator V being symmetric as shown by Equa-
tion (A.7), its eigendecomposition is easily computed, while the eigendecomposition
of the conformal-based shape di�erence operator R is obtained by solving a gener-
alized eigenvalue problem

1
C€�N C

2
� = �M�� (A.9)

where C€�N C and �M are both symmetric and positive semi-definite.

A.1.3 Algebraic structure
In this section, we provide some insight on the discussion in Section 3.4.1, namely
about the claim that the spectrum of shape di�erence operators is better expressed
using the log-scale.

By definition the shape di�erence operators between isometric shapes are identity
operators, and all functions are preserved by these operators. Therefore, the absence
of deformations leads to 1 eigenvalues or 0 log-eigenvalues. More generally, if a
function f on M only takes non-zeros values on zones undergoing no deformation
(regarding the one between M and N ), then it will be preserved by the shape
di�erence operator DM,N , which means it becomes an eigenvector with eigenvalue
1.

It is straightforward to see the non-zero eigenvalues of DN ,M are the inverse of
those from DM,N , which makes the log-eigenvalues opposite of each other.

The somewhat more complex case lies in the composition of shape di�erence
operators. While for three shapes M, P , N the equality DM,N = DM,PDP,N always
holds, there is in general no simple relationship between the eigenvalues of each term.
One scenario where the eigenvalues of the composition of the two operators are the
product of the individual ones happens when one can find common eigenvectors for
the two composed operators. This is known as codiagonalization of matrices and is
only possible when the two operators commute.

A.2 Parameters

A.2.1 Optimization Objective
The optimization objective described in Section 3.4.4 consists of 5 di�erent terms.
Given a functional maps C œ RkN ◊kM , we discuss here the influence of each term in
order to bring some intuition on how the hyperparameters can be tuned.

The first term Ed(C) = ÎCA≠BÎ2 simply enforces descriptor preservation with
respect to the L

2 norm on the target shape N , where descriptors are the columns
of matrices A and B.
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Figure A.1: Results on the cats and lions dataset. Left mesh shows the base shape
of the collection of complete cats. Right meshes display the computed pointwise
maps in the case of a collection of partial cats (top row) and partial lions (bottom
row).

The second term Edc(C) was introduced in [154] in order to improve the de-
scriptor preservation via the introduction of new operators built from individual
descriptor functions.

The third term El(C) corresponds to commutativity of the functional map with
the two Laplace-Beltrami operators, which enforces the functional map to represent
a near-isometric map.

The fourth and fifth terms Ec(C) and Ea(C), introduced in [193], simply seek to
preserve the action of the respectively conformal and area shape di�erence operators
under the functional map.

A.2.2 Hyperparameters
DWKS. When computing DWKS descriptor, one has to choose a set of energy
values (e1, . . . , ep) as well as a scale parameter ‡. We advocate using moderate
energy values to ignore extreme shape di�erence eigenvalues, often created by noise
in the functional correspondences. Using e1 = ≠ log 3 and ep = log 3 has led to
satisfying results on our side. The ‡ parameter describes how far an eigenvector
will be spread on the energy-scale. To our knowledge, there is no provably e�cient
procedure to fit this parameter for standard WKS descriptors [15], which is why we
settle for a constant parameter across our experiments.

Optimization. Using the previous section, the optimization parameters are tuned
so that the descriptors are well-preserved, as well as the action of the shape di�erence
operators. Note that in our experiments using partial shapes, the near-isometric
assumption doesn’t hold, which justifies the absence of the Laplacian commutativity
term in our experiments. Furthermore, because the DFaust collections contains
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Figure A.2: Visualization of the Synthetic Faces dataset.

many holes and cuts, we found it beneficial to set µa = 0 and therefore ignore the
area shape di�erence operators.

Projection to low dimension When projecting the computed pointwise map
into a low-dimension functional map, we ignore the fraction – of vertices which are
the hardest to match (as defined by the descriptor distance). This is due to the
fact shape di�erence operators and therefore DWKS descriptors can detect some
intrinsic distortion near cuts and holes (usually due to noisy intra-collection maps).
This explains why this parameter is set to a high value 20% when using partial
shapes instead of the 5% for complete shapes.

Refinement. In the case of partial shape, we adapt the ZoomOut algorithm with
step size

1
1, Â 1

⁄
Ê
2

with ⁄ the approximate ratio of area between the complete shape
and the partial one, which eventually leads to a rectangular functional map.

A.3 Synthetic faces dataset
In Chapter 3, we refer to a synthetic faces dataset [186] shown on Figure A.2, on
which we compare our pipeline with the standard baseline [48] as well as the usual
functional map pipeline [154] using WKS descriptors.

On this dataset, we show that our pipeline can ignore the area-based shape
di�erence operators and still obtain great results, unlike the pipeline from [48] as
seen on Figure A.3.

A.4 Comparison with partial spectral matching
The most direct competitor to our method is [48] extending the pipeline from [193],
which leverages on intra-collection maps to compute cross-collection correspon-
dences. We presented extensive comparisons with this approach in Chapter 3. How-
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Figure A.3: Results on the Synthetic Faces dataset. Top row shows pointwise maps
after refinement when ignoring the area shape di�erence operators. Bottom row
show the accuracy curves for this setting (left) and when using both type shape
di�erence operators (right). Notice the stability of our method.

ever, since these correspondences are only computed between the base shapes of
each collection, any matching pipeline could be applied to this problem without
using information given by the collections. Namely, the standard functional cor-
respondence computation problem [154] is known to be very e�cient to compute
correspondences between near-isometric shapes, and specific derivations have been
obtained in [181, 128] in the challenging scenario of partial matching.

In the following, we present more quantitative and qualitative results on the two
datasets presented in Chapter 3, comparing to additional baselines [154, 181, 128].

Cats and Lions. We first focus on the Sumner dataset, consisting in similar
meshes of cats and lions as seen on Figure A.4. Additionally, to the experiment
presented in Chapter 3, we apply the same pipeline trying to match a collection
of half-cat to the collection of complete cats. Qualitative results are displayed on
Figure A.1. Quantitative results associated to these two experiments are displayed
on Figure A.5, where the top graphs show results in the case of a partial cat matched
to a complete cat, and the bottom one those in the case of a partial lion matched
to a complete cat. Note that in the first case, where the partial shape is exactly
isometric to a subset of the complete shape, partial matching methods [181, 128]
obtain excellent results, whereas performance drops very significantly in the second
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Figure A.4: Visualization of the Cats and Lions dataset. The two bottom shapes
are matched together using the deformations shown above them.

experiment in the case of near-isometry. Furthermore, the standard functional shape
matching pipeline [154] fails to disambiguate left and right symmetry in both cases,
and results from [48] are unable to obtain meaningful results. Our method however
performs quite well in both cases, displaying an e�cient use of common deformations
to match vertices and disambiguate symmetries. We used the same parameters for
both experiments, using the recommended values of [181, 128].

DFaust. We also compared our method to the same baselines on the DFaust [29]
dataset. Note that since the dataset consists of point clouds without normals, we
replace the SHOT [219] descriptors in [128] by standard WKS descriptors [15], and
remove comparison to [181] which requires information about faces.

Our dataset consists in scans of 3 individuals in two di�erent motions, namely
jumping on one leg and running on a spot, which results in 6 collections of point
clouds. Given a motion, we match the related collection of the first individual, which
consists in full scans, with the similar collections of the second and third individual,
which consist in scans of the lower half of their bodies as shown on Figure A.6.

Qualitative result using the second individual and the jumping motion are shown
on Figure A.7. Accuracy evaluations in all 4 cases are given on Figure A.8, where
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the first line displays results when matching respectively the second (left) and third
(right) individual to the first one using the jumping motion, and the second line
similar results but using the running motion. We remark again on Figure A.7
that the standard functional map method [154] is unable to disambiguate left and
right, and that in this case both partial matching [128] and the collection based
method [48] can’t to produce meaningful correspondences. On the other hand, our
method clearly disambiguates the left-right symmetry, and strongly benefits from
the ZoomOut refinement steps. This claim is reinforced by the accuracy results
given on Figure A.8, which show that our method significantly outperforms existing
baselines.
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Figure A.5: Quantitative results associated to results on Figure A.1. Top graph
displays accuracy results for the experiment matching a partial cat to a complete
cat, bottom one those for the experiment marching a partial lion to a complete cat.
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Figure A.6: Visualization of the three collections corresponding to the jumping
motion. The biggest shape represents the base shape of the collection and the
smaller ones the used deformations.
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Figure A.7: Examples of results on the DFaust dataset for the jumping motion.
Left mesh shows the base shape of the first individual. Right meshes display the
computed pointwise maps in the case of a collection of partial cats (top row) and
partial lions (bottom row).

Figure A.8: Results on the DFaust dataset. Each line show results for a given
motion, and each column results for a given individual.
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Appendix B

Assessing Craniofacial Growth and

Form Without Landmarks:

A New Automatic Approach

Based on Spectral Methods

B.1 Age Distribution
As mentioned in Section 4.2.2, the dataset consisted in N = 155 CT-scans of skulls
including nt = 85 patients with trigonocephaly (mean age 219.3 ± 81.4 days), nm =
27 patients with a metopic ridge (mean age 379.25 ± 224.7 days), and nc = 43
control patients (mean age 218.7 ± 107.8 days). The three distributions (Figure B.1)
covered the same age range, excepting some older patients with metopic crest.

B.2 Using age as a feature
As the age distribution were slightly distinguishable, a potential bias of the algorithm
lied in using age as a distinguishing factor. The algorithm may have been biased
because it used age as a distinguishing factor. To ensure this was not the case, logistic
regression was performed on the dataset using only age as a feature. Using 5-fold
cross-validation and reweighting data-points to account for the class size di�erence,
The resulting True Positive Rates were 43.8% 3-class problem (C-M-T), and a 58%
for the binary classification problems ((C+M)-T) and (C-T).

We concluded from these results that discriminating from age resulted in poor
classification accuracy, especially for our binary classification problems ((C+M)-T)
and (C-T) where the TPR are close to random decision.
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Figure B.1: Age Distribution of the three groups in the dataset.



Appendix C

Smooth Non-Rigid Shape Matching via

E�ective Dirichlet Energy Optimization:

Additional Results

C.1 Smoothness Reformulation
In this section, we give details on the reformulation of smoothness methods provided
in Chapter 5.

C.1.1 Non-Rigid ICP
Non-Rigid ICP (nICP) [9] deforms a source shape S1 into a target shape S2 using a
per-vertex a�ne deformation D. Global energy reads, trying to fit a pointwise map
�12

Enicp(�12, D) =
...D

...
2

W1
+ —

...D ¶ X1 ≠ �12X2
...

2

A1
(C.1)

with
...D

...
2

W1
= q

i≥j wij

...Di ≠ Dj

...
2

F
and D ¶ X1 the deformed vertex coordinates.

Given a point-wise map �12, one can directly incorporate this energy in our algo-
rithm, where solving for Y12 is replaced by solving for D, and then setting Y12 =
D ¶ X1. Solving for D reduces to a simple linear system, as explained in [9]. Note
that in the original work, nICP algorithm uses graph Laplacian instead of cotangent
Laplacian, but we find that using cotangent weights is more stable in the case of
triangle meshes. We furthermore ignored landmarks preservation terms, borders
skipping heuristic, normals preservation and self-intersection verification procedures
for simplicity.

C.1.2 As-Rigid-As-Possible
As-Rigid-As-Possible (ARAP) [209] promotes local rigidity of the deformation of a
shape S1 using per-vertex rotations R, which results in minimizing the following
energy:

Earap(R, Y ) =
ÿ

i≥j

wij

...(yi ≠ yj) ≠ Ri(xi ≠ xj)
...

2

F
(C.2)

where yi are the expected vertex coordinates and xi the undeformed coordinates.
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We observe that the ARAP energy can be decomposed into two main compo-
nents, including a smoothness term and a rigidity term:

Earap(R, Y ) = E
smooth
arap (Y ) ≠ 2E

rigid
arap (R, Y ) + const. (C.3)

E
smooth
arap (Y ) =

ÿ

(xi, xj)œE(S1)
wij

...yi ≠ yj

...
2

F
(C.4)

E
rigid
arap (R, Y ) =

ÿ

(xi, xj)œE(S1)
wij(yi ≠ yj)T

Ri(xi ≠ xj) (C.5)

with E
smooth
arap =

...Y

...
2

W1
= ED(Y ). Note, however, that the default ARAP energy does

not have a coupling term to ensure that Y remains on the surface of S2. Therefore,
to avoid a trivial solution, such an energy must rely on pre-existing landmarks to
make sure that the deformation maps onto the target shape. In our algorithm,
given a pointwise map �12, we instead decide to add a coupling term between the
expected coordinates Y12 and transferred coordinates �12X1, which slightly modifies
the linear system to solve when minimizing over Y12, but doesn’t involve the rotations
R. Therefore, given a pointwise map �12, one first needs to compute local rotations
R and can then obtain the expected coordinates Y12 by solving a linear system.

C.1.3 Smooth Shells
Smooth Shells [70] models the deformation D as a simple per-vertex translation
seen as a function S1 æ R3, which is restricted to lie in the spectral basis of size K,
i.e., D œ RK◊3. In addition, smooth shells uses the ARAP energy to enforce the
smoothness of the deformation, which therefore adds additional local rotation R.
Specifically, X1 + �1D would give the updated vertex positions and the smoothness
is then defined as:

E
smooth
shells (D, R) = Earap(R, X1 + �1D) (C.6)

The smoothness energy is again associated with a coupling term which ensures the
deformed shape remains close to the current correspondences ÎX1+�1D≠�12X2Î2

A1 .
Note that in the original work, vertices X1 and X2 are also projected to a spectral
basis, and extra feature and normal preservation terms are added. In practice,
solving for D reduces to solving a K ◊ K linear system, compared to the n ◊ n

linear system obtained with standard ARAP.

C.1.4 Reversible Harmonic Maps
Reversible Harmonic Maps (RHM) [77] directly minimizes the Dirichlet energy of a
map without manipulating deformation fields. To avoid making the map collapse,
the authors look for bijective maps with the lowest possible Dirichlet energy. Vertices
of the pull-back shape �ijXj for (i, j) œ {(1, 2), (2, 1)} are again estimated via an
auxiliary variable Yij and the energy reads as the sum in both directions of E

half
rhm

with :
E

half
rhm (�ij, �ji, Yij, Yji) = ED(Yij) + E

bij
rhm(�ji, Yij)

+ E
couple
rhm (�ij, Yij).

(C.7)
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crypto drake wrapped drake

Figure C.1: Example of wrapping a Drake shape to a Cryto shape to establish
cross-category correspondences.

Here, again, we recognize the Dirichlet energy of the estimated map ED(Yij), and
two terms E

bij
rhm and E

couple
rhm which respectively enforce bijectivity and coupling:

E
bij
rhm(�ji, Yij) =

...�jiYij ≠ Xj

...
2

Aj
(C.8)

E
couple
rhm (�ij, Yij) =

...Yij ≠ �ijXj

...
Ai

(C.9)

This formulation leads to a computationally expensive iterative solver, which can
obtain to great results given an already good initialization. Additionally, the authors
use a high-dimensional embedding obtained via MDS [52] which mimics the geodesic
distance, instead of directly using the embedding coordinates.

C.2 DeformThings4D-Matching Dataset
Here we discuss in details how we construct our dataset from the DeformThings4D [124]
for shape matching task:

1. Select Models. We first pick models in DeformThings4D that are close to
watertight. Specifically, we only keep the models where the number of vertices
in the largest connected components is more than 75% of the total number
of vertices. Then the largest connected component is taken if the model is
disconnected. As a result, we get 56 animal models and 8 humanoid models.

2. Select Poses. For each watertight model, we collect all motion clips in De-

formThings4D and select poses from all the frames that are su�ciently
di�erent from each other. Specifically, we first pick a base pose that is close to
an A-pose: we find the pose that has wide range in z-axis and has relatively
small range in xy-axis. We then recursively find new pose from the collection
that have the largest di�erence in vertex positions to the chosen ones, until we
get 50 poses or all the poses are included. We then manually check each chose
pose and remove unrealistic poses with large distortion or self-intersection. As
a result, the number of poses for each model has a range from 30 to 50.
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3. Remeshing. The chosen poses in each model are in the same triangulation,
which can lead to overfitting issues for some shape matching methods [174].
We therefore apply a geometry-aware remeshing algorithm, LRVD [243], to
independently remesh all the poses to the resolution of around 8K vertices.
The correspondences between the remeshed shapes are propagated by nearest-
neighbor searching between the remeshed shapes and the original shapes. To
fix the potential topological errors in the nearest neighbor map, we apply
spectral ICP [159] at dimension 500 of the Laplace-Beltrami Basis.

4. Wrapping. We also provide cross-category correspondences for the 8 hu-
manoid models. Specifically, we use the commercial software R3DS to wrap
the rest 7 models (Zlorp, Mannequin, Drake, Ninja, Prisoner, Pump-

kinHulk, SkeletonZombie) to the chosen model (Crypto, the left-most
shapes in Fig. 5.2 in Chapter 5). For each pair, we manually select 50-80
landmarks on shapes for wrapping. Note here we wrap the original models
and propagate the correspondences to the remeshed shapes afterward. Specif-
ically, the cross-category correspondences among the original poses can be
established by nearest-neighbor searching between the wrapped shape and the
target shape (see Fig. C.1 for an example of a wrapped shape), which are
then propagated to the remeshed poses similar to step 3. Note that, since
some shapes are far from isometry or even incomplete, the wrapped results
are not perfect, and hence the established correspondences via map composi-
tions can be inaccurate. In general, as illustrated in Figure 5.2, the established
correspondences are in reasonable accuracy.

C.3 FAUST dataset
The FAUST dataset [28] consists of 100 meshes of 10 individuals in 10 di�erent
poses.

This dataset is used as a standard benchmark for most shape-matching algo-
rithms. However, as all shapes are near-isometric, many methods achieve smooth
and accurate results for this dataset. This therefore gives very little room for im-
provement regarding the smoothness.

We provide results on a random subset of 200 pairs in Section 5.6, where pairs
we selected so that only cross-individual ones are considered.

C.4 Additional Results
We evaluate di�erent methods using accuracy, bijectivity, coverage, and smoothness
of the maps as metrics. We also report runtime to compare the e�ciency. Specif-
ically, we compute the geodesic distances between the obtained maps Tij and the
ground-truth maps (if available) to measure the accuracy (see Table C.1). Similarly,
we compute the geodesic distances between the composite maps Tij ¶ Tji and the
identity map Ini to measure the bijectivity of the pointwise maps (see Table C.2).
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Table C.1: Accuracy on DeformThings4D-Matching

methods near-isometric partial non-iso

Zlorp Drake Mannequin Ninja Prisoner Zombie

Init 11.49 9.59 8.62 10.43 20.78 15.33

Ours w/ ARAP 11.22 9.04 8.10 9.88 19.91 14.83
Ours w/ nICP 7.29 7.07 4.61 5.25 21.18 11.95
Ours w/ Shells 3.25 7.78 4.11 4.73 20.27 10.32

ZO 3.43 5.74 3.33 4.61 20.59 13.71
DO 3.26 5.95 3.64 5.10 19.59 16.53

Ours w/ D 3.72 6.93 4.18 4.80 19.81 9.71
Ours w/ RHM 3.70 5.63 3.94 5.46 18.85 11.00

Table C.2: Bijectivity on DeformThings4D-Matching

methods near-isometric partial non-iso

Zlorp Drake Mannequin Ninja Prisoner Zombie

Init 11.69 7.17 6.58 10.69 22.53 11.52

Ours w/ ARAP 11.93 7.25 7.69 10.42 21.71 11.18
Ours w/ nICP 3.63 2.73 2.58 2.49 7.17 4.71
Ours w/ Shells 1.67 2.16 2.22 2.23 3.56 3.71

ZO 2.14 4.05 1.37 3.99 21.19 10.11
DO 1.27 1.55 1.63 1.46 2.26 2.52

Ours w/ D 1.77 2.12 2.30 2.25 3.60 3.74
Ours w/ RHM 1.42 1.84 1.82 1.94 2.81 3.24

We compute the Dirichlet energy on the obtained pointwise maps to evaluate the
smoothness (defined in Eq. (5.3)) as shown in Table 5.1. Here we additionally evalu-
ate the conformal distortion [77, 175], another popular smoothness metric, as shown
in Table C.4. We finally compute coverage of a pointwise map T , i.e., the area ratio
of the target shape that is covered by the map T , which evaluates the map surjec-
tivity (see Table C.3). This metric must be considered in pair with smoothness to
detect the degenerate case of trivial maps with perfect smoothness. For example, a
trivial map where are vertices on the source are mapped to the same vertex on the
target, is perfectly smooth w.r.t. the Dirichlet energy, but its coverage is close to
zero. Therefore, in the ideal case, the best map is the one with zero Dirichlet energy
and 100% coverage. All metrics are reported as an average over all the tested shape
pairs.

In Figure C.2, we show some qualitative results on the TOSCA non-isometric
dataset.
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Table C.3: Coverage on DeformThings4D-Matching

methods near-isometric partial non-iso

Zlorp Drake Mannequin Ninja Prisoner Zombie

Init 22% 34% 35% 28% 8% 20%

Ours w/ ARAP 28% 37% 36% 34% 22% 29%
Ours w/ nICP 38% 50% 53% 53% 20% 30%
Ours w/ Shells 61% 55% 56% 57% 39% 43%

ZO 72% 70% 71% 71% 59% 60%
DO 68% 66% 65% 66% 55% 55%

Ours w/ D 59% 55% 54% 56% 37% 41%
Ours w/ RHM 64% 60% 60% 60% 45% 47%

Table C.4: Smoothness on DeformThings4D-Matching, via Conformal Dis-
tortion

methods near-isometric partial non-iso

Zlorp Drake Mannequin Ninja Prisoner Zombie

Ours w/ ARAP 2.33 2.99 2.21 2.24 3.02 2.10
Ours w/ nICP 4.14 5.15 2.59 2.90 10.49 4.58
Ours w/ Shells 3.22 4.68 3.77 4.56 14.04 7.13

ZO 3.05 5.03 2.51 4.22 24.80 15.76
DO 3.23 5.30 3.77 4.69 21.10 16.09

Ours w/ D 2.85 3.70 2.81 3.05 9.89 4.54
Ours w/ RHM 2.88 3.92 2.78 3.07 10.05 4.72

C.5 Parameters

In all experiments, we use the same set of parameters, where those of each smooth-
ness energy were tuned independently. Parameters can also be found in the released
implementation at https://github.com/RobinMagnet/smoothFM.

Spectral Energy. For all experiments, we weighted the spectral bijectivity term
by 1 and the coupling term by 10≠1, as advocated in the Discrete Optimization
implementation [177].

Smoothness Energy. Each smoothness energy required its own set of parameters.
The Dirichlet energy was weighted by 1 for all of them for consistency. In particular,
for RHM energy, we used a coupling weight of 1 and a bijectivity weight of 104. We
used a coupling weight of 10≠1 for ARAP, 10≠2 for nICP and 10≠3 for Shells.

https://github.com/RobinMagnet/smoothFM
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Source w/nICP w/ARAP w/Shells w/RHM ZoomOut DiscreteOp w/ D GT

Figure C.2: We show two non-isometric shape pairs from TOSCA dataset can com-
pare pointwise maps obtained from di�erent methods via color transfer. Note that
TOSCA non-isometric dataset only provide sparse ground-truth correspondences.
We therefore color the vertices that do not have GT correspondences in black.

Table C.5: Results on TOSCA nonIsometric using WKS initialization

methods accuracy bijectivity smoothness coverage

Init 56.56 39.50 93.24 15.48 %

Zo 54.61 43.23 19.27 52.48 %
DO 53.65 2.33 16.47 50.04 %

Ours w/ D 51.38 22.30 2.46 16.72 %
Ours w/ RHM 54.07 4.18 3.92 35.29 %

Coupling. We globally reweighted the smoothness energy by a parameter “, grad-
ually increasing from 10≠1 to 1 across iterations.

C.6 Initialization
For all datasets, we obtain initial dense correspondences by computing a 5 ◊ 5
functional map using 5 landmarks.

We chose this kind of initialization, as standard shape descriptors like WKS [15]
could not provide meaningful correspondences in the presence of high levels of non-
isometry.

Indeed, Table C.5 provides results using WKS descriptor as initialization for all
methods. Note that the accuracy is unable to significantly go down from initializa-
tion. It thus becomes di�cult to read into these results in a meaningful manner.

C.7 Discrete Optimization
The discrete optimization framework [177] proposes a large set of spectral energies,
along which the conformal energy promoting functional maps associated to confor-
mal pointwise correspondences. While this energy does help smoothness, we did not
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Source DO DO + C

Figure C.3: Example of correspondences without (enter) and with (right) the con-
formal term of Discrete Optimization. While some parts are smoother, the overall
e�ect is marginal.

notice significant improvements regarding discontinuities in the correspondences.
On Figure C.3, we display an example of correspondences obtained by the stan-

dard Discrete Optimization (center) and by adding the conformal term (right).
While some parts have been made smoother, the e�ect remains quite marginal.

In practice, this term can provide meaningful regularization in some cases but
appears quite hard to tune to obtain a consistent e�ect.



Appendix D

Scalable and E�cient

Functional Map Computations

on Dense Meshes:

Additional Results

D.1 Function ‰

The function ‰ : R+ æ [0, 1], di�erentiable with ‰(0) = 1 and ‰(x) = 0 for x Æ 1
can be defined two ways. Following [149], we use the polynomial interpolation
function ‰ : x ‘æ 1 ≠ 3x

2 + 2x
3. Another possibility is to use the standard C

Œ

compactly supported function ‰ : x ‘æ exp
1
1 ≠ 1

1≠x2

2
, which we found not as good

as the polynomial interpolation regarding results. Both functions are displayed on
Figure D.1.

D.2 Coe�cient weighting
Table D.1 compares our algorithm (Ours) with a similar one (Ours + reweight),
where we replace �M by �M in Equation (6.7) so that the map � actually trans-
ports pointwise values rather than coe�cient, as mentioned in Section 6.5.1. This
amounts to reweighting local coe�cients to actually become function values. We
notice this method does not improve our pipeline on the SHREC19 dataset.

Figure D.1: Possible choices for function ‰
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Table D.1: Evaluation of the reweighting scheme on the SHREC19 dataset.

methods Accuracy Coverage Smoothness

Init 60.18 26.5 % 9.5

Ours + Reweight 28.1 54.6 % 6.3
Ours 27.78 56.7 % 5.6

D.3 Proof of Proposition 6.1

Proposition 6.1. Let �N (resp. �M) and �N (resp. �M) the approximated and
true first K eigenvectors of the Laplacian on N (resp. M). Let C and C be the
original and reduced (see Eq. (6.6)) functional maps of size K, associated to the map
T . Suppose that T is a di�eomorphism, and let BT be the bound given by Lemma 6.1.
If there exists Á œ Rú

+ so that for any j œ {1, . . . , K} :

Î�N
j

≠ �N
j

ÎŒ Æ Á and Î�M
j

≠ �M
j

ÎŒ Æ Á

Then:
1
K

...C ≠ C
...

2

2
Æ Á

2
1
1 + B

2
T

2
(6.10)

Proof. We first note that the entries of the functional maps C and C can be written

Ci,j = ÈÂN
j

, Â
M
i

¶ T ÍN (D.1)

Ci,j = ÈÂN
j

, Â
M
i

¶ T ÍN (D.2)

Furthermore, given f1, g1, f2, g2 functions on N .
Then for any x œ N

f1(x)g1(x) ≠ f2(x)g2(x) =f1(x) (g1(x) ≠ g2(x))
+ g2(x) (f1(x) ≠ f2(x))

(D.3)

With f1 = Â
N
i

, g1 = Â
M
j

¶ T , f2 = Â
N
j

and g2 = Â
M
i

¶ T , we have by hypothesis

Îf2 ≠ f1ÎŒ Æ Á

Îg2 ≠ g1ÎŒ Æ Á

Îg2ÎN Æ BT

(D.4)
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Therefore

|Èf1, g1ÍN ≠ Èf2, g2ÍN |2 =
----
⁄

N
(f1(x)g1(x) ≠ f2(x)g2(x)) dµ

N (x)
----
2

Æ
⁄

N
f1(x)2 (g1(x) ≠ g2(x))2

dµ
N (x)

+
⁄

N
g2(x)2 (f1(x) ≠ f2(x))2

dµ
N (x)

Æ Á

⁄

N
f1(x)2

dµ
N (x) + Á

⁄

N
g2(x)2

dµ
N (x)

Æ Á

1
Îf1Î2

N + Îg2Î2
N

2

Æ Á
2

1
1 + B

2
T

2

Summing for all elements of the matrix C gives the result.

D.4 Proof of Proposition 6.2
Proposition 6.2. Let T : N æ M be a pointwise map between the shapes repre-
sented by �, and let BT be the bound given by Lemma 6.1. Suppose that T|SN :
SN æ SM is represented by �.
Let – = minj u

M
j

(vj) œ [0, 1]. Suppose further that there exists Á > 0 so that for any
k œ {1, . . . , K} and x, y œ SM:

d
M(x, y) Æ fl

M ∆ |�M
k

(x) ≠ �M
k

(y)| Æ Á (6.11)

and
d

M(x, y) Æ fl
M ∆ |�M

k
(x) ≠ �M

k
(y)| Æ Á. (6.12)

Then
1
K

...��M ≠ UN � �M...
2

N
Æ Á

2(1 ≠ –) + Á
2
B

2
T

(6.13)

The proof relies on the following proposition,

Proposition D.1. Given, M a surface,
1
vj

2

j
and

1
uj

2

j
built as described in Sec-

tion 6.4.3.
Given f : M æ R, suppose there exists Á > 0 so that for any x, y œ M, d(x, y) Æ
fl =∆ |f(x) ≠ f(y)| Æ Á.

Then the interpolation error between f and f̃ = q
j f(vj)uj is bounded by Á:

|f̃(x) ≠ f(x)| Æ Á ’x œ M (D.5)

And for any j œ {1, . . . , p}

|f̃(vj) ≠ f(vj)| Æ Á (1 ≠ uj(vj)) (D.6)
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Proof. of Proposition D.1
Let f : M æ R, S = {v1, . . . , vp} a sample of M associated to a radius fl. Since

(uj) verify q
j uj = 1, for any x œ M we have

f(x) =
pÿ

j=1
uj(x)f(x) (D.7)

Therefore if f̃ = q
j f(vj)uj

f(x) ≠ f̃(x) =
pÿ

j=1
uj(x)(f(x) ≠ f(vj))

=
ÿ

j, d(vj ,x)<fl

uj(x)(f(x) ≠ f(vj))
(D.8)

This gives, using triangular inequality and uj(x)2 Æ uj(x) (since 0 Æ uj(x) Æ 1):

|f(x) ≠ f̃(x)|2 Æ
ÿ

j, d(vj ,x)<fl

uj(x)2|f(x) ≠ f(vj)|2

Æ
ÿ

j, d(vj ,x)<fl

uj(x)|f(x) ≠ f(vj)|2
(D.9)

Which gives |f(x) ≠ f̃(x)|2 Æ ‘ using the hypothesis of the proposition and the
fact q

j uj = 1.
Furthermore, if there exit k so that x = vk, we can remove the term of index k

and we have

|f(x) ≠ f̃(x)|2 Æ
ÿ

j ”=k, d(vj ,x)<fl

uj(vk)2|f(vk) ≠ f(vj)|2

Æ Á
2 ÿ

j ”=k, d(vj ,x)<fl

uj(vk)

Æ Á
2(1 ≠ uk(vk))

(D.10)

Proof. of Proposition 6.2
We again suppose all shapes to be area-normalized. Using the f̃ notation from

Proposition D.1, we can use the triangular inequality on
...��M ≠ UN � �M...

N
:

...��M ≠ UN � �M...
2

N
Æ

.....��M ≠ �̂�M
.....

2

N

+
.....�̂�M ≠ UN � �M

.....

2

N

(D.11)

The first term can be decomposed as a sum of the norms of its K columns, where

each term is in the form Î�M
j

¶ T ≠ �̂M
j

¶ TÎ2
N , and can be controlled by applying
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the bound on interpolation error from Proposition D.1 associated with the bounded
distortion lemma, that is

.....��M ≠ �̂�M
.....

2

N
Æ KB

2
T
‘

2 (D.12)

Focusing on the second term, the following lemma will be very useful in order to
bound it :

Lemma D.1. Given — œ Rp
N , ÎUN

—Î2
N Æ Î—Î2

F

We indeed notice the second term can be written in the form ÎUN A ≠ UN BÎ2
N .

Using Lemma D.1, we can now focus on bounding ÎA ≠ BÎ2
F

and especially on the
squared norm of each of the columns of A ≠ B. In practice, each column can be
written as

1
Â

M
j

¶ T (vk) ≠ „
M
j

¶ T|SN (vk)
2

k
, since we supposed that T|SN was well-

defined between the subsamples.

Given k œ {1, . . . , p
N }, there exists i0 œ {1, . . . , p

M} so that T (vN
i

) = v
M
i0 .

Furthermore, by definition of the approximated eigenvectors Â
M
j

, for all x œ M we
have Â

M
j

(x) = qp
M

k=1 „
M
j

(vM
k

)uM
k

(x)
Therefore, denoting �j(i) = Â

M
j

(vM
i0 ) ≠ „

M
j

(vM
i0 )

�j(i) =
p

Mÿ

k=1
„

M
j

(vM
k

)uM
k

(vM
i0 ) ≠ „

M
j

(vM
i0 ) (D.13)

=
p

Mÿ

k=1
u

M
k

(vM
i0 )

1
„

M
j

(vM
k

) ≠ „
M
j

(vM
i0 )

2
(D.14)

The exact same procedure as in the proof of Proposition D.1 can now be applied,
which allows bounding the term

.....�̂�M ≠ UN � �M
.....

2

N
Æ KÁ(1 ≠ –) (D.15)

Summing terms from Equations (D.12) and (D.15) produce the upper bound of
Proposition 6.2.

D.5 Values of theoretical quantities
We here provide values for the named values from Proposition 6.2. We again high-
light the proposed bounds are not tight and only serves as guidance to select pa-
rameters.

First, note that BT is a Lipschitz-constant, which is 1 whenever T is an isometry,
and is else related to the area-distortion induced by T .
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Figure D.2: Ground truth functional map C using the functional space F without
(Left) and with (Right) adaptive radius. Notice that up to a change of sign, both
functional maps look similar

– can then vary between 0 and 1, but our adaptive radius scheme ensures the
minimal value is 0.3. In practice, the average value is higher, around 0.43 on average
on the SHREC19 dataset.

Finally, Á controls the variation of the approximated eigenvectors in a local neigh-
borhood, and can be set arbitrarily small by decreasing the value for fl (and poten-
tially increasing the number of samples to ensure partition of unity). Note that the
higher the frequency of the eigenvector, the higher the maximal value of Á is, where
the maximum is taken across all local neighborhoods. In practice, we observe maxi-
mum values between 0 and 8 for the first 150 eigenvectors, when using around 1500
sampled points. In comparison, we obtain values between 0 and 4 by comparing
values of the exact eigenvectors simply across edges.

D.6 Functional Map approximation
We here display on Figure D.2 images of the ground truth functional maps for
Figure 6.4

D.7 Implementation details
We here provide additional details on parameters and algorithm for implementation.

Per vertex radii are initially set to the same initial value fl0, defined as fl0 = 3fl̃0

with fl̃0 =
Ú

Area(M)
pfi

. The value of fl̃0 is obtained by expecting each sample point vj

to occupy a geodesic disk or radius fl̃0, which would eventually cover the complete
shape - that is pfifl

2 = Area(M). If the choice of the sample is free, we recommend
using Poisson Disk Sampling to obtain roughly evenly spaced samples in a fast
manner.

Local Dijkstra starting from samples can be accelerated by both parallelization
and reduction of the search space to a Euclidean ball of radius fl0 around each
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Figure D.3: Texture transfer using our scalable version of ZoomOut on a pair of
the SHREC19 dataset. Samples used in the pipeline are shown as white dots.

sample, as we have d
M(xi, xj) Æ Îxi ≠ xjÎ2.

If some points xi œ M have not been reached during this process, one should
either increase the initial radius fl0 or simply add xi to the sample set S and run an
extra local Dijkstra starting from xi.

Values of (ũj)j
can now be computed and stored in a sparse n ◊ p matrix ÊU,

where each column stores a local function. Eventually in order to detect too small
self-weights uj(vj), we notice from Equation (6.14) that uj(vj) Æ – is equivalent
to q

i ũi(vj) Ø 1
–
, where the first term is the sum of a row of a p ◊ p submatrix

extracted from ÊU. Reducing the radius flj of a sample only consists in recomputing
the j-th column of ÂU from the same distance values as computed by the first Dijkstra
run. This way, no additional Dijkstra is run, which leads to a somewhat costless
improvement of the local functions.

D.8 Texture transfer
We further show the e�ciency of our method in terms of accuracy by displaying
another example of texture transfer on a pair of dense meshes part of the SHREC19
dataset, as seen on Figure D.3. Here the leftmost shape contains 50 000 vertices
and rightmost 200 000, but we only use nearly 1500 samples to obtain such cor-
respondences. Note that in this case, where the number of vertices on the target
shape is larger than the number of vertices on the source shape, texture transfer
is especially challenging as multiple vertices of the target shape are projected into
the same triangles. This makes texture transfer very sensitive to the quality of the
estimated map. We stress this pipeline obtains sub-sample accuracy in the corre-
spondences, all in a fraction of the required time to run the exact ZoomOut pipeline.
We further highlight that texture at the elbows and shoulder is not smooth on the
source shape, which explains the distortion on the target shape. This results simply
serves as visualization.
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Appendix E

Memory-Scalable and E�cient

Functional Map Computations on Dense

Meshes: Additional Results

E.1 Implementation Details
In this section, we provide more detailed information on the implementation of our
model described in Figure 7.2 and Sec. 7.4.4.

Our model takes as input shapes using 128 WKS descriptors computed from
128 eigenfunctions of the Laplace-Betlrami operator. Similarly to [123, 40], each
descriptor function is normalized on the shape with respect to the standard L

2

inner product on a mesh. These descriptors are then fed to a Di�usionBlock with 4
Di�usion blocks of width of 256, in a standard manner [198, 12, 40, 212]. The main
di�erence with these implementations is that we only output 32 feature functions
instead of the 128 or 256 usually used.

Features produces by Di�usionNet are used in our Di�erentiable ZoomOut block
which first normalizes the pointwise features, and then computes a scalable dense
map equivalent to standard two-branch networks, as shown in Section 7.3 and Eq. (7.3).
Using this map, an initial functional map Cinit of size Kinit = 30 is computed, and
is fed into a ZoomOut algorithm [145] for 10 iterations with a spectral upsampling
step of 10, where the pointwise maps are replaced by our scalable dense maps. This
eventually produces our refined map Crefined of size Krefined = 130.

Our loss consists in 3 terms, a orthogonality loss Lorth(Cinit) = ÎC€
initCinit ≠

IÎ2
2, a consistency loss Lconsist(Cinit, Crefined) = ÎCinit ≠ CrefinedÎ2

2, and a Laplacian
bijectivity loss Llap(Cinit) = Î� § CinitÎ2

2, where § denotes element-wise product
and � is obtained from [173, 39]. More precisely, if ⁄

(1)
, ⁄

(2) œ RKinit denote the
vector of eigenvalues of S1 and S2, then � is defined element-wise as

�2
ij

=
Q

a

Ò
⁄

(2)
i

1 + ⁄
(2)
i

≠
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⁄

(1)
j

1 + ⁄
(1)
j

R

b
2

+
Q

a 1
1 + ⁄
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≠ 1
1 + ⁄

(1)
j

R

b
2 (E.1)

This is an extension of the standard Laplacian commutativity loss, which has
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Train F S F+S
Test F S S19 F S S19 F S S19

BCICP [174] 6.1 - - - 11. - - - -
ZoomOut [145] 6.1 - - - 7.5 - - - -

SmoothShells [70] 2.5 - - - 4.7 - - - -
DiscreteOp [177] 5.6 - - - 13.1 - - - -
GeomFmaps [60] 3.5 4.8 8.5 4.0 4.3 11.2 3.5 4.4 7.1
Deep Shells [71] 1.7 5.4 27.4 2.7 2.5 23.4 1.6 2.4 21.1
NeuroMorph [72] 8.5 28.5 26.3 18.2 29.9 27.6 9.1 27.3 25.3
DUO-FMNet [62] 2.5 4.2 6.4 2.7 2.6 8.4 2.5 4.3 6.4

UDMSM [39] 1.5 7.3 21.5 8.6 2.0 30.7 1.7 3.2 17.8
ULRSSM [40] 1.6 6.4 14.5 4.5 1.8 18.5 1.5 2.0 7.9

ULRSSM (w/ Opt) [40] 1.6 2.2 5.7 1.6 1.9 6.7 1.6 2.1 4.6
AttentiveFMaps Fast [123] 1.9 2.6 5.8 1.9 2.1 8.1 1.9 2.3 6.3

AttentiveFMaps [123] 1.9 2.6 6.4 2.2 2.2 9.9 1.9 2.3 5.8
ConsistentFMaps [212] 2.3 2.6 3.8 2.4 2.5 4.5 2.2 2.3 4.3

ConsistentFMaps (dim 80) [212] 1.7 2.6 5.5 2.2 2.0 5.8 1.7 2.2 5.6
Ours 1.9 2.4 4.2 1.9 2.4 6.9 1.9 2.3 3.6

Table E.1: Mean geodesic errors (◊100) when training and testing on the Faust,
Scape and Shrec19 datasets. Due to the fine-tuning strategy on ULRSSM (w/ fine-
tune), we do not hightlight its results. See text for details.
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Method SMAL

ULRSSM [40] 6.9
ULRSSM (w/ fine-tune) [40] 3.5

AttentiveFMaps [123] 5.4
ConsistentFMaps [212] 5.4

Ours (w/o Consistency) 6.7
Ours 5.9

Table E.2: Mean geodesic errors (◊100) when training and testing on the SMAL
dataset.

been used in most existing implementations since GeoFMaps [60].
We do not enforce orthogonality of Crefined, since ZoomOut is proven to pro-

mote orthogonal functional maps [145]. We notice that given a sound initialization,
ZoomOut produces great results, which inspires us mostly to penalize Cinit. Further-
more, during the first iterations, initial functional maps produced by the network
have no guarantee to be sound, and we therefore tune down the consistency loss
Lconsist initially until the network converges towards good initialization. The con-
sistency loss then provides meaningful guidance to the network. In practice, we
increase the weight of this loss from 10≠4 to 10≠1 in 5 epochs using a multiplicative
schedule.

The complete implementation is available at https://github.com/RobinMagnet/
SimplifiedFmapsLearning.

E.2 More Baselines & Ablation

We here present additional results on the standard baselines presented in the manuscript.
In particular, some works [123, 212] provided multiple versions of their algorithm.
Furthermore, we display results from [40] using further test-time optimization. Note
that this test-time optimization fine-tunes the network for each shape on the test
set and should be applied to all other methods for fairness. All these additional
baselines can be found on Table E.1.

We additionally provide results on the SMAL dataset [247], where we addition-
ally show the result of our pipeline without using the consistency loss (“w/o Consis-
tency”), which serves as an ablation study similar to the one presented in [212]. How-
ever, in this ablation, we still use the ZoomOut algorithm at test-time, only the con-
sistency loss was removed. PCK curves for ULRSSM [40] and AttentiveFMaps [123]
are also provided on Figure E.1.

https://github.com/RobinMagnet/SimplifiedFmapsLearning
https://github.com/RobinMagnet/SimplifiedFmapsLearning
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Figure E.1: PCK curves on the SMAL dataset

Algorithm 7 The ZoomOut algorithm
Require: Initial pointwise map �21 œ {0, 1}n2◊n1 from S2 to S1, eigenvectors �1 œ

Rn◊k1 and �n◊k2
2 on each shape.

1: for k = kinit to kfinal do
2: Compute C12 = [�2]†[:,:k]�21[�1][:,:k]

3: Compute �21 = NN
1
[�1][:,:k]C

€
12, [�2][:,:k]

2

4: end for
5: Return C12, �21
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E.3 ZoomOut Algorithm
The ZoomOut algorithm [145] is a simple functional map refinement algorithm,
which uses iterative conversions between functional and pointwise maps.

The algorithm is presented on Algorithm 7, where NN denotes the nearest neigh-
bor query between the rows of the two arguments.

E.4 Adapting Scalable ZoomOut
In [131], the authors present an approximation of the functional map for dense
shapes using only sparse samples.

This approximation allows running the ZoomOut algorithm on a sparse subset of
the vertices of both shapes, only using a complete high dimensional nearest neighbor
query at the last step of the algorithm. This last step appears as the heaviest speed
bottleneck of the algorithm as presented in [131].

When porting [131] to GPU, this query makes the GPU run out of memory on
very dense meshes, which we solve by using our scalable dense maps.

However, this algorithm adds a layer of approximation, which can potentially
hinder the results. Furthermore, since it only uses values at sparse samples, the
gradient can only propagates through these samples and not to the entire vertex-
wise embeddings. In particular, it is not possible to use di�erent samples each
time the shape is used in training, as the preprocessing time is not negligible. This
refrains us from using this adapted version within our learning framework.

E.5 Dense Meshes
In this section, we provide more information on dense mesh processing using our
pipeline, using meshes from the original version of the SHREC19 dataset [144].

While Di�usionNet needs to store the eigenvectors of each shape of size N ◊
K in memory, it is still able to compute features quickly for each shape. Due
to its discretization-agnostic architecture, the features obtained on the dense and
remeshed version are similar, as noted on Figure E.2, where each mesh contains N =
2 · 105 vertices. However, fitting a dense pointwise map would for this mesh require
107 MiB of GPU memory, without even storing the gradient, which is infeasible in
most cases.

In contrast, our scalable dense map can easily compute these maps. In particular,
at test time when no gradient information is stored, our Di�erentiableZoomOut has
a negligible memory cost since intermediate maps don’t need to be stored.

We show an example of texture transfer on another pair of this dataset in Fig-
ure E.3. Here, we used our network, trained on the standard remeshed [174] ver-
sions of the Faust [28] and Scape [10] datasets, and evaluate at test time on shapes
with around 105 vertices. We transform the output functional map into a precise
map [75]. This demonstrates our pipeline can be trained on simple remeshed versions
of datasets, but then used at test time on denser shapes without issues.
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Figure E.2: We leverage on the capacity of Di�usionNet [198] to perform on various
discretization of the same shape. Left and right are two shapes from the SHREC19
dataset [144]. We show on each shape features obtained on the remeshed and original
version of the dataset.

Figure E.3: Example of texture transfer of our method on the SHREC19 [144]
dataset using our pipeline.
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Titre : Méthodes spectrales robustes pour l’analyse des formes et l’évaluation des déformations.
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Résumé : Le traitement et l’analyse automatiques

des formes 3D est un domaine actif de la recherche

moderne, avec des retombées dans de nombreux

domaines. L’un des principaux défis de ce domaine

réside dans la comparaison efficace des formes, par

exemple pour détecter des anomalies dans les scan-

ners d’organes, ce qui nécessite souvent d’établir des

correspondances entre les surfaces. En particulier, le

cadre des cartes fonctionnelles, basé sur l’analyse

spectrale des formes, offre une approche flexible pour

représenter et calculer ces correspondances, servant

de base pour les analyses ultérieures. Cette thèse

cherche à améliorer ces méthodes spectrales afin de

réaliser des comparaisons de formes robustes et effi-

caces applicables aux données du monde réel. Dans

la première partie, nous nous concentrons sur la ca-

ractérisation des différences entre les formes. Nous

introduisons un descripteur des différences entre les

formes, offrant des informations sur la distorsion au-

tour de chaque point. Nous appliquons ensuite des

outils similaires à un ensemble de scans de crânes

afin de détecter une maladie craniofaciale, en met-

tant en évidence certaines exigences spécifiques des

praticiens. Nous soulignons notamment l’importance

de la continuité des correspondances et de l’appli-

cation rapide des méthodes à des maillages denses.

Dans la deuxième partie, nous répondons à ces be-

soins, tout d’abord en présentant un nouvel algo-

rithme de correspondance de formes promouvant la

continuité, ainsi qu’un nouveau jeu de données com-

plexe pour l’évaluation. Nous nous concentrons en-

suite sur l’amélioration des méthodes de cartes fonc-

tionnelles afin de traiter des maillages réels de haute

résolution. Nous présentons alors une approximation

de la carte fonctionnelle, permettant le calcul rapide

de correspondances sur des maillages possédant des

centaines de milliers de sommets. Finalement, nous

présentons une nouvelle approche d’apprentissage

profond pour le calcul de cartes fonctionnelle, en sup-

primant le stockage de grandes matrices denses dans

la mémoire du GPU, améliorant ainsi l’extensibilité

de la méthode. Dans l’ensemble, cette thèse pro-

pose des outils efficaces pour analyser les différences

entre les formes et fournit des méthodes générales

pour simplifier et accélérer les calculs de correspon-

dance, facilitant ainsi les applications en aval.

Title : Robust spectral methods for shape analysis and deformation assessment

Keywords : geometry, shape matching, mesh, functional maps, deep learning

Abstract : Automatically processing and analyzing

3D shapes is an active area in modern research

with implications in various fields. A key challenge in

shape analysis lies in efficiently comparing shapes,

for example to detect abnormalities in scans of or-

gans, which often requires automatically deforming

one shape into another, or establishing correspon-

dences between surfaces. In this context, the func-

tional map framework, based on spectral shape ana-

lysis, offers a flexible approach to representing and

computing these correspondences, serving as a foun-

dation for subsequent analysis. This thesis seeks to

address the limitations of existing spectral methods,

with the ultimate goal to achieve robust and efficient

shape comparisons applicable to real-world data. In

the first part, we concentrate on assessing deforma-

tions between shapes effectively, and introduce a des-

criptor of differences between shapes, capturing infor-

mation about the distortion around each point. Next,

we apply similar tools on a set of skull scans for

craniofacial disease detection, highlighting the speci-

fic requirements of shape matching practitioners. No-

tably, we underscore the significance of correspon-

dence smoothness and scalability to dense meshes.

In the second part, we address these needs by exten-

ding existing functional map methods. Firstly, we intro-

duce a novel shape correspondence pipeline, which

explicitly promotes smoothness of computed corres-

pondences, alongside a new challenging shape mat-

ching dataset. Secondly, we focus on enhancing the

scalability of functional map pipelines to handle real-

world dense meshes. For this, we present an approxi-

mation of the functional map, enabling the computa-

tion of correspondences on meshes with hundreds

of thousands of vertices in a fraction of the proces-

sing time required by standard algorithms. Finally, we

introduce a new learning-based approach, by modi-

fying existing techniques for functional map compu-

tations, eliminating the need for large dense matrix

storage in GPU memory, thereby improving scalabi-

lity and numerical stability. Overall, our work contri-

butes efficient tools for analyzing differences between

shapes and provides general methods to simplify and

accelerate correspondence computations, facilitating

downstream applications.
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