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Abstract

Deep functional maps have emerged in recent years as
a prominent learning-based framework for non-rigid shape
matching problems. While early methods in this domain
only focused on learning in the functional domain, the lat-
est techniques have demonstrated that by promoting consis-
tency between functional and pointwise maps leads to sig-
nificant improvements in accuracy. Unfortunately, existing
approaches rely heavily on the computation of large dense
matrices arising from soft pointwise maps, which compro-
mises their efficiency and scalability. To address this limi-
tation, we introduce a novel memory-scalable and efficient
functional map learning pipeline. By leveraging the spe-
cific structure of functional maps, we offer the possibility to
achieve identical results without ever storing the pointwise
map in memory. Furthermore, based on the same approach,
we present a differentiable map refinement layer adapted
from an existing axiomatic refinement algorithm. Unlike
many functional map learning methods, which use this al-
gorithm at a post-processing step, ours can be easily used
at train time, enabling to enforce consistency between the
refined and initial versions of the map. Our resulting ap-
proach is both simpler, more efficient and more numerically
stable, by avoiding differentiation through a linear system,
while achieving close to state-of-the-art results in challeng-
ing scenarios.

1. Introduction
Automatically computing dense correspondences between
non-rigid shapes is a classical problem in computer vi-
sion, forming the foundation of various downstream ap-
plications like shape registration [6], deformation [11, 45],
and analysis [42]. A popular approach to tackle this prob-
lem involves the functional map pipeline [34], which rep-
resents correspondences as linear operators between func-
tional spaces derived from the intrinsic Laplacian [31] on
each shape. Numerous early methods [32, 33, 38] have
leveraged this framework using handcrafted descriptors to
generate functional maps, which can lack fine detail. Many

Figure 1. Our method takes a set of point features as input, which
can be learned, and uses a differentiable version of the ZoomOut
algorithm to produce correspondences. Due to its light memory
cost, it can be used while training a network, or when running the
network on very dense meshes.

algorithms [19, 27, 30, 39] have therefore successfully been
developed in order to refine such imprecise maps into high
quality dense correspondences.

Building upon pioneering efforts by [12], recent ad-
vancements [17, 43, 46] have successfully explored the pos-
sibility of learning descriptors directly from data for sub-
sequent functional map computations, adapting the origi-
nal pipeline introduced by [34, 40]. Notably, the most re-
cent developments in this area have observed that promoting
functional maps to be “proper” (i.e., functional maps arising
from pointwise ones) can lead to significant improvement in
accuracy. The concept of “proper” functional maps was in-
troduced in the optimization setting [39] and then quickly
adopted within the learning context. Specifically, recent
deep functional map methods have constructed dual-branch
networks [2, 9, 23, 46] that enforce the connection between
pointwise and functional maps and that have demonstrated
impressive performance across multiple datasets. Interest-
ingly, these studies highlighted the necessity of retaining
the original functional map branch [46] to achieve optimal
performance, despite its inherent instability when differen-
tiating through the linear system solver [15].

In all these works, however, the “properness’ of func-
tional maps is enforced by first computing a soft point-to-



point map which is then converted to a functional map us-
ing matrix multiplication. This heavily limits the scalabil-
ity of these approaches, as the dense pointwise map has to
be stored in memory, which scales quadratically with the
number of vertices. While common shape matching bench-
marks only use meshes with low number of vertices, using
these methods on real meshes is a serious challenge.

To address this limitation, we propose an approach that
can compute the functional map associated with the soft p2p
map, without ever storing the dense matrix in memory. Key
to our approach is the fact that the proper functional map
is defined as a matrix product between the soft pointwise
map and the Laplacian basis [34, 39]. By exploiting this
structure and GPU acceleration [10], we show that such ma-
trix product can be computed directly without the necessity
of storing the pointwise map, thus significantly improving
both the speed and scalability of related approaches.

Our work additionally demonstrates the feasibility of
discarding the original functional branch while preserving
result quality. Our approach involves the transformation of
a widely adopted map refinement algorithm [30], originally
implemented on CPU, into a differentiable and memory-
efficient GPU version using a similar pointwise map com-
putation. Utilizing this refined map allows us to impose
constraints on the structure of the learned functional map
through a form of self-supervision. This, in turn, replaces
the need for a consistency loss with the traditional func-
tional map branch as in [9, 46], providing a novel simple
and efficient solution for maintaining result quality in the
absence of the original functional branch. Overall, our con-
tributions can be summarized as follows:
• We propose efficient GPU implementation of differen-

tiable pointwise map or functional map learning with
minimal space complexity and numerical stability.

• We use a novel GPU adapted refinement algorithm at train
time to provide self-supervision to the network.

• We introduce the first single-branch network for func-
tional map learning without differentiating through a lin-
ear system solver.

2. Related Works
Shape matching and in particular functional map correspon-
dence computation is a very wide and established a field of
research. We here only review the works the closest to our
work, and refer the interested reader to [35, 42] for an in-
depth description of related works.

Functional Maps Our work is built upon the functional
map framework, originally developed in [34] and later ex-
tended in various ways [13, 30, 33, 38, 39], an overview
being provided in [35]. This approach encodes correspon-
dences between shapes as small sized matrices indepen-
dently of the original number of vertices, offering an effi-

cient way to compute maps. This then allows to efficiently
enforce constraints on the correspondences such as bijec-
tivity or area preservation using simple linear algebra. The
most effective functional map algorithms are map refine-
ment algorithms [16, 27, 30, 39], which take initial cor-
respondences as input and iteratively refine them. While
highly robust, obtaining initialization without landmarks
often relies on the use of handcrafted descriptors such as
HKS [7], WKS [4] or SHOT [48].

Deep Functional Maps A more recent line of research
focus on learning descriptor functions directly from the
surface itself. Originating with FMNet [25, 40] and fur-
ther developed in [12, 43], these approaches typically take
handcrafted descriptors as inputs and yield refined descrip-
tor functions. These functions are then used in a stan-
dard functional map pipeline [34], and are usually post-
processed at test time using off-the-shelf map refinement
algorithms [19, 30, 38, 50]. Using modern feature extrac-
tors for surfaces and point cloud [43, 47], these works ob-
tained impressive results despite the unstable differentia-
tion through a linear system solver [15]. While these initial
approaches primarily focused on supervised learning, con-
temporary research in functional map learning emphasizes
unsupervised learning of correspondences [8, 9, 23, 46].
This is achieved using functional map priors, that is, ex-
plicitly promoting structural properties on the learned func-
tional map such as orthogonality - which corresponds to
area preservation in the spatial domain. Recent advance-
ments [39] have highlighted the importance of using ex-
tra structural constraint in the form of “proper” functional
maps, that are functional maps obtained from pointwise
correspondences, a guarantee not provided in the original
pipeline [34] or learning-based approaches [12]. This led to
the development of methods computing a second functional
map at train-time using soft correspondences, resulting in
dual-branches networks [2, 8, 9, 46]. These approaches
were however recognized [46] as unable to scale to large
meshes, due to large dense matrix computations, and had to
use mesh resampling to avoid memory and speed issues.

Differentiable Refinement In a context also aligned with
our work, it was noted in [23] that proper functional maps
were guaranteed by many map refinement algorithms [27,
30, 39]. Subsequently, this refinement was partially inte-
grated into a network as a differentiable post-processing
step for the initially learned functional map. However, the
design from [23] still relies on the original linear system
solver, and their adaptation of [30] was only partial. This
partial adaptation was necessitated by the potential mem-
ory overflow resulting from numerous dense map compu-
tations. Additionally, the output functional map was only
a weighted sum of proper functional maps, thus lacking a



guarantee of being proper itself.

3. Background & Motivation
Our method builds upon the functional map frame-
work [34], and in particular of its recent development, us-
ing learning-based descriptors inspired by GeoFMaps [12].
Before describing our approach in Section 4, we provide
an overview of the foundation of this pipeline. Inter-
ested readers are encouraged to explore numerous related
works [2, 8, 9, 23, 35, 46] for additional insights into vari-
ous adaptations and nuances of this framework.

Notations We will suppose to be given two shapes S1 and
S2 with respectively n1 and n2 vertices. For each shape Si,
we compute its intrinsic Laplacian [31], and store its eigen-
functions as columns of a matrix Φi ∈ Rni×K . We denote
Φ†

i = Φ⊤
i Ai its pseudo-inverse, with Ai being the diagonal

vertex-area matrix. Given any matrix B, we denote [B]i the
vector consisting of the i-th line of B.

Deep Functional Maps The standard deep functional
map pipeline [12] takes 2 shapes S1 and S2 as input, and
use a feature extractor network Fθ to generate p descrip-
tor functions on each shape, stored as columns of matrices
Fi = Fθ(Si) ∈ Rni×p. Following the standard functional
map pipeline [34] these descriptors are first projected into
the Laplacian basis Ai = Φ†

iFi ∈ RK×p and a functional
map is obtained by solving the linear system:

argmin
C

∥CA1 −A2∥22. (1)

This linear system is further usually regularized using
an extra Laplacian term [12, 37]. During training,
losses are then imposed on the computed functional map
C
(
Fθ(S1),Fθ(S2)

)
. At test time, a pointwise map can be

recovered from the map C and the eigenfunctions Φi using
nearest neighbor search [34, 36].

Two branches networks Recent works in functional map
literature [39] have highlighted the positive effects of using
proper functional maps. A functional map is proper if it
arises from some underlying pointwise map. Specifically, a
proper functional map is defined as the pull-back of a point-
wise map T : S2 → S1:

C = Φ†
2ΠΦ1 (2)

where Π ∈ {0, 1}n2×n1 is the matrix representation of the
map T . Several works [2, 9, 46] adopt a differentiable ap-
proach to compute Π before deriving Cproper using Equa-
tion (2). Typically, the map Π is computed from the features
F1 and F2 using a Gaussian kernel:

Πij =
exp(δij)∑
k exp(δik)

(3)

with δij = − 1
2σ2 ∥[F2]i−[F1]j∥2 the distance between rows

of the feature matrices, where σ a temperature - or blur pa-
rameter. For training purposes, a consistency loss between
C, obtained with Eq. (1), and Cproper, derived using Eqs. (2)
and (3), is employed. This approach is taken in addition
to the standard orthogonality or bijectivity losses presented
in [12].

ZoomOut A popular map refinement algorithm named
ZoomOut [30] has often been used to obtain high-quality
correspondences from low quality initial functional maps
such as those obtained from learning pipelines. ZoomOut it-
eratively computes functional maps using Eq. (2) and point-
wise map using nearest neighbor search between the rows
of Φ1C

T and Φ2. Note that due to its iterative nature,
ZoomOut is guaranteed to produce proper functional maps.
A recent approximation [26] made the algorithm scalable to
dense meshes on CPU, but however relies on sampling, a
longer pre-processing and a final slow conversion from the
samples back to the full shapes.

Drawbacks and motivation Despite achieving high
quality results on shape matching benchmarks, the modern
two-branches approaches presented above suffer from three
notable drawbacks. Firstly, computing Π using Eq. (3) in-
volves storing and differentiating through a dense n2 × n1

matrix, making the method scale poorly in terms of mem-
ory. In particular, because of the linear system used in the
other branch, features are required to be of high dimension
(usually 128 or 256) to ensure invertibility of the feature
matrix, thus heavily slowing down computations. Secondly,
a naive implementation of Eq. (3) can result in underflows in
the forward or backward pass for low values of σ. Thirdly,
as remarked in some previous works [15] despite its neces-
sity for achieving satisfactory results, the original functional
map branch from [12] poses a risk of instability due to dif-
ferentiation through the linear system solver.

In this work, we seek to address these challenges by es-
tablishing soft point-wise maps as a stable and memory-
scalable option to learn functional maps, without approxi-
mations such as those presented in [26]. A second goal lies
in trying to completely remove the spectral branch from the
learning procedure. The necessity of the spectral branch
suggested in [46] hints that properness might not be a suf-
ficient constraint alone for efficient learning of correspon-
dences. To overcome this challenge, we further refine the
structural constraints by introducing the expectation that
the functional map aligns with its refined version, produced
by [30]. This leads to the first deep functional map method
that completely avoids solving a linear system inside the
network, enables unsupervised training, is scalable, effi-
cient and leads to high quality results.



Figure 2. Our pipeline takes as input two shapes and use a feature extractor network to obtain pointwise features. These features are used
to compute an initial pointwise map and then fed to our Differentiable ZoomOut block. All the pointwise maps Π are our scalable dense
maps, which are memory efficient.

4. Method
In this section, we introduce our scalable approach to proper
functional maps, which we then apply to design a novel
GPU based differentiable version of the ZoomOut [30] al-
gorithm. Finally, using these two elements, we introduce
our new single branch network for functional map learning
without a linear system solver.

4.1. Scalable Dense Maps

The key observation to this work is that all dense point-
wise maps computed in deep functional map pipelines [3,
9, 23, 46] are used exclusively to compute functional maps
using Equation (2). In particular, they are invariably found
in a matrix product of the form ΠΦ1. Previous work did
not seek to exploit this fact, and instead computed the com-
plete dense matrix Π separately before performing the ma-
trix product. In contrast, we argue it is possible to compute
the result of this inner product without ever computing any
dense n2 × n1 matrix.

Observe first that we can explicitly write the i-th line of
ΠΦ1, using Equation (3) as:

[ΠΦ1]i =

n1∑
j=1

exp(δij)∑
k exp(δik)

[Φ1]j (4)

= L−1
i

n1∑
j=1

K
(
[F2]i, [F1]j

)
[Φ1]j . (5)

where K is an RBF Kernel, and Li the row normaliza-
tion. By rewriting the proper functional map definition
in this kernel form, we can now leverage existing meth-
ods for heavily scalable and fast GPU computation with

kernels [10, 28, 41]. These methods rely on, in particu-
lar, the fact that the entry (i, j) of the Kernel matrix K =(
exp(δij)

)
ij

only depends on the vectors [F2]i and [F1]j .
This allows to compute the sum in Equation (5) in a block-
wise manner, where the values of K are computed during
summation. This is highlighted in Figure 3, where we rep-
resent the dense matrix on which summation in applied in
Equation (5). The per-row sum can then be computed first
for each contiguous memory block before summing all the
outputs to obtain the value of ΠΦ1.

In practice, we rely on the Keops library [10], which ap-
plies such operations on very large dense matrices whose
entries can be described by mathematical formulas applied
to the inputs. Keops uses symbolic matrices, and com-
putes reduction on-the-fly using per-block operations for
fast computation without ever fitting the dense matrix in
memory.

Note that the normalization Li can additionally be han-
dled using efficient stabilized logsumexp reductions and in-
corporated into the Kernel K to avoid underflow or over-
flow in the exponential. Furthermore, the gradient of ΠΦ1

with respect to F1 and F2 can be computed using a similar
trick [10].

At test time, a vertex-to-vertex map can be extracted
from Π by looking for the indices of the per-row maxi-
mal value, which is equivalent to running nearest neighbor
search between the rows of F1 and the rows of F2. This
can again be run efficiently on GPU without computing the
dense distance matrix, using GPU-based nearest neighbor
implementations [10, 21].

Ultimately, our dense pointwise map only stores values
for F1 and F2 as well as a the type of Kernel we use, and



Figure 3. Our scalable dense maps relies on the underlying struc-
ture of Eq. (5), where the sum is computed for each contiguous
memory block highlighted in the image. The entries are evalu-
ated on the fly while performing summation, and results from each
block are then accumulated to obtain the final per-rows values. The
implementation is provided by the Keops package [10].

has therefore a linear memory cost.

4.2. Differentiable ZoomOut

As mentioned in Section 3, the ZoomOut algorithm [30] it-
eratively performs pointwise map computations using near-
est neighbor queries between rows of Φ1C

⊤
12 and of Φ2,

and functional map computations using Eq. (2), while in-
creasing the size K of the spectral basis. By replacing the
nearest neighbor queries by differentiable soft maps that we
store using our scalable versions, we introduce Differen-
tiable ZoomOut, a fast and fully differentiable block, with
negligible memory cost. The algorithm is presented in de-
tail in the supplementary material.

Since ZoomOut acts as a powerful map refinement al-
gorithm, we would like to enforce consistency between the
output and input functional maps of the ZoomOut algorithm
in order to help training. We expect such a loss to provide
meaningful guidance to the features.

However, we note that the output functional map Crefine
has a larger size than the initial map Cinit. This is due to
ZoomOut using an increasing size of spectral basis. How-
ever, given a proper functional map of size K2 ×K1 asso-
ciated to a pointwise map Π, the principal submatrix com-
posed of its first K ′

2 rows and K ′
1 column from the proper

functional map of size K ′
2 × K ′

1 associated to the same
map Π. This stems from the definition of proper functional
maps [34], and we refer to the supplementary for details on
this aspect. Therefore, our new consistency loss only uses a
principal submatrix of the refined functional map:

Lconsist(Cinit,Crefine) = ∥Cinit − [Crefine]1:Kinit,1:Kinit∥22 (6)

where Kinit is the size of the input functional map.

4.3. Overall Pipeline and Implementation

We would first like to highlight that our scalable dense
maps can be used in any existing functional map base
model using dense pointwise maps, with no impact on
the results. Furthermore, we present a novel single-
branch network for functional map prediction which
exploits the structural properties of proper functional
maps and does not require solving or differentiating
through a linear system. We therefore present sepa-
rate implementations first for our scalable dense maps
and differentiable ZoomOut at https://github.
com/RobinMagnet/ScalableDenseMaps, and of
our entire pipeline at https : / / github . com /
RobinMagnet/SimplifiedFmapsLearning.

As shown in Figure 2, our algorithm first extracts fea-
tures from surfaces S1 and S2 using DiffusionNet [43].
This produces matrices of features F1 ∈ Rn1×p and F2 ∈
Rn2×p. Importantly, we select p = 32 instead of the 128
or 256 Features produced by standard pipelines [2, 8, 9, 23,
46], as our approach does not require invertibility of a linear
system obtained from the learned features.

An initial soft pointwise map Πinit is produced from the
features using Equation (3), and then fed into our Differen-
tiable ZoomOut algorithm presented in Section 4.2 where
we perform 10 iteration with a spectral step size of 10 start-
ing with Kinit = 30. This results in a refined map Cfinal of
size Kfinal = 130. This whole process uses a blur parameter
σ = 10−2, which is much lower than previous implementa-
tions [23, 44, 46].

Our unsupervised training loss consists in 3 terms. First,
an orthogonality constraint Lorth(Cinit) = ∥C⊤

initCinit − I∥22
is applied to the initial functional map, with a weight of
1. The ZoomOut consistency loss from Equation (6) is ap-
plied with an initial weight of 10−4, gradually increased to
10−1. This term is therefore ignored during the first epochs
until decent initialization has been found. We refer to the
supplementary for more details on this aspect. We finally
regularize the result using a Laplacian commutativity term
as presented in [8, 37], which is a residual from the spec-
tral branch we discarded. This final term receives a weight
of 102. Eventually, we train our network using ADAM opti-
mizer [22] with an initial learning rate of 10−3. We refer the
reader to the supplementary for some more precise details
on the implementation.

4.4. Properties of learned features

An interesting aspect of the two-branches networks [2, 9,
46] is that each branch offers a different interpretation of
the learned features. On the one hand, the standard func-
tional map branch [12, 34] uses features F1 and F2 as func-
tions on the shapes, expected to correspond, and forces the

https://github.com/RobinMagnet/ScalableDenseMaps
https://github.com/RobinMagnet/ScalableDenseMaps
https://github.com/RobinMagnet/SimplifiedFmapsLearning
https://github.com/RobinMagnet/SimplifiedFmapsLearning


Train F S F+S

Test F S S19 F S S19 F S S19

BCICP [38] 6.1 - - - 11. - - - -
ZoomOut [30] 6.1 - - - 7.5 - - - -

SmoothShells [16] 2.5 - - - 4.7 - - - -
DiscreteOp [39] 5.6 - - - 13.1 - - - -

GeomFmaps [12] 3.5 4.8 8.5 4.0 4.3 11.2 3.5 4.4 7.1
Deep Shells [17] 1.7 5.4 27.4 2.7 2.5 23.4 1.6 2.4 21.1
NeuroMorph [18] 8.5 28.5 26.3 18.2 29.9 27.6 9.1 27.3 25.3
DUO-FMNet [14] 2.5 4.2 6.4 2.7 2.6 8.4 2.5 4.3 6.4

UDMSM [8] 1.5 7.3 21.5 8.6 2.0 30.7 1.7 3.2 17.8
ULRSSM [9] 1.6 6.4 14.5 4.5 1.8 18.5 1.5 2.0 7.9

ULRSSM (w/ fine-tune) [9] 1.6 2.2 5.7 1.6 1.9 6.7 1.6 2.1 4.6
AttentiveFMaps [23] 1.9 2.6 5.8 1.9 2.1 8.1 1.9 2.3 6.3

ConsistentFMaps [46] 2.3 2.6 3.8 2.5 2.4 4.5 2.2 2.3 4.3

Ours 1.9 2.4 4.2 1.9 2.4 6.9 1.9 2.3 3.6

Table 1. Mean geodesic errors (×100) when training and testing on the Faust, Scape and Shrec19 datasets. Best result is shown in bold.

functional map to effectively transfer them when solving
the linear system in Equation (1). On the other hand, the
pointwise-map based branch solely relies on distances be-
tween rows of the feature matrices (Eq. (3)), viewing fea-
tures as pointwise embeddings only.

Using a consistency loss between the two branches en-
ables to merge the two effects, and, as highlighted in [46],
removing the spectral branch has a serious impact on the
results. In our experiments in Section 5, we observe that
features learned without the spectral branch usually exhib-
ited undesirable high-frequency variations. As emphasized
by [2], smoothness of features is a key aspect for the gener-
alization for functional map based methods. While all net-
works using the spectral branch provide relatively smooth
features, we show in Section 5.4 that replacing this branch
using a refinement consistency loss also promotes smooth-
ness in features in our pipeline.

5. Results

In this section, we conduct a series of experiments to assess
various aspects of our proposed method. In order to validate
the capability of our entire pipeline, we first compare our
method to several other works on multiple shape matching
benchmarks. We additionally wish to highlight our scalable
dense maps appear as a valuable tool for many functional
map based networks using dense pointwise maps, indepen-
dently of our complete pipeline. We therefore emphasize
the memory scalability of our GPU-based ZoomOut algo-
rithm compared to existing implementations of the algo-
rithm.

Finally, inspired by [2] we analyze how our novel
ZoomOut consistency loss we introduced at train-time in-

fluences the features learned by our feature extractor.

5.1. Datasets

We evaluate the shape matching performance of our algo-
rithm across four widely-used human datasets, commonly
employed as benchmarks. The evaluation includes the
remeshed [38] version FAUST dataset [5] which contains
100 shapes, split in 80 and 20 shapes for training and testing
as introduced in [12]. We also use the remeshed [38] ver-
sion of the SCAPE dataset [1] with 71 humans divided in 51
shapes for training and 20 for testing. For testing purposes
only, the remeshed version of the SHREC19 dataset [29],
composed of 44 shapes, is also included.

While these datasets mostly contain near-isometric
shapes, we also evaluate our method on the remeshed [27]
Deforming Things 4D dataset [24], a challenging non-
isometric dataset of humanoid shapes. In particular, we fo-
cus on the adapted version DT4D-H defined in [23], which
defines 198 shapes for training and 95 for testing. Results
on the SMAL [52] dataset, with PCK curves, can be found
in the supplementary material.

5.2. Shape Matching Results

In this work, we exclusively evaluate unsupervised learning
performances, and therefore discard baselines focusing on
pure supervised learning [20, 25, 49, 51]. As a reference,
we provide results using axiomatic functional map algo-
rithms such as ZoomOut [30], Discrete Optimization [39],
BCICP [38] and SmoothShells [16].

Our method can directly be compared to the fol-
lowing baselines: GeomFmaps [12], DUO-FMNet [14],
DeepShells [17], NeuroMorph [18], AttentiveFMaps [23],



Train DT4D-H

Test intra-class inter-class

Deep Shells [17] 3.4 31.1
DUO-FMNet [14] 2.6 15.8

AttentiveFMaps [23] 1.2 14.6
ULRSSM [9] 0.9 4.4

ConsistentFMaps [46] 1.2 6.1

Ours 1.8 4.1

Table 2. Mean geodesic error (×100) on the DeformingThing4D
dataset subset from [23] (DT4D-H). Best results are highlighted
in bold.

ConsistentFMaps [46], UDMSM [8], and ULRSSM [9].
Note that we all results are presented without test time re-
finement for fairness. In particular, ULRSSM [9] relies on
fine-tuning the network for each shape in the test dataset in-
dependently, which we turn off to obtain the result. We pro-
vide results with fine-tuning using the “w/ fine-tune” tag.
Note that we provide comparison with a more complete set
of methods in the supplementary materials, as well as re-
sults of our pipeline without using the consistency loss.

Table 1 provides the mean geodesic error for all the
aforementioned baselines, as well as for our pipeline de-
scribed in Section 4.3. We evaluate our methods on combi-
nations of the Faust (F), Scape (S) and Shrec19 (S19), when
training either on Faust and Scape independently, or jointly
(F+S). This table shows our simple pipeline provides simi-
lar performance to state of the arts methods, all the while be-
ing greatly scalable to large meshes and removing the need
for differentiation through a linear system solver.

In addition, we evaluate our network on the Deform-
ingThings4D dataset, and in particular on the subset pro-
vided in [23] for evaluation, as displayed on Table 2. Our
method achieves better performance than existing baselines
on the inter-class category, which shows its capabilities
even in non-isometric scenarios.

Figure 4. GPU memory usage when processing a single pair of
shapes, depending on their vertex count. Note, e.g., that Atten-
tiveFMaps [23] runs out of 24GB memory after 11k vertices.

5.3. Scalability to Dense Meshes

In this section, we discuss the memory efficiency of our
scalable maps, and highlight its speed performance in the
case of very dense meshes where standard methods would
go out of GPU-memory.

A first observation, provided in Figure 4 shows the GPU
memory usage, using varying number of vertices, of cur-
rent state-of-the-art methods for unsupervised shape match-
ing. In particular, we notice that AttentiveFMaps [23], due
to its multiple dense pointwise map computations, quickly
runs out of 24 GiB GPU memory. On the other hand, while
our method uses 11 different pointwise maps, its memory
footprint remains significantly lower than competing meth-
ods [9, 46], in particular for large number of vertices.

Secondly, we analyze our results on the standard ax-
iomatic ZoomOut algorithm [30], often used independently
of learning pipelines, e.g. as a means to obtain maps from
simple landmarks. In that case, we observe that usual imple-
mentations never leverage GPU acceleration and were only
run on CPU, and we easily ported the code to GPU using
PyTorch.

In Table 3, we first compare the CPU, GPU, and our ver-
sion of ZoomOut, and show that the processing time in the
presence of dense meshes remain reasonable. Our version
of ZoomOut (“Our ZoomOut”) uses the same tools used
to implement our Differentiable ZoomOut in Section 4.2,
with a scalable version of brute force nearest neighbor in
Keops [10], which again does not require fitting the dis-
tance matrix in memory. We additionally compare a naı̈ve
PyTorch implementation of our Differentiable ZoomOut
(Sec. 4.2) with one using our scalable dense maps. Finally,
we add results by porting the approximation from [26] to
GPU and using scalable dense maps (“Our + [26]”). More
details on this mix and its usage are provided in the supple-
mentary material.

Table 3 presents the results of applying these algorithms
to shapes of varying sizes. In the initial experiment with
meshes of around 5000 vertices, all methods exhibit similar
performance, significantly outperforming the CPU-based
algorithm due to GPU utilization. However, with denser
meshes containing 105 vertices, conventional methods en-
counter GPU memory limitations, while our scalable dense
maps offer notable improvements over existing approaches.
Moreover, our modification of [26], which approximates the
algorithm, presents the fastest results without memory over-
loading. This solves the main speed bottleneck presented
in [26], with more details provided in the supplementary.

Our method therefore allows using several dense point-
wise maps simultaneously, or training and testing functional
maps network directly on dense shapes. We refer the inter-
ested reader to the supplementary material for such exper-
iments on dense meshes, including texture transfer visual-
ization.



Sparse (5K) Dense (100k)

CPU ZoomOut 3.6 s 700 s
GPU ZoomOut 0.1 s OOM

GPU Diff. ZoomOut 0.1 s OOM
Our ZoomOut 0.1 s 2.4 s

Our Diff. ZoomOut 0.1 s 5 s
Our + [26] 0.1 s 0.4 s

Table 3. Average processing time in seconds, between CPU, GPU,
and memory scalable implementations of ZoomOut and Differen-
tiable ZoomOut. The number of vertices is given in parentheses.

5.4. Learned Features

As highlighted in [2], analyzing the features learned in deep
functional map networks valuable insights into their perfor-
mance. In particular, it was shown that achieving smooth
features positively impacts the network’s generalization ca-
pabilities.

The authors of [2] thus advocated explicitly enforcing
features smoothness using spectral projection. This was
used in [46] as well as in AttentiveFMaps [23]. In con-
trast, we do not enforce such constraints and no no loss in
our pipeline directly promotes smoothness. In particular,
the dense pointwise map Π built from the features do not
use any neighboring information.

However, we show that the consistency loss introduced
in Section 4.2 actually pushes the feature extractor to learn
smooth features. To observe this, we retrain our network
on the Scape dataset while removing the consistency loss
from Equation (6), and visualize the learned features on test
datasets. Figure 5 shows example of feature functions pro-
duced by the networks when trained with and without the
consistency loss on a random surface from the SHREC19
dataset. On the left side of this image, we observe that
without refinement consistency, the features seem to high-
light multiple small patches on the surface. In contrast, the
feature functions learned by our method, displayed on the
rightmost part of the image, present nicer patterns where
large geodesic patches of the surfaces are highlighted.

We argue that obtaining an orthogonal functional map
from a soft pointwise map built with features does not re-
quire such features to exhibit smoothness. However, the
introduction of the consistency loss serves a dual purpose.
While its primary role is to align the functional map with
the output of a refinement algorithm, it inadvertently acts
as a compelling constraint that encourages the learning of
smoother features. As this property has been noted as key
to performance [2, 46], these result leads us to believe that
incorporating such a loss into existing pipelines holds sig-
nificant promise for enhancing overall performance in func-
tional map learning.

Figure 5. Example of feature functions learned by our model, with
or without consistency loss. As noted by [2], smoother features
are generally preferred for generalization purposes.

6. Conclusion, Limitations & Future Work

In this work, we presented a novel approach to compute
functional maps using soft pointwise map, without ever
storing the dense matrix in memory. This novel implemen-
tation enables use to derive a fast, differentiable and mem-
ory efficient version of the ZoomOut algorithm [30]. In
turn, we use this algorithm while training and derive a new
consistency loss between the initial and refined version of
the predicted functional map. We notice this loss appears
particularly effective and allows us to use a new single-
branch architecture for functional map learning, which does
not require differentiating through a linear system.

One major limitation of our method is its dependence
on the computation of the spectrum Laplacian of the input
shapes, which can become prohibitively slow with larger
shapes. Furthermore, the ZoomOut algorithm, while partic-
ularly fit to handle near-isometric shapes, is prone to fail in
the presence of highly non-isometric deformations or par-
tiality [27]. The guidance provided by the consistency loss
would then be unfit for the problem.

Future research could therefore seek to handle meshes
with higher differences such as partiality, noise or simply
high distortion. This would potentially require incorporat-
ing other refinement algorithms into the training pipeline.
Investigating the impact of our new consistency loss in var-
ious pipelines would also contribute to a comprehensive un-
derstanding of its applicability and effectiveness.
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