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Abstract—Users today connect to the Internet everywhere -
from home, work, airports, friend’s homes, and more. This paper
characterizes how the performance of networked applications
varies across networking environments. Using data from a few
dozen end-hosts, we compare the distributions of RTTs and
download rates across pairs of environments. We illustrate
that for most users the performance difference is statistically
significant. We contrast the influence of the application mix and
environmental factors on these performance differences.

I. INTRODUCTION

Users connect to the Internet via their laptops or notebooks

(which we generically refer to as ‘end-host’) in a number

of different contexts or networking environments, such as

at home, work, coffee shops, or airports. The network per-

formance of one single end-host can potentially vary across

different networking environments. The goal of this paper

is twofold. First, we quantify and characterize the multiple

networking environments that users employ. Second we seek

to understand if the performance of the end-host varies sig-

nificantly in different environments. These steps are critical

to subsequent tasks such as application performance diagnosis

and network performance management.

We carry out our study using data, from dozens on end-

hosts, that was collected via the HostView end-host monitoring

tool [1]. HostView logs network packet traces as well as appli-

cation and location information. Given that users ran HostView

on their end-hosts for weeks or months, HostView was able

to witness use of multiple environments for individuals; hence

this unusual dataset with an end-host perspective is well suited

for our goals.

Using this data from an admittedly small set of end-hosts,

enables us to explore the following questions. First, how

many environments does a single user employ and what are

the different characteristics of these environments? (Sec. III)

Environment factors such as source ISP, network interface,

country, and others, define different networking environments.

Overall, we observe a fair amount of diversity in the number

and types of environments individuals use (e.g., 75% of

users connect to multiple environments), as well as in the

application mix across different environments. Second, does

network performance vary across environments? (Sec. IV).

We compare the performance in pairs of environments using

two metrics, the distributions of round-trip times (RTTs) and

download rates, in each environment. We use the Hellinger

distance [2] to identify statistically significant differences. We

also find that the application mix has a stronger influencer on

data rates than environment factors, whereas the reverse is true

for round trip time behaviors.

II. END-HOST DATA

The data used in this paper was collected directly on end-

hosts using the HostView tool [1], [3]. We briefly describe

the data collected by HostView, how we define a network

environment, and the metrics of network performance that we

extract from this dataset. For a longer description of HostView,

please refer to our previous work [1].

A. HostView tool and data

HostView runs on MacOS and Linux and logs network

traffic, application context, and information about the network

the end-host is connected to. Then, it uploads the traces to a

central repository every four hours.

Network traces: Packet traces are collected with the libpcap

library. HostView collects the first 100 bytes of every packet

(the first 96 bytes are usually header); for DNS packets, it

stores the entire packet so as to enable recreating the hostname

to IP address mappings offline. It also parses HTTP header to

extract the HTTP content type (common content types are text,

image, or video).

Application context: We complement packet traces with the

application responsible for each flow. We define a network flow

as a five-tuple of source and destination IP, source and desti-

nation port, and protocol; a connection refers to two network

flows in opposite directions. By application, we mean any

entity that is communicating on the Internet. In some cases,

the application is interchangeable with the process executable:

e.g., Skype. We collect process executable information with

the gt tool [4]. In other cases, however, applications are

delivered as web services. If a user spends time interacting

with facebook.com, this is not captured by simply using

the name of the browser executable (Firefox). To deal

with this subtlety, we resort to the following rule: if the

process executable is not a web browser, the application is

simply the same as the process executable (e.g.,iTunes,

Skype, Mail.app); otherwise, the application is the top-

level domain name of the destination (e.g., facebook.com,

google.com, yahoo.com). This definition allows for a

better accounting of a user’s online activity, but it will also

consider third-party sites as an application (for instance,

akamai.net is one of the top applications in our data).
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Figure 1. Example of environments

Although these third-party services are not an application

directly initiated by users, they do generate traffic and can

influence the network performance in a given environment.

Location and machine context: HostView generates a new

trace file either when it detects changes in the network

interface or the IP address, or if four hours have elapsed. Every

trace file is annotated with a label describing the environment

it was collected in: we record the specific network interface, a

hash of the wireless network SSID and of the BSSID (when the

interface is wireless), or the MAC of the first network device

(when the interface is wired). We also record the country,

city, and ISP to which the user is connected. We obtain this

information at the collection server by mapping the public IP

of the host (or the public IP of the router in case the host is be-

hind a NAT) using the MaxMind GeoIP commercial database

from March 2011. In addition to these automatically-generated

environment descriptors, whenever HostView observes a new

SSID, it asks users to label this SSID with one of the following

tags: home, work, airport, hotel, conference meeting, friend’s

home, public place, coffee shop or other. We call this label

the user tag.

The data used in this paper was collected between Novem-

ber 2010 and February 2011 from 40 users, who ran HostView

for at least two weeks. We have 22 users from Europe, 12 from

the United States, 2 from Asia, 2 from Australia, 1 from Africa

and 1 from Brazil. Due to the nature of our deployment (where

we recruit users to install the tool on their systems), there is a

lot of variation on how long each user ran the the tool (from

two weeks to three months).

We recruited users mainly through advertisements in com-

puter science mailing lists and conferences. Even though our

user population is mainly of computer scientists and admit-

tedly small, we see a great deal of diversity in application us-

age and network environments as shown in Sec. III. Moreover,

a minimum of two weeks of data from each end-host ensures

that we have a large number of network-performance samples

taken at different environments.We believe that the results

discussed in this paper have useful lessons in understanding

network performance as seen from end-hosts “in the wild”.

B. Definition of environment

We describe an environment with six features as illustrated

in Fig. 1. The first tag captures the network identifier, which

encodes the MAC (i.e. the MAC of the first network device)

if the trace was collected when the wired interface was active

and the hashed SSID when on wireless; the second tag encodes

the name of network interface used; the third tag encodes the

name of the local ISP (or the ISP the user connects to); the

forth tag reflects the local country; the fifth tag captures the
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Figure 2. Histogram of the number of environments per user

type of the interface (wireless or wired); and the last tag is the

user tag.

We use a four-tuple composed of the network ID, the

network interface, the local ISP, and the local country to

identify an environment. In most cases, a pair with the network

ID and the network interface is a good identifier for an

environment, but there are some exceptions. First, an SSID

can be identical across different locations (e.g. coffee shops

or hotel chains). Although the BSSID could disambiguate the

environments in this case, we do not include it to define

an environment because it would also artificially split some

unique environments (for instance, when an enterprise or

university deploys multiple access points to implement a single

network). Second, we observe one user who always use the

same device to access the Internet from many different places

(i.e. we observe a single MAC address for traces uploaded

from different ISPs and countries). Adding the local ISP and

country ensures that environments in our dataset are uniquely

identified.

III. ENVIRONMENTS AND APPLICATIONS

The first characteristic we looked into was how many

environments an individual uses. Fig. 2 shows the histogram

of the number of distinct environments per HostView user. We

see, that among our users, 25% only use a single environment,

while 50% use 5 or more. We even observe a number of

individuals with very many environments, 12% use 10 or more

and one individual actually used 26 environments. Since our

goal is to contrast network performance across environments

per end-host, we exclude those users, only connecting via one

environment, from the remaining analysis.

Next we examined how much time users spend in each

of their environments, and the proportion of traffic generated

per environment. Our analysis shows that the fraction of time

spent per environment varies significantly from one user to

another (plots not shown for conciseness), but nevertheless

we observed some general trends. First, users have a small

set of dominant environments: 24 users spend 80% of their

time in less than three environments. Often a user’s "most-

used" environment accounts for more than 50% of their time.

Second, there is a strong correlation between the time spent

per environment and the number of bytes sent and received in

that environment (Pearson’s coefficient is above 0.9 for 90%

of the users).

We now investigate where the diversity in environments

come from; in other words, is this behavior due to users
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Table I
EXAMPLE APPLICATIONS

Multiple environments Single environment

facebook.com rhythmbox

twitter.com iTunes

akamai.net hulu.com

google.com netflix.com

Skype VLC

Mail speedtest.net

wordpress.com uTorrent

ssh openvpn

employing multiple interfaces or protocols, or due to high

mobility such as lot of travel, etc. This can be useful for

understanding diversity in network performance; for example,

knowing that a user always uses the same network interface,

but use numerous source ISPs (or vice versa) might help

explain performance differences a user experiences across

environments. We found that most of our users connect from

only one country, yet up to 75% of the users employee between

2 and 4 ISPs regularly. We do have a few users that connected

to 3 or more countries. Most individuals connected to the

Internet with ethernet and wireless, but a handful also use ppp,

bluetooth, and phone-tethered. Overall, although for roughly

10% of our users, their environment diversity comes from their

travel, the main source of diversity for most users is their use

of multiple ISPs, and the pairing of a given ISP with either

ethernet or wireless.

Another key component influencing the performance in a

given environment is the mix of applications used within that

environment. Thus we next examine the set of applications

used across environments. We use the term single-environment

app to refer to applications that are only used in one envi-

ronment, and similarly we use multi-environment app to refer

to applications used in multiple environments. Table I lists

examples of single-environment and multi-environment appli-

cations. The applications included are those that are popular

across many users, or else frequently used by some individuals.

Many of the popular applications (such as facebook.com and

google.com) appear in multiple environments, as expected.

There are intuitive hypotheses as to why some of the single-

environment applications only occur in one environment.

For example, video-on-demand and TV applications occur in

environments users tag as ’home’; users typically only need

openvpn when they are accessing their work network from

outside; and speedtest.net is an application users run mainly

when they are experiencing problems (which may only occur

regularly in one of their environments). Overall, we found that

the majority of users (26 out of 30) employ at least 50% of

their applications in a single environment. In addition to the

reasons cited above (why some applications make sense in a

single environment), we note that a number of applications are

only used once (such as a web service).

IV. PERFORMANCE ACROSS ENVIRONMENTS

It is interesting to ask whether the same application, or the

same set of applications, appearing in two different environ-

ments experiences the same or different performance in each

environment. We contrast the performance of a given end-

host in two environments by examining both the RTTs and

download data rates in each environment. More specifically,

we compare the distribution of RTTs in one environment with

their distribution in the second environment, and then do the

same for download rates. These two metrics capture impor-

tant aspects of application performance, including interactive

applications (i.e. that need low delay) and bandwidth hungry

applications (i.e. that need high data rates). We do this for

many pairs of environments using the following methodology.

A. Methodology

We extract RTTs and data rates from network traces using

the tcptrace tool. An RTT sample is the time elapsed be-

tween the data packet and its corresponding acknowledgment

(only for TCP connections). tcptrace does not compute

RTTs for retransmitted packets or for delayed or reordered

acknowledgments. In our analysis, RTT refers to the average

value of RTT samples of a TCP connection over a second.

Download data rate is computed as the total number of

unique bytes received by the end-host in one second (i.e.,

data bytes received excluding retransmitted bytes). We modify

tcptrace to generate the data rate per connection in one

second bins instead of an average goodput every ten packets

or an instantaneous goodput. This yields two time series per

network flow, one for RTTs and the other for download rates.

We want to compare the distribution of RTTs in two

environments i and j. Let fRTT−all
i (x) denote the empirical

probability distribution that an RTT will take value x in

environment i. The superscript RTT-all indicates that the

set of RTTs considered are those coming from all applica-

tions. Hence our task is to compare the two distributions

fRTT−all
i (x) and fRTT−all

j (x). Similarly we also seek to

compare download rates in 2 environments (i.e. fdown−all
i (x)

and fdown−all
j (x)).

To ensure sufficient statistics, we only compare distributions

for a given metric if both environments have at least 5000

samples points of the given metric. Hence, this section uses

21 rather than all 30 users, because some users had insufficient

data from some environments. If one user has E environments,

then we can perform E(E − 1)/2 pairwise comparisons for

that user. In total, the number of pairs of environments is 164

for download rates and 112 pairs for RTTs. The reason that

we have different numbers of pairs of environments for each

metric is because in a single environment we can have an

unequal number of samples for download rates and RTTs,

depending on what the user is doing.

The statistics literature offers a number of metrics that

can be used to compare two distributions, such as the Kol-

mogorov–Smirnov (KS), Kullback–Leibler (KL) divergence,

and the Hellinger distance. These are typically used as part of

a hypothesis test to determine whether or not two distributions

are similar. We decided not to use a KS test because it returns

the maximum vertical distance between two distributions; this

is not suitable for our data since we can have gaps in some

ranges of the performance metric for an environment. (This



4

1 Kbit/s 100 Kbit/s 1 Mbit/s 30 Mbit/s

Downlink data rates

0.0

0.2

0.4

0.6

0.8

1.0

CD
F

Home
Work

Figure 3. Download rates for two environments: HD
down
ij = 0.38.

occurs since some environments are more used than others

and because the mix of applications can be environment

dependent.) Moreover the KS test assumes the underlying

distributions are continuous. We also decided not to use the

KL distance since it is asymmetric (i.e., the results between i
and j are different than j and i) and because it is unbounded

thus making it harder to interpret. Instead we elected to

use the a discrete version of the Hellinger distance (HD)

[2] that captures the area between two distributions and the

difference in shape of two probability mass functions. The

HD is computed from two empirical densities p(x) and q(x)
as follows:

HD(p, q) =

√

1−
∑

x∈X

√

p(x)q(x). (1)

When we apply this to RTT distributions in environments

i and j, we have p(x) = fRTT−all
i (x) and q(x) =

fRTT−all
j (x). Let HDRTT−all

ij denote the Hellinger distance

between fRTT−all
i (x) and fRTT−all

j (x). The HD is sym-

metric and bounded in [0,1] where HD = 0 means the

distributions are the same and HD = 1 is the maximum

divergence between two distributions.

It is always challenging to select a threshold for rejecting the

null hypothesis that two distributions are similar. We followed

a classical bootstrapping procedure [5] to identify a threshold

that would correspond to a P-value of 0.05 and 0.1 (typical P-

values for rejecting the null hypothesis). Our bootstrapping

procedure revealed that comparisons across data partitions

coming from the same distribution have HD values less than

0.05. However we found that using this procedure we almost

always rejected the hypothesis and thus this isn’t useful for

our task at hand. (As is well known, statistics is mainly an art

form.) We seek to understand when the performance across

environments is different and our subsequent work is based on

these cases. In order not to exaggerate, we are conservative in

our reporting if we underestimate the number of environments

that are deemed different. Hence we slightly increase the

threshold value used (0.1) to decide if two environments are

deemed different. Thus if HDij > 0.1 we consider fi and

fj different. We performed visual inspection of hundreds of

pairs of histograms and found that with a threshold of 0.3,

the two distributions were clearly vastly different. In these

cases the distributions are "significantly" different because

either the mass of one distribution is largely shifted or the

shape of the distribution is completely different. We provide

a single illustrative example in Fig. 3. We thus identify three

ranges to quantitatively describe the difference between two

histograms fi and fj (we omit the superscript when the context

is clear). If HDij ≤ 0.1 we consider fi and fj similar;

when 0.1 < HDi,j ≤ 0.3, then fi and fj are different, and

if HDi,j > 0.3, then fi and fj are significantly different.

Although 0.3 is a heuristic, we consider it safe because it is

conservative based upon our bootstrapping experiments.

B. Results

We computed HDRTT−all
ij and HDdown−all

ij for all pairs

i, j for all users. We plot the cumulative distribution of all

these values (with one curve per performance metric) in

Fig. 4(a). We see that approximately 60% of all environment

pairs have a Hellinger distance greater than 0.3 for both

RTTs and data rates. This result means that in most cases the

distribution of delays and data rates that a host experiences dif-

fers significantly across environments. These large differences

happen for the vast majority of users: 17 out of 21 users have

at least one pair of environments with HDdown−all
ij > 0.3;

this number is 20 out of 21 for RTTs.

The RTT and download data in Fig. 4(a) comes from all

the applications in a given environment, however we observed

in Sec. 3 that the mix of applications across environments

often differs as there are a number of single-environment ap-

plications. The different application mix would explain at least

some of the performance differences across environments. In

order to understand whether or not performance differences

are dominated by environment factors (i.e., the ISP, network

interface, country, etc.) rather than the application mix, we

extract the set of common applications for all environment

pairs. We can then contrast the performance of a pair of

environments using performance data (RTTs and download

rates) generated only by these common applications. The HDs

for RTTs in a pair of environments that includes only the

RTTs generated by the common applications are denoted by

HDRTT−com
ij . (Similarly we compute HDdown−com

ij .)

These modified HD scores are shown in Fig. 4(b). We see

that the difference between environments is less pronounced

for download data rates when considering only common

applications. For example we saw that 64% of environment

pairs differed significantly (Fig. 4(a)) when considering all

applications, whereas we only 27% of environment pairs

exhibit significant difference when considering only common

applications. Since the only difference between the experiment

in Fig. 4(a) and that in Fig. 4(b) is the inclusion/exclusion

(respectively) of single-environment apps, these graphs sug-

gest that the application mix (including the single-environment

apps) has a stronger influence on the data rates than the

environmental factors. However the results are different for

RTT behavior. In comparing these two experiments, we find

that 64% of environment pairs differ significantly when all

applications are considered, and similarly 63% of environment

pairs differ significantly when considering common applica-
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Figure 4. Distribution of Hellinger distance scores between pairs of network environments.

tions. Thus the application mix is less influential in explaining

the significant difference in RTT behaviors across pairs of

environments. It thus appears that the environmental factors

have a stronger influence on delays than the application mix.

V. RELATED WORK

We focus our discussion on studies based on passive mea-

surements of network traffic and structure it according to the

measurement vantage point.

In-network measurements. Zhang et al. [6] developed

a tool T-RAT to breakdown the factors (e.g. congestion,

receiver/sender window, bandwidth, short transfers) that limit

the data rates achieved by individual TCP connections. A more

recent analysis of network traces collected in an ISP network

found that TCP data rates are often limited by the application

itself, and not the network [7]. Our analysis of data collected

on end-hosts confirms that applications often limit achieved

data rates, but we also identify a considerable number of

instances when the environment limits data rates.

End-host measurements. Before HostView [1], there have

been few efforts to collect data on end-hosts [8]–[10]. A

characterization study of enterprise traces [11] analyzed the

lifetime of environments (where environment is defined as

inside and outside the enterprise) and some network behavior

(e.g number of TCP/UDP connections). This study does not

analyze the performance metrics we study here and how they

vary across environments. Our initial analysis of HostView

data studied seven performance metrics only on few instances

when users report that performance is poor [12]. Here, we

focus on two performance metrics, but we perform a longi-

tudinal study of how these metrics vary across environments

and applications.

VI. CONCLUSION

In this paper we look at the characteristics and performance

of the numerous environments users employ to connect to the

Internet. Factors such as the network interface, source ISP,

country and user tags differentiate particular environments. We

found that users connect to the Internet via many environments

(with many people using 4 to 10, and some even higher). We

then examined how groups of applications perform, in terms

of delay and data rates, in pairs of environments. We observed

that the end-host as a whole (including all applications)

typically experiences statistically significant performance dif-

ferences in two environments employed a single user. Based on

our initial experiments, it appears that the application mix has

a stronger influencer on data rates than environmental factors,

whereas the reverse is true for round trip time behaviors.
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