
[CSE301 / Lecture 6]
Zippers and derivatives of data types

Noam Zeilberger

Ecole Polytechnique

9 October 2024

1 / 20

Motivation

Many efficient algorithms use pointers to navigate within a data
structure and perform destructive updates, e.g.:

... removing node w/two children from a BST
parent, current = node, node.right
while current.left is not None:

parent, current = current, current.left
if parent is node:

parent.right = current.right
else:

parent.left = current.right
node.value = current.value

Can we perform such manipulations in a purely functional way?

2 / 20

What is a “zipper”?1

A zipper is a pair of a value and a one-hole context.

Idea: represent a pointer by the value being pointed to, together
with a representation of its surrounding context.

There is some beautiful theory behind this idea, which is also very
useful in practice (e.g., used in the XMonad window manager!)

1The terminology comes from a 1997 article by Gérard Huet in the Journal
of Functional Programming. “Going up and down in the structure is analogous
to closing and opening a zipper in a piece of clothing, whence the name.”

3 / 20

Example #1: a functional line editor using list zippers

How can we represent a “cursor” into a line of text, in a way that
supports both efficient navigation and editing?

4 / 20

Example #1: a functional line editor using list zippers

To make this question concrete, let’s introduce a class of cursor
types with some expected operations.

class Cursor cur where
cursor :: [a] → cur a -- create a cursor to head of list
value :: cur a → a -- return value at cursor
list :: cur a → [a] -- return the underlying list
movL :: cur a → cur a -- move the cursor to the left
movR :: cur a → cur a -- move the cursor to the right
ovw :: a → cur a → cur a -- overwrite item with new value
bks :: cur a → cur a -- remove the item to the left
ins :: a → cur a → cur a -- insert a new item to the left

5 / 20

Example #1: a functional line editor using list zippers

Naive solution: store the index of the element in focus.

newtype NaiveCursor a = NC ([a], Int)
instance Cursor NaiveCursor where

cursor xs = NC (xs, 0)
value (NC (xs, i)) = xs !! i
list (NC (xs,)) = xs
movL (NC (xs, i)) = NC (xs, i − 1)
movR (NC (xs, i)) = NC (xs, i + 1)
ovw y (NC (xs, i)) = NC (take i xs ++ [y] ++ drop (i + 1) xs, i)
bks (NC (xs, i)) =

NC (take (i − 1) xs ++ [xs !! i] ++ drop (i + 1) xs, i − 1)
ins y (NC (xs, i)) =

NC (take i xs ++ [y , xs !! i] ++ drop (i + 1) xs, i + 1)

Problem: value, ovw , bks, and ins all take time O(n)!

6 / 20

Example #1: a functional line editor using list zippers

Better solution: use a zipper!

newtype ListZip a = LZ ([a], a, [a])
instance Cursor ListZip where

cursor xs = LZ ([], head xs, tail xs)
value (LZ (ls, x , rs)) = x
list (LZ (ls, x , rs)) = reverse ls ++ [x] ++ rs
movL (LZ (l : ls, x , rs)) = LZ (ls, l , x : rs)
movR (LZ (ls, x , r : rs)) = LZ (x : ls, r , rs)
ovw y (LZ (ls, x , rs)) = LZ (ls, y , rs)
bks (LZ (: ls, x , rs)) = LZ (ls, x , rs)
ins y (LZ (ls, x , rs)) = LZ (y : ls, x , rs)

Now almost all operations are O(1).

7 / 20

Example #1: a functional line editor using list zippers

In this example, a one-hole context is just a pair of lists: the list of
values to the left and the list of values to the right.

(But observe that the values to the left are stored in reverse order,
i.e., in order of distance from the hole.)

[Let’s load the file ListZipper.hs to see this in action...]

8 / 20

Example #2: binary tree zippers

Recall the data type of binary trees with labelled leaves:

data Bin a = L a | B (Bin a) (Bin a)

Now a data type of one-hole contexts for binary trees:

data BinCxt a = Hole
| B0 (BinCxt a) (Bin a)
| B1 (Bin a) (BinCxt a)

Idea: a value of type BinCxt a provides a description of what we
see on a path from the hole to the root of the tree. (Observe that
BinCxt a is isomorphic to a list of pairs [(Bool , Bin a)].)

9 / 20

Example #2: binary tree zippers

This path description is interpreted by the “plugging” function:

plug :: BinCxt a → Bin a → Bin a
plug Hole t = t
plug (B0 c t2) t = plug c (B t t2)
plug (B1 t1 c) t = plug c (B t1 t)

A (binary tree) zipper is a pair of a one-hole context and a tree:

type BinZip a = (BinCxt a, Bin a)

Intuitively, we can think of a zipper (c, t) as defining a (purely
functional) pointer to a subtree of u = plug c t.

10 / 20

Example #2: binary tree zippers

For example, the tree u = B (B L L) L has five subtrees (c, t):

1. c = Hole, t = B (B L L) L
2. c = B0 Hole L, t = B L L
3. c = B0 (B0 Hole L) L, t = L
4. c = B1 L (B0 Hole L), t = L
5. c = B1 (B L L) Hole, t = L

11 / 20

Example #2: binary tree zippers

Easy to implement operations for navigating through a tree:2

go_left :: BinZip a → Maybe (BinZip a)
go_left (c, B t1 t2) = Just (B0 c t2 , t1)
go_left (c, L) = Nothing
go_right :: BinZip a → Maybe (BinZip a)
go_right (c, B t1 t2) = Just (B1 t1 c, t2)
go_right (c, L) = Nothing
go_down :: BinZip a → Maybe (BinZip a)
go_down (B0 c t2 , t) = Just (c, B t t2)
go_down (B1 t1 c, t) = Just (c, B t1 t)
go_down (Hole, t) = Nothing

2These operations can fail if one tries to navigate off the end of the tree.
We chose to represent failure explicitly by using Maybe for the return type, but
an alternative is to raise an exception.

12 / 20

Example #2: binary tree zippers

Similarly easy to implement operations for performing local edits,
such as say grafting another tree off to the left or right of the
subtree in focus.

graft_left, graft_right :: Bin a → BinZip a → BinZip a
graft_left g (c, t) = (c, B g t)
graft_right g (c, t) = (c, B t g)

[Let’s have a look at the solution set for Lab 4 to see how this can
be used to solve the optional problem on random binary trees!]

13 / 20

One-hole contexts and derivatives

There is a remarkable link between computing the types of zippers
and differential calculus, summarized by the slogan that “the
derivative of a type is its type of one-hole contexts.”3

More precisely, the type of one-hole contexts for a parameterized
type T (a) may be computed as a partial derivative d

da T (a).

The type of zippers is then obtained by multiplying a · d
da T (a).

3Which is also (almost) the title of an unpublished but very influential paper
by Conor McBride, http://strictlypositive.org/diff.pdf

14 / 20

http://strictlypositive.org/diff.pdf

Types as algebraic expressions

Recall the link we discussed in Lecture 1:

data Either a b = Left a | Right b ⇐⇒ a + b
type Pair a b = (a, b) ⇐⇒ a · b

data Void ⇐⇒ 0
data () = () ⇐⇒ 1

data Bool = True | False ⇐⇒ 2
data Maybe a = Nothing | Just a ⇐⇒ 1 + a

Many algebraic laws are realized as type isomorphisms
(e.g., a + b = b + a ⇐⇒ Either a b ∼= Either b a).

What about the laws of differentiation?

15 / 20

Some laws of differentiation

d
da (S(a) + T (a)) = d

daS(a) + d
daT (a)

d
da (S(a) · T (a)) = d

daS(a) · T (a) + S(a) · d
daT (a)

d
da (S(T (a))) = d

db S(b)|b=T (a) · d
daT (a)

These all have interpretations as poking holes in data types!

16 / 20

Derivatives of data types: example

Consider the type of pairs of values of the same type:

type Square a = (a, a)

A one-hole context for Square a is of the form (−, a) or (a, −).

We can represent this with the type

data SquareCxt a = L a | R a

which is isomorphic to the product type (Bool , a).

Compare this with d
da a2 = 2a.

17 / 20

Derivatives of data types: example

Consider the type of lists:

data List a = Nil | Cons a (List a)

Now expand it algebraically, and differentiate:

L(a) = 1 + a · L(a)
= 1 + a · (1 + a · L(a))
= 1 + a + a2 + a3 + . . .

= (1 − a)−1

d
daL(a) = (1 − a)−2 = L(a)2

We recover that ListCxt a ∼= ([a], [a]) and ListZip a ∼= ([a], a, [a])!

18 / 20

Derivatives of data types: example

Consider the type of binary trees:

data Bin a = L a | B (Bin a) (Bin a)

Now expand it algebraically, and differentiate:

T (a) = a + T (a)2

d
daT (a) = 1 + 2T (a) d

daT (a)

= 1
1 − 2T (a)

We recover that BinCxt a ∼= List (Bool , Bin a)!

19 / 20

Some references

On zippers and derivatives of data types:
– The Haskell Wikibook on Zippers
– Gérard Huet, “The Zipper”, JFP 7:5, 1997
– Conor McBride, “The derivative of a regular type is its type of

one-hole contexts”, unpublished manuscript, 2000
On the closely related theory of “combinatorial species”:

– André Joyal, “Une théorie combinatoire des séries formelles”,
Advances in Mathematics 42(1), 1981

– Brent Yorgey, “Species and functors and types, oh my!”, in
proceedings of Haskell ’10, 2010 (see also his PhD thesis)

20 / 20

https://en.wikibooks.org/wiki/Haskell/Zippers

