
[CSE301 / Lecture 5]
Laziness and infinite objects

Noam Zeilberger

Ecole Polytechnique

2 October 2024

1 / 42

What is laziness?

The dominant state of most students.

Also, an evaluation strategy used by Haskell.

Idea: only evaluate something if it is needed to compute the result
of the overall computation, and once you’ve evaluated something,
don’t evaluate it again.

2 / 42

You can try this on the lab machines...

In ghci:

ghci> :set +m
ghci> ack m n = if m == 0 then n+1
ghci| else if n == 0 then ack (m-1) 1
ghci| else ack (m-1) (ack m (n-1))
ghci> let x = ack 4 3 in 1+1
2

In ocaml:

let rec ack m n = if m == 0 then n+1
else if n == 0 then ack (m-1) 1
else ack (m-1) (ack m (n-1)) ;;

val ack : int -> int -> int = <fun>
let x = ack 4 3 in 1+1 ;;
Warning 26: unused variable x.
[...this will take a while...]

3 / 42

Laziness in Haskell

In Haskell, evaluation is lazy by default, for better or worse:
– Often can be used to turn seemingly naive mathematical

formulas into efficient algorithms.
– Allows for elegant encodings of infinite objects

But...
– It makes it harder to write a compiler
– Often much harder to reason about performance

4 / 42

Example: the Fibonacci sequence

The following is valid Haskell code, defining the infinite sequence
of Fibonacci numbers.

fibseq = 0 : 1 : zipWith (+) fibseq (tail fibseq)

We can use it to give another definition of the function fib:

fib n = fibseq !! n

This runs in linear time, and remembers (memoizes) its results!

5 / 42

Plan for today

We will try to cover these topics:
1. Evaluation
2. Evaluation strategies for functional languages
3. Laziness and infinite objects
4. Computational duality
5. Overcoming laziness

6 / 42

Evaluation

Recall that an expression denotes a computation towards a value.
The process of computing that value is called evaluation.

Evaluation may be visualized as a series of reductions1 from one
expression to another expression, ending in a value, e.g.:

(1 + 2) ∗ 3 → 3 ∗ 3
→ 9

1In practice, this is not the way evaluation is implemented. Rather, a
program may be compiled and executed as machine code, or alternatively
evaluated by an interpreter using an abstract machine. Nevertheless, thinking
of evaluation of a functional program as a series of reductions is a good mental
model to have when reasoning about its behavior, to a first approximation.

7 / 42

Evaluation

In general, an expression may also produce some side-effects along
the way towards computing a value (even in Haskell).

(putStrLn "hi" >> return ((1 + 2) ∗ 3)) −→;
hi

(1 + 2) ∗ 3 ↠ 9

So the general shape of evaluation looks like this:

expression value;

side-effects

8 / 42

Evaluation

To make evaluation precise, we need to explain:
– What counts as a value
– How to perform reductions (and execute side-effects, if any)
– Where to perform reductions

Such an explanation is called an evaluation strategy.

9 / 42

Evaluation in pure λ-calculus (aka normalization)

One rule of reduction (β):

(λx .e1)(e2) → e1[e2/x]

Can be performed anywhere (i.e., on any matching “redex”).

Value = expression with no redex

The order we perform β-reductions does not matter for the final
value (Church-Rosser Theorem), but might make a difference to
how quickly we reach a value, and even to whether we reach one.

10 / 42

Evaluation in pure λ-calculus (aka normalization)

A term with two β-redices:

(λx .λy .y)((λz .zz)(λz .zz)2)
1

Two very different reduction paths:

(λx .λy .y)((λz .zz)(λz .zz)) λy .y

(λx .λy .y)((λz .zz)(λz .zz))

...

1

2

2

11 / 42

Evaluation in pure λ-calculus (aka normalization)

There is a deterministic evaluation strategy that always succeeds to
find a β-normal form, if it exists: pick the leftmost redex which is
not contained in another redex (“leftmost outermost” reduction).

But this is not the evaluation strategy used in Haskell or OCaml...

12 / 42

Call-by-value2

In call-by-value (CBV) evaluation, the argument to a function is
always reduced to a value before calling the function.

Now, a value can be any function (e.g., may contain β-redices), or
a constructor applied to some values.

2Used by OCaml, Python, C, Java, and many other languages.
13 / 42

Call-by-value

For example, let sqr x = x ∗ x and const0 x = 0

Under CBV evaluation:

sqr (1 + 2) → sqr 3 → 3 ∗ 3 → 9

const0 (sqr 3) → const0 (3 ∗ 3) → const0 9 → 0

14 / 42

Call-by-name3

In call-by-name (CBN) evaluation, the argument to a function is
passed as an unevaluated expression (“by name”).

A value is any function, or a constructor applied to expressions.

Under CBN evaluation:

sqr (1 + 2) → (1 + 2) ∗ (1 + 2) → 3 ∗ (1 + 2) → 3 ∗ 3 → 9

const0 (sqr 3) → 0

3Of historical interest (e.g., Algol 60), but not used by Haskell...
15 / 42

CBV vs CBN

“CBV is better”: avoid re-evaluating the argument to a function.

“CBN is better”: avoid evaluating an argument that is unneeded.

How do you decide?

16 / 42

17 / 42

Call-by-need4

In call-by-need evaluation, the argument to a function is only
evaluated when it is needed, and then stored for later reuse.

Call-by-need is also called lazy evaluation.

Roughly, it is implemented by giving names to intermediate
computations (“thunks”), and evaluating them on demand.

4Used by Haskell.
18 / 42

Call-by-need

sqr (1 + 2) → let x = 1 + 2 in sqr x [introduce thunk]
→ let x = 1 + 2 in x ∗ x [apply function]
→ let x = 3 in x ∗ x [evaluate thunk]
→ let x = 3 in 3 ∗ 3 [fetch value]
→ let x = 3 in 9 [evaluate expression]
→ 9 [garbage collect]

const0 (sqr 3) → let x = sqr 3 in const0 x [introduce thunk]
→ let x = sqr 3 in 0 [apply function]
→ 0 [garbage collect]

19 / 42

The cost of laziness

Although call-by-need is “better” than CBV or CBN in the sense of
performing less evaluation, it comes at a cost:

– The computational cost (time + space) of managing thunks
– The engineering cost of implementing it correctly in a compiler
– The mental cost of reasoning about program performance

Nevertheless, it can be used to write some pretty code!!

20 / 42

Understanding Fibonacci

Recall the one-liner:

fibseq = 0 : 1 : zipWith (+) fibseq (tail fibseq)

Why does this work?

21 / 42

Understanding Fibonacci

We can use the definition

fibseq = 0 : 1 : zipWith (+) fibseq (tail fibseq)

to build up a table of values...

fibseq 0 1

1 2 3 5 8 · · ·

tail fibseq 1

1 2 3 5 8

tail (tail fibseq)

1 2 3 5 8

22 / 42

Understanding Fibonacci

We can use the definition

fibseq = 0 : 1 : zipWith (+) fibseq (tail fibseq)

to build up a table of values...

fibseq 0 1

1 2 3 5 8 · · ·

tail fibseq 1

1 2 3 5 8

tail (tail fibseq) 1

2 3 5 8

22 / 42

Understanding Fibonacci

We can use the definition

fibseq = 0 : 1 : zipWith (+) fibseq (tail fibseq)

to build up a table of values...

fibseq 0 1 1

2 3 5 8 · · ·

tail fibseq 1 1

2 3 5 8

tail (tail fibseq) 1

2 3 5 8

22 / 42

Understanding Fibonacci

We can use the definition

fibseq = 0 : 1 : zipWith (+) fibseq (tail fibseq)

to build up a table of values...

fibseq 0 1 1

2 3 5 8 · · ·

tail fibseq 1 1

2 3 5 8

tail (tail fibseq) 1 2

3 5 8

22 / 42

Understanding Fibonacci

We can use the definition

fibseq = 0 : 1 : zipWith (+) fibseq (tail fibseq)

to build up a table of values...

fibseq 0 1 1 2

3 5 8 · · ·

tail fibseq 1 1 2

3 5 8

tail (tail fibseq) 1 2

3 5 8

22 / 42

Understanding Fibonacci

We can use the definition

fibseq = 0 : 1 : zipWith (+) fibseq (tail fibseq)

to build up a table of values...

fibseq 0 1 1 2 3

5 8 · · ·

tail fibseq 1 1 2 3

5 8

tail (tail fibseq) 1 2 3

5 8

22 / 42

Understanding Fibonacci

We can use the definition

fibseq = 0 : 1 : zipWith (+) fibseq (tail fibseq)

to build up a table of values...

fibseq 0 1 1 2 3 5 8 · · ·
tail fibseq 1 1 2 3 5 8

tail (tail fibseq) 1 2 3 5 8

22 / 42

Now in GHCi

Using the “:sprint” command to inspect a lazy value...

ghci> :sprint fibseq
fibseq = _
ghci> fib 3
2
ghci> :sprint fibseq
fibseq = 0 : 1 : 1 : 2 : _
ghci> fib 7
13
ghci> :sprint fibseq
fibseq = 0 : 1 : 1 : 2 : 3 : 5 : 8 : 13 : _

23 / 42

Even and odd numbers, v1

nats, evens, odds :: [Integer]
nats = [0 . .]
evens = map (∗2) nats
odds = map (+1) evens

24 / 42

Even and odd numbers, v1

ghci> :sprint nats
nats = _
ghci> :sprint odds
odds = _
ghci> take 5 odds
[1,3,5,7,9]
ghci> :sprint nats
nats = 0 : 1 : 2 : 3 : 4 : _

25 / 42

Even and odd numbers, v2

nats ′, evens ′, odds ′ :: [Integer]
evens ′ = 0 : map (+1) odds ′

odds ′ = map (+1) evens ′

nats ′ = interleave evens ′ odds ′

where interleave (x : xs) ys = x : interleave ys xs

26 / 42

Even and odd numbers, v2

ghci> :sprint nats’
nats’ = _
ghci> take 5 nats’
[0,1,2,3,4]
ghci> :sprint evens’
evens’ = 0 : 2 : 4 : _
ghci> :sprint odds’
odds’ = 1 : 3 : _

27 / 42

Even and odd numbers, v3

everyOther :: [a] → [a]
everyOther (x : y : xs) = x : everyOther xs
evens ′′, odds ′′ :: [Integer]
evens ′′ = everyOther nats
odds ′′ = everyOther (tail nats)

28 / 42

Even and odd numbers, v3

ghci> :sprint nats
nats = 0 : 1 : 2 : 3 : 4 : _
ghci> take 5 odds’’
[1,3,5,7,9]
ghci> :sprint nats
nats = 0 : 1 : 2 : 3 : 4 : 5 : 6 : 7 : 8 : 9 : 10 : _

29 / 42

Another version of Fibonacci

Another one-liner:

fibseq = map fst $ iterate (\(a, b) → (b, a + b)) (0, 1)

where iterate is defined in the Prelude:

iterate :: (a → a) → a → [a]
iterate f x = x : iterate f (f x)

i.e., iterate f x (lazily) builds the infinite list [x , f x , f (f x), ...].

30 / 42

Computational duality

Back in Lecture 1, we saw how to define data types by their
constructors, and how to define functions over such types by
pattern-matching against those possible constructors.

But there is also a dual way of defining a type by its destructors.

A value of such a type5 can then be defined by matching against
those possible destructors.

Category theory is good at making such definitions...

5Sometimes called a “codata” type or a “negative” type.
31 / 42

Products, in category theory

The product of objects A and B is an object A × B with arrows

A A × B Bπ1 π2

such that for any other pair of arrows

A C Bf g

there is a unique arrow making the diagram below “commute”:

A A × B B

C

π1 π2

h
f g

32 / 42

Translating the category theory to Haskell?

Given f :: c → a and g :: c → b, we could hope to define

h :: c → (a, b)
fst (h x) = f x
snd (h x) = g x

but unfortunately this is not (currently) legal Haskell syntax.6

Still, this “observational” perspective is good to keep in mind.

6Although it should be! For example, Agda supports copattern-matching.
For more on the theoretical foundations for copattern-matching, see the paper
“Copatterns: Programming Infinite Structures by Observations” by Abel et al.

33 / 42

Redefining lists, observationally

We can think of an infinite list as defined by its behavior against
the destructors head :: [a] → a and tail :: [a] → [a].

For example, the following (legal Haskell) definition

ones = 1 : ones

can be thought of as defining a value by the equations

head ones = 1
tail ones = ones

34 / 42

Redefining lists, observationally

The reason we can manipulate infinite values in computations is
because any given observation is finite.

head ones = 1

head (tail (tail ones)) = head (tail ones) = head ones = 1

35 / 42

Record syntax

Although Haskell does not have copattern-matching, it does have
record types equipped with named fields.

data Stream a = Stream {hd :: a, tl :: Stream a}
oneS :: Stream Integer
oneS = Stream {hd = 1, tl = oneS }

ghci> hd (tl (tl oneS))
1

36 / 42

Overcoming laziness

Sometimes laziness gets in the way in Haskell. There are a few
techniques for working around it:

– the seq operator to force evaluation
– strictness annotations for non-lazy data types
– monads (or CPS) to ensure lazy computations happen in a

certain order

37 / 42

But first a puzzle...

Suppose we define minimum = head ◦ sort.

What is the complexity of computing minimum xs?

38 / 42

The seq operator

Takes two arguments and returns the second

seq :: a → b → b

but forces evaluation of the first argument.

ghci> seq "hello" 42
42
ghci> seq (ack 4 3) (1+1)

C-c C-cInterrupted.

39 / 42

Strictness annotations

data StrictList a = Nil | Cons !a !(StrictList a)
deriving (Show , Eq)

toSL :: [a] → StrictList a
toSL [] = Nil
toSL (x : xs) = Cons x (toSL xs)
nullSL :: StrictList a → Bool
nullSL Nil = True
nullSL = False

40 / 42

Strictness annotations

ghci> xs = take 5 fibseq
ghci> null xs
False
ghci> :sprint xs
xs = 0 : _
ghci> ys = toSL (take 5 fibseq)
ghci> nullSL ys
False
ghci> :sprint ys
ys = Cons 0 (Cons 1 (Cons 1 (Cons 2 (Cons 3 Nil))))
ghci> toSL fibseq

C-c C-cInterrupted.

41 / 42

Summary

Key points from today:
– An evaluation strategy is a plan for reducing expressions to

values (and performing any side-effects present)
– Different languages use different evaluation strategies
– Haskell uses call-by-need (a.k.a. “lazy”) evaluation, meaning

function arguments are only evaluated when they are needed
– Laziness can sometimes yield significant performance gains,

and enables finite representations of infinite values
– But laziness comes at a cost (compiler + runtime + brain)

42 / 42

