[CSE301 / Lecture 2] Higher-order functions and type classes

Noam Zeilberger

Ecole Polytechnique

14 September 2022

A function that takes one or more functions as input.

Main motivation: expressing the **common denominator** between a collection of first-order functions, thus promoting code reuse!

Learning tip: HO functions may be hard to grasp at first, but will eventually help in "seeing the forest for the trees".

Recall that given $f :: a \to c$ and $g :: b \to c$, we can define

$$h :: Either a b \to c$$
$$h (Left x) = f x$$
$$h (Right y) = g y$$

In other words, we can define h by case-analysis.

For example:

```
asInt :: Either Bool Int \rightarrow Int
asInt (Left b) = if b then 1 else 0
asInt (Right n) = n
isBool :: Either Bool Int \rightarrow Bool
isBool (Left b) = True
isBool (Right n) = False
```

The Prelude defines a higher-order function that "internalizes" the principle of case-analysis over sum types:

either ::
$$(a \rightarrow c) \rightarrow (b \rightarrow c) \rightarrow$$
 Either a $b \rightarrow c$
either f g (Left x) = f x
either f g (Right y) = g y

Here is how we can redefine *asInt* and *isBool* using *either* (and λ):

asInt = either (
$$\b \rightarrow \text{if } b \text{ then } 1 \text{ else } 0$$
) ($\n \rightarrow n$)
isBool = either ($\b \rightarrow True$) ($\n \rightarrow False$)

Whereas before we could spot that the two functions were instances of a simple common "design pattern", now they are literally two applications of the same higher-order function.

Here again:

asInt = either (\b
$$\rightarrow$$
 if b then 1 else 0) (\n \rightarrow n)
isBool = either (\b \rightarrow True) (\n \rightarrow False)

Observe we only partially applied *either*. Alternatively:

asInt
$$v = either (\b \rightarrow if b then 1 else 0) (\n \rightarrow n) v$$

isBool $v = either (\b \rightarrow True) (\n \rightarrow False) v$

but these two versions are completely equivalent.

(They are said to be " η -equivalent".)

Finally, recall arrow associates to the right by default:

either ::
$$(a \rightarrow c) \rightarrow ((b \rightarrow c) \rightarrow (Either \ a \ b \rightarrow c))$$

The type of either looks a lot like

$$(A \supset C) \supset ([B \supset C] \supset [(A \lor B) \supset C])$$

which you can verify is a tautology. (This is a recurring theme!)

Second example: mapping over a list

Consider the following first-order functions on lists...

(Add one to every element in a list of integers.)

 $mapAddOne :: [Integer] \rightarrow [Integer]$ mapAddOne [] = []mapAddOne (x : xs) = (1 + x) : mapAddOne xs

Example: mapAddOne [1..5] = [2, 3, 4, 5, 6]

(Square every element in a list of integers.)

$$mapSquare :: [Integer] \rightarrow [Integer]$$

 $mapSquare [] = []$
 $mapSquare (x : xs) = (x * x) : mapSquare xs$

Example: *mapSquare* [1..5] = [1, 4, 9, 16, 25]

(Compute the length of each list in a list of lists.)

 $mapLength :: [[a]] \rightarrow [Int]$ mapLength [] = []mapLength (x : xs) = length x : mapLength xs

Example: mapLength ["hello", "world!"] = [5,6]'

Second example: mapping over a list

GCD = "apply some transformation to every element of a list"

We can internalize this as a higher-order function:

$$\begin{array}{l} map :: (a \rightarrow b) \rightarrow [a] \rightarrow [b] \\ map \ f \ [] = [] \\ map \ f \ (x : xs) = (f \ x) : map \ f \ xs \end{array}$$

For example:

$$mapAddOne = map (1+)$$

 $mapSquare = map (\n
ightarrow n * n)$
 $mapLength = map length$

Some useful functions on functions

The "currying" and "uncurrying" principles:

$$\begin{array}{l} curry :: ((a,b) \rightarrow c) \rightarrow (a \rightarrow b \rightarrow c) \\ curry \ f \ x \ y = f \ (x,y) \\ uncurry :: (a \rightarrow b \rightarrow c) \rightarrow ((a,b) \rightarrow c) \\ uncurry \ g \ (x,y) = g \ x \ y \end{array}$$

Or equivalently:

$$\begin{array}{l} \text{curry } f = \langle x \to \langle y \to f \ (x, y) \\ \text{uncurry } g = \langle (x, y) \to g \ x \ y \end{array}$$

Example: map (uncurry (+)) [(0,1),(2,3),(4,5)] = [1,5,9]

 $\text{Logically: } (A \land B) \supset C \iff A \supset (B \supset C).$

Some useful functions on functions

The principle of sequential composition:

$$\begin{array}{l} (\circ) :: (b \rightarrow c) \rightarrow (a \rightarrow b) \rightarrow (a \rightarrow c) \\ (g \circ f) \ x = g \ (f \ x) \end{array}$$

Example: map $((+1) \circ (*2)) [0..4] = [1,3,5,7,9]$

Logically: transitivity of implication.

Some useful functions on functions

The principle of exchange:

The principle of weakening:

$$const :: b \rightarrow (a \rightarrow b)$$

 $const \times y = x$

The principle of contraction:

$$dupl :: (a \to a \to b) \to (a \to b)$$
$$dupl f x = f x x$$

The Haskell Prelude and Standard Library define a number of HO functions that capture common ways of manipulating lists...

$$\begin{array}{l} \textit{filter} :: (a \rightarrow Bool) \rightarrow [a] \rightarrow [a] \\ \textit{filter} \ p \ [] = [] \\ \textit{filter} \ p \ (x : xs) \\ & | \ p \ x = x : \textit{filter} \ p \ xs \\ & | \ otherwise = \textit{filter} \ p \ xs \end{array}$$

Examples:

all, any ::
$$(a \rightarrow Bool) \rightarrow [a] \rightarrow Bool$$

all $p[] = True$
all $p(x : xs) = p x \&\&$ all $p xs$
any $p[] = False$
any $p(x : xs) = p x ||$ any $p xs$

Examples: all (>3) [1..5] = False, any (>3) [1..5] = True.

$$\begin{array}{l} takeWhile, dropWhile :: (a \rightarrow Bool) \rightarrow [a] \rightarrow [a] \\ takeWhile p [] = [] \\ takeWhile p (x : xs) \\ | p x = x : takeWhile p xs \\ | otherwise = [] \\ dropWhile p [] = [] \\ dropWhile p (x : xs) \\ | p x = dropWhile p xs \\ | otherwise = x : xs \end{array}$$

Examples:
$$takeWhile (>3) [1..5] = [],$$

 $takeWhile (<3) [1..5] = [1,2],$
 $dropWhile (<3) [1..5] = [3,4,5].$

$$concatMap :: (a
ightarrow [b])
ightarrow [a]
ightarrow [b]$$

 $concatMap f [] = []$
 $concatMap f (x : xs) = f x + concatMap f xs$

Examples:

> concatMap (\x
$$\rightarrow$$
 [x]) [1..5]
[1,2,3,4,5]
> concatMap (\x \rightarrow if x 'mod' 2 \equiv 1 then [x] else []) [1..5]
[1,3,5]
> concatMap (\x \rightarrow concatMap (\y \rightarrow [x..y]) [1..3]) [1..3]
[1,1,2,1,2,3,2,2,3,3]

Note $concatMap f = concat \circ map f$.

Remarkably, all of the preceding higher-order list functions, and many other functions besides, can be defined as instances of a single higher-order function!

Suppose want to write a function $[a] \rightarrow b$ inductively over lists.

We provide a "base case" v :: b.

We provide an "inductive step" $f :: a \to b \to b$.

Putting these together, we get a recursive definition:

$$h :: [a] \to b$$

$$h [] = v$$

$$h (x :: xs) = f \times (h \times s)$$

Since this schema is completely generic in the "base case" and the "inductive step", we can internalize it as a higher-order function:

foldr ::
$$(a \rightarrow b \rightarrow b) \rightarrow b \rightarrow [a] \rightarrow b$$

foldr f v [] = v
foldr f v (x : xs) = f x (foldr f v xs)

Here are some examples:

filter
$$p = foldr (\langle x \ xs \to if \ p \ x$$
 then $x : xs$ else $xs) []$
all $p = foldr (\langle x \ b \to p \ x \&\& b)$ True
takeWhile $p = foldr (\langle x \ xs \to if \ p \ x$ then $x : xs$ else []) []
concatMap $f = foldr (\langle x \ ys \to f \ x + ys) []$

And let's look at some more...

$$sum :: Num a \Rightarrow [a] \rightarrow a$$

 $sum [] = 0$
 $sum (x : xs) = x + sum xs$

may be summarized as:

sum = foldr (+) 0

product :: Num
$$a \Rightarrow [a] \rightarrow a$$

product $[] = 1$
product $(x : xs) = x * product xs$

may be summarized as:

product = foldr(*) 1

$$\begin{array}{l} \textit{length} :: [\textbf{a}] \rightarrow \textit{Int} \\ \textit{length} [] = 0 \\ \textit{length} (\textbf{x} : \textit{xs}) = 1 + \textit{length} \textit{xs} \end{array}$$

may be summarized as:

$$length = foldr (x n \rightarrow 1 + n) 0 = foldr (const (1+)) 0$$

$$concat :: [[a]] \rightarrow [a]$$

 $concat [] = []$
 $concat (xs : xss) = xs + concat xss$

may be summarized as:

concat = foldr(+)[]

$$copy :: [a] \rightarrow [a]$$

$$copy [] = []$$

$$copy (x : xs) = x : copy xs$$

may be summarized as:

copy = foldr (:) []

(a somewhat more subtle example:)

$$(+)::[a] \rightarrow [a] \rightarrow [a]$$
$$[] + ys = ys$$
$$(x:xs) + ys = x:(xs + ys)$$

may be summarized as:

$$(++) = \textit{foldr} (\setminus x \ g \rightarrow (x:) \circ g) \textit{ id }$$

Aside: folding from the left

$$\begin{aligned} & \text{foldr } (+) \ 0 \ [1, 2, 3, 4, 5] \\ &= 1 + \text{foldr } (+) \ 0 \ [2, 3, 4, 5] \\ &= 1 + (2 + \text{foldr } (+) \ 0 \ [3, 4, 5] \\ &= 1 + (2 + (3 + \text{foldr } (+) \ 0 \ [4, 5] \\ &= 1 + (2 + (3 + (4 + \text{foldr } (+) \ 0 \ [5] \\ &= 1 + (2 + (3 + (4 + (5 + \text{foldr } (+) \ 0 \ [])))) \\ &= 1 + (2 + (3 + (4 + (5 + 0)))) \\ &= 1 + (2 + (3 + (4 + 5))) \\ &= 1 + (2 + (3 + 9)) \\ &= 1 + (2 + 12) \\ &= 1 + 14 \\ &= 15 \end{aligned}$$

Observe that additions are performed right-to-left.

Aside: folding from the left

Sometimes we want to go left-to-right:

$$\begin{array}{l} \text{foldI} :: (b \rightarrow a \rightarrow b) \rightarrow b \rightarrow [a] \rightarrow b \\ \text{foldI } f \ v \ [] = v \\ \text{foldI } f \ v \ (x: xs) = \text{foldI } f \ (f \ v \ x) \ xs \end{array}$$

Example:

$$\begin{array}{l} \text{foldl} (+) \ 0 \ [1,2,3,4,5] \\ = \ \text{foldl} (+) \ 1 \ [2,3,4,5] \\ = \ \text{foldl} (+) \ 3 \ [3,4,5] \\ = \ \text{foldl} (+) \ 6 \ [4,5] \\ = \ \text{foldl} (+) \ 10 \ [5] \\ = \ \text{foldl} (+) \ 15 \ [] \\ = \ 15 \end{array}$$

(Q: does this remind you of something from Lecture 1?)

Higher-order functions over trees

Recall our data type of binary trees with labelled nodes:

data BinTree a = Leaf | Node a (BinTree a) (BinTree a)
deriving (Show, Eq)

It supports a natural analogue of the map function on lists:

$$mapBT :: (a \rightarrow b) \rightarrow BinTree a \rightarrow BinTree b$$

 $mapBT f Leaf = Leaf$
 $mapBT f (Node x tL tR) = Node (f x)$
 $(mapBT f tL) (mapBT f tR)$

Higher-order functions over trees

Higher-order functions over trees

It also supports a natural analogue of *foldr*:

$$\begin{array}{l} \text{foldBT} :: b \to (a \to b \to b \to b) \to B \text{inTree } a \to b \\ \text{foldBT } v \ f \ Leaf = v \\ \text{foldBT } v \ f \ (Node \ x \ tL \ tR) = f \ x \\ (\text{foldBT } v \ f \ tL) \ (\text{foldBT } v \ f \ tR) \end{array}$$

For example:

$$\begin{array}{l} \textit{nodes} = \textit{foldBT 0} ((x \ m \ n \rightarrow 1 + m + n) \\ \textit{leaves} = \textit{foldBT 1} ((x \ m \ n \rightarrow m + n)) \\ \textit{height} = \textit{foldBT 0} ((x \ m \ n \rightarrow 1 + max \ m \ n)) \\ \textit{mirror} = \textit{foldBT Leaf} ((x \ tL' \ tR' \rightarrow Node \ x \ tR' \ tL')) \end{array}$$

By now we've seen several examples of polymorphic functions with type class constraints, e.g.:

$$sort :: Ord \ a \Rightarrow [a] \rightarrow [a]$$

lookup :: Eq $a \Rightarrow a \rightarrow [(a, b)] \rightarrow Maybe \ b$
sum, product :: Num $a \Rightarrow [a] \rightarrow a$

Intuitively, these constraints express minimal requirements on the otherwise generic type *a* needed to define these functions.

Formally, a type class is defined by specifying the type signatures of operations, possibly together with default implementations of some operations in terms of others. For example:

class Eq a where $(\equiv), (\not\equiv) :: a \rightarrow a \rightarrow Bool$ $x \not\equiv y = not (x \equiv y)$ $x \equiv y = not (x \not\equiv y)$ We show the constraint is satisfied by providing an *instance*:

instance Eq Bool where $x \equiv y = \text{if } x \text{ then } y \text{ else } not y$

Sometimes need hereditary constraints to define instances:

instance
$$Eq \ a \Rightarrow Eq \ [a]$$
 where

$$[] \equiv [] = True$$

$$(x : xs) \equiv (y : ys) = x \equiv y \&\& xs \equiv ys$$

$$_ \equiv _ = False$$

Class hierarchy

Possible for one type class to inherit from another, e.g.:¹

class Eq $a \Rightarrow Ord a$ where compare :: $a \rightarrow a \rightarrow Ordering$ $(<), (\leqslant), (>), (\geqslant) :: a \to a \to Bool$ max, min :: $a \rightarrow a \rightarrow a$ compare $x y = if x \equiv y$ then EQ else if $x \leq y$ then *LT* else GTx < y = case compare x y of { $LT \rightarrow True; _ \rightarrow False$ } $x \leq y =$ case compare x y of $\{GT \rightarrow False; _ \rightarrow True\}$ x > y = case compare x y of { $GT \rightarrow True; _ \rightarrow False$ } $x \ge y =$ case compare x y of $\{LT \rightarrow False; _ \rightarrow True\}$ max $x y = if x \leq y$ then y else x min $x y = if x \leq y$ then x else y

¹This looks complicated, but basically you only need to implement (\leq) to define an *Ord* instance, assuming you already have *Eq*.

It is often implicit that operations should obey certain laws.

For example, (\equiv) should be reflexive, symmetric, and transitive.

Similarly, (\leqslant) should be a total ordering.

These expectations may be described in the documentation of a type class, but are not enforced by the Haskell language.²

²Although they can be enforced in dependently typed languages!

Type classes from higher-order functions

Type classes are a cool feature of Haskell, but in a certain sense they may be seen as "just" a convenient mechanism for defining higher-order functions, since a constraint may always be replaced by the types of the operations in (a minimal definition of) the corresponding type class...

Type classes from higher-order functions

Replace *sort* :: *Ord*
$$a \Rightarrow [a] \rightarrow [a]$$
 by
sortHO :: $(a \rightarrow a \rightarrow Bool) \rightarrow [a] \rightarrow [a]$
Replace *lookup* :: *Eq* $a \Rightarrow a \rightarrow [(a, b)] \rightarrow Maybe b$ by
lookupHO :: $(a \rightarrow a \rightarrow Bool) \rightarrow a \rightarrow [(a, b)] \rightarrow Maybe b$

and so on.

Whenever we would call a function with constraints, we instead call a HO function while providing one or more extra arguments.

Automatic type class resolution

Drawback of this translation: every call to a function with constraints has to pass potentially many extra arguments!

Type classes are useful because these "semantically implicit" arguments are automatically inferred by the type checker.

```
> import Data.List
> sort [3,1,4,1,5,9]
[1,1,3,4,5,9]
> sort ["my", "dog", "has", "fleas"]
["dog", "fleas", "has", "my"]
```

Unfortunately, it is only possible to define a single instance of a type class for a given type, although we can get around this with the **newtype** mechanism...

newtype

Behaves similarly to a **data** definition but only allowed to have a single constructor with a single argument. The purpose is to introduce an *isomorphic copy* of another type.

newtype Sum a = Sum anewtype Product a = Product ainstance $Num a \Rightarrow Monoid (Sum a)$ where mempty = Sum 0 mappend (Sum x) (Sum y) = Sum (x + y)instance $Num a \Rightarrow Monoid (Product a)$ where mempty = Product 1mappend (Product x) (Product y) = Product (x * y)