
CSE301(Functional Programming)
Lecture 1: First-order data types and pattern-matching

Noam Zeilberger

version: September 10, 2024

A data type is a type defined by a collection of constructors, each of
which can take any number of arguments of different types. Informally, the
concept of data type is relevant in any situation where you have something that
can be built out of different kinds of things – of course there are many such
situations, which is why the concept is so important! In this lecture, we will
learn how data types are defined, how to write functions over them by pattern-
matching, and how to perform some simple reasoning about the behavior of
these functions. We will restrict to data types that are first-order, in the sense
that the constructors we consider do not themselves take functions as arguments
– although they can take other data types as arguments, and they can moreover
be polymorphic. Such types are also sometimes called algebraic data types,
since (as we will see) they obey laws similar to the algebraic laws for sums and
products.

1 First example: the booleans
Let’s begin by considering one of the simplest examples of a data type, the type
of booleans, which in the Haskell Prelude is defined as follows:

data Bool = False | True

The way to read this is that Bool is a data type with two constructors taking
no arguments, that is:

False :: Bool
True :: Bool

The definition also guarantees that these are the only two ways to build a value
of boolean type, and it is this guarantee that enables us to define functions over
the booleans by pattern-matching against these two cases.

For example, boolean negation can be written like so:

not :: Bool → Bool
not False = True
not True = False

Here we have declared not to be a function from booleans to booleans, and
defined it by its action on the two possible input values. One easy consequence
of this definition is that not is an involution, in the sense that

not (not x) = x

1

for all values x :: bool . To prove this, it suffices to consider the two values
x = false and x = true and apply the definition of not:

not (not False) = not True = False
not (not True) = not False = True

Although this “theorem” may not look that impressive, it provides us a first ex-
ample of how to use reasoning-by-cases combined with purely equational reason-
ing to prove something about the behavior of a functional program – eventually
we will see many more interesting examples!

Next let’s define boolean conjunction:

both :: Bool → Bool → Bool
both False False = False
both False True = False
both True False = False
both True True = True

The first thing to pay attention to here is the type of both. Arrow associates to
the right by default, so the type declaration that we wrote above is the same
as writing both :: Bool → (Bool → Bool). Literally, this says that both is a
function from booleans to functions from booleans to booleans, which logically
is essentially the same thing as a function that takes a pair of booleans to a
boolean. In Haskell, functions of multiple arguments are usually expressed like
this as having an iterated function type, in so-called “curried” form.1 Otherwise,
we can notice that the above definition by pattern-matching essentially expresses
the truth table of boolean conjunction.

The definition of boolean conjunction in the Haskell Prelude, written (&&),
is actually slightly different:

(&&) :: Bool → Bool → Bool
False && = False
True && b = b

One inessential difference with the definition of both is that (&&) is defined as an
infix operator, but this is just “syntactic sugar”. A more significant, albeit subtle,
difference between the two definitions of conjunction is that (&&) implements
short-circuit evaluation. That’s because Haskell is a so-called “call-by-need”
language, and arguments to functions are only evaluated when they are needed
to compute the result. In this case, once the conjunction function sees that its
first argument is False, it doesn’t even need to examine its second argument
(here, indicated by matching against the “wildcard” pattern) to determine
that the result should be False.

Although subtle, this example helps to illustrate the important difference
in functional programming between values and expressions. A value of a given
data type is, by definition, built using one of its constructors. An expression
of that type, on the other hand, can be defined using all of the mechanisms of
the language, and in general denotes a computation that is meant to reduce to

1After the logician Haskell Curry (1900–1982), who employed this technique in his work
on combinatory logic, although the technique was actually invented earlier by Moses Schön-
finkel (1888–1942).

2

a value. For example, not False is an expression of type Bool , which evaluates
to the value True. In Haskell, as in most functional languages, it is possible to
write down expressions that ultimately never reduce to a value. For instance,
we can define a looping computation:

loop :: Int → Bool
loop x = loop (x + 1)

Although loop 0 is not a value, it is a valid expression of type Bool , and we
can use it to observe the difference between the two versions of conjunction.
Consider the following two expressions:

both False (loop 0) vs. False && (loop 0)

Since loop 0 never reduces to either True or False, none of the four clauses in
the definition of both can be invoked, and so the first expression gets stuck in
an infinite loop. On the other hand, the second expression immediately reduces
to the value False, by the first clause in the definition of (&&).

It is worth verifying this for yourself! You can do so by loading the file
DataCode.hs associated to these notes (available on the course webpage) into
the Haskell interpreter, and typing in the above expressions. You should see
something roughly like the following interaction, where in place of “loop” we have
inserted a very expensive computation to make the result a bit more concrete.
(We begin by invoking the :set +s command to turn on time & space profiling.)

$ ghci DataCode
GHCi, version 9.10.1: https://www.haskell.org/ghc/ :? for help
[1 of 1] Compiling Main (DataCode.hs, interpreted)
Ok, one module loaded.
ghci> :set +s
ghci> both False (length [1..10^9] == 10^9)
False
(8.74 secs, 72,000,072,856 bytes)
ghci> False && (length [1..10^9] == 10^9)
False
(0.01 secs, 70,752 bytes)

Exercise 1.1. Define the boolean disjunction function by pattern-matching,
both with and without short-circuit evaluation, and write down an expression
that allows one to observe the difference in behavior between the two definitions.

2 Sums and products
Besides defining particular types like Bool , data type declarations also provide a
general way of combining one or more types to form a new type. Two important
instances of this are called sum types and product types.

In Haskell, sum types are defined as follows:

data Either a b = Left a | Right b

Here, Either is called a type constructor, since it takes two types a and b and
defines a new type Either a b. The data declaration automatically introduces
two (value) constructors:

3

Left :: a → Either a b
Right :: b → Either a b

which, by definition, are the only two ways of forming a value of the sum type.
In set-theoretic terms, the set of values of a sum type may be considered as a
disjoint union {Left x | x ∈ a}∪ {Right y | y ∈ b} of two sets of “tagged” values.

The fact that the values of a sum type are tagged Left or Right is precisely
what allows us to define functions out of them by pattern-matching, without
risk of ambiguity. In general, if f ::a → c and g ::b → c are two functions taking
a and b, respectively, to the same target type c, then we can define a single
function taking their sum to the same target by

h :: Either a b → c
h (Left x) = f x
h (Right y) = g y

As a simple example, here is a function that coerces either a boolean or an
integer2 to an integer:

asInt :: Either Bool Int → Int
asInt (Left b) = if b then 1 else 0
asInt (Right n) = n

Here the function f :: Bool → Int is given by f b = if b then 1 else 0, while
g :: Int → Int is the identity function g n = n. As another example, we can
write a function that checks whether a value of this same sum type is in fact a
boolean:

isBool :: Either Bool Int → Bool
isBool (Left b) = True
isBool (Right n) = False

In this case, f :: Bool → Int is the constant-true function f = b → True while
g :: Int → Int is the constant-false function g = n → False.

It is also worth mentioning that the definition of sum types in Haskell is
formally quite closely related to (and under some interpretations an instance
of) the definition of “coproducts” in category theory. Without getting into the
completely formal definition, roughly speaking, a “category” is just a collection
of objects and a collection of arrows between objects that can be composed (like
paths in a graph) in an associative way.3 In any category, one can define the
coproduct of two objects A and B as an object A + B equipped with arrows
ℓ : A→ A+B and r : B → A+B, such that for for any pair of arrows f : A→ C
and g : B → C there exists a unique h : A + B → C such that f = h ◦ ℓ and
g = h ◦ r, as summarized in the following diagram:

A A+B B

C
f

ℓ

h g

r

2Haskell has several different types of integers, including arbitrary-length integers (or so-
called “bignums”). Here we are using the type Int of machine-integers.

3Two examples are the category Set whose objects are sets and whose arrows are functions
between sets, and the category Vec whose objects are vector spaces and whose arrows are
linear transformations. Any partial order may also be considered as a category with a unique
arrow x → y iff x ≤ y.

4

Again without getting into the formal details, we can see that there is a close
analogy between the arrows ℓ : A→ A+B and r : B → A+B in the definition
of the coproduct and the constructors Left :: a → Either a b and Right ::
b → Either a b of the sum type, and between the arrow h : A + B → C
defined by the “universal property” of the coproduct and the canonical function
h :: Either a b → c we defined above by pattern-matching.4

Whereas sum types describe values that can take multiple possible forms,
product types describe values that contain multiple components. Haskell has
built-in product types, written (a, b) where a and b are types. A value of type
(a, b) is a pair (u, v), where u :: a and v :: b.5 The Haskell Prelude also provides
built-in projection functions

fst :: (a, b)→ a
snd :: (a, b)→ b

which satisfy the equations fst (u, v) = u and snd (u, v) = v .
If Haskell didn’t already have built-in product types, we could define them

for ourselves as a data type, for example like so:

data Both a b = Pair a b
deriving (Show ,Eq)

Of course, the names that we gave to the type and value constructors are arbi-
trary.6 The “deriving” line is just a bit of Haskell syntax to automatically derive
pretty-printing and equality-testing routines for values of our newly-defined data
type, which is useful for testing. (We will talk more about Show , Eq , and other
type classes in the next lecture.) Once again, the way to read the data type
declaration itself is that it introduces a single constructor taking two arguments

Pair :: a → b → Both a b

and asserts that this is the only way to build a value of the product type. In
other words, a value of type Both a b necessarily contains both a value of type a
and a value of type b.

Using pattern-matching, we can write projection functions for our own ver-
sion of product types:

projFst :: Both a b → a
projFst (Pair u v) = u
projSnd :: Both a b → b
projSnd (Pair u v) = v

As a slightly more interesting example, we can write a pair of coercion functions
witnessing the fact that having both A and either B or C is essentially the same
thing as having either A and B or having A and C:

4Haskell is a bit idiosyncratic in using the double colon :: for the typing judgment, as
opposed to the more standard single colon : in other programming languages (such as OCaml)
and in logic and mathematics. I will try to stick to the Haskell notation, although I may mix
them from time to time, as in the preceding paragraph.

5 This kind of overloading of notation for type constructors and value constructors is
common in Haskell. Although it can be confusing at first, it does have the advantage of
reducing the number of notations you need to memorize!

6And if we were to follow typical Haskell naming conventions, it might be a bit more
idiomatic to reuse the same name for both, see Footnote 5.

5

coerceTo :: Both a (Either b c)→ Either (Both a b) (Both a c)
coerceTo (Pair x (Left y)) = Left (Pair x y)
coerceTo (Pair x (Right y)) = Right (Pair x y)

coerceFrom :: Either (Both a b) (Both a c)→ Both a (Either b c)
coerceFrom (Left (Pair x y)) = Pair x (Left y)
coerceFrom (Right (Pair x y)) = Pair x (Right y)

It is not hard to check that the equations

coerceFrom (coerceTo u) = u and coerceTo (coerceFrom v) = v

hold for all u :: Both a (Either b c) and v :: Either (Both a b) (Both a c). This
means that not only can we convert values of one type into values of the other,
and vice versa, but moreover these transformations are reversible. Formally,
we say that the pair of coercion functions realize a type isomorphism in the
sense, that there are a pair of functions

f ::A→ B and g :: B → A

such that g (f x) = x for all x :: A, and f (g y) = y for all y :: B , i.e., f and g
are inverses. In this case, we can prove that

Both a (Either b c) ∼= Either (Both a b) (Both a c) (1)

which is a more mathematically precise way of saying that the two types are
“essentially the same”. This isomorphism (1) expressing the distributivity of
product types over sum types is an analogue of the algebraic identity

a(b+ c) = ab+ ac (2)

familiar from high school algebra, which (as you will see in the exercises below)
is an instance of a more general phenomenon.

Finally, both sum types and product types can be generalized from these
binary versions to combine any number of types, including no types at all. The
nullary product type is called the unit type and is written () in Haskell, with a
single value also written (). Of course we can define our own isomorphic version,
as a data type with a single constructor taking no arguments:

data Unit = U
deriving (Show ,Eq)

The nullary sum type is called the zero type (or void type), and corresponds
to a data type with no constructors. We can express this in Haskell (since the
2010 revision of the language) using the following syntax:

data Zero

Exercise 2.1. For each of the following valid type isomorphisms, write a pair
of coercion functions realizing said isomorphism:

Either a (Either b c) ∼= Either (Either a b) c (1)
Either a b ∼= Either b a (2)

Both a (Both b c) ∼= Both (Both a b) c (3)
Both a b ∼= Both b a (4)

Both Unit a ∼= a (5)
Either Zero a ∼= a (6)

6

Exercise 2.2. Consider the following purported type isomorphism

Either a (Both b c) ∼= Both (Either a b) (Either a c) (??)

which is dual to the type isomorphism (1) we saw above. Begin by writing a
pair of coercion functions between the two sides:

f :: Either a (Both b c)→ Both (Either a b) (Either a c)
g :: Both (Either a b) (Either a c)→ Either a (Both b c)

Do these functions witness the claimed isomorphism? Explain why or why not.

3 Lists and structural induction
Lists are ubiquitous in functional programming, appearing frequently both in
the interfaces to functions as well as in the intermediate results of computations.
In Haskell, the list type is notated [a], with the type a of the underlying elements
of the list surrounded in brackets. Modulo syntax, lists are defined by the
following data type declaration:

data [a] = [] | a : [a]

That is, a list of as is either the empty list, written [] and pronounced “nil”, or
constructed by prepending an element of type a to a list of as, with this binary
operation written x : xs and pronounced (for historical reasons) “x cons xs”.
Note that lists are an example of a recursive data type, since they are defined
in terms of themselves.

The above is not quite valid Haskell syntax, since Haskell does not allow
operators like [] to be defined by data declarations. If we want, we can define
our own isomorphic version of lists via the following perfectly legal Haskell data
type declaration:

data List a = Nil | Cons a (List a)
deriving (Show ,Eq)

The following pair of functions realize an isomorphism [a] ∼= List a:

toList :: [a]→ List a
toList [] = Nil
toList (x : xs) = Cons x (toList xs)

fromList :: List a → [a]
fromList Nil = []
fromList (Cons x xs) = x : fromList xs

However, let’s stick to Haskell’s built-in syntax for lists in the rest of these notes.
Two basic operations that one can perform on a list are to extract its head

and its tail, defined as follows:

head :: [a]→ a
head (x : xs) = xs

tail :: [a]→ a
tail (x : xs) = xs

7

Observe that these definitions are only partial, in the sense that they do not
specify a behavior when the input is nil []. By default, Haskell does not require
pattern-matching definitions to cover all possible patterns, and in this case it is
clear that there is no good choice of values to return (since the empty list does
not have a head or tail). It is generally considered good practice to cover all
possible patterns for the input type, though, and to explicitly raise an exception
in the case of unexpected input – indeed, that’s what’s done for the definitions
of head and tail that appear in the Haskell Prelude. In any case, the Haskell
compiler will generate a pattern-matching exception by default in the case that
the input does not match any one of the provided patterns, so that the behavior
of the function on any input is always well-defined.

Another basic operation on lists is concatenation. The concatenation of two
lists xs and ys is notated xs ++ ys in Haskell, and defined as follows:

(++) :: [a]→ [a]→ [a]
[] ++ ys = ys
(x : xs) ++ ys = x : (xs ++ ys)

Observe that this is a recursive definition: the concatenation of x : xs with ys
is defined as the list obtained by cons’ing x to the front of the concatenation
of xs with ys. In general, recursive definitions may lead to non-termination (as
we saw with the example of loop above), but in this case the circularity is not
“vicious” since the first argument to (++) gets smaller. Indeed, we can prove that
xs ++ ys is a well-defined list by induction on the length of xs, or alternatively
by structural induction on the list xs itself.

The principle of structural induction over lists says that for any property
P (xs) of a list xs, if we can show both

1. P ([]) holds; and

2. for any element x and list xs, P (xs) implies P (x : xs)

then P (xs) holds for all lists xs. To be a bit more precise, we should specify
the type of the elements of the list. If P (xs) is a property of lists of elements of
type a, and we can show (1) above as well as that

2. for any element x :: a and list xs :: [a], P (xs) implies P (x : xs)

then P (xs) holds for all lists xs :: [a].
Now let’s take the time to spell out how to prove that (++) is well-defined

by structural induction. (Although it may seem like overkill for this example, it
will serve as a useful template for proving more interesting properties.) To that
end, we take P (xs :: [a]) to be the property that “for every list ys :: [a], there is
a well-defined list zs :: [a] such that xs++ys = zs”. We need to show two things:

1. P ([]): by definition [] ++ ys = ys, so we take zs = ys.

2. P (xs) implies P (x :xs): by the inductive assumption, there is a list zs ′ such
that xs++ys = zs ′. But by definition (x : xs)++ys = x : (xs++ys) = x : zs ′,
so we take zs = x : zs ′.

We have thus established that P (xs) holds for all lists xs :: [a], i.e., that for all
xs :: [a] and ys :: [a], there is a well-defined zs :: [a] such that xs ++ ys = zs.

8

Exercise 3.1. Classically, a monoid is defined as a set equipped with an as-
sociative binary operation and an identity element. For example, the natural
numbers form a monoid under addition with zero as the identity element, writ-
ten (N,+, 0), and also a monoid under multiplication with one as the identity
element, written (N,×, 1). Show that lists form a monoid under concatenation
with nil as the identity element, by proving that the equations:

[] ++ xs = xs (1)
xs ++ [] = xs (2)

xs ++ (ys ++ zs) = (xs ++ ys) ++ zs (3)

hold for all lists xs, ys, and zs. Hint: Use structural induction for (2) and (3).

Exercise 3.2. A monoid homomorphism from (X, ∗, eX) to (Y, •, eY) is defined
as a function ϕ : X → Y that is compatible with both monoid structures, in the
sense that ϕ(x1∗x2) = ϕ(x1)•ϕ(x2) for all x1, x2 ∈ X and moreover ϕ(eX) = eY .
Prove that the length function:

length :: [a]→ Int
length [] = 0
length (x : xs) = 1 + length xs

defines a monoid homomorphism from lists under concatenation to the natural
numbers under addition. Hint: Use structural induction, and some properties
of addition.

Exercise 3.3. Let (b,⊛, e) be an arbitrary monoid represented in Haskell, i.e.,
a type b, a binary operation (⊛) : b → b → b, and a value e :: b such that

e ⊛ v = v = v ⊛ e u ⊛ (v ⊛ w) = (u ⊛ v) ⊛ w

for all values u, v, w :: b. Suppose moreover that you are given a function
f :a → b. Write a function ϕ:[a]→ b satisfying both of the following properties:

• ϕ behaves like f for singleton lists, i.e., ϕ [x] = f x for all x :: a, and

• ϕ is a monoid homomorphism.

Finally, explain how to recover the length function from Exercise 3.2 as ϕ for a
particular choice of monoid (b,⊛, e) and function f : a → b.

Exercise 3.4. Prove that the function ϕ you defined in Exercise 3.3 is essentially
unique, in the following sense: if ψ ::[a]→ b is any other monoid homomorphism
such that ψ [x] = f x for all x :: a, then ψ xs = ϕ xs for all xs :: [a]. (As a result
of all these properties, we can conclude that the type of lists [a] equipped with
concatenation forms the free monoid over a.)

4 Maybe types
It sometimes happens that we want a function to try to compute something that
may yield a value of some type, but might also fail, and we want the function to
tell us explicitly when it fails. In Haskell, this is achieved by having the function
return a value of the Maybe type, which is defined as follows:

9

data Maybe a = Nothing | Just a

The type Maybe a is called a maybe type, or alternatively option type (which
is the terminology in Standard ML and OCaml). Observe that Maybe a ∼=
Either () a, meaning that maybe types can be isomorphically encoded using
sum types and the unit type – although maybe types are so commonly used
that they deserve their own name and syntax!

To give an example application of maybe types, the Prelude defines a func-
tion lookup which tries to find the value paired with a key in a list of key-value
pairs:7

lookup :: Eq a ⇒ a → [(a, b)]→ Maybe b
lookup k [] = Nothing
lookup k ((k ′, v) : kvs)
| k ≡ k ′ = Just v
| otherwise = lookup k kvs

As another example, the Standard Library function elemIndex tries to find the
index of an element within a list:

elemIndex :: Eq a ⇒ a → [a]→ Maybe Int
elemIndex x [] = Nothing
elemIndex x (x ′ : xs)
| x ≡ x ′ = Just 0
| otherwise = case elemIndex x xs of

Nothing → Nothing
Just i → Just (i + 1)

Notice that here we use pattern-matching on the result of the recursive call, via
Haskell’s case construct.

Exercise 4.1. Prove the type isomorphism

Both (Maybe a) (Maybe b) ∼= Maybe (Either (Either a b) (Both a b))

which is the analogue of the algebraic identity (1 + a)(1 + b) = 1 + a+ b+ ab.

5 Introducing accumulators
Although the connections between functional programming and mathematics
are fascinating, eventually one has to contend with the fact that in programming,
we care not only about mathematical correctness but also about efficiency.
There may be different ways of implementing the same function that although
equivalent in terms of their input-output behavior, differ wildly in terms of their
consumption of time, space, or other resources – and understanding these costs
is an important part of learning functional programming.

The use of accumulators is a general technique that allows to derive rela-
tively efficient functional programs by in a sense mimicking the behavior of a
corresponding imperative program. Consider the list reversal function. We can

7This definition makes use of Haskell’s pattern guards, which extend ordinary pattern-
matching against constructors by allowing tests of arbitrary boolean conditions.

10

give a straightforward recursive implementation that reduces list reversal to list
concatenation:

reverse :: [a]→ [a]
reverse [] = []
reverse (x : xs) = reverse xs ++ [x]

It is easy to verify that this implementation of list reversal is correct, and even
to establish that it satisfies expected properties such as reverse (xs ++ ys) =
reverse ys++ reverse xs and reverse (reverse xs) = xs. However, this implemen-
tation of reverse is inefficient. The issue is that computing the concatenation
of two lists takes time proportional to the length of the first list. Given a list
xs of length n, reverse xs makes n calls to concatenation of the form xs ′ ++ [x],
where xs ′ is the result of calling reverse on a sublist of xs of length 0 ≤ k ≤ n.
Since the reverse function is length-preserving, the overall time complexity of
this implementation of reverse is Θ(n2) in the length of the input list.

On the other hand, there is a simple imperative algorithm for reversing a
list in Θ(n) time, using an auxiliary stack:

1. Initialize the stack to be empty.

2. While the input list is non-empty, push its head onto the stack, and keep
processing its tail.

3. Once the input list is empty, return the contents of the stack.

Perhaps surprisingly, we can turn this imperative solution into an elegant func-
tional program! The idea is to define a helper function which, in addition to
the input list xs, takes the auxiliary “stack” (which is in fact just another list)
as an extra input argument ys:

revacc :: [a]→ [a]→ [a]
revacc [] ys = ys
revacc (x : xs) ys = revacc xs (x : ys)

The first clause revacc [] ys = ys of the definition corresponds to step (3) of the
imperative algorithm above, while the clause revacc (x :xs) ys = revacc xs (x :ys)
corresponds to step (2). Finally, step (1) is implemented by (re-)defining reverse
in terms of revacc:

reverse xs = revacc xs []

We have thus obtained an efficient, purely functional implementation of list
reversal. Here’s an example of it in action:

reverse [1, 2, 3, 4]
= revacc [1, 2, 3, 4] []
= revacc [2, 3, 4] [1]
= revacc [3, 4] [2, 1]
= revacc [4] [3, 2, 1]
= revacc [] [4, 3, 2, 1]
= [4, 3, 2, 1]

11

We can see that the second argument of revacc really behaves like a stack, and
that the reversal is indeed computed in linear time.

The second argument of revacc is said to be an “accumulator”, since it ac-
cumulates intermediate results on the way towards computing the final an-
swer. That gives a very operational way of understanding the accumulator
technique, but there is also a slightly more conceptual way of understanding
it, related to the idea that to solve a particular problem, oftentimes it can be
helpful to try to solve a more general problem. In this instance, the function
revacc actually solves the following more general problem: given two lists, com-
pute the reversal of the first list concatenated with the second list, that is,
revacc xs ys = reverse xs ++ ys. After writing this more general function, we
can then reduce list reversal to the case ys = [].

Another classic example of the use of accumulators is computing Fibonacci
numbers. Mathematically, the Fibonacci numbers Fn are defined by the recur-
rence Fn = Fn−1 + Fn−2 together with initial values F0 = 0, F1 = 1, which
translates directly to the following Haskell code:8

fib :: Integer → Integer
fib n
| n ≡ 0 = 0
| n ≡ 1 = 1
| n ⩾ 2 = fib (n − 1) + fib (n − 2)

Although mathematically correct, this recursive computation of the Fibonacci
numbers is horribly inefficient: each call to fib spawns two recursive calls to fib
while only decreasing the input by either 1 or 2, and so fib n has complexity
exponential in n. We can see this by running the program on a few inputs:

*Main> fib 10
55
(0.02 secs, 123,512 bytes)
*Main> fib 20
6765
(0.08 secs, 6,423,944 bytes)
*Main> fib 30
832040
(2.38 secs, 781,578,344 bytes)
*Main> fib 31
1346269
(3.58 secs, 1,264,577,008 bytes)
*Main> fib 32
2178309
(6.05 secs, 2,046,084,072 bytes)

We observe that the behaviour is indeed exponential, with each increment of n
multiplying both the time and space usage by roughly the golden ratio.

On the other hand, there is a much more efficient imperative algorithm for
computing Fn in linear time, using a pair of auxiliary variables a and b:

• Initialize a← 0 and b← 1.
8Here we use the type Integer of arbitrary-length integers, rather than machine integers.

12

• While n > 0, simultaneously update (a, b)← (b, a+ b), and decrement n.

• Once n = 0, return the value of a.

Again, this imperative solution can be transformed almost mechanically into a
purely functional one. First we define a helper function fibacc taking two extra
parameters:

fibacc :: Integer → Integer → Integer → Integer
fibacc n a b
| n ≡ 0 = a
| n ⩾ 1 = fibacc (n − 1) b (a + b)

And then we redefine fib as an appropriate call to fibacc:

fib n = fibacc n 0 1

As we saw before with revacc, the function fibacc may be seen as solving a
more general problem than computing Fibonacci numbers: fibacc n a b actually
computes the nth entry of a generalized Fibonacci sequence, defined by the same
recurrence but with initial values a and b. (For example, fibacc n 2 1 is the nth
“Lucas number”.)

We can observe that the new version indeed computes Fibonacci numbers
much more efficiently:

*Main> fib n = fibacc n 0 1 -- redefine fib
*Main> fib 32
2178309
(0.00 secs, 82,288 bytes)
*Main> fib 100
354224848179261915075
(0.01 secs, 114,400 bytes)
*Main> fib 1000
43466557686937456435688527675040625802564660517371780402481729089 \
53655541794905189040387984007925516929592259308032263477520968962 \
32398733224711616429964409065331879382989696499285160037044761377 \
95166849228875
(0.01 secs, 637,736 bytes)

6 Trees
Trees provide another important example of a data type. In fact, there are
many different kinds of “trees” in computer science and mathematics, but here
for concreteness we will consider binary trees with unlabelled leaves and labelled
binary nodes. In Haskell, these can be defined via the following recursive data
type declaration:

data BinTree a = Leaf | Node a (BinTree a) (BinTree a)
deriving (Show ,Eq)

which, again to be clear, introduces the constructors Leaf and Node with the
following types:

13

Leaf :: BinTree a
Node :: a → BinTree a → BinTree a → BinTree a

So a binary tree is either a Leaf , containing no data, or a Node, which contains
a value together with a left subtree and a right subtree. The binary trees

4

3

2

1

4

2

1

3

4

31

2

are represented as the following values, for example:

t1 , t2 , t3 :: BinTree Int
t1 = Node 2 (Node 1 Leaf Leaf) (Node 3 Leaf (Node 4 Leaf Leaf))
t2 = Node 3 (Node 1 Leaf (Node 2 Leaf Leaf)) (Node 4 Leaf Leaf)
t3 = Node 1 Leaf (Node 2 Leaf (Node 3 Leaf (Node 4 Leaf Leaf)))

Many different operations on binary trees can be naturally defined using pattern-
matching and recursion:

(Compute the number of nodes in a binary tree.)

nodes :: BinTree a → Int
nodes Leaf = 0
nodes (Node tL tR) = 1 + nodes tL+ nodes tR

*Main> (nodes t1, nodes t2, nodes t3)
(4,4,4)

(Compute the number of leaves in a binary tree.)

leaves :: BinTree a → Int
leaves Leaf = 1
leaves (Node tL tR) = leaves tL+ leaves tR

*Main> (leaves t1, leaves t2, leaves t3)
(5,5,5)

(Compute the height of a binary tree.)

height :: BinTree a → Int
height Leaf = 0
height (Node tL tR) = 1 +max (height tL) (height tR)

14

*Main> (height t1, height t2, height t3)
(3,3,4)

(Compute the mirror image of a binary tree.)

mirror :: BinTree a → BinTree a
mirror Leaf = Leaf
mirror (Node x tL tR) = Node x (mirror tR) (mirror tL)

*Main> mirror t2
Node 3 (Node 4 Leaf Leaf) (Node 1 (Node 2 Leaf Leaf) Leaf)

Just like lists, trees also admit a useful principle of structural induction. The
principle of structural induction over binary trees says that for any prop-
erty P (t) of a binary tree t (with nodes labelled by values of type a), if we can
show both

1. P (Leaf) holds; and

2. for any element x and pair of trees tL and tR, P (tL) and P (tR) implies
P (Node x tL tR)

then P (t) holds for all binary trees t . Again, to be a bit more precise we should
state the principle of structural induction for a fixed type of values stored at
the nodes of the binary tree. Then the inductive step becomes

2. for any element x :: a and pair of trees tL ::BinTree a and tR ::BinTree a,
P (tL) and P (tR) implies P (Node x tL tR)

with conclusion that P (t) holds for all binary trees t :: BinTree a.

Exercise 6.1. Define a data type of unary-binary trees with labelled leaves.
(“Unary-binary” means that every internal node has 1 or 2 children.)

Exercise 6.2. Prove that height (mirror t) = height t for all binary trees t .

Exercise 6.3. Write a function isBST :: Ord a ⇒ BinTree a → Bool which
determines whether a binary tree is a binary search tree, by first writing a
function inorder ::BinTree a → [a] that returns the list of node labels of a binary
tree in an inorder traversal, as well as a function isSorted ::Ord a ⇒ [a]→ Bool
that determines whether a list is sorted, and composing them.

15

	First example: the booleans
	Sums and products
	Lists and structural induction
	Maybe types
	Introducing accumulators
	Trees

