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0. Thinking fibrationally about deductive systems
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Topological intuitions

Imagine we are analyzing different spaces, more or less complicated.
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Topological intuitions

Imagine we are analyzing different spaces, more or less complicated. Rather than trying
to study these spaces directly, it can be helpful to first project them down to some
“simpler” space. We can learn something about our original spaces by the nature of
these projections, and sometimes we can even reconstruct the spaces from their fibers.
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Fibrational perspectives on deductive systems

Bill Lawvere (late 1960s): the structure of predicate logic and the nature of quantifiers
may be clarified by organizing proofs into bundles lying over spaces of formulas.
[Law69, Law70]. ..
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Bill Lawvere (late 1960s): the structure of predicate logic and the nature of quantifiers
may be clarified by organizing proofs into bundles lying over spaces of formulas.
[Law69, Law70]. ..

This idea may be extended to a variety of computational and deductive systems,
including program logics, finite-state automata and context-free grammars.

... [Walg9, dGO1, AGNO5, MZ15, CP20, MZ25]. . .

Proof, recognition, and parsing may be thus reduced to lifting problems.
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Functors as type refinement systems: some terminology and notation [MZ15]

We like to think of a category D equipped with a functor p : D — C as defining a kind
of abstract type system, or “type refinement system”. The idea is that the bundle
p : D — C provides a source of additional typing information for the arrows of C.
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Let R € D and A € C be objects s.t. p(R) = A. We write R C A and say R refines A.

A typing judgment is a triple (S, f, T) of an arrow f : A — B of C and a pair of
objects S = A and T = B of D refining its domain and codomain.

A derivation of a typing judgment (S,f, T)is an arrow o« : S — T of D s.t. p(a) = f.
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Functors as type refinement systems: some intuition

f
C A—— B

(f a program taking input of type A and producing output of type B)
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Functors as type refinement systems: some intuition
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From type systems to languages

Given a functor p: D — C and objects S = A and T C B, the language of arrows
induced by (p,S, T) is defined as

Lyst:={pla)|a:S—->T}<C(AB).

We may think of £, s ;- as the set of programs f : A — B such that (S,f, T) holds.
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Ambiguity

A judgment (S, f, T) may in general have more than one derivation, in other words, a
type refinement system may be ambiguous.

By definition, p : D — C is unambiguous iff p is faithful, i.e., for any pair of arrows
a,a’ S — T with the same source and target, if p(a) = p(a/) then a = /.

When p is potentially ambiguous, it can be interesting to consider £, s - as a
“proof-relevant language”, that is, as a bundle of homsets

Lost:=D(S,T)— C(A,B).
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1. Finite-state automata as functors
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Automata as graph homomorphisms

The underlying transition graph of any NFA (without e-transitions) over the alphabet
> is entirely described by a graph homomorphism ¢ : G — By into the bouquet graph
with one node * and a loop a: % — = for every ae L.

10/32



Automata as graph homomorphisms

11/32



graph homomorphisms

Automata as



Automata as graph homomorphisms
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Free categories

To any graph G is associated a free category /G whose objects are nodes and whose
arrows are paths. For example, the free category over

B
V \b f
— —
G = 4 D —S5 E F
<~ —
N /d g
c

has hom(A, D) = { ab,cd } and hom(E, E) = (fg)*.

Universal property of free categories: any functor FG — C into a category C is
uniquely determined by a graph homomorphism G — C into the underlying graph of C.
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Recognition as a path lifting problem

Any word w € * corresponds to a path in By, i.e., to an arrow * — * in FBy.

Any graph homomorphism ¢ : G — H induces a corresponding functor between free
categories F¢ : FG — FH, sending paths in G to paths in H of the same length.

Let A be an NFA with transition graph ¢ : G — By and associated functor p = F¢.
Then A accepts w € £* just in case there is an arrow « : go — gr in FG such that
p(a) = w, from an initial state qp to an accepting state gr.
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Recognition as a path lifting problem

do da
A = 15)\%/
a b
QQ *L*H*H*L*
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Recognition as a path lifting problem
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Recognition as a path lifting problem
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Fibrational properties

A homomorphism of finite graphs ¢ : G — By represents the transition graph of a
complete DFA just in case the functor F¢ : FG — FBy is a discrete opfibration.
Such functors are in 1-to-1 correspondence with covariant presheaves By — FinSet.
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Fibrational properties

A homomorphism of finite graphs ¢ : G — By represents the transition graph of a
complete DFA just in case the functor F¢ : FG — FBy is a discrete opfibration.
Such functors are in 1-to-1 correspondence with covariant presheaves By — FinSet.

More generally, a functor p : D — FBy represents the transition graph of an NFA just
in case it has finite fibers and unique lifting of factorizations. Such functors are in
1-to-1 correspondence with covariant presheaves valued in the bicategory of spans of
finite sets, that is, (pseudo)functors FBy — FinSpan.

This suggests two different ways of generalizing automata to arbitrary base categories:
1. As functors p : FG — C from a finitely generated free category.
2. As finitary ULF functors p: Q@ — C.

We will eventually take position (2), but adapt (1) for CFGs...
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2. Context-free grammars as functors
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From categories to operads

An operad (aka multicategory) is like a category where arrows can take multiple
objects as input.
f:A,...,A,— B (n>=0)

(We work with planar operads, which have a linear order on inputs, and no exchange.)

Any functor of operads p : D — O equipped with an object S C A induces a language
of constants defined by

L,s:={pla)a:S}<cO(;A).
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Parsing as a lifting problem

§ NP VP

NP"% Noom
NP — Roven

VP = loes NP



Parsing as a lifting problem
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Parsing as a lifting problem

1 g5 Np VP Ve S NP ‘FS
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The splicing construction

For any category C, the operad of spliced arrows VW C is defined as follows:
» objects are pairs (A, B) of objects of C;

» n-operations f : (A1, B1),...,(An, Bn) — (A, B) given by sequences
f=w—wi—...—w,of n+1arrows w; : B > Aj11inC (By = A, Apy1 = B);
» composition performed by “splicing into the gaps”...
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The splicing construction

D: G
\ U1
Ay By A, B As Bs A By G D1\>/Cz Dz\)/A's Bs
W1 W, = W1 Ug Us Uz W
Wo W3 Wo W3
A B A B

(Wo—w1—wo—w3) 01 (Ug—u1—U2) = Wo—WjUp— U1 —UpWo—W3
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Context-free grammar over a category

A CFG over a category C is a tuple G = (S, p) consisting of a pointed finite species
S =(S,S5€8S) and a functor p : FS — WC. The context-free language generated by
Gistheset L;:=L, s ={p(a)|a:S} < C(A, B) where p(S) = (A, B).
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Context-free grammar over a category

A CFG over a category C is a tuple G = (S, p) consisting of a pointed finite species
S=(S,S€S) and a functor p : FS — W C. The context-free language generated by
Gistheset L;:=L, s ={p(a)|a:S} < C(A, B) where p(S) = (A, B).

Example: a classical CFG is just a CFG over FBy.

aex

Example: let IB%;:$ = L — 5+ %  ACFGover ]:IB%AZ$ can have productions
that are only applicable at the beginning/end of the string.

24 /32



3. Generalized NFAs and CFGs over operads
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Definitions

Let O be any operad.

A NFA over O is a tuple M = (Q, p) of a pointed operad (Q, g, € Q) and a functor
p: Q — O satisfying the finite fiber and ULF properties.
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Definitions

Let O be any operad.

A NFA over O is a tuple M = (Q, p) of a pointed operad (Q, g, € Q) and a functor
p: Q — O satisfying the finite fiber and ULF properties.

Example: a nondeterministic tree automaton on a graded alphabet X is just an NFA
over the free operad FX.

A CFG over O is a tuple G = (S, p) of a pointed finite species S = (S, S € S) and an
arbitrary functor p : 7S — O.

Example: k-multiple and k-parallel CFGs in the sense of Seki et al. (1991) are CFGs
over free semi-cartesian / free cartesian operads. . .
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A few constructions on operads

Given an operad O, the free symmetric monoidal operad over O is the operad ls;mO
., Xx] of objects of O, and whose n-ary operations

., fx], o) of a list of operations

Qe =T, Ty,

whose objects are lists [ X1, ..
[T1],...,[Tn] = [X1,..., Xk] are pairs ([f1,..
f1:Q — X1,...,f: Qx — X and a bijection o : Qq,..

i ‘E_x
o | X
g ‘E]D— :

The free semi-cartesian monoidal operad !,O / free cartesian monoidal operad !, O
are defined in the same way but letting o be any injection / function.
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Generating mildly context-sensitive languages

The following 3-mCFG generates the language a"#b"#'c".

5 3 R T LAY, (8B), (6]
 F$ :
A, 5.6 TK R s ¢ [A O]
C-Fabedtc
: ! WC [idh,;dgli&cl [b»';ap\’k'illgl e-id.] [__#__._#'_.]
5 AN, (BB), (0] TN, (8,8), (6] — T, 88), (601~ [LAC)]
: ), (8,8), (40)]
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Closure properties of generalized CFLs

1. If £,...,L, S O(A) are context-free, then so is their union | J5_; £; € O(A).

2. If £ € O(A1),...,L, < O(A,) are CF, and if f : Aq,..., A, — Alis an operation
of O, then {f(u1,...,up) |1 €Ly,...,une L, } < O(A) is CF.

3. f LZ O(A) is CF and F : O — P is a functor of operads, then the functorial
image F(L) < P(F(A)) is also CF.

4. If L < O(A) is CF and R < O(A) is regular, then L n R < O(A) is CF.
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1. If £,...,L, S O(A) are context-free, then so is their union | J5_; £; € O(A).

2. If £ € O(A1),...,L, < O(A,) are CF, and if f : Aq,..., A, — Alis an operation
of O, then {f(u1,...,up) |1 €Ly,...,une L, } < O(A) is CF.

3. f LZ O(A) is CF and F : O — P is a functor of operads, then the functorial
image F(L) < P(F(A)) is also CF.

4. If L < O(A) is CF and R < O(A) is regular, then L n R < O(A) is CF.

(4) is a corollary of the following pullback construction: given a gCFG G = (S, pc) and
a gNFA M = (Q, pm) with pg(S) = pum(g,), we can construct a gCFG M~1(G) over
Q generating the language py, ' (Ls) N Q(gr). (cf. the Bar-Hillel construction)
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4. Perspectives
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Perspectives

Context-free grammars and finite-state automata are complementary notions from
formal language theory. Their representation (and generalization) as functors of
operads seems to have some explanatory power.

Current projects include extending the splicing construction to account for context-free
languages beyond languages of words (cf. Matthew Earnshaw’s PhD thesis), as well as

developing the notion of “proof-relevant language”.

A long term goal is to transfer knowledge between category theory, automata theory,
parsing & linguistics, type systems...
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