
Generalized context-free grammars
over categories and operads

Noam Zeilberger1

Ecole Polytechnique (LIX)

Séminaire d’informatique théorique
Université de Rouen Normandie, 20 November 2025

1Based on joint work with Paul-André Melliès. Main reference: The categorical contours of the
Chomsky-Schützenberger representation theorem, LMCS 21:2, 2025.

1 / 32

0. Thinking fibrationally about deductive systems

2 / 32

Topological intuitions
Imagine we are analyzing different spaces, more or less complicated.

Rather than trying
to study these spaces directly, it can be helpful to first project them down to some
“simpler” space. We can learn something about our original spaces by the nature of
these projections, and sometimes we can even reconstruct the spaces from their fibers.

3 / 32

Topological intuitions
Imagine we are analyzing different spaces, more or less complicated. Rather than trying
to study these spaces directly, it can be helpful to first project them down to some
“simpler” space.

We can learn something about our original spaces by the nature of
these projections, and sometimes we can even reconstruct the spaces from their fibers.

3 / 32

Topological intuitions
Imagine we are analyzing different spaces, more or less complicated. Rather than trying
to study these spaces directly, it can be helpful to first project them down to some
“simpler” space.

We can learn something about our original spaces by the nature of
these projections, and sometimes we can even reconstruct the spaces from their fibers.

trivial bundle fibration branched cover

3 / 32

Topological intuitions
Imagine we are analyzing different spaces, more or less complicated. Rather than trying
to study these spaces directly, it can be helpful to first project them down to some
“simpler” space. We can learn something about our original spaces by the nature of
these projections, and sometimes we can even reconstruct the spaces from their fibers.

trivial bundle fibration branched cover

3 / 32

Topological intuitions
Imagine we are analyzing different spaces, more or less complicated. Rather than trying
to study these spaces directly, it can be helpful to first project them down to some
“simpler” space. We can learn something about our original spaces by the nature of
these projections, and sometimes we can even reconstruct the spaces from their fibers.

trivial bundle fibration branched cover

3 / 32

Fibrational perspectives on deductive systems

Bill Lawvere (late 1960s): the structure of predicate logic and the nature of quantifiers
may be clarified by organizing proofs into bundles lying over spaces of formulas.

[Law69, Law70]. . .

This idea may be extended to a variety of computational and deductive systems,
including program logics, finite-state automata and context-free grammars.

. . . [Wal89, dG01, AGN05, MZ15, CP20, MZ25]. . .

Proof, recognition, and parsing may be thus reduced to lifting problems.

4 / 32

Fibrational perspectives on deductive systems

Bill Lawvere (late 1960s): the structure of predicate logic and the nature of quantifiers
may be clarified by organizing proofs into bundles lying over spaces of formulas.

[Law69, Law70]. . .

This idea may be extended to a variety of computational and deductive systems,
including program logics, finite-state automata and context-free grammars.

. . . [Wal89, dG01, AGN05, MZ15, CP20, MZ25]. . .

Proof, recognition, and parsing may be thus reduced to lifting problems.

4 / 32

Fibrational perspectives on deductive systems

Bill Lawvere (late 1960s): the structure of predicate logic and the nature of quantifiers
may be clarified by organizing proofs into bundles lying over spaces of formulas.

[Law69, Law70]. . .

This idea may be extended to a variety of computational and deductive systems,
including program logics, finite-state automata and context-free grammars.

. . . [Wal89, dG01, AGN05, MZ15, CP20, MZ25]. . .

Proof, recognition, and parsing may be thus reduced to lifting problems.

4 / 32

Functors as type refinement systems: some terminology and notation [MZ15]

We like to think of a category D equipped with a functor p : D Ñ C as defining a kind
of abstract type system, or “type refinement system”. The idea is that the bundle
p : D Ñ C provides a source of additional typing information for the arrows of C.

Let R P D and A P C be objects s.t. ppRq “ A. We write R < A and say R refines A.

A typing judgment is a triple pS, f , T q of an arrow f : A Ñ B of C and a pair of
objects S < A and T < B of D refining its domain and codomain.

A derivation of a typing judgment pS, f , T q is an arrow α : S Ñ T of D s.t. ppαq “ f .

5 / 32

Functors as type refinement systems: some terminology and notation [MZ15]

We like to think of a category D equipped with a functor p : D Ñ C as defining a kind
of abstract type system, or “type refinement system”. The idea is that the bundle
p : D Ñ C provides a source of additional typing information for the arrows of C.

Let R P D and A P C be objects s.t. ppRq “ A. We write R < A and say R refines A.

A typing judgment is a triple pS, f , T q of an arrow f : A Ñ B of C and a pair of
objects S < A and T < B of D refining its domain and codomain.

A derivation of a typing judgment pS, f , T q is an arrow α : S Ñ T of D s.t. ppαq “ f .

5 / 32

Functors as type refinement systems: some terminology and notation [MZ15]

We like to think of a category D equipped with a functor p : D Ñ C as defining a kind
of abstract type system, or “type refinement system”. The idea is that the bundle
p : D Ñ C provides a source of additional typing information for the arrows of C.

Let R P D and A P C be objects s.t. ppRq “ A. We write R < A and say R refines A.

A typing judgment is a triple pS, f , T q of an arrow f : A Ñ B of C and a pair of
objects S < A and T < B of D refining its domain and codomain.

A derivation of a typing judgment pS, f , T q is an arrow α : S Ñ T of D s.t. ppαq “ f .

5 / 32

Functors as type refinement systems: some terminology and notation [MZ15]

We like to think of a category D equipped with a functor p : D Ñ C as defining a kind
of abstract type system, or “type refinement system”. The idea is that the bundle
p : D Ñ C provides a source of additional typing information for the arrows of C.

Let R P D and A P C be objects s.t. ppRq “ A. We write R < A and say R refines A.

A typing judgment is a triple pS, f , T q of an arrow f : A Ñ B of C and a pair of
objects S < A and T < B of D refining its domain and codomain.

A derivation of a typing judgment pS, f , T q is an arrow α : S Ñ T of D s.t. ppαq “ f .

5 / 32

Functors as type refinement systems: some intuition

D S T

C A B

p

α

f

(f a program taking input of type A and producing output of type B)

6 / 32

Functors as type refinement systems: some intuition

D S T

C A B

p

α

f

(S and T predicates refining A and B)

6 / 32

Functors as type refinement systems: some intuition

D S T

C A B

p

α

f

(α a proof that f has a more refined type S Ñ T)

6 / 32

From type systems to languages

Given a functor p : D Ñ C and objects S < A and T < B, the language of arrows
induced by pp, S, T q is defined as

Lp,S,T :“ t ppαq | α : S Ñ T u Ď CpA, Bq.

We may think of Lp,S,T as the set of programs f : A Ñ B such that pS, f , T q holds.

7 / 32

Ambiguity

A judgment pS, f , T q may in general have more than one derivation, in other words, a
type refinement system may be ambiguous.

By definition, p : D Ñ C is unambiguous iff p is faithful, i.e., for any pair of arrows
α, α1 : S Ñ T with the same source and target, if ppαq “ ppα1q then α “ α1.

When p is potentially ambiguous, it can be interesting to consider Lp,S,T as a
“proof-relevant language”, that is, as a bundle of homsets

Lp,S,T :“ DpS, T q ÝÑ CpA, Bq.

8 / 32

1. Finite-state automata as functors

9 / 32

Automata as graph homomorphisms

The underlying transition graph of any NFA (without ϵ-transitions) over the alphabet
Σ is entirely described by a graph homomorphism ϕ : G Ñ BΣ into the bouquet graph
with one node ˚ and a loop a : ˚ Ñ ˚ for every a P Σ.

10 / 32

Automata as graph homomorphisms

q0

q1 q2

q3

q4

a

b

a

b

a
b

a

a

q0

q1 q2

q3
q4 q5

a

b

a

b

a

b

a

b

a

b
a

b

11 / 32

Automata as graph homomorphisms

11 / 32

Automata as graph homomorphisms

q0

q1 q2

q3

q4

1

6

2

4

75

3

0

q0

q1 q2

q3
q4 q5

0

1

2

3

4

5
6

7

8

9
10

11

˚

a b

11 / 32

Free categories

To any graph G is associated a free category FG whose objects are nodes and whose
arrows are paths. For example, the free category over

G “

B

A D E F

C

ba

c

e
f

g
d

has hompA, Dq “ t ab, cd u and hompE , E q “ pfgq˚.

Universal property of free categories: any functor FG Ñ C into a category C is
uniquely determined by a graph homomorphism G Ñ C into the underlying graph of C.

12 / 32

Recognition as a path lifting problem

Any word w P Σ˚ corresponds to a path in BΣ, i.e., to an arrow ˚ Ñ ˚ in FBΣ.

Any graph homomorphism ϕ : G Ñ H induces a corresponding functor between free
categories Fϕ : FG Ñ FH, sending paths in G to paths in H of the same length.

Let A be an NFA with transition graph ϕ : G Ñ BΣ and associated functor p “ Fϕ.
Then A accepts w P Σ˚ just in case there is an arrow α : q0 Ñ qf in FG such that
ppαq “ w , from an initial state q0 to an accepting state qf .

13 / 32

Recognition as a path lifting problem

A :“

q0

q1 q2

q3

q4

1

6

2

4

75

3

0

˚

a b

q0 q1 q2

q0 q4

q1 q2 q2

˚ ˚ ˚ ˚ ˚

1 2
40

1
2 3

4

a a a b

14 / 32

Recognition as a path lifting problem

A :“

q0

q1 q2

q3

q4

1

6

2

4

75

3

0

˚

a b

q0 q1 q2

q0 q4

q1 q2 q2

˚ ˚ ˚ ˚ ˚

1 2
40

1
2 3

4

a a a b

14 / 32

Recognition as a path lifting problem

A :“

q0

q1 q2

q3
q4 q5

0

1

2

3

4

5
6

7

8

9
10

11

q0 q1 q2 q2 q5

˚

a b

˚ ˚ ˚ ˚ ˚

0 2 4 5

a a a b

15 / 32

Recognition as a path lifting problem

A :“

q0

q1 q2

q3
q4 q5

0

1

2

3

4

5
6

7

8

9
10

11

q0 q1 q2 q2 q5

˚

a b

˚ ˚ ˚ ˚ ˚

0 2 4 5

a a a b

15 / 32

Recognition as a path lifting problem

A :“

q0

q1 q2

q3
q4 q5

0

1

2

3

4

5
6

7

8

9
10

11

q0 q1 q2 q2 q5

˚

a b

˚ ˚ ˚ ˚ ˚

0 2 4 5

a a a b

15 / 32

Recognition as a path lifting problem

A :“

q0

q1 q2

q3
q4 q5

0

1

2

3

4

5
6

7

8

9
10

11

q0 q1 q2 q2 q5

˚

a b

˚ ˚ ˚ ˚ ˚

0 2 4 5

a a a b

15 / 32

Recognition as a path lifting problem

A :“

q0

q1 q2

q3
q4 q5

0

1

2

3

4

5
6

7

8

9
10

11

q0 q1 q2 q2 q5

˚

a b

˚ ˚ ˚ ˚ ˚

0 2 4 5

a a a b

15 / 32

Fibrational properties

A homomorphism of finite graphs ϕ : G Ñ BΣ represents the transition graph of a
complete DFA just in case the functor Fϕ : FG Ñ FBΣ is a discrete opfibration.
Such functors are in 1-to-1 correspondence with covariant presheaves FBΣ Ñ FinSet.

More generally, a functor p : D Ñ FBΣ represents the transition graph of an NFA just
in case it has finite fibers and unique lifting of factorizations. Such functors are in
1-to-1 correspondence with covariant presheaves valued in the bicategory of spans of
finite sets, that is, (pseudo)functors FBΣ Ñ FinSpan.

This suggests two different ways of generalizing automata to arbitrary base categories:
1. As functors p : FG Ñ C from a finitely generated free category.
2. As finitary ULF functors p : Q Ñ C.

We will eventually take position (2), but adapt (1) for CFGs...

16 / 32

Fibrational properties

A homomorphism of finite graphs ϕ : G Ñ BΣ represents the transition graph of a
complete DFA just in case the functor Fϕ : FG Ñ FBΣ is a discrete opfibration.
Such functors are in 1-to-1 correspondence with covariant presheaves FBΣ Ñ FinSet.

More generally, a functor p : D Ñ FBΣ represents the transition graph of an NFA just
in case it has finite fibers and unique lifting of factorizations.

Such functors are in
1-to-1 correspondence with covariant presheaves valued in the bicategory of spans of
finite sets, that is, (pseudo)functors FBΣ Ñ FinSpan.

This suggests two different ways of generalizing automata to arbitrary base categories:
1. As functors p : FG Ñ C from a finitely generated free category.
2. As finitary ULF functors p : Q Ñ C.

We will eventually take position (2), but adapt (1) for CFGs...

16 / 32

Fibrational properties

A homomorphism of finite graphs ϕ : G Ñ BΣ represents the transition graph of a
complete DFA just in case the functor Fϕ : FG Ñ FBΣ is a discrete opfibration.
Such functors are in 1-to-1 correspondence with covariant presheaves FBΣ Ñ FinSet.

More generally, a functor p : D Ñ FBΣ represents the transition graph of an NFA just
in case it has finite fibers and unique lifting of factorizations. Such functors are in
1-to-1 correspondence with covariant presheaves valued in the bicategory of spans of
finite sets, that is, (pseudo)functors FBΣ Ñ FinSpan.

This suggests two different ways of generalizing automata to arbitrary base categories:
1. As functors p : FG Ñ C from a finitely generated free category.
2. As finitary ULF functors p : Q Ñ C.

We will eventually take position (2), but adapt (1) for CFGs...

16 / 32

Fibrational properties

A homomorphism of finite graphs ϕ : G Ñ BΣ represents the transition graph of a
complete DFA just in case the functor Fϕ : FG Ñ FBΣ is a discrete opfibration.
Such functors are in 1-to-1 correspondence with covariant presheaves FBΣ Ñ FinSet.

More generally, a functor p : D Ñ FBΣ represents the transition graph of an NFA just
in case it has finite fibers and unique lifting of factorizations. Such functors are in
1-to-1 correspondence with covariant presheaves valued in the bicategory of spans of
finite sets, that is, (pseudo)functors FBΣ Ñ FinSpan.

This suggests two different ways of generalizing automata to arbitrary base categories:
1. As functors p : FG Ñ C from a finitely generated free category.
2. As finitary ULF functors p : Q Ñ C.

We will eventually take position (2), but adapt (1) for CFGs...

16 / 32

2. Context-free grammars as functors

17 / 32

From categories to operads

An operad (aka multicategory) is like a category where arrows can take multiple
objects as input.

f : A1, . . . , An Ñ B pn ě 0q

(We work with planar operads, which have a linear order on inputs, and no exchange.)

Any functor of operads p : D Ñ O equipped with an object S < A induces a language
of constants defined by

Lp,S :“ t ppαq | α : S u Ď Op¨; Aq.

18 / 32

Parsing as a lifting problem

19 / 32

Parsing as a lifting problem

20 / 32

Parsing as a lifting problem

21 / 32

The splicing construction

For any category C, the operad of spliced arrows W C is defined as follows:
§ objects are pairs pA, Bq of objects of C;
§ n-operations f : pA1, B1q, . . . , pAn, Bnq Ñ pA, Bq given by sequences

f “ w0´w1´ . . . ´wn of n ` 1 arrows wi : Bi Ñ Ai`1 in C (B0 “ A, An`1 “ B);
§ composition performed by “splicing into the gaps”...

22 / 32

The splicing construction

A B

A₁ B₁ A₂ B₂ A₃ B₃

C₁ D₁ C₂ D₂

w₀ w₃

w₁ w₂

u₀
u₁

u₂

A₁ B₁ A₃ B₃C₁ D₁ C₂ D₂

w₁ w₂u₀ u₁ u₂=

A

w₀

B

w₃

pw0´w1´w2´w3q ˝1 pu0´u1´u2q “ w0´w1u0´u1´u2w2´w3
23 / 32

Context-free grammar over a category

A CFG over a category C is a tuple G “ p 9S, pq consisting of a pointed finite species
9S “ pS, S P Sq and a functor p : FS Ñ W C. The context-free language generated by
G is the set LG :“ Lp,S “ t ppαq | α : S u Ď CpA, Bq where ppSq “ pA, Bq.

Example: a classical CFG is just a CFG over FBΣ.

Example: let Bˆ$
Σ :“ K ˚ J

ˆ

aPΣ

$. A CFG over FBˆ$
Σ can have productions

that are only applicable at the beginning/end of the string.

24 / 32

Context-free grammar over a category

A CFG over a category C is a tuple G “ p 9S, pq consisting of a pointed finite species
9S “ pS, S P Sq and a functor p : FS Ñ W C. The context-free language generated by
G is the set LG :“ Lp,S “ t ppαq | α : S u Ď CpA, Bq where ppSq “ pA, Bq.

Example: a classical CFG is just a CFG over FBΣ.

Example: let Bˆ$
Σ :“ K ˚ J

ˆ

aPΣ

$. A CFG over FBˆ$
Σ can have productions

that are only applicable at the beginning/end of the string.

24 / 32

Context-free grammar over a category

A CFG over a category C is a tuple G “ p 9S, pq consisting of a pointed finite species
9S “ pS, S P Sq and a functor p : FS Ñ W C. The context-free language generated by
G is the set LG :“ Lp,S “ t ppαq | α : S u Ď CpA, Bq where ppSq “ pA, Bq.

Example: a classical CFG is just a CFG over FBΣ.

Example: let Bˆ$
Σ :“ K ˚ J

ˆ

aPΣ

$. A CFG over FBˆ$
Σ can have productions

that are only applicable at the beginning/end of the string.

24 / 32

3. Generalized NFAs and CFGs over operads

25 / 32

Definitions

Let O be any operad.

A NFA over O is a tuple M “ p 9Q, pq of a pointed operad pQ, qr P Qq and a functor
p : Q Ñ O satisfying the finite fiber and ULF properties.

Example: a nondeterministic tree automaton on a graded alphabet Σ is just an NFA
over the free operad FΣ.

A CFG over O is a tuple G “ p 9S, pq of a pointed finite species 9S “ pS, S P Sq and an
arbitrary functor p : FS Ñ O.

Example: k-multiple and k-parallel CFGs in the sense of Seki et al. (1991) are CFGs
over free semi-cartesian / free cartesian operads. . .

26 / 32

Definitions

Let O be any operad.

A NFA over O is a tuple M “ p 9Q, pq of a pointed operad pQ, qr P Qq and a functor
p : Q Ñ O satisfying the finite fiber and ULF properties.

Example: a nondeterministic tree automaton on a graded alphabet Σ is just an NFA
over the free operad FΣ.

A CFG over O is a tuple G “ p 9S, pq of a pointed finite species 9S “ pS, S P Sq and an
arbitrary functor p : FS Ñ O.

Example: k-multiple and k-parallel CFGs in the sense of Seki et al. (1991) are CFGs
over free semi-cartesian / free cartesian operads. . .

26 / 32

Definitions

Let O be any operad.

A NFA over O is a tuple M “ p 9Q, pq of a pointed operad pQ, qr P Qq and a functor
p : Q Ñ O satisfying the finite fiber and ULF properties.

Example: a nondeterministic tree automaton on a graded alphabet Σ is just an NFA
over the free operad FΣ.

A CFG over O is a tuple G “ p 9S, pq of a pointed finite species 9S “ pS, S P Sq and an
arbitrary functor p : FS Ñ O.

Example: k-multiple and k-parallel CFGs in the sense of Seki et al. (1991) are CFGs
over free semi-cartesian / free cartesian operads. . .

26 / 32

Definitions

Let O be any operad.

A NFA over O is a tuple M “ p 9Q, pq of a pointed operad pQ, qr P Qq and a functor
p : Q Ñ O satisfying the finite fiber and ULF properties.

Example: a nondeterministic tree automaton on a graded alphabet Σ is just an NFA
over the free operad FΣ.

A CFG over O is a tuple G “ p 9S, pq of a pointed finite species 9S “ pS, S P Sq and an
arbitrary functor p : FS Ñ O.

Example: k-multiple and k-parallel CFGs in the sense of Seki et al. (1991) are CFGs
over free semi-cartesian / free cartesian operads. . .

26 / 32

A few constructions on operads

Given an operad O, the free symmetric monoidal operad over O is the operad !symO
whose objects are lists rX1, . . . , Xk s of objects of O, and whose n-ary operations
rΓ1s, . . . , rΓns Ñ rX1, . . . , Xk s are pairs prf1, . . . , fk s, σq of a list of operations
f1 : Ω1 Ñ X1, . . . , fk : Ωk Ñ Xk and a bijection σ : Ω1, . . . , Ωk

„
ÝÑ Γ1, . . . , Γn.

The free semi-cartesian monoidal operad !affO / free cartesian monoidal operad !cartO
are defined in the same way but letting σ be any injection / function.

27 / 32

Generating mildly context-sensitive languages

The following 3-mCFG generates the language an#bn#1cn.

28 / 32

Closure properties of generalized CFLs

1. If L1, . . . , Lk Ď OpAq are context-free, then so is their union
Ťk

i“1 Li Ď OpAq.
2. If L1 Ď OpA1q, . . . , Ln Ď OpAnq are CF, and if f : A1, . . . , An Ñ A is an operation

of O, then t f pu1, . . . , unq | u1 P L1, . . . , un P Ln u Ď OpAq is CF.
3. If L Ď OpAq is CF and F : O Ñ P is a functor of operads, then the functorial

image F pLq Ď PpF pAqq is also CF.
4. If L Ď OpAq is CF and R Ď OpAq is regular, then L X R Ď OpAq is CF.

(4) is a corollary of the following pullback construction: given a gCFG G “ p 9S, pGq and
a gNFA M “ p 9Q, pMq with pGpSq “ pMpqr q, we can construct a gCFG M´1pGq over
Q generating the language p´1

M pLGq X Qpqr q. (cf. the Bar-Hillel construction)

29 / 32

Closure properties of generalized CFLs

1. If L1, . . . , Lk Ď OpAq are context-free, then so is their union
Ťk

i“1 Li Ď OpAq.
2. If L1 Ď OpA1q, . . . , Ln Ď OpAnq are CF, and if f : A1, . . . , An Ñ A is an operation

of O, then t f pu1, . . . , unq | u1 P L1, . . . , un P Ln u Ď OpAq is CF.
3. If L Ď OpAq is CF and F : O Ñ P is a functor of operads, then the functorial

image F pLq Ď PpF pAqq is also CF.
4. If L Ď OpAq is CF and R Ď OpAq is regular, then L X R Ď OpAq is CF.

(4) is a corollary of the following pullback construction: given a gCFG G “ p 9S, pGq and
a gNFA M “ p 9Q, pMq with pGpSq “ pMpqr q, we can construct a gCFG M´1pGq over
Q generating the language p´1

M pLGq X Qpqr q. (cf. the Bar-Hillel construction)

29 / 32

4. Perspectives

30 / 32

Perspectives

Context-free grammars and finite-state automata are complementary notions from
formal language theory.

Their representation (and generalization) as functors of
operads seems to have some explanatory power.

Current projects include extending the splicing construction to account for context-free
languages beyond languages of words (cf. Matthew Earnshaw’s PhD thesis), as well as
developing the notion of “proof-relevant language”.

A long term goal is to transfer knowledge between category theory, automata theory,
parsing & linguistics, type systems...

31 / 32

Perspectives

Context-free grammars and finite-state automata are complementary notions from
formal language theory. Their representation (and generalization) as functors of
operads seems to have some explanatory power.

Current projects include extending the splicing construction to account for context-free
languages beyond languages of words (cf. Matthew Earnshaw’s PhD thesis), as well as
developing the notion of “proof-relevant language”.

A long term goal is to transfer knowledge between category theory, automata theory,
parsing & linguistics, type systems...

31 / 32

Perspectives

Context-free grammars and finite-state automata are complementary notions from
formal language theory. Their representation (and generalization) as functors of
operads seems to have some explanatory power.

Current projects include extending the splicing construction to account for context-free
languages beyond languages of words (cf. Matthew Earnshaw’s PhD thesis), as well as
developing the notion of “proof-relevant language”.

A long term goal is to transfer knowledge between category theory, automata theory,
parsing & linguistics, type systems...

31 / 32

Perspectives

Context-free grammars and finite-state automata are complementary notions from
formal language theory. Their representation (and generalization) as functors of
operads seems to have some explanatory power.

Current projects include extending the splicing construction to account for context-free
languages beyond languages of words (cf. Matthew Earnshaw’s PhD thesis), as well as
developing the notion of “proof-relevant language”.

A long term goal is to transfer knowledge between category theory, automata theory,
parsing & linguistics, type systems...

31 / 32

Very selected bibliography
(see [MZ25] for more)

32 / 32

[AGN05] Samson Abramsky, Simon Gay, and Rajagopal Nagarajan. Specification structures and
propositions-as-types for concurrency. In Logics for Concurrency: Structure versus Automata,
pages 5–40. Springer, 2005.

[CP20] Thomas Colcombet and Daniela Petrişan. Automata minimization: a functorial approach.
Logical Methods in Computer Science, 16(1):32:1–32:28, 2020.

[dG01] Philippe de Groote. Towards abstract categorial grammars. In Association for Computational
Linguistic, 39th Annual Meeting and 10th Conference of the European Chapter, Proceedings
of the Conference, July 9-11, 2001, Toulouse, France, pages 148–155. Morgan Kaufmann
Publishers, 2001.

[Law69] F. W. Lawvere. Adjointness in foundations. Dialectica, 23:281–296, 1969.
[Law70] F. W. Lawvere. Equality in hyperdoctrines and comprehension schema as an adjoint functor.

In Proceedings of the AMS Symposium on Pure Mathematics XVII, pages 1–14, 1970.
[MZ15] Paul-André Melliès and Noam Zeilberger. Functors are type refinement systems. In

Proceedings of the 42nd Annual ACM SIGPLAN-SIGACT Symposium on Principles of
Programming Languages, pages 3–16. ACM, 2015.

[MZ25] Paul-André Melliès and Noam Zeilberger. The categorical contours of the
Chomsky-Schützenberger representation theorem. Logical Methods in Computer Science,
21:12:1–12:49, 2025.

[Wal89] R. F. C. Walters. A note on context-free languages. Journal of Pure and Applied Algebra,
62(2):199–203, 1989.

32 / 32

	0. Thinking fibrationally about deductive systems
	1. Finite-state automata as functors
	2. Context-free grammars as functors
	3. Generalized NFAs and CFGs over operads
	4. Perspectives
	Very selected bibliography (see MZ2025contours for more)
	References

