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Topological definition

map = 2-cell embedding of a graph into a surface*

considered up to deformation of the underlying surface.

*All surfaces are assumed to be connected and oriented throughout this talk
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Algebraic definition

map = transitive permutation representation of the group

Note: can compute genus from Euler characteristic

considered up to G-equivariant isomorphism.

G = 



Combinatorial definition

map = connected graph + cyclic ordering of
the half-edges around each vertex (say, as given
by a drawing with "virtual crossings").
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Graph versus Map

≡ ≢

≡
graph

map

≡
graph

map



Some special kinds of maps

planar

bridgeless

3-valent



Aside: close connections to knot theory
via the medial map construction



Four Colour Theorem

The 4CT is a statement about maps.

every bridgeless planar map
has a proper face 4-coloring

By a well-known reduction (Tait 1880), 4CT is equivalent
to a statement about 3-valent maps

every bridgeless planar 3-valent map
has a proper edge 3-coloring



Map enumeration

From time to time in a graph-theoretical career one's thoughts turn
to the Four Colour Problem. It occurred to me once that it might be
possible to get results of interest in the theory of map-colourings
without actually solving the Problem. For example, it might be
possible to find the average number of colourings on vertices, for
planar triangulations of a given size.

One would determine the number of triangulations of 2n faces, and
then the number of 4-coloured triangulations of 2n faces. Then one
would divide the second number by the first to get the required
average. I gathered that this sort of retreat from a difficult problem to
a related average was not unknown in other branches of
Mathematics, and that it was particularly common in Number Theory.

W. T. Tutte, Graph Theory as I Have Known It



One of his insights was to consider rooted maps

Tutte wrote a pioneering series of papers (1962-1969)

W. T. Tutte (1962), A census of planar triangulations. Canadian Journal of Mathematics 14:21–38
W. T. Tutte (1962), A census of Hamiltonian polygons. Can. J. Math. 14:402–417
W. T. Tutte (1962), A census of slicings. Can. J. Math. 14:708–722
W. T. Tutte (1963), A census of planar maps. Can. J. Math. 15:249–271
W. T. Tutte (1968), On the enumeration of planar maps. Bulletin of the American Mathematical Society 74:64–74
W. T. Tutte (1969), On the enumeration of four-colored maps. SIAM Journal on Applied Mathematics 17:454–460

Key property: rooted maps have
no non-trivial automorphisms

Map enumeration



Ultimately, Tutte obtained some remarkably simple formulas
for counting different families of rooted planar maps.

Map enumeration
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Some enumerative connections

family of rooted maps family of lambda terms sequence OEIS

trivalent maps (genus g≥0)
planar trivalent maps
bridgeless trivalent maps
bridgeless planar trivalent maps
maps (genus g≥0)
planar maps
bridgeless maps
bridgeless planar maps

linear terms
planar terms
unit-free linear terms
unit-free planar terms
normal linear terms (mod ~)
normal planar terms
normal unit-free linear terms (mod ~)
normal unit-free planar terms

A062980
A002005
A267827
A000309
A000698
A000168
A000699
A000260

1,5,60,1105,27120,...
1,4,32,336,4096,...
1,2,20,352,8624,...
1,1,4,24,176,1456,...
1,2,10,74,706,8162,...
1,2,9,54,378,2916,...
1,1,4,27,248,2830,...
1,1,3,13,68,399,...

OEIS = Online Encyclopedia of Integer Sequences (oeis.org)

1. O. Bodini, D. Gardy, A. Jacquot (2013), Asymptotics and random sampling for BCI and BCK lambda terms, TCS 502: 227-238
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(technical focus of today's talk)
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3. From linear lambda terms to
rooted 3-valent maps



Represent a term as a "tree with pointers", with
lambda nodes pointing to the occurrences of
the corresponding bound variable (or conversely).

This old idea is especially natural for linear terms.

Representing terms as graphs
(an idea from the folklore)



Representing terms as graphs
(an idea from the folklore)

D. E. Knuth (1970), "Examples of formal semantics", in Symposium on Semantics of  Algorithmic Languages.



R. Statman (1974), Structural Complexity of Proofs, PhD Thesis, Stanford University

Representing proofs as graphs
(a closely related idea)

J.-Y. Girard (1987), Linear Logic, Theoretical Computer Science



λ-graphs as string diagrams

@

Idea (after D. Scott): a linear lambda term may be interpreted as an
endomorphism of a reflexive object in a symmetric monoidal closed (bi)category.

By interpreting this morphism in the graphical language of compact closed (bi)categories,
we obtain the traditional diagram associated to the linear lambda term.

λ
@

λ



From linear terms to rooted 3-valent maps
via string diagrams

λx.λy.λz.x(yz) λx.λy.λz.(xz)y x,y ⊢ (xy)(λz.z) x,y ⊢ x((λz.z)y)



From linear terms to rooted 3-valent maps
via string diagrams

λx.λy.λz.x(yz) λx.λy.λz.(xz)y x,y ⊢ (xy)(λz.z) x,y ⊢ x((λz.z)y)



From linear terms to rooted 3-valent maps
via string diagrams

λx.λy.λz.x(yz) λx.λy.λz.(xz)y x,y ⊢ (xy)(λz.z) x,y ⊢ x((λz.z)y)



Diagrams versus Terms

Note: two different diagrams can correspond to the same underlying map.

Indeed, a diagram is just a 3-valent map + a proper orientation.

But we will see that every rooted trivalent map has a unique orientation
corresponding to the diagram of a linear lambda term...
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4. From rooted 3-valent maps to
linear lambda terms



Observation: any rooted 3-valent map must have one of the following forms.

Rooted 3-valent maps, inductively

T1 T2 T1

disconnecting
root vertex

connecting
root vertex

no
root vertex



...but this exactly mirrors the inductive structure of linear lambda terms!

Linear lambda terms, inductively

application abstraction variable

T1 T2 T1



An example



An example

connecting



An example



An example



An example



An example

disconnecting



An example



An example

λa.λb.λc.λd.λe.a(λf.c(e(b(df))))



An operadic perspective

Let Θ(n) = set of isomorphism classes of rooted 3-valent maps
with n non-root boundary arcs.

Θ defines a symmetric operad equipped with operations

@ : Θ(m) × Θ(n) → Θ(m+n)

naturally isomorphic to the operad of linear lambda terms.

λᵢ : Θ(m+1) → θ(m)   [1 ≤ i ≤ m+1]



An operadic perspective

Moreover, Θ has some natural suboperads:

Θ₀ = the non-symmetric operad of planar 3-valent maps

Θ² = the constant-free operad of bridgeless maps

= ordered linear lambda terms (i.e., no exchange rule)

= linear terms with no closed subterms ("unitless")

Θ² = rooted bridgeless planar 3-valent maps₀
= ordered linear terms with no closed subterms
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5. And now where do we go?
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A000168

We gave a bijective proof of the
correspondence based on a simulation
of Tutte's techniques in lambda calculus,
albeit with an alternative convention for
which lambda terms are "planar".

Finding a natural bijection between rooted
planar maps and β-normal ordered terms
is an open problem.



A000698

Quotient by the relation λx.λy.t ~ λy.λx.t.
(Perhaps more natural to think of this as an isomorphism between their
principal types A ⊸ (B ⊸ C) ≈ B ⊸ (A ⊸ C)...)

One can prove that the generating function counting equivalence classes of
β-normal linear terms by size and free variables equals the GF counting
rooted maps by edges and vertices.

Finding a natural bijection is an open problem.



A000699

Indecomposable chord diagrams are in bijection with maps.

Connected chord diagrams are in bijection with bridgeless maps.

A (rooted) chord diagram is a perfect matching on a linearly ordered set.



A000260

Intervals of Tamari lattices are in bijection with bridgeless planar maps.

The Tamari lattices are the posets of binary trees ordered by rotation.
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Linear typing

x : A ⊢ x : A

Γ ⊢ t : A ⊸ B Δ ⊢ u : A

Γ, Δ ⊢ t u : B

Γ, x : A, y : B, Δ ⊢ t : C

Γ, y : B, x : A, Δ ⊢ t : C

Γ, x : A ⊢ t : B

Γ ⊢ λx.t : A ⊸ B



Linear typings as flows

x : A ⊢ x : A

Γ, x : A, y : B, Δ ⊢ t : C

Γ, y : B, x : A, Δ ⊢ t : C

Γ, x : A ⊢ t : B

Γ ⊢ λx.t : A ⊸ B

Proposition: Every unitless ordered linear term has a typing in G = ℤ₂ × ℤ₂
such that no subterm is assigned the type (0,0).

Why not draw types from a group G,
with A ⊸ B := B·A⁻¹?  A typing is then
the same thing as a G-flow over the
underlying oriented 3-valent map.

Γ ⊢ t : A ⊸ B Δ ⊢ u : A

Γ, Δ ⊢ t u : B



Linear typings as flows

x : A ⊢ x : A

Γ, x : A, y : B, Δ ⊢ t : C

Γ, y : B, x : A, Δ ⊢ t : C

Γ, x : A ⊢ t : B

Γ ⊢ λx.t : A ⊸ B

(Proof: This is equivalent to 4CT.)

Proposition: Every unitless ordered linear term has a typing in G = ℤ₂ × ℤ₂
such that no subterm is assigned the type (0,0).

Why not draw types from a group G,
with A ⊸ B := B·A⁻¹?  A typing is then
the same thing as a G-flow over the
underlying oriented 3-valent map.

Γ ⊢ t : A ⊸ B Δ ⊢ u : A

Γ, Δ ⊢ t u : B



Example ("the Tutte graph")
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The associated lambda term

β-redex
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The principal typing

type variables

type equality
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A ℤ₂×ℤ₂-typing

a = d = g = m = o = r = u = w = y = R
b = f = i = j = k = l = s = t = v = G

c = e = h = n = p = q = x =B
β : G = G



The End

λ...or is it?


