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maps



1. What is a "map"?
(And how many are there?)



Topological definition

map = 2-cell embedding of a graph into a surface*

considered up to deformation of the underlying surface.

*All surfaces are assumed to be connected and oriented throughout this talk
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Algebraic definition

map = transitive permutation representation of the group

considered up to G-equivariant isomorphism.

G = 



Combinatorial definition

map = connected graph + cyclic ordering of the
half-edges around each vertex (say, as given by
a planar drawing with "virtual crossings").
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Graph versus Map



Some special kinds of maps

planar

bridgeless

3-valent



Four Color Theorem

The 4CT is a statement about maps.

every bridgeless planar map
has a proper face 4-coloring

By a well-known reduction (Tait 1880), 4CT is equivalent
to a statement about 3-valent maps

every bridgeless planar 3-valent map
has a proper edge 3-coloring



Map enumeration

From time to time in a graph-theoretical career one's thoughts turn
to the Four Colour Problem. It occurred to me once that it might be
possible to get results of interest in the theory of map-colourings
without actually solving the Problem. For example, it might be
possible to find the average number of colourings on vertices, for
planar triangulations of a given size.
 
One would determine the number of triangulations of 2n faces, and
then the number of 4-coloured triangulations of 2n faces. Then one
would divide the second number by the first to get the required
average. I gathered that this sort of retreat from a difficult problem to
a related average was not unknown in other branches of
Mathematics, and that it was particularly common in Number Theory.

W. T. Tutte, Graph Theory as I Have Known It



One of his insights was to consider rooted maps

Tutte wrote a germinal series of papers (1962-1969)

W. T. Tutte (1962), A census of planar triangulations. Canadian Journal of Mathematics 14:21–38
W. T. Tutte (1962), A census of Hamiltonian polygons. Can. J. Math. 14:402–417
W. T. Tutte (1962), A census of slicings. Can. J. Math. 14:708–722
W. T. Tutte (1963), A census of planar maps. Can. J. Math. 15:249–271
W. T. Tutte (1968), On the enumeration of planar maps. Bulletin of the American Mathematical Society 74:64–74
W. T. Tutte (1969), On the enumeration of four-colored maps. SIAM Journal on Applied Mathematics 17:454–460

Key property: rooted maps have
no non-trivial automorphisms

Map enumeration

bust by Gabriella Bollobás

https://www.youtube.com/watch?v=8Mi0STwhkqQ


Map enumeration

Ultimately, Tutte obtained some remarkably simple formulas
for counting different families of rooted planar maps, e.g.:

Mireille Bousquet-Mélou, Enumerative Combinatorics of Maps

For more on map-counting see:

(recorded lecture series)

Gilles Schaeffer, "Planar maps", in Handbook of Enumerative Combinatorics (ed. Bóna)

Bertrand Eynard, Counting Surfaces, Birkhäuser, 2016

https://www.youtube.com/watch?v=8Mi0STwhkqQ


2. A crash course in (linear) λ-calculus



Lambda calculus: a very brief history*

*Source: Cardone & Hindley's "History of Lambda-calculus and Combinatory Logic"

Invented by Alonzo Church in late 20s, published in 1932

Original goal: foundation for logic without free variables

Minor defect: inconsistent!

Resolution: separate into an untyped calculus for computation,
and a typed calculus for logic.

(Both have since found many uses.)



Fixpoints and non-linearity

Observe doubled uses of variables x and y.

Turing published first fixed-point combinator (1937)

(λx.λy.y(xxy))(λx.λy.y(xxy))

(key to Turing-completeness of λ-calculus)

By restricting to terms where every variable is used exactly once,
one gets a well-behaved linear subsystem of lambda calculus.

(no longer Turing-complete...actually P-complete)



Untyped linear lambda terms (defn.)

basic judgment

t is a linear term with free variables x₁ , ... , xₙ

x₁ , ... , xₙ ⊢ t

inductive definition

x ⊢ x Γ , Δ ⊢ t(u)
Γ ⊢ t Δ ⊢ u

Γ ⊢ λx.t
Γ , x ⊢ tvar app abs

Γ , y, x , Δ ⊢ t
Γ , x, y , Δ ⊢ t exc

define: subterms, bound variables, α-equivalence, closed subterms, ordered terms



x ⊢ λy.λz.x(yz)

⊢ λx.λy.λz.(xz)y

⊢ λx.λy.λz.x(yz) ordered term (B)

open term

non-ordered term (C)

term w/closed subtermx ⊢ x(λy.y)

Untyped linear lambda terms (ex.)



Term rewriting

Computation through the rule of β-reduction:

(λx.t)(u)  →ᵝ  t[u/x]

Example: (λx.λy.λz.x(yz))(λa.a)(t) 
→ᵝ (λy.λz.(λa.a)(yz))(t)

→ᵝ (λy.λz.yz)(t)
→ᵝ λz.t(z)

Sometimes paired with the rule of η-expansion:

t →η λx.t(x)

η← t

can apply to any matching subterm
(confluent and strongly normalizing)



Typing

basic judgment

t is a proof that A₁ , ... , Aₙ (linearly) entail B

x₁:A₁ , ... , xₙ:Aₙ ⊢ t:B

inductive definition

x:A ⊢ x:A Γ , Δ ⊢ t(u):B
Γ ⊢ t:A⊸B Δ ⊢ u:A

Γ ⊢ λx.t:A⊸B
Γ , x:A ⊢ t:B

Γ , y:B, x:A , Δ ⊢ t:C
Γ , x:A, y:B , Δ ⊢ t:C

typed linear terms modulo βη present the free sym. closed multicategory!

types A,B ::= X,Y,... | A ⊸ B



3. how on earth are these topics related??



An innocent idea

In May 2014, I thought it could be fun* to count untyped 

closed β-normal ordered linear terms by size (#λs)...

*for reasons related to certain categorical models of typing, cf. Melliès & Zeilberger POPL 2015



λx.x

1



λx.x(λy.y)
λx.λy.x(y)

2



λx.x(λy.y(λz.z))
λx.x(λy.λz.y(z))
λx.x(λy.y)(λz.z)
λx.λy.x(y(λz.z))
λx.λy.x(λz.y(z))
λx.λy.x(λz.z)(y)
λx.λy.x(y)(λz.z)
λx.λy.λz.x(y(z))
λx.λy.λz.x(y)(z)

9



λx.x(λy.y(λz.z(λw.w)))
λx.x(λy.y(λz.λw.z(w)))
λx.x(λy.y(λz.z)(λw.w))
λx.x(λy.λz.y(z(λw.w)))
λx.x(λy.λz.y(λw.z(w)))
λx.x(λy.λz.y(λw.w)(z))
λx.x(λy.λz.y(z)(λw.w))
λx.x(λy.λz.λw.y(z(w)))
λx.x(λy.λz.λw.y(z)(w))
 
λx.x(λy.y)(λz.z(λw.w))
λx.x(λy.y)(λz.λw.z(w))
λx.x(λy.y(λz.z))(λw.w)
λx.x(λy.λz.y(z))(λw.w)
λx.x(λy.y)(λz.z)(λw.w)
λx.λy.x(y(λz.z(λw.w)))
λx.λy.x(y(λz.λw.z(w)))
λx.λy.x(y(λz.z)(λw.w))
λx.λy.x(λz.y(z(λw.w)))

λx.λy.x(λz.y(λw.z(w)))
λx.λy.x(λz.y(λw.w)(z))
λx.λy.x(λz.y(z)(λw.w))
λx.λy.x(λz.λw.y(z(w)))
λx.λy.x(λz.λw.y(z)(w))
λx.λy.x(λz.z)(y(λw.w))
λx.λy.x(λz.z)(λw.y(w))
λx.λy.x(λz.z(λw.w))(y)
λx.λy.x(λz.λw.z(w))(y)
 
λx.λy.x(λz.z)(λw.w)(y)
λx.λy.x(y)(λz.z(λw.w))
λx.λy.x(y)(λz.λw.z(w))
λx.λy.x(y(λz.z))(λw.w)
λx.λy.x(λz.y(z))(λw.w)
λx.λy.x(λz.z)(y)(λw.w)
λx.λy.x(y)(λz.z)(λw.w)
λx.λy.λz.x(y(z(λw.w)))
λx.λy.λz.x(y(λw.z(w)))

λx.λy.λz.x(y(λw.w)(z))
λx.λy.λz.x(y(z)(λw.w))
λx.λy.λz.x(λw.y(z(w)))
λx.λy.λz.x(λw.y(z)(w))
λx.λy.λz.x(λw.w)(y(z))
λx.λy.λz.x(y)(z(λw.w))
λx.λy.λz.x(y)(λw.z(w))
λx.λy.λz.x(y(λw.w))(z)
λx.λy.λz.x(λw.y(w))(z)
 
λx.λy.λz.x(λw.w)(y)(z)
λx.λy.λz.x(y)(λw.w)(z)
λx.λy.λz.x(y(z))(λw.w)
λx.λy.λz.x(y)(z)(λw.w)
λx.λy.λz.λw.x(y(z(w)))
λx.λy.λz.λw.x(y(z)(w))
λx.λy.λz.λw.x(y)(z(w))
λx.λy.λz.λw.x(y(z))(w)
λx.λy.λz.λw.x(y)(z)(w)
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family of rooted maps family of lambda terms sequence OEIS

trivalent maps (genus g≥0)
planar trivalent maps
bridgeless trivalent maps
bridgeless planar trivalent maps

maps (genus g≥0)
planar maps
bridgeless maps
bridgeless planar maps

linear terms
ordered terms
unitless linear terms
unitless ordered terms

normal linear terms (mod ~)
normal ordered terms
normal unitless linear terms (mod ~)
normal unitless ordered terms

A062980
A002005
A267827
A000309

A000698
A000168
A000699
A000260

1,5,60,1105,27120,...
1,4,32,336,4096,...
1,2,20,352,8624,...
1,1,4,24,176,1456,...

1,2,10,74,706,8162,...
1,2,9,54,378,2916,...
1,1,4,27,248,2830,...
1,1,3,13,68,399,...

One piece of a larger puzzle

O. Bodini, D. Gardy, A. Jacquot (2013), Asymptotics and random sampling for BCI and BCK lambda terms, TCS 502: 227-238.

Z, A. Giorgetti (2015), A correspondence between rooted planar maps and normal planar lambda terms, LMCS 11(3:22): 1-393.

Z (2015), Counting isomorphism classes of beta-normal linear lambda terms, arXiv:1509.075964.

Z (2016), Linear lambda terms as invariants of rooted trivalent maps, J. Functional Programming 26(e21).

J. Courtiel, K. Yeats, Z (2017), Connected chord diagrams and bridgeless maps, Electronic Journal of Combinatorics, 26:4.

Z (2017), A sequent calculus for a semi-associative law, FSCD 2017.

Z (2018), A theory of linear typings as flows on 3-valent graphs, LICS 2018.

T. Uustalu, N. Veltri, Z (2018), The sequent calculus of skew monoidal categories, MFPS 2018.

T. Uustalu, N. Veltri, Z (2020), Eilenberg-Kelly reloaded, MFPS 2020.
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Z (2018), A theory of linear typings as flows on 3-valent graphs, LICS 2018.
interdisciplinary between combinatorics, physics, and λ-calculus!

(unitless = no closed subterms)

(λx.λy.t ~ λy.λx.t)



4. Between linear λ-terms and
rooted 3-valent maps

(a bijection by Bodini et al 2013, as analyzed by Z 2016)



Idea (folklore*): representing λ-terms as graphs

*The idea itself is natural and should probably be called folklore.  The earliest explicit description I know of (currently)
is in Knuth's "Examples of Formal Semantics" (1970), but it was developed more deeply and independently from different
perspectives in the PhD theses of C. P. Wadsworth (1971) and R. Statman (1974). 

Can represent a term as tree
w/two kinds of nodes (@/λ),
with "pointers" from λ-nodes
to bound variables. This idea is
especially natural for linear terms.

(edges = subterms)



@

λ
@

λ

λ-graphs as string diagrams

This idea can also be understood within the categorical framework
of "string diagrams", by interpreting λ-terms (after D. Scott) as
endomorphisms of a reflexive object

in a symmetric monoidal closed bicategory.



From linear λ-terms to rooted 3-valent maps

λx.λy.λz.x(yz) λx.λy.λz.(xz)y x,y ⊢ (xy)(λz.z) x,y ⊢ x((λz.z)y)

(B) (C)



From linear λ-terms to rooted 3-valent maps

λx.λy.λz.x(yz) λx.λy.λz.(xz)y x,y ⊢ (xy)(λz.z) x,y ⊢ x((λz.z)y)

(B) (C)



From rooted 3-valent maps to linear λ-terms

T1 T2 T1

disconnecting
root vertex

connecting
root vertex

no
root vertex

Step #2: observe any such map must have one of the following forms:

Step #1: generalize to 3-valent maps w/∂ of "free" edges, one marked as root.



From rooted 3-valent maps to linear λ-terms

Step #3: observe this is exactly the inductive definition of linear λ-terms!

application abstraction variable

T1 T2 T1

⋮



An example



An example

connecting



An example



An example



An example



An example

disconnecting



An example



An example

λa.λb.λc.λd.λe.a(λf.c(e(b(df))))



5. Coda
(From Lambda Calculus to the Four Color Theorem...and beyond?)
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Typing as coloring

recall the typing rules:

x:A ⊢ x:A Γ , Δ ⊢ t(u):B
Γ ⊢ t:A⊸B Δ ⊢ u:A

Γ ⊢ λx.t:A⊸B
Γ , x:A ⊢ t:B

we can interpret types in any ab gp G, taking A ⊸ B := B - A.

Γ , y:B, x:A , Δ ⊢ t:C
Γ , x:A, y:B , Δ ⊢ t:C

claim: any ordered λ-term t has a typing in G = ℤ₂×ℤ₂, such that
for every subterm u of t, u has type (0,0) iff u is closed.

challenge problem: find a direct proof!



Some tools for further exploration

George Kaye's λ-term visualiser galleryand
https://www.georgejkaye.com/lambda-visualiser/visualiser.html

https://www.georgejkaye.com/lambda-visualiser/gallery

Jason Reed's Interactive Lambda Maps Toy
https://jcreedcmu.github.io/demo/lambda-map-drawer/public/index.html

: a library for experimental linear lambda calculusLinLam
https://github.com/noamz/linlam

https://www.georgejkaye.com/lambda-visualiser/visualiser.html
https://www.georgejkaye.com/lambda-visualiser/gallery
https://jcreedcmu.github.io/demo/lambda-map-drawer/public/index.html
https://github.com/noamz/linlam
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Merc
i!

https://www.georgejkaye.com/lambda-visualiser/visualiser.html
https://www.georgejkaye.com/lambda-visualiser/gallery
https://jcreedcmu.github.io/demo/lambda-map-drawer/public/index.html
https://github.com/noamz/linlam

