
Focusing on Binding and Computation

Daniel R. Licata∗ Noam Zeilberger Robert Harper∗

Carnegie Mellon University
{drl,noam,rwh}@cs.cmu.edu

Abstract

Variable binding is a prevalent feature of the syntax and
proof theory of many logical systems. In this paper, we de-
fine a programming language that provides intrinsic sup-
port for both representing and computing with binding. This
language is extracted as the Curry-Howard interpretation
of a focused sequent calculus with two kinds of implication,
of opposite polarity. The representational arrow extends sys-
tems of definitional reflection with a notion of scoped infer-
ence rules, which are used to represent binding. On the
other hand, the usual computational arrow classifies recur-
sive functions defined by pattern-matching. Unlike many
previous approaches, both kinds of implication are connec-
tives in a single logic, which serves as a rich logical frame-
work capable of representing inference rules that mix bind-
ing and computation.

1 Introduction

A logical framework provides a set of reusable abstrac-
tions that simplify the task of representing the syntax and
semantics of logical systems, such as programming lan-
guages and proof theories. For example, the LF logi-
cal framework [17] permits facile representations of bind-
ing and scope (α-equivalence, capture-avoiding substitu-
tion) using the LF function space, a type which corre-
sponds to logical implication. In this broad sense of the
phrase, programming languages such as ML and Haskell
are even more basic examples of logical frameworks, in
that algebraic datatypes permit first-order representations
of syntax and proofs. These languages’ function spaces,
which also correspond to logical implication, provide sup-
port not for representing binding, but for computing with
syntax and proofs by pattern-matching. In contrast, LF re-
quires a separate layer such as Twelf [29] for computation,
which means that it is impossible to embed computations

∗This research was sponsored in part by the National Science Founda-
tion under grant number CCF-0702381. The views and conclusions con-
tained in this document are those of the author and should not be inter-
preted as representing the official policies, either expressed or implied, of
any sponsoring institution, the U.S. government or any other entity.

in LF representations—something easily achieved in ML or
Haskell by defining a datatype with a function as a compo-
nent. In a dependent programming language (e.g., Coq or
Agda [10, 28]), embedding computations in data is espe-
cially useful, since it gives the full strength of iterated in-
ductive definitions in the style of Martin-Löf [23]. Because
the same logical connective, implication, is used to repre-
sent binding in LF, and to compute with binding in ordinary
functional programming, it has proved difficult to integrate
binding and computation in a single framework.

On the other hand, one way of distinguishing different
aspects of the “same” connective is through the logical no-
tion of polarity [15]. For example, linear logic exposes two
conjunctions of opposite polarity (positive ⊗ and negative
N), and likewise two disjunctions (positive ⊕ and negative
O). Operationally, polarity can be given an intuitive expla-
nation in terms of pattern-matching [41]: values of posi-
tive polarity can be eliminated by pattern-matching against
their constructors, whereas values of negative polarity can
be introduced by pattern-matching against their destructors.
This is why, for example, in ordinary functional program-
ming, functions can be defined by pattern-matching, but it is
impossible to pattern-match against a function (except with
a variable pattern)—implication is a negative connective.

Our work began with the observation that, although vari-
able binding behaves in some ways like ordinary impli-
cation, it also seems to have positive polarity. For ex-
ample, in Twelf, LF functions are analyzed by match-
ing against higher-order patterns. Following this intuition,
we define a logic that includes both a positive form of
implication—used to represent binding—and ordinary neg-
ative implication—used to compute with binding. This
logic builds on definitional reflection [16, 35], which sup-
poses a database of rules used for both building proofs of
propositional atoms and for deriving consequences of atoms
by “reflection” (i.e., by inverting the rules). Through the
Curry-Howard interpretation, the rule database corresponds
to a database of datatype constructors, which can be used
both to build datatype values and to define functions by
pattern-matching. The key novelty of our positive implica-
tion is that it permits this database of rules to vary. Positive

implication, written R⇒ A, internalizes the act of hypoth-
esizing a new rule: a proof of R⇒ A is a proof of A under
assumption of the inference rule R. A value of type R⇒ A
has the form λu.V , where u is a scoped datatype construc-
tor. Such a value is deconstructed by pattern-matching with
a higher-order pattern. We call this positive connective ⇒
the representational arrow, opposed to the negative connec-
tive→, the ordinary computational arrow.

This approach to representing variable binding, which
we call definitional variation, provides a more general the-
ory of inference rules than LF, because rules can mix rep-
resentational and computational functions. All rule systems
representable in LF satisfy the structural properties of a hy-
pothetical judgement (weakening, exchange, contraction,
and substitution) because all LF rules are pure [4]—they
place no constraints on the context in which they can be ap-
plied. In contrast, computational functions can be used to
define impure rules: for example, if a rule system includes
a rule with premise P→⊥ asserting the refutability of P, it
will not be possible to weaken a derivation using this rule
to a context including a proof of P. However, this failure
of the structural properties is not problematic in our frame-
work: First, the representational arrow is eliminated by pat-
tern matching, not by application (modus ponens), so the
framework itself requires no commitment to the structural
properties. Second, using a notion of subordination [39],
we can give general conditions under which the structural
properties hold , and provide operations such as weakening
and substitution “for free” when these conditions are satis-
fied. In this sense our calculus maintains the practical ben-
efits of the LF approach, where the structural properties are
provided by the framework, while providing a more general
theory of inference rules.

Following Zeilberger [42], our computational arrow ad-
mits a form of open-endedness [20]: computational func-
tions in our type theory are represented abstractly by meta-
level functions from patterns to expressions. This open-
endedness has several practical benefits: (1) We can im-
plement structural properties such as weakening and sub-
stitution once as a datatype-generic program at the meta-
level, reusing one implementation for a large class of rule
systems. (2) We can realize meta-functions as programs in
existing proof assistants, which permits us to reuse their pat-
tern coverage checkers. (3) We can use our type theory as an
interface for combining functions written in different proof
assistants, using different implementations of binding, in a
single program.

The technical contributions of this paper are as follows:
In Section 2, we present a focused sequent calculus with
both implications→ and⇒, as well as a suite of other con-
nectives. We define the identity and cut-elimination proce-
dures, and prove they are total under assumptions about the
form of the rule database. We discuss some counterintuitive

logical properties of ⇒, as well as a dual representational
conjunction. In Section 3, we give a proof term assignment
to the sequent calculus, yielding a functional programming
language with an operational semantics given by cut elimi-
nation. In Section 4, we show that our framework extends
simply-typed LF and discuss datatype-generic implementa-
tions of the structural properties. In Section 5, we illustrate
programming in our type theory with an example that mixes
binding and computation; more examples are available in
our companion technical report [22].

2 Sequent Calculus

When describing the sequent calculus in this section,
we foreshadow the proof-term assignment given in Sec-
tion 3, freely interchanging logical and type-theoretic termi-
nology (“proposition” and “type”, “implication” and “func-
tion space”, “logic” and “type theory”, etc.). The logic we
construct is polarized, meaning that we maintain a syntac-
tic separation between positive and negative propositions,
and its proofs are focalized in the sense of Andreoli [3].
Following Zeilberger [41], the focused sequent calculus is
defined in two stages. First, the polarized connectives are
defined by axiomatizing the structure of patterns. Positive
connectives are defined by constructor patterns, and nega-
tive connectives by destructor patterns. Second, there is a
general focusing framework that is independent of the par-
ticular connectives of the logic.

For the sake of presentation, we begin by defining a fo-
cused sequent calculus for polarized intuitionistic logic, in-
cluding the simple structure of patterns and the general fo-
cusing rules—this sequent calculus is a variation of the one
given for polarized classical logic in [41]. We then extend
the structure of patterns to describe the more expressive
logic of definitional variation. Next, we prove the identity
and cut theorems for this logic, and consider some interest-
ing properties of the representational connectives.

2.1 Simple contexts and patterns

We write X +,Y +,Z+ and X -,Y -,Z- to stand for positive
and negative propositional variables (atomic propositions),
and A+,B+,C+ and A-,B-,C- to stand for arbitrary positive
and negative formulas. We use α to range over assumptions
X + or C-, and dually γ to range over conclusions X - or C+.
A linear context ∆ is a list of assumptions.

The positive connectives are defined through the judge-
ment ∆ C+, which corresponds to applying only linear
right-rules to show C+ from ∆. For example, the rules for
atoms, conjunction, and disjunction are as follows:

X + X+

∆1 A+ ∆2 B+

∆1,∆2 A+⊗B+
∆ A+

∆ A+⊕B+
∆ B+

∆ A+⊕B+

Foreshadowing the Curry-Howard interpretation, we refer
to derivations of this judgement as constructor patterns; lin-
earity captures the restriction familiar from functional pro-
gramming that a pattern binds a variable just once.

Negative connectives are defined by ∆ C- > γ , which
corresponds to using linear left-rules to decompose C- into
the conclusion γ . A proof term for this judgement is a de-
structor pattern, which gives the shape of an elimination
context (continuation) for negative types:

∆1 A+ ∆2 B- > γ

∆1,∆2 A+→ B- > γ

∆ A- > γ

∆ A-NB- > γ

∆ B- > γ

∆ A-NB- > γ

Observe that a destructor pattern for A+→ B- includes a
constructor pattern for A+, as well as a destructor pattern for
B-, matching the possible observations on a function type.
We have adopted linear logic notation by writing⊗ for pos-
itive and N for negative conjunction. In the present set-
ting, both of these connectives encode ordinary intuitionis-
tic conjunction with respect to provability, but they have dif-
ferent proof terms: positive conjunction is introduced by an
eager pair whose components are values, and eliminated by
pattern-matching against both components; negative con-
junction is eliminated by projecting one of the components,
and introduced by pattern-matching against either possible
observation, i.e. by a lazy pair.

2.2 Focusing Judgements

In Figure 1, we present the focusing rules. In these rules,
Γ stands for a sequence of linear contexts ∆, but Γ itself is
treated in an unrestricted manner (i.e., variables are bound
once in a pattern, but may be used any number of times
within the pattern’s scope).

The first two judgements concern the positive connec-
tives. The judgement Γ ` [C+] defines right-focus on a
positive formula, or positive values: a positive value is a
constructor pattern under a substitution for its free vari-
ables. Focus judgements make choices: to prove C+ in fo-
cus, it is necessary to choose a particular shape of value by
giving a constructor pattern, and then satisfy the pattern’s
free variables. Values are eliminated with the left-inversion
judgement Γ ` γ0 > γ , which defines a positive continua-
tion by case-analysis. Inversion steps respond to all possible
choices that the corresponding focus step could make: the
rule for C+ quantifies over all constructor patterns for that
formula, producing a result in each case. By convention,
we tacitly universally quantify over metavariables such as
∆ that appear first in a judgement that is universally quanti-
fied, so in full the premise reads “for all ∆, if ∆ C+ then
Γ,∆ ` γ .” The positive connectives are thus introduced by
choosing a value (focus) and eliminated by continuations
that are prepared to handle any such value (inversion). For
atoms, the only case-analysis is the identity.

Assumption α ::= X + |C-

Conclusion γ ::= X- |C+

Linear context ∆ ::= · | ∆,α
Unrestricted context Γ ::= · | Γ,∆

Γ ` [C+]
∆ C+ Γ ` ∆

Γ ` [C+]

Γ ` γ0 > γ Γ ` X- > X-
∀(∆ C+) : Γ,∆ ` γ

Γ `C+ > γ

Γ ` [C-] > γ

∆ C- > γ0 Γ ` ∆ Γ ` γ0 > γ

Γ ` [C-] > γ

Γ ` α

∀(∆ C- > γ) : Γ,∆ ` γ

Γ ` C-
X+ ∈ Γ

Γ ` X+

Γ ` γ

Γ ` [C+]
Γ ` C+

C- ∈ Γ Γ ` [C-] > γ

Γ ` γ

Γ ` ∆ Γ ` ·
Γ ` ∆ Γ ` α

Γ ` ∆,α

Figure 1. Focusing rules

The next two judgements concern the negative con-
nectives, where the relationship between introduc-
tion/elimination and focus/inversion is reversed. A
negative formula is eliminated by the left-focus judgement
Γ ` [C-] > γ , which chooses how to observe C- by giving a
negative continuation. A negative continuation consists of
a destructor pattern, a substitution, and a case-analysis. The
destructor pattern and substitution decompose a negative
type C- to some conclusion γ0, for instance a positive type
C+. However, it may take further case-analysis of this
positive type to reach the desired conclusion γ . Dually,
negative types are introduced by inversion, which responds
to left-focus by giving sufficient evidence to support all
possible observations. The right-inversion judgement
Γ ` α , where assumptions α are negative formula or
positive atoms, specifies the structure of a negative value.
A negative value for C- must show that for all destructors
of C-, the conclusion is justified by the variables bound by
the patterns in it.

The judgement Γ ` γ , defines a neutral sequent, or an ex-
pression: from a neutral sequent, one can either right-focus
and return a value, or left-focus on an assumption in Γ and
apply a negative continuation to it. Finally, a substitution
Γ ` ∆ provides a negative value for each hypothesis.

At this point, the reader may wish to work through some
instances of these rules (using the above pattern rules) to see
that they give the expected derived rules for the connectives:

Pos. formula A+ ::= X+ | ↓A- | 1 | A+⊗B+ | 0 | A+⊕B+

| P | R⇒ B+

Rule R ::= P⇐ A+
1 · · · ⇐ A+

n
Neg. formula A- ::= X- | ↑A+ | A+→ B- | > | A-NB-

| RfB-

Rule Context Ψ ::= · |Ψ,R
Contextual form. C± ::= 〈Ψ〉A±

∆ ; Ψ A+

X + ; Ψ X+ 〈Ψ〉A- ; Ψ ↓A-

· ; Ψ 1
∆1 ; Ψ A+ ∆2 ; Ψ B+

∆1,∆2 ; Ψ A+⊗B+

(no rule for 0)
∆ ; Ψ A+

∆ ; Ψ A+⊕B+

∆ ; Ψ B+

∆ ; Ψ A+⊕B+

∆ ; Ψ,R B+

∆ ; Ψ R⇒ B+

P⇐ A+
1 · · · ⇐ A+

n ∈Ψ

∆1 ; Ψ A+
1 . . . ∆n ; Ψ A+

n

∆1, . . . ,∆n ; Ψ P

∆;Ψ A- > γ

·;Ψ X- > X- ·;Ψ ↑A+ > 〈Ψ〉A+

(no rule for >)
∆;Ψ A- > γ

∆;Ψ A-NB- > γ

∆;Ψ B- > γ

∆;Ψ A-NB- > γ

∆1 ; Ψ A+ ∆2;Ψ B- > γ

∆1,∆2;Ψ A+→ B- > γ

∆;Ψ,R B- > γ

∆;Ψ RfB- > γ

We write ∆ 〈Ψ〉A+ for ∆ ; Ψ A+

and ∆ 〈Ψ〉A- > γ for ∆;Ψ A- > γ .

Figure 2. Patterns

Γ ` X- Γ ` Y- Γ ` Z-

Γ ` (X-NY-)NZ-
Γ,X+ ` Z- Γ,Y + ` Z-

Γ ` (X+⊕Y+)→ Z-

2.3 Patterns for Definitional Variation

In Section 2.1, we gave a fixed set of rules for construct-
ing simple patterns. We now describe patterns for defi-
nitional variation by including an open-ended database of
rules. A rule R takes the form P⇐ A+

1 · · · ⇐ A+
n, where

A+
1, . . . ,A

+
n are positive formulas and P is a defined atom.

Rules are collected in a rule context Ψ, which is now car-
ried through the pattern-typing judgments (∆ ; Ψ A+ and
∆;Ψ A- > γ).

A rule P⇐ A+
1 · · · ⇐ A+

n ∈Ψ can be applied to produce a
constructor pattern for P:

∆1 ; Ψ A+
1 . . . ∆n ; Ψ A+

n

∆1, . . . ,∆n ; Ψ P

Note that rules can be applied an arbitrary number of times
while constructing a pattern. Now, consider the pattern-
typing rules for the new connectives of definitional varia-
tion, representational implication and representational con-
junction:

∆ ; Ψ,R B+

∆ ; Ψ R⇒ B+

∆;Ψ,R B- > γ

∆;Ψ RfB- > γ

Both connectives expand the rule context, introducing a
scoped constructor of type R. The rule for R⇒ B+ builds
a constructor pattern for B+ under assumption of R and es-
sentially (if we ignore structural punctuation) looks like an
implication right-rule, while the rule for RfB- builds a de-
structor pattern for B- and looks like a conjunction left-rule.
However, as we will see in Section 2.5, these connectives
behave quite differently from ordinary implication and con-
junction, in part due to their non-standard polarity.

Most of the remaining rules (see Figure 2) for the con-
nectives of polarized logic are unremarkable, since they
simply carry the rule context through unchanged. The
“shift” connectives ↑ and ↓ deserve explanation, though.
Following Girard [14], these mark the boundary between
positive and negative polarity, and correspondingly they
mark the point where pattern-matching must end [41]. Be-
cause the rule context can change during the course of
pattern-matching, it is necessary to associate assumptions
and conclusions with a specific rule context. We indicate
this with contextual formulas 〈Ψ〉A+ and 〈Ψ〉A-, so that the
rules for the shift connectives are:

〈Ψ〉A- ; Ψ ↓A- ·;Ψ ↑A+ > 〈Ψ〉A+

In spite of this richer notion of patterns, the generic fo-
cusing rules of Figure 1 remain unchanged if we adopt some
notational sleight-of-hand: we now take C+ and C- to range
over contextual formulas, and write ∆ 〈Ψ〉A+ as notation
for ∆ ; Ψ A+, and ∆ 〈Ψ〉A- > γ for ∆;Ψ A- > γ .

Example Consider the syntax of the untyped λ -calculus:
e ::= x | λx.e | e1 e2 This syntax is represented in

our type theory by the following definition signature Ψλ :

lam :exp⇐ (exp⇒ exp) ; app :exp⇐ exp⇐ exp

For clarity, we name the rules in the rule context here, fore-
shadowing the presentation with proof terms in Section 3.
The λ -calculus terms with free variables x1, . . . ,xn are iso-
morphic to derivations of the constructor pattern judgement
· ; Ψλ ,x1 : exp, . . . ,xn : exp exp. The fact that the rules
defining exp may vary during a derivation is essential to
this representation of the new variables bound in a term.
The computational arrow then provides the means to in-
duct over λ -terms: A negative value · ` 〈Ψλ 〉exp→↑exp
represents a function from λ -terms in the empty context to

λ -terms in the empty context. Such a term is defined by
an ω-rule which gives one case for each λ -term: whereas
the traditional definitional reflection rule [16, 35] unrolls
a definition only a single step, our inversion rules unroll a
definition until they reach a polarity shift.

2.4 Identity and Cut

In addition to inductive types like exp, the context Ψ can
be used to define arbitrary recursive types. For example,
consider an atom D defined by one constant

d : D⇐↓(D→↑D)

D is essentially the recursive type µX .X→ X , which can be
used to write non-terminating programs.

Because the rule context permits the definition of gen-
eral recursive types, it should not be surprising that the
identity and cut principles are not admissible in general.
Through the Curry-Howard interpretation, however, we can
still make sense of the identity and cut principles as corre-
sponding, respectively, to the possibly infinite processes of
η-expansion and β -reduction. We now state these prin-
ciples, “prove” admissibility of cut with an operationally
sound but possibly non-terminating procedure (see our tech-
nical report [22] for the analogous identity procedure), and
then discuss criteria under which this proof is well-founded.

Principle 1 (Identity).

1. (neg. identity) If C- ∈ Γ then Γ ` C-.

2. (pos. identity) Γ `C+ > C+

3. (identity substitution) If ∆⊆ Γ then Γ ` ∆.

Principle 2 (Cut).

1. (neg. reduction) If Γ ` C- and Γ ` [C-] > γ then Γ ` γ .

2. (pos. reduction) If Γ ` [C+] and Γ `C+ > γ then Γ ` γ .

3. (composition)

(a) If Γ ` γ0 and Γ ` γ0 > γ then Γ ` γ .

(b) If Γ ` [C-] > γ0 and Γ ` γ0 > γ then Γ ` [C-] > γ .

(c) If Γ ` γ1 > γ0 and Γ ` γ0 > γ then Γ ` γ1 > γ .

4. (substitution) For all six focusing judgements J,
if Γ ` ∆ and Γ,∆ ` J then Γ ` J.

Procedure. Consider the first cut principle. The two deriva-
tions must take the following form:

∀(∆ C- > γ0) : Γ,∆ ` γ0

Γ ` C-
∆ C- > γ0 Γ ` ∆ Γ ` γ0 > γ

Γ ` [C-] > γ

By plugging ∆ C- > γ0 from the right derivation into the
higher-order premise of the left derivation, we obtain Γ,∆ `
γ0. Then Γ ` γ0 by substitution with Γ ` ∆, whence Γ ` γ by
composition with Γ ` γ0 > γ . The case of positive reduction
is analogous (but appeals only to substitution).

In all cases of composition, if γ0 = X - then the statement
is trivial. Otherwise, we examine the last rule of the left
derivation. For the first composition principle, there are two
cases: either the sequent was derived by right-focusing on
the conclusion γ0 =C+, or else by left-focusing on some hy-
pothesis C- ∈ Γ. In the former case, we immediately appeal
to positive reduction. In the latter case, we apply the second
composition principle, which in turn reduces to the third,
which then reduces back to the first.

Likewise, to show substitution we examine the rule con-
cluding Γ,∆ ` J. Dually to the composition principle, the
only interesting case is when the sequent was derived by
left-focusing on C- ∈ ∆, wherein we immediately apply a
negative reduction.

Observe that we have made no mention of particular con-
nectives or rule contexts, instead reasoning uniformly about
focusing derivations. As we alluded to above, however, in
general this procedure is not terminating. Here we state suf-
ficient conditions for termination. They are stated in terms
of a strict subformula ordering, a more abstract version of
the usual structural subformula ordering.

Definition 1 (Strict subformula ordering). We define an or-
dering C±

1 A C±
2 between contextual formulas as the least

transitive relation closed under the following properties:

• If ∆ C-
1 > γ and C-

2 ∈ ∆ then C-
1 AC-

2

• If ∆ C-
1 > γ and C+

2 = γ then C-
1 AC+

2

• If ∆ C+
1 and C-

2 ∈ ∆ then C+
1 AC-

2

For any contextual formula C±, we define AC to be the re-
striction of A to formulas below C±.

The strict subformula ordering does not mention atoms X +

or X -, since they only play a trivial role in identity and cut.

Definition 2 (Well-founded formulas). We say that a con-
textual formula C± is well-founded if AC is well-founded.

Proposition 1. Positive and negative identity are admissi-
ble on well-founded formulas.

Proposition 2. Positive and negative reduction are admis-
sible on well-founded formulas.

Proof. By inspection of the above procedure. Positive and
negative reduction are proved by mutual induction using the
order AC, with a side induction on the left derivation to
show composition, and a side induction on the right deriva-
tion to show substitution.

Definition 3 (Pure rules). A rule R is called pure if it
contains no shifted negative formulas ↓A- as premises
(or structural subformulas of premises). For example,
exp⇐ (exp⇒ exp) is pure, but D⇐↓(D→↑D) is not.

Lemma 1. Suppose 〈Ψ〉A± contains only pure rules (i.e., in
Ψ, or as structural subformulas of A±). Then 〈Ψ〉A± is well-
founded.

Proof. By induction on the structure of A±. Every pattern
typing rule (recall Figure 2) examines only structural sub-
formulas of A±, except when A+ = P. But any P defined
by pure rules P⇐ A+

1 · · · ⇐ A+
n in fact has no strict subfor-

mulas, since the ∆i such that ∆i ; Ψ A+
i can contain only

atomic formulas X +.

The restriction to pure rules precludes premises involv-
ing the computational arrow. However, as we show below,
it includes all inference rules definable in the LF logical
framework, generalizing Schroeder-Heister’s [35] proof of
cut-elimination for the fragment of definitional reflection
with →-free rules (since pure rules do not exclude ⇒’s).
Moreover, as we explained, the identity and cut principles
are always operationally meaningful, even in the presence
of arbitrary recursive types. Technically, we could adopt a
coinductive reading of the focusing rules (cf. [14]), in which
case identity is always productive, and cut-elimination is
a partial operation that attempts to build a cut-free proof
bottom-up. We conjecture that cut-elimination is total given
a positivity restriction for rules.

2.5 Shock therapy

In §6.2 of “Locus Solum”, Girard [14] considers sev-
eral “shocking equalities”—counterintuitive properties of
the universal and existential quantifiers that emerge when
they are given non-standard polarities. For example, posi-
tive ∀ commutes under ⊕, while negative ∃ commutes over
N. In our setting,⇒ behaves almost like a positive univer-
sal quantifier, andf almost like a negative existential.1 And
indeed, we can reproduce analogues of these commutations.

Definition 4. For two positive contextual formulas C+
1 and

C+
2, we say that C+

1 . C+
2 if · ` C+

1 > C+
2. For negative C-

1
and C-

2, we say C-
1 .C-

2 if C-
1 ` C-

2. We write C±
1 ≈C±

2 when
both C±

1 .C±
2 and C±

2 .C±
1 . These relations are extended to

(non-contextual) polarized formulas if they hold under all
rule contexts.

Proposition 3 (“Shocking” equalities).

1. R⇒ (A+⊕B+)≈ (R⇒ A+)⊕ (R⇒ B+)

2. (RfA-)N(RfB-)≈ Rf (A-NB-)

1These would become real quantifiers in an extension to dependent
types.

Rule Context Ψ ::= · |Ψ,u :R
Con. Pattern p ::= x | () | (p1,p2) | inlp | inr p

| u p1 . . .pn | λ u.p
Dest. Pattern n ::= ε | p ;n | fst; n | snd;n | unpack; u.n
Context. Pat. c ::= Ψ.p

d ::= Ψ.n
Pos. Value v+ ::= c [σ]
Pos. Cont. k+ ::= ε | val+(φ +) | ε | k+

1 ; k+
2

where φ + ::= {c 7→ e | · · ·}
Neg. Cont. k- ::= d[σ];k+ | k- ; k+

Neg. Value v- ::= x | val-(φ -) | x | fix(x.v-)
where φ - ::= {d 7→ e | · · ·}

Expression e ::= v+ | x• k- | v- • k- | v+ • k+ | e ; k+

Substitution σ ::= · | σ ,v-/x | id | σ1,σ2

Figure 3. Proof Terms

Proof. Immediate—indeed, in each case, both sides have
an isomorphic set of patterns.

Why are these equalities shocking? Well, if we ignore
polarity and treat all the connectives as ordinary implica-
tion, disjunction, and conjunction, then (2) is reasonable
but (1) is only valid in classical logic. And if we interpret
⇒ and f as ∀ and ∃, then both equations are shockingly
anticlassical:

1. ∀x.(A⊕B)≈ (∀x.A)⊕ (∀x.B)

2. (∃x.A)N(∃x.B)≈ ∃x.(ANB)

On the other hand, from a computational perspective, these
equalities are quite familiar. For example, (1) says that a
value of type A⊕B with a free variable is either the left
injection of an A with a free variable or the right injection
of a B with a free variable.

We can state another pair of surprising equivalences be-
tween the connectives⇒ and f under polarity shifts:

Proposition 4 (Some/any).

1. ↓(RfA-)≈ R⇒↓A-

2. ↑(R⇒ A+)≈ Rf↑A+

Again, this coincidence under shifts is not too surprising,
since it recalls the some/any quantifier Nx.A of nominal
logic [31], as well as the self-dual ∇ connective of Miller
and Tiu [25]. Nx.A can be interpreted as asserting either
that A holds for some fresh name, or for all fresh names—
with both interpretations being equivalent.

3 Proof Terms

In Figure 3, we present a proof term assignment to the
focused sequent calculus described above, with one proof

e ↪→ e′

φ +(c)defined

c [σ]•val+(φ +) ↪→ φ +(c) [σ]
pr

v+ • (k+
1 ; k+

2) ↪→ (v+ • k+
1) ; k+

2
k+k+

v+ • ε ↪→ v+ idk+

φ -(d)defined

val-(φ -)• (d[σ];k+) ↪→ (φ -(d) [σ]) ; k+
nr

v- • (k- ; k+) ↪→ (v- • k-) ; k+ k+k-

fix(x.v-)• k- ↪→ v- [fix(x.v-)/x]• k- fix

e ↪→ e′

e ; k+ ↪→ e′ ; k+ k+ee
v+ ; k+ ↪→ v+ • k+ k+ev

Figure 4. Operational Semantics

term for each rule in the calculus. Additionally, we internal-
ize the cut and identity principles: v- • k- and v+ • k+ witness
reduction; e ; k+ and k- ; k+ and k+

1 ; k+
2 witness composition;

and x and ε and id witness identity. For programming con-
venience (see Section 5), we also internalize an admissible
substitution concatenation principle (σ1,σ2), and a general
recursion operator fix(x.v-). To make the examples below
more concise, we tacitly parametrize all judgements by a
fixed initial definition context Σ, which acts as a prefix on
each contextual formula in the judgement forms (i.e., 〈Ψ〉A
acts as 〈Σ,Ψ〉A did without the signature). The full typ-
ing rules are presented in Figures 6 and 7 at the end of this
article.

α-equivalence The pattern for a contextual type 〈Ψ〉A+

is a contextual pattern Ψ.p, where Ψ notates the bare vari-
ables (no rule annotations) from Ψ. Contextual patterns for
〈Ψ〉A+ are modal [27]—all of the rule variables free in the
pattern must be explicitly bound by Ψ—and are typed by
the judgement ∆Ψ.p :: 〈Ψ〉A+. This judgement is defined
by passing to the judgement ∆ ; Ψ p :: A+, in which the
variables in Ψ are free in p. Negative patterns Ψ.n are typed
similarly:

∆ ; Ψ p :: A+

∆ Ψ.p :: 〈Ψ〉A+

∆ ; Ψ n :: A- > γ

∆ Ψ.n :: 〈Ψ〉A- > γ

In the sequent calculus above, we treated the judgements
∆ 〈Ψ〉A+ and ∆ ; Ψ A+ synonymously, but here this dis-
tinction clarifies the binding structure of our language. The

proof terms Ψ.p and Ψ.n, as well as the proof terms λ u.p
and unpack; u.n for ⇒ and f, are binding forms, and the
standard notion of α-equivalence applies to them and to the
context Ψ in the typing judgements for p and n. Other con-
texts Ψ′ appear in contextual types in ∆ and γ , but these
are separate binding occurrences and can be renamed inde-
pendently.2 Similarly, in ∆ Ψ.p :: 〈Ψ〉A+, the variables
in Ψ and in Ψ are independent binding occurrences. Be-
cause patterns are modal, no rule variables are free in val-
ues, continuations, expressions, or substitutions. We tac-
itly quotient patterns by α-equivalence at the meta-level, so
that meta-functions are defined on α-equivalence classes of
patterns. This ensures that computational functions respect
α-equivalence of represented languages.

Meta-functions. Our type theory is, by design, open-
ended with respect to the meta-functions φ , mapping pat-
terns to expressions, which are used to represent case-
analysis and induction. We have exploited this freedom by
implementing simple embeddings of our language in Agda
and Coq,3 where meta-functions are realized as functions
in Agda/Coq, and totality of meta-functions is established
using the pattern coverage checkers of these existing tools.
Both of these embeddings use de Bruijn indices to repre-
sent rule variables, but other implementations of our type
theory are free to use different representations of variables,
and program fragments written using different representa-
tions of binding can be combined.

Operational Semantics In Figure 4, we adapt the above
cut-elimination procedure into a small-step operational se-
mantics on closed expressions. We use an auxiliary meta-
operation e [σ] implementing capture-avoiding substitution,
which is defined using the induction principle for the iter-
ated inductive definition of our proof term syntax. Conse-
quently, the operational semantics require that the the class
of meta-functions φ is closed under definitions using this
induction principle.

Theorem 1 (Type safety).

Progress: If · ` e : γ then e = v+ or e ↪→ e′.

Preservation: If · ` e : γ and e ↪→ e′ then · ` e′ : γ

4 Adequacy and Structural Properties

4.1 Embedding of Simply-Typed LF

The canonical forms of simply-typed LF (STLF) [40] are
summarized in Figure 5. We show that the STLF terms ex-
ist as closed patterns, and therefore as values, in our type

2In our simply-typed setting, these contexts need not carry variables at
all, but the variables would be necessary for dependency.

3Available from http://www.cs.cmu.edu/∼drl/

Type τ ::= P | τ1 ⊃ τ2
Canonical Form M ::= x M1 . . .Mn | λ x.M
Signature Σ ::= · | Σ,x : τ

Context Φ ::= · |Φ,x : τ

Φ,x : τ1 `Σ M : τ2

Φ `Σ λ x.M : τ1 ⊃ τ2

x :τ1 ⊃ . . .⊃ τn ⊃ P ∈ Σ or Φ

Φ `Σ M1 : τ1 . . . Φ `Σ M1 : τn

Φ `Σ x M1 . . .Mn : P

Figure 5. Simply-typed LF

theory. This theorem permits us to inherit en masse the ade-
quacy of all systems that have been represented in STLF—
e.g., the above signature Ψλ , which is the embedding of the
usual LF encoding of this syntax.

Every STLF type τ can be parsed both as an inference
rule r(τ) and as a positive formula p(τ) (for convenience,
we identify STLF base types with our defined atoms P):

r(τ1 ⊃ . . .⊃ τn ⊃ P) = P⇐ p(τ1)⇐ . . .⇐ p(τn)

p(P) = P
p(τ1 ⊃ τ2) = r(τ1)⇒ p(τ2)

The function r(τ) can then be used to map STLF signatures
Σ and contexts Φ to inference rule contexts Ψ.

Theorem 2 (Embedding of STLF). Let r(Σ) = ΨΣ and
r(Φ) = ΨΦ and p(τ) = A+. Then there is a bijection be-
tween canonical STLF terms M such that Φ `Σ M : τ and
patterns p such that · ; ΨΦ p :: A+ in signature ΨΣ.

Proof. Map λ x.M to λ x.p and x M1 . . .Mn to x p1 . . .pn.

To check that LF substitution is faithfully modelled in
our calculus, we can recast the usual hereditary substitution
algorithm for LF [40] as a meta-operation on closed pat-
terns. However, it is also possible to prove a much more
general substitution principle, which covers many uses of
iterated inductive definitions.

4.2 Structural Properties

As discussed above, the rule context Ψ does not in gen-
eral satisfy the structural properties of a hypothetical judge-
ment, because computational functions can be used to de-
fine impure rules. However, we can establish the structural
properties generically under sufficient conditions that com-
putational functions cannot interfere. To state these condi-
tions, we use a notion of subordination [39], which tracks
when values of one type are relevant to values of another.
First, we define a judgement P 6� A± ∈ Ψ (“P is insubor-
dinate to A±”), which means that no rule concluding P can

be used by a value of type A±. Next, we define a judge-
ment P � A± ∈ Ψ (“P is uncircumscribed by A±”), which
means that P is insubordinate to the domain of any compu-
tational arrow in A±. We say that a rule P⇐ A+

1 · · · ⇐ A+
n is

insubordinate to/uncircumscribed by A± iff P is. Finally, we
define a judgement bindsof A± � B± ∈Ψ, which means that
all rules that may be bound by a value of type A± are un-
circumscribed by B±. We refer the interested reader to our
companion Agda code for the formal definitions of these
judgements.

Let R = P⇐ A+
1 · · · ⇐ A+

n. Using our Agda implementa-
tion, we have given negative values of the following types:

• strengthen :〈Ψ〉((R⇒ A±)→ A±) if P 6� A± ∈Ψ,u :R.

• weaken :〈Ψ〉(A±→ (R⇒ A±)) if P� A± ∈Ψ,u :R.

• apply :〈Ψ〉(((P⇒ A±)⊗P)→ A±) if P� A± ∈Ψ,u :P
and bindsof A± � P ∈ (Ψ,u :P).

The function strengthen removes an insubordinate rule from
the context. The function weaken adds an uncircumscribed
rule to the context. The value apply substitutes a value
for a base type; the subordination conditions are neces-
sary for strengthening the arguments to computational func-
tions in A± (P � A± ∈ Ψ,u :P) and weakening the proof of
P as the substitution operation passes under binders in A±

(bindsof A± � P ∈ (Ψ,u :P)). These functions are defined
by the same recursion on types as the proof of the identity
theorem in Section 2, and they are total/productive in the
same circumstances as identity. At present, we have only
implemented substitution for base types generically, though
we conjecture a generalization to all higher-order rules in
the embedding of LF.

To illustrate these structural properties, consider a
signature Ψ with constants lam :exp⇐ (exp⇒ exp) and
omega :exp⇐↓(nat→↑exp), which might arise in repre-
senting a proof theory for natural numbers with an ω-rule.
In this signature, exp is insubordinate to nat (expressions
cannot be used to build natural numbers), but exp is not in-
subordinate to exp (expressions can be used to build expres-
sions). Thus, strengthen permits strengthening away exp-
variables, but not nat-variables, from a nat. However, exp
is uncircumscribed by exp, whereas nat is not uncircum-
scribed by exp (because of the computational premise of
omega). Thus, weaken allows for weakening an exp with
an exp, but not with a nat (which would add a new case to
the computational argument to omega). Moreover, the only
rule bound by exp, namely exp, is uncircumscribed by exp,
so apply allows for substituting an exp into an exp.

5 Programming Example

We present one simple example of mixing binding and
computation; our companion technical report [22] contains

several additional examples, including ones illustrating our
approach to computing with open terms. We write the ex-
ample using a named syntax for rule variables, which could
either be implemented directly in a proof assistant, or elab-
orated into de Bruijn form.

Consider the syntax of a simple language of arithmetic
expressions, where numeric primitives are represented by
computational functions. In LF, each primitive operation
would require its own constructor; here, we represent bi-
nary primops (binops) uniformly as computational func-
tions of type nat⊗nat→↑nat. The language includes nu-
meric constants, binops, and let-binding:

zero :nat, succ :nat⇐ nat,
num :ari⇐ nat
binop :ari⇐ ari⇐(nat⊗nat→↑nat)⇐ari
let :ari⇐ ari⇐(ari⇒ ari)

For example, if plus is a function (negative value) of type
〈·〉(nat⊗nat→↑nat) implementing addition on nats, then
the value (binop (num 4) f (num 5)) [plus/f] is the abstract
syntax for the arithmetic expression “4 + 5”. We implement
an evaluator for closed programs using a fixed point:

· ` eval : 〈〉ari→↑nat
eval = fix(ev.val-(p ;ε 7→ ev∗ p))

The body of the negative value is defined by a meta-function
(an Agda function in our Agda implementation), where the
variable ev is the recursive reference:

∀(∆ c :: 〈〉ari) : (ev :〈〉ari→↑nat,∆) ` (ev∗ c) : 〈〉nat
ev∗ num p 7→ p
ev∗ binop p1 f p2 7→

ev• (p1;cont+(p′1 7→ ev• (p2;cont+(p′2 7→f • (p′1,p′2))))
ev∗ let p0 (λ u.p) 7→

apply• ((λ u.p,p0);cont+(p′ 7→ ev•p′))

In this code, we employ a bit of syntactic sugar, suppressing
the ε terminating a destructor pattern, the identity substitu-
tion id, and the identity case-analysis ε . The variables p are
meta-variables ranging over patterns (Agda variables in our
Agda implementation), which allow us to specify the behav-
ior of ev∗ on all arithmetic expressions using only finitely
many cases. In the binop case, we recursively evaluate the
first argument p1, and match the result as p′1, then we evalu-
ate the second argument p2, and finally we apply the embed-
ded computational function f to the values of the arguments.
In the let case, we apply the body of the let to the let-bound
term and evaluate the result. The function apply, which was
discussed in Section 4, applies a representational function to
an argument by performing substitution. The subordination
conditions necessary for calling apply are satisfied in this
case: while the rules for ari use a computational function
that circumscribes nat, they do not circumscribe ari.

6 Related Work

Variable binding can be implemented concretely in a va-
riety of ways (see Aydemir et al. [5] for a survey). Among
the concrete representation techniques, definitional varia-
tion is most similar to representations where the context
of a term is marked in its type, such as de Bruijn repre-
sentations using nested types or dependency [1, 6, 7]. In
these representations, binders introduce a new constructor
for variables, which are explicitly injected into terms. Our
framework builds this use of dependency into the language:
all types are contextual and all datatypes may be extended
by rule variables introduced by ⇒ and f. This creates
an opportunity to implement the structural properties once
(modulo subordination conditions) for all types, including
negative types such as computational functions, and to ab-
stract away from the concrete implementation of variables
themselves—as in LF, we can provide a named notation
without requiring the programmer to manage names.

In systems based on the LF logical framework [17], LF
is taken as a pure representation language, and a separate
layer is provided for computation. In Twelf [29], Del-
phin [33], and Beluga [30], the computational layer is an
entirely separate language. Schürmann et al. [36] describe
an approach in which the same arrow is used for both com-
putation and representation, with primitive recursion iso-
lated by a modality, but computation is nonetheless segre-
gated because the computational modality cannot appear in
rules. These stratified approaches have the advantage that
all representations automatically obey the structural prop-
erties of a hypothetical judgement, with the disadvantage
that certain encoding techniques, which rely on embedding
computation in data, are not possible. Our framework re-
moves this stratification, allowing rules that embed compu-
tation, with the consequence that not all representable rule
systems satisfy the structural properties. However, as dis-
cussed in Section 4, we have implemented strengthening,
weakening, and substitution generically under certain sub-
ordination conditions. Consequently, our framework pro-
vides meta-operations implementing the structural proper-
ties “for free” for all rule systems definable in simply-typed
LF, as well as for many more rule systems that use iterated
inductive definitions.

Our current framework lacks dependent types, a limita-
tion we plan to address in future work. In a dependently-
typed setting, equality of terms influences equality of types,
and equality of types influences type checking. In our set-
ting, type checking will thus depend on the equational be-
havior of the meta-functions implementing the structural
properties such as substitution. We are optimistic that the
equational theory of the LF fragment of our framework will
agree with LF definitional equality, even in an intensional
setting, because we have implemented substitution by ex-

tending the hereditary substitution algorithm used in canon-
ical LF [40]. However, we leave a detailed investigation of
this issue to future work.

It is tempting to try to reuse the computational func-
tion space of existing proof assistants such as Coq and Is-
abelle/HOL to represent binding, but the naive approach
admits too many functions. One solution to this problem
is to use a predicate to identify those computational func-
tions that are in fact substitution functions [2, 9, 11, 18, 26].
Another solution is to bind meta-language variables of an
abstract type defined only by an axiomatic characterization
of the properties of variables [8]. In contrast, our repre-
sentational functions provide a direct means of adequately
encoding binding, without requiring side conditions or ax-
ioms. Moreover, as we hope to have demonstrated, encod-
ing ⇒ in terms of → ignores some of its essential prop-
erties, such as the distributivity principles in Section 2.5,
and the ability to decompose a representational function by
pattern-matching.

Nominal logic [13] is a theory of names and binding that
has been implemented in several programming languages
(e.g., FreshML [32, 37] and the Isabelle nominal datatype
package [38]). The differences between the nominal ap-
proach and ours stem from the fact that FreshML sepa-
rates fresh name generation from the binding of a name in
a scope, whereas in our type theory rule variables do not
exist outside of the scope in which they are bound. Nomi-
nal logic facilitates the direct representation of informal al-
gorithms that use names without being explicit about their
scope, whereas our approach follows the LF methodology
of recasting these algorithms in terms of a more disciplined
binding structure. Separating name generation from scop-
ing makes it more difficult to determine what names are free
in a computation, requiring freshness analyses [32], specifi-
cation logics [34], or stateful operational semantics [37] in
order to ensure that functions respect α-equivalence of rep-
resentations. In contrast, the free rule variables of all com-
putations are tracked by our type system, and respect for
α-equivalence is achieved simply, by quotienting patterns
by α-equivalence.

In light of the present analysis, it is interesting to re-
examine an old proposal by Miller [24] for an extension
to ML with primitives for binding, including a new func-
tion type ’a => ’b and a restricted form of higher-order
pattern-matching. For example, the fact that the codomain
’b must be an equality type in Miller’s proposal is related
to the present restriction that the codomain A+ be positive—
although it is less general, since A+ can contain embedded
negative formulas, which are not equality types. Techni-
cally, we are able to go beyond Miller’s proposal because
we associate negative hypotheses with a context of param-
eters. This idea appears in Miller and Tiu’s more recent
work [25], as well as in contextual modal type theory [27].

Indeed, Miller and Tiu’s self-dual ∇ connective is closely
related to ⇒ and f, also capturing the notion of a scoped
constant. An essential difference, however, is that because
the ∇ proof theory adopts a logic programming-based dis-
tinction between propositions and types (∇ quantifies over a
type and forms a proposition), it is significantly less subtle
than definitional variation. For example, ∇ cannot appear in
the domain of a ∇ (in contrast to⇒).

Fiore et al. [12] and Hofmann [19] give semantic ac-
counts of variable binding. It would be interesting to see
whether these semantic accounts can be extended to rule
systems such as ours which permit computational functions
in premises.

7 Conclusion

We have presented a language that enables the free inter-
action of binding with computation, extracted as the Curry-
Howard interpretation of a focused sequent calculus with
two forms of implication. We believe this provides an ap-
propriate logical foundation, but much work remains to be
done. We plan to pursue an independent implementation
of our language by giving a first-order language for meta-
functions, rather than relying on existing tools. Addition-
ally, a generalization to dependent types (which we have
already begun to explore [21]) would realize the goal of
giving intrinsic support for variable binding in a construc-
tive type theory, combining the best of frameworks such as
Twelf and Coq.

Acknowledgements. We thank Frank Pfenning, Karl Crary,
Jason Reed, Rob Simmons, Neel Krishnaswami, William
Lovas, Arbob Ahmad, Brigitte Pientka, Ken Shan, and An-
drew Pitts for helpful discussions about the work presented
here, and we thank our LICS reviewers for their thoughtful
guidance on improving this article.

References

[1] T. Altenkirch and B. Reus. Monadic presentations of lambda
terms using generalized inductive types. In CSL 1999: Com-
puter Science Logic. LNCS, Springer-Verlag, 1999.

[2] S. Ambler, R. L. Crole, and A. Momigliano. Combining
higher order abstract syntax with tactical theorem proving
and (co)induction. In International Conference on Theorem
Proving in Higher-Order Logics, pages 13–30, London, UK,
2002. Springer-Verlag.

[3] J.-M. Andreoli. Logic programming with focusing proofs in
linear logic. Journal of Logic and Computation, 2(3):297–
347, 1992.

[4] A. Avron. Simple consequence relations. Information and
Computation, 92(1):105–139, 1991.

[5] B. Aydemir, A. Charguéraud, B. C. Pierce, R. Pollack,
and S. Weirich. Engineering formal metatheory. In ACM
SIGPLAN-SIGACT Symposium on Principles of Program-
ming Languages, pages 3–15, 2008.

[6] F. Bellegarde and J. Hook. Substitution: A formal methods
case study using monads and transformations. Science of
Computer Programming, 23(2–3):287–311, 1994.

[7] R. S. Bird and R. Paterson. De Bruijn notation as a nested
datatype. Journal of Functional Programming, 9(1):77–91,
1999.

[8] A. Bucalo, M. Hofmann, F. Honsell, M. Miculan, and
I. Scagnetto. Consistency of the theory of contexts. Jour-
nal of Functional Programming, 16(3):327–395, May 2006.

[9] V. Capretta and A. Felty. Combining de Bruijn indices
and higher-order abstract syntax in Coq. In Proceedings of
TYPES 2006, volume 4502 of Lecture Notes in Computer
Science, pages 63–77. Springer-Verlag, 2007.

[10] Coq Development Team. The Coq Proof Assistant
Reference Manual. INRIA, 2007. Available from
http://coq.inria.fr/.

[11] J. Despeyroux, A. Felty, and A. Hirschowitz. Higher-
order abstract syntax in Coq. In M. Dezani-Ciancaglini
and G. Plotkin, editors, International Conference on Typed
Lambda Calculi and Applications, volume 902 of Lecture
Notes in Computer Science, pages 124–138, Edinburgh,
Scotland, 1995. Springer-Verlag.

[12] M. Fiore, G. Plotkin, and D. Turi. Abstract syntax and vari-
able binding. In IEEE Symposium on Logic in Computer
Science, 1999.

[13] M. J. Gabbay and A. M. Pitts. A new approach to abstract
syntax involving binders. In IEEE Symposium on Logic in
Computer Science, pages 214–224. IEEE Press, 1999.

[14] J.-Y. Girard. Locus solum: From the rules of logic to the
logic of rules. Mathematical Structures in Computer Science,
11(3):301–506, 2001.

[15] J.-Y. Girard. On the unity of logic. Annals of pure and ap-
plied logic, 59(3):201–217, 1993.

[16] L. Hallnäs. Partial inductive definitions. Theoretical Com-
puter Science, 87(1):115–142, 16 Sept. 1991.

[17] R. Harper, F. Honsell, and G. Plotkin. A framework for
defining logics. Journal of the Association for Computing
Machinery, 40(1), 1993.

[18] J. Hickey, A. Nogin, X. Yu, and A. Kopylov. Mechanized
meta-reasoning using a hybrid HOAS/de Bruijn representa-
tion and reflection. In ACM SIGPLAN International Con-
ference on Functional Programming, pages 172–183, New
York, NY, USA, 2006. ACM.

[19] M. Hofmann. Semantical analysis of higher-order abstract
syntax. In IEEE Symposium on Logic in Computer Science,
1999.

[20] D. J. Howe. On computational open-endedness in Martin-
Löf’s type theory. In IEEE Symposium on Logic in Computer
Science, pages 162–172. IEEE Computer Society, 1991.

[21] D. R. Licata and R. Harper. Dependently typed program-
ming with domain-specific logics. Draft available from
http://www.cs.cmu.edu/˜drl, April 2008.

[22] D. R. Licata, N. Zeilberger, and R. Harper. Focusing on bind-
ing and computation. Technical Report CMU–CS–08–101,
Carnegie Mellon University School of Computer Science,
Pittsburgh, PA, April 2008.

[23] P. Martin-Löf. Hauptsatz for the intuitionistic theory of iter-
ated inductive definitions. In J. E. Fenstad, editor, Proceed-
ings of the Second Scandinavian Logic Symposium, pages
179–216, Amsterdam, 1971. North Holland.

[24] D. Miller. An extension to ML to handle bound variables in
data structures: Preliminary report. Technical report, Penn-

sylvania State University, Department of Computer Science
and Engineering, Aug. 1990.

[25] D. Miller and A. F. Tiu. A proof theory for generic judg-
ments: An extended abstract. In IEEE Symposium on Logic
in Computer Science, pages 118–127, 2003.

[26] A. Momigliano, A. Martin, and A. Felty. Two-level hybrid:
A system for reasoning using higher-order abstract syntax. In
International Workshop on Logical Frameworks and Meta-
Languages: Theory and Practice, 2007.

[27] A. Nanevski, F. Pfenning, and B. Pientka. Contextual modal
type theory. Transactions on Computational Logic, 2007. To
appear.

[28] U. Norell. Towards a practical programming language based
on dependent type theory. PhD thesis, Chalmers University
of Technology, 2007.

[29] F. Pfenning and C. Schürmann. System description: Twelf
- a meta-logical framework for deductive systems. In
H. Ganzinger, editor, International Conference on Auto-
mated Deduction, pages 202–206, 1999.

[30] B. Pientka. A type-theoretic foundation for programming
with higher-order abstract syntax and first-class substitu-
tions. In ACM SIGPLAN-SIGACT Symposium on Principles
of Programming Languages, pages 371–382, 2008.

[31] A. M. Pitts. Nominal logic, a first order theory of names and
binding. Information and Computation, 186:165–193, 2003.

[32] A. M. Pitts and M. J. Gabbay. A metalanguage for program-
ming with bound names modulo renaming. In R. Backhouse
and J. N. Oliveira, editors, Mathematics of Program Con-
struction, volume 1837 of Lecture Notes in Computer Sci-
ence, pages 230–255. Springer-Verlag, Heidelberg, 2000.

[33] A. Poswolsky and C. Schürmann. Practical programming
with higher-order encodings and dependent types. In Euro-
pean Symposium on Programming, 2008.

[34] F. Pottier. Static name control for FreshML. In IEEE Sym-
posium on Logic in Computer Science, 2007.

[35] P. Schroeder-Heister. Rules of definitional reflection. In R. L.
Constable, editor, IEEE Symposium on Logic in Computer
Science, pages 222–232, Montreal, Canada, June 1993. IEEE
Computer Society Press.

[36] C. Schürmann, J. Despeyroux, and F. Pfenning. Primitive
recursion for higher-order abstract syntax. Theoretical Com-
puter Science, 266:1–57, 2001.

[37] M. R. Shinwell, A. M. Pitts, and M. J. Gabbay. FreshML:
Programming with binders made simple. In ACM SIG-
PLAN International Conference on Functional Program-
ming, pages 263–274, August 2003.

[38] C. Urban. Nominal techniques in Isabelle/HOL. Journal of
Automatic Reasoning, 2008. To appear.

[39] R. Virga. Higher-Order Rewriting with Dependent Types.
PhD thesis, Carnegie Mellon University, 1999.

[40] K. Watkins, I. Cervesato, F. Pfenning, and D. Walker. A
concurrent logical framework I: Judgments and properties.
Technical Report CMU-CS-02-101, Department of Com-
puter Science, Carnegie Mellon University, 2002. Revised
May 2003.

[41] N. Zeilberger. On the unity of duality. Annals of Pure and
Applied Logic, 153(1–3), 2008. Special issue on “Classical
Logic and Computation”.

[42] N. Zeilberger. Focusing and higher-order abstract syntax. In
ACM SIGPLAN-SIGACT Symposium on Principles of Pro-
gramming Languages, pages 359–369, 2008.

Γ ` v+ :: C+

∆ c :: C+ Γ ` σ : ∆

Γ ` c [σ] :: C+

Γ ` k+ : γ0 > γ

Γ ` ε : X- > X-
∀(∆ c :: C+) : Γ,∆ ` φ +(c) : γ

Γ ` val+(φ +) : C+ > γ Γ ` ε : C+ > C+

Γ ` k+
0 : γ0 > γ1 Γ ` k+

1 : γ1 > γ

Γ ` k+
0 ; k+

1 : γ0 > γ

Γ ` k- :: C- > γ

∆ d :: C- > γ0 Γ ` σ : ∆ Γ ` k+ : γ0 > γ

Γ ` d[σ];k+ :: C- > γ

Γ ` k- :: C- > γ0 Γ ` k+ : γ0 > γ

Γ ` k- ; k+ :: C- > γ

Γ ` v- : α

x :X+ ∈ Γ

Γ ` x : X+

∀(∆ d :: C- > γ) : Γ,∆ ` φ-(d) : γ

Γ ` val-(φ-) : C-
x :C- ∈ Γ

Γ ` x : C-
Γ,x :C- ` v- : C-

Γ ` fix(x.v-) : C-

Γ ` e : γ

Γ ` v+ :: C+

Γ ` v+ : C+

x :C- ∈ Γ Γ ` k- :: C- > γ

Γ ` x• k- : γ

Γ ` v- : C- Γ ` k- :: C- > γ

Γ ` v- • k- : γ

Γ ` v+ :: C+ Γ ` k+ : C+ > γ

Γ ` v+ • k+ : γ

Γ ` e : γ0 Γ ` k+ : γ0 > γ

Γ ` e ; k+ : γ

Γ ` σ : ∆

Γ ` · : ·
Γ ` σ : ∆ Γ ` v- : C-
Γ ` σ ,v-/x : ∆,x :C-

∆⊆ Γ

Γ ` id : ∆

Γ ` σ1 : ∆1 Γ ` σ2 : ∆2

Γ ` σ1,σ2 : ∆1,∆2

identity principles cut principles convenient principles

Figure 6. Focusing rules with proof terms

∆ ; Ψ p :: A+

x :X+ ; Ψ x :: X+ x :〈Ψ〉A- ; Ψ x :: ↓A- · ; Ψ () :: 1

∆1 ; Ψ p1 :: A+ ∆2 ; Ψ p2 :: B+

∆1,∆2 ; Ψ (p1,p2) :: A+⊗B+ (no rule for 0)

∆ ; Ψ p :: A+

∆ ; Ψ inlp :: A+⊕B+

∆ ; Ψ p :: B+

∆ ; Ψ inrp :: A+⊕B+

u : P⇐ A+
1 · · · ⇐ A+

n ∈ (Σ,Ψ)
∆1 ; Ψ p1 :: A+

1 . . . ∆n ; Ψ pn :: A+
n

∆1, . . . ,∆n ; Ψ u p1 . . .pn :: P

∆ ; Ψ,u :R p :: B+

∆ ; Ψ λ u.p :: R⇒ B+

∆ ; Ψ n :: A- > γ

· ; Ψ ε :: X- > X- · ; Ψ ε :: ↑A+ > 〈Ψ〉A+

∆1 ; Ψ p :: A+ ∆2 ; Ψ n :: B- > γ

∆1,∆2 ; Ψ p ;n :: A+→ B- > γ

(no rule for >)
∆ ; Ψ n :: A- > γ

∆ ; Ψ fst; n :: A-NB- > γ

∆ ; Ψ n :: B- > γ

∆ ; Ψ snd;n :: A-NB- > γ

∆ ; Ψ,u :R n :: B- > γ

∆ ; Ψ unpack; u.n :: RfB- > γ

∆ c :: 〈Ψ〉A+ and ∆ d :: 〈Ψ〉A+ > γ

∆ ; Ψ p :: A+

∆ Ψ.p :: 〈Ψ〉A+

∆ ; Ψ n :: A- > γ

∆ Ψ.n :: 〈Ψ〉A- > γ

Figure 7. Constructor and destructor patterns

