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Abstract. In previous work, the author gave a higher-order analysis of focusing proofs (in the sense
of Andreoli’s search strategy), with a role for infinitary rules very similar in structure to Buchholz’s
Ω-rule. Among other benefits, this “pattern-based” description of focusing simplifies the cut-elimination
procedure, allowing cuts to be eliminated in a connective-generic way. However, interpreted literally, it
is problematic as a representation technique for proofs, because of the difficulty of inspecting and/or
exhaustively searching over these infinite objects. In the spirit of infinitary proof theory, this paper
explores a view of pattern-based focusing proofs as façons de parler, describing how to compile them
down to first-order derivations through defunctionalization, Reynolds’ program transformation. Our
main result is a representation of pattern-based focusing in the Twelf logical framework, whose core type
theory is too weak to directly encode infinitary rules—although this weakness directly enables so-called
“higher-order abstract syntax” encodings. By applying the systematic defunctionalization transform,
not only do we retain the benefits of the higher-order focusing analysis, but we can also take advantage
of HOAS within Twelf, ultimately arriving at a proof representation with surprisingly little bureaucracy.

1 Introduction

Part of Hilbert’s program was to prove the consistency of all mathematics using only finitary methods. Gödel
showed this to be impossible, but nonetheless the program carried on, relaxing the finitary restriction. A
seminal achievement was Gentzen’s proof of the consistency of arithmetic through the technique of cut-
elimination [1]. Gentzen defined a finitary sequent calculus for Peano arithmetic, and then described an
entirely finitary procedure for reducing cuts in these proofs, driving them towards a normal form which
self-evidently excludes proofs of contradiction. However, the argument that the procedure terminates relied
on a transfinite induction.

Schütte [2] observed that Gentzen’s consistency proof could be considerably simplified by applying in-
finitary arguments within the proof system, not just when reasoning about it meta-theoretically. Specifically,
he considered translating Gentzen’s sequent calculus with the standard rule of arithmetic induction into
a sequent calculus where the induction rule was replaced by the so-called ω-rule (proposed by Hilbert [3],
studied also by Novikov [4] and Lorenzen [5]):

Γ ` A(0) Γ ` A(1) . . . Γ ` A(n) . . .

Γ ` ∀x.A(x)

The ω-rule has infinitely many premises, deriving a universal statement ∀x.A(x) given proofs of A(n) for
each n. At face, this may seem like an absurd rule of inference—how can we ever get our hands on the
infinitely many proofs required to deduce ∀x.A(x)? But the first thing to keep in mind when reading the rule
is that the ellipses need not be taken literally, but more as a “way of speaking”. Instead of seeing infinitely
many premises in the ω-rule, we can view the rule as demanding a symbolic function from numbers n to
proofs of A(n). Such an interpretation was considered for example by Shoenfield [6]. The second thing to
keep in mind about the ω-rule is that it offers a real simplification over the induction rule when analyzing
a sequent calculus for arithmetic—specifically, one can reduce to proofs that are genuinely cut-free, rather
than to proofs with cuts of a restricted form.



Several decades after Schütte’s work, Buchholz [7] further demonstrated the power of infinitary rules
for analyzing finite proof systems (in this case for iterated inductive definitions). Buchholz invented a new
infinitary rule, the Ω-rule (capitalization important!), which can be displayed as follows:

∆ u P (n) −→ Γ,∆ `v C
Γ `v P (n)⊃ C

Ωu+1

Here we have two ordinals u ≺ v and some arithmetic proposition P (n), and we assume that the natural
deduction system ID∞u has already been fully defined. The Ωu+1-rule is then included in the definition of
a new system ID∞v . Intuitively, the rule says that we can reason from P (n) towards C in ID∞v , if we can
convert any “direct” proof of P (n) in ID∞u into a proof of C in ID∞v . More precisely, the premise requires that
we can convert any normal deduction (in the sense of Prawitz [8]) of P (n) with assumptions ∆ into a proof
of C under the additional assumptions ∆. There is an additional technical restriction that the assumptions
∆ consist only of negative formulas, in a sense similar to Girard’s polarity [9].

In earlier work, I described a connection between something like Buchholz’s Ω-rule and Andreoli’s focusing
proofs. For the purposes of this paper, I will call this analysis pattern-based focusing.1 In Andreoli’s original
presentation [16], focusing proofs can be seen as defining a complete search strategy for sequent calculus,
alternating between dual “inversion” and “focus” phases on formulas in the left or right side of a sequent. In
pattern-based focusing, the left-inversion phase (for arbitrary positive formulas) is described as an instance
of the Ω-rule, and the right-focus phase (again for arbitrary positive formulas) is revealed as a natural dual of
the Ω-rule: to prove a proposition, find a direct proof of it under assumptions ∆ in the more primitive system,
and satisfy all the assumptions ∆ in the current system. Both rules also have formal duals, corresponding to
right-inversion and left-focus for negative formulas. For example, the right-inversion phase can be described
with an Ω-like rule that quantifies over direct refutations rather than direct proofs.

Rather than an iterated hierarchy of proof systems, pattern-based focusing really only uses a single
iteration of the Ω-like rules, from a base system to a second-order derived system. The base system is
taken literally as a definition of the logical connectives. Through the Ω-rules and their duals, this defini-
tion is then used to derive appropriate rules of inference for the connectives in the second-order system.
Proof-theoretically, the benefit of pattern-based focusing over the traditional presentation is that it im-
proves modularity—for example, the cut-elimination procedure can be described in a connective-generic
way. It also has an interesting operational interpretation through the proofs-as-programs correspondence.
For example, the Ω-rule for right-inversion corresponds to a rule for building call-by-value continuations by
pattern-matching: to define a continuation for (a positive type) A, we must build a map from A-patterns
to computations. The cut-elimination procedure corresponds directly to a simple operational semantics for
evaluating pattern-matching programs with deterministic evaluation order.

Despite these advantages, the pattern-based focusing analysis has the same trouble as the original ω-rule
in being difficult to make sense of directly. As we did with the ω-rule, we can interpret these Ω-like rules
constructively, replacing infinitely many premises with a single symbolic function. But this is still somewhat
nebulous—just what are these “symbolic functions”? Nothing in the abstract description of the proof system
forces us into adopting one particular interpretation, so in order to answer this question we should first ask
just what we are hoping to do with proofs. From the point of view of proof-checking, it is important that
we be able to inspect these functions intensionally, because their domain is potentially infinite (or rather,
because it is potentially non-compact [17]), in which case we could never verify extensionally that a proof
really is a proof. From the point of view of proof-search, it is important that we be able to enumerate these
functions. From the point of view of extracting computational content from proofs, neither of the above
properties is necessarily important, and we might only require that functions be computable (and even that
could be relaxed, opting for an oracular operational semantics).

This paper is a preliminary exploration in representations of proofs for these different domains, starting
from the pattern-based analysis of focusing. Our main weapon will be an old technique due to Reynolds called
1 This analysis was described in [10] and refined/extended in some later papers [11,12,13,14]. The presentation here
is modeled more closely on Chapters 2 and 3 of my thesis [15], which improves the notation of [10], and corrects
some of its philosophical confusions.
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defunctionalization [18], which systematically transforms programs with higher-order functions into first-
order programs. In the traditional setting of functional programming, the insight behind defunctionalization
is that a given program mentions only finitely many symbolic functions (a.k.a. λ-expressions), so that each
can be assigned a unique tag. Then an apply function defined over the set of tags explains how to invoke the
function denoted by a tag to any appropriate argument. So the defunctionalization transformation simply
consists of two easy steps: replace each function abstraction in the program by the corresponding tag, and
replace each function application by a call to “apply”. The resulting program contains only a single, first-order
function (or a collection of first-order functions, if we distinguish apply functions by type). On the other
hand, we can still see the original higher-order structure implicit in the defunctionalized program—formally,
defunctionalization has a left inverse, refunctionalization [19,20].

Some previous papers described type-theoretic representations of pattern-based focusing in Coq [11]
and Agda [12], where the Ω-rules were interpreted literally as higher-order constructors. These frameworks
are amenable to such literal interpretations because their core type theories (descended from Martin-Löf’s
“theory of sets” [21]) include the full power of iterated inductive definitions. In contrast, the Twelf logical
framework [22] does not allow such encodings, because its core type theory, LF [23] (descended from Martin-
Löf’s “system of arities”), includes only very limited forms of functions: those which do not inspect their
arguments. The weakness of the LF function space is also a strength, because it directly enables so-called
“higher-order abstract syntax” (HOAS) encodings [24], avoiding the bureaucracy typically necessary for
dealing with variable-binding and substitution.2

The main result of this paper is an encoding, via defunctionalization, of pattern-based focusing in Twelf.
As speculated in [11], the benefit of this representation is that we are able to use both techniques: by making
the higher-order rules of pattern-based focusing implicit through the use of defunctionalization, while taking
explicit advantage of LF-style higher-order abstract syntax, we arrive at a concrete, formal representation of
proofs with surprisingly little bureaucracy.

The first half of this paper gives a review of the pattern-based focusing analysis (modeled on [15, Ch. 2]),
and the second half describes the Twelf encoding and the defunctionalization transformation. Some familiarity
with Twelf is probably necessary for understanding the second half, although the ideas can be transported
to other languages built on LF, such as Beluga [25] or Delphin [26]. Note that the idea of defunctionalizing
focusing proofs was described cursorily in [14] for the purpose of building a refinement type-checker in Agda,
but here we pursue it in greater depth, while taking advantage of the peculiar capabilities of Twelf.

2 Patterns and canonical derivations

Definition 1 (Polarized propositions). We use the letters A,B,C to range over propositions. Every
proposition has a definite polarity, positive or negative. We indicate the polarity of a proposition A with a
superscript A+ or A−, unless it is unimportant or already clear from context.

Definition 2 (Affirmation/Denial). We write “A true” for the affirmation of A, abbreviated “A”, and
“A false” for the denial of A, abbreviated “•A”.

Definition 3 (Frames and simple frames). A frame ∆ is a tree of affirmations and denials. We write
· for the empty frame, and ∆1, ∆2 for the join of two frames. We write ∆ ∈ ∆′ if ∆ occurs as a subtree
of ∆′. We call B ∈ ∆ and •B ∈ ∆ the holes of ∆. A frame without any holes B+ or •B− (i.e., with only
positive denials •B+ and negative affirmations B−) is called simple.3

Definition 4 (Dictionaries of patterns, definition ordering). A dictionary Ψ is an inductively defined
relation ∆  ∆′, where ∆ is a simple frame and ∆′ is either A+ or •A−. Derivations of ∆  A+ are called
proof patterns, and derivations of ∆  •A− are called refutation patterns. In these patterns, we refer
2 The term “higher-order abstract syntax” was overloaded in [11] to stand for the use of Ω-rules to represent pattern-
matching, but obviously these are two very different representation techniques: a function that does not inspect
its argument is the most degenerate case of a pattern-matching function.

3 For simplicity (so to speak), we omit atoms in this paper. In general, a simple frame can have holes X+ and •X−.

3



to the frame ∆ as the “frame of” the pattern. Given a dictionary, we describe the definition ordering ≺
as the least transitive relation satisfying the following:

– If ∆  A+ then ∆ ≺ A+, and if ∆  •A− then ∆ ≺ A−
– If •B+ ∈ ∆ then B+ ≺ ∆, and if B− ∈ ∆ then B− ≺ ∆

For arbitrary propositions A, we write ≺A for the restriction of ≺ below A, and similarly ≺∆ for the restric-
tion of ≺ below ∆.

The intuition behind patterns is that they describe the shape of logical derivations, up to some holes for proofs
(of negative propositions) and refutations (of positive propositions). The key idea is that positive propositions
are literally defined by their proof patterns, and negative propositions by their refutation patterns, and hence
the collection of all patterns is a “dictionary” for interpreting propositions. The definition ordering induced
by a dictionary is a more abstract notion of subformula (cf. [27]). The ordering need not be well-founded,
although this will be the case for propositions built out of the standard (polarized) connectives.

Example 1. The dictionary Ψpol contains the following inductive clauses:

·  1

∆1  A+ ∆2  B+

∆1,∆2  A+ ⊗B+ (no rule for 0)
∆  A+

∆  A+ ⊕B+

∆  B+

∆  A+ ⊕B+

(no rule for >)
∆  •A−

∆  •A−NB−
∆  •B−

∆  •A−NB− ·  •⊥
∆1  •A− ∆2  •B−

∆1,∆2  •A−OB−

∆1  A+ ∆2  •B−

∆1,∆2  •A+ → B− A−  ↓A− •A+  • ↑A+

Ψpol defines some standard polarized connectives, adopting the notation of linear logic. Most of the rules
should be familiar from linear sequent calculus (•A can be read as A⊥), but note that here we are only building
patterns, and the linearity restriction will be dropped once we move to complete proofs and refutations. The
connectives ↓ and ↑ deserve some explanation, being the only definitions here that insert anything directly
into the frame. The “shifts” (introduced by Girard [28,29]) act as explicit coercions from negative to positive
polarity (↓) and vice versa (↑). Having these coercions allows one to restrict other connectives to fixed
polarities (e.g., ⊗ acts on a pair of positive propositions to produce a positive proposition) without any loss
of expressivity.

Example 2. Consider a positive proposition P defined by a single paradoxical clause •P  P , i.e., “P is true
iff P is false”. Then P ≺ •P ≺ P , so ≺P is not well-founded.

Given a dictionary Ψ telling us how to interpret propositions by proof and refutation patterns, we can define
full-blown proof and refutation in a generic way, essentially by the following informal recipes (applying the
unbracketed instructions for positive polarity A, the bracketed instructions for negative polarity):

To prove [refute] A, find a proof [refutation] pattern for A and fill in its holes

To refute [prove] A, contradict every proof [refutation] pattern for A

Now let us make these recipes formal, assuming some fixed dictionary Ψ .

Definition 5 (Hypothetical judgments). We write Γ ` J to assert a judgment relative to a frame. In
this case, we use the letter Γ to range over frames, calling Γ the context of J . Judgments J can be either
A or •A (read as above), or ∆ (“all of ∆”) or # (“contradiction”).

We will explain the meaning of these hypothetical judgments through canonical derivations. That is, we define
a very restricted system of inference rules, where each derivation can be seen as conveying a distinguished
semantic content.
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To prove a positive proposition, we choose one of its proof patterns, and derive the pattern’s frame.

∆  A+ Γ ` ∆
Γ ` A+

Observe that because there can be many possible proof patterns for A+ in Ψ , there can be many possible
ways to apply this rule, and proving the proposition requires making a choice.

To refute a positive proposition, we must examine each of its proof patterns, and derive a contradiction
from the pattern’s frame.

∆  A+ −→ Γ,∆ ` #

Γ ` •A+

Observe the similarity with Buchholz’s Ω-rule. We apply here the same convention in interpreting the arrow
above the line: the premise is satisfied just in case to every possible derivation of the left-hand side, we can
give a derivation of the right-hand side. Note that there is only one possible way to apply this rule, given the
dictionary definition of A+. However, the rule can have many premises (indeed infinitely many), for however
many A+-patterns there are in the dictionary.

The rules of proof and refutation for negative propositions can be derived mechanically from the rules
for positive polarity, by reversing the role of truth and falsehood.

To prove a negative proposition, we must examine each of its refutation patterns, and derive a contradiction
from the pattern’s frame. To refute a negative proposition, we choose one of its refutation patterns, and
derive the pattern’s frame.

∆  •A− −→ Γ,∆ ` #

Γ ` A−
∆  •A− Γ ` ∆

Γ ` •A−

The procedure for satisfying frames is straightforward: to satisfy a frame, we fill in all of its holes. The
following rules simply unravel a frame down to its holes.

The empty frame is always satisfied; to satisfy the join of two frames, we must satisfy both frames.

Γ ` ·
Γ ` ∆1 Γ ` ∆2

Γ ` ∆1,∆2

Finally, we give two rules for deriving contradiction.

To derive contradiction from the context, we can find a positive proposition assumed to be false, and prove
it, or we can find a negative proposition assumed to be true, and refute it.

•A+ ∈ Γ Γ ` A+

Γ ` #
A− ∈ Γ Γ ` •A−

Γ ` #

Again, there can be many possible ways (though only finitely many) of applying these rules, one for every
hole in the context.

Definition 6 (Canonical derivations). A canonical derivation of Γ ` J (relative to a dictionary Ψ) is
a derivation of Γ ` J applying only the above inference rules.

There is a direct correspondence between canonical derivations relative to the dictionary Ψpol and standard
presentations of focusing proofs for polarized classical sequent calculus with two-sided sequents [15, Ch. 3].
We are interested in arbitrary dictionaries, however, in particular ones containing propositions with infinitely
many patterns, and possibly non-well-founded definitions. Therefore we make no assumption of finiteness on
canonical derivations: they can be both infinitely branching and infinitely deep.

Given these core rules, we justify additional non-canonical rules by showing that they are admissible
transformations on canonical derivations. For example, we can justify two important composition rules
(corresponding to cuts in sequent calculus):
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Γ ` A Γ ` •A
Γ ` #

Γ ` ∆ Γ,∆ ` #
Γ ` #

It is easy to explain these rules as admissible transformations on canonical derivations, and to show that
they produce well-founded derivations so long as ≺A and ≺∆ are well-founded (see [15, §2.1.4]). In this
way, we build up an operational semantics of proofs, which can also be seen as a “proof-theoretic semantics”
[30] of programs. The semantics is in fact entirely deterministic, allowing for addition of side-effects and
other computational phenomena, because canonical derivations intrinsically enforce continuation-passing
style (cf. [15, Ch. 4]). We now illustrate this more concretely.

3 The Twelf encoding

We will follow the informal presentation of the preceding section closely, but with some variation, to build
up the Twelf encoding.4 First, because we want to take full advantage of higher-order abstract syntax, rather
than explicitly mentioning contexts in the hypothetical judgments Γ ` J , we will instead leave Γ implicit
as the LF context, with holes of Γ represented by LF variables. Moreover, rather than directly encoding
canonical derivations, we will give rules for building non-canonical derivations, and define a (cut-elimination)
procedure for reducing these derivations towards a normal form, driven by Twelf’s logic programming engine.

We begin by restating Definitions 1–4 in terms that Twelf can understand:
pos : type. neg : type. tp : type.
+ : pos -> tp. %postfix 10 +.
- : neg -> tp. %postfix 10 -.

frm : type.
· : frm.
, : frm -> frm -> frm. %infix right 11 ,.
true : tp -> frm. %postfix 9 true.
false : tp -> frm. %postfix 9 false.

 : frm -> frm -> type. %infix right 8 .

Here we have declared pos and neg as LF (i.e., meta-level) types, standing for positive and negative (object-
level) types.5 We also declare an LF type tp to represent arbitrary polarized types, and frm to represent
frames, with some simple constructors to build these up as inductive data structures. Finally, we declare the
ambient dictionary as an LF type family ∆1  ∆2. Note that we do not yet declare any specific inhabitants
of pos or neg, let alone give their dictionary definitions. By default, Twelf treats LF types as open-ended,
and allows new declarations to be interspersed throughout a file. Taking advantage of this feature and the
modularity of the focusing analysis, we will first give the type-generic definition of the syntax and operational
semantics, then introduce new types and patterns as they are needed to build examples.
j : type.
# : j.
` : frm -> j -> j. %infix right 8 `.
sub : frm -> type. %abbrev val = [A] sub (A true). %abbrev con = [A] sub (A false).
exp : j -> type.

Here we declare the LF types which will be inhabited by terms, i.e., (non-canonical) derivations. As mentioned
above, we want to use the implicit LF context to represent the context of hypothetical judgments, and so we
write val A, con A, sub ∆, and exp #, instead of Γ ` A, Γ ` •A, Γ ` ∆, and Γ ` #.6 However, because
4 We assume that the reader has some familiarity with LF and Twelf. Due to space limitations we omit some less
interesting code below, but the full source is available from http://www.cs.cmu.edu/~noam/.

5 I.e., object-level propositions. Because the Twelf encoding leads directly to an executable programming language,
in this section we will freely employ the terminology of the “other side” of the propositions-as-types correspondence.

6 Applying Curry-Howard, a derivation of ∆ is called a substitution, and a derivation of # an expression. In the case
of singleton substitutions, a proof of A is called a value, and a refutation of A is called a continuation.
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we need the ability to bind multiple variables at a time (during pattern-matching), which is not directly
representable by LF types, we define an auxiliary judgment ∆ ` J . The constructors for exp (∆ ` J)
simply introduce variables into the LF context one-by-one:7

λ· : exp J -> exp (· ` J).
λ, : exp (X∆1 ` X∆2 ` J) -> exp (X∆1 , X∆2 ` J).
λ : (sub X∆ -> exp J) -> exp (X∆ ` J).
%prefix 9 λ·. %prefix 9 λ,. %prefix 9 λ.

Here the constructors λ· and λ, navigate the tree structure of the frame, while λ does the actual work of
binding a variable. Now we give constructors for building terms in the implicit context. The constructor v+
corresponds exactly to the canonical rule of positive proof, and c- to the canonical rule of negative refutation:
v+ : X∆  A + true -> sub X∆ -> val (A +).
c- : X∆  A - false -> sub X∆ -> con (A -).

The constructors nil and ++ correspond exactly to the canonical rules for deriving frames:
nil : sub ·.
++ : sub X∆1 -> sub X∆2 -> sub (X∆1 , X∆2). %infix right 11 ++.

The constructors throw and let correspond to the composition principles at the end of Section 2:
throw : con A -> val A -> exp #.
let : sub X∆ -> exp (X∆ ` #) -> exp #.

Let us throw in one additional non-logical expression:
abort : i -> exp #.

Here i is an LF type representing integers (definition omitted), and the expression abort N stands for
a computation terminating with some return code. It is useful simply to give us some more interesting
operational behavior to observe.

At last we come to the decisive moment: how to represent the Ω-rules? As we have suggested the trick
boils down to defunctionalization. What that means here is that instead of giving a generic constructor
for inhabiting the LF types con (A +) and val (A -) by functions from patterns to expressions, we will
instead declare various constants of these types throughout the file, treating them as tags, and define an
“apply function” that does the actual work of associating—for each tag—patterns with expressions. We call
these functions cbody and vbody, since they define the body of the continuation/value denoted by each tag.
Because the operational semantics of Twelf are based on logic programming, we declare them as relations:
cbody : con (A +) -> X∆  A + true -> exp (X∆ ` #) -> type.
vbody : val (A -) -> X∆  A - false -> exp (X∆ ` #) -> type.
%mode cbody +K +P -E. %mode vbody +V +D -E.

Of course, since cbody and vbody are only declared as relations, they aren’t forced to behave functionally—
but with the appropriate keywords, Twelf will verify that they are in fact total functional relations, e.g.:8

%worlds () (cbody K P _). %total {K P} (cbody K P _). %unique cbody +K +P -E.

The check is actually trivial at this point, because we haven’t declared any tags yet. Whenever we introduce a
new tag (i.e., declare a typed value/continuation), we follow up by defining associated clauses of [c/v]body,
and verify that [c/v]body remains %total and %unique. In this way, we induce Twelf to check that our
pattern-matching definitions really are exhaustive and non-redundant (as we will illustrate with examples).

We will find it useful to consider the following pair of relations as well, duals to the above:

7 Note that this kind of hybrid representation of contexts has been discussed by Crary [31].
8 In functional languages built on LF, such as Delphin and Beluga, we would not have to go through these logic
programming contortions, and could instead define [c/v]body as real (computational) functions. Incidentally,
defunctionalization in the context of logic programming was also considered by Warren [32].
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vfact : val (A +) -> X∆  A + true -> sub X∆ -> type.
cfact : con (A -) -> X∆  A - false -> sub X∆ -> type.
%mode vfact +V -P -Xσ. %mode cfact +K -D -Xσ.

These can be seen as lemmas, stating the factorization property of positive values and negative continuations
(i.e., that they split into a pattern and a substitution). Again, at this point they hold trivially, because we
only gave the canonical rules v+ and c-. However, these relations give us a means of introducing additional,
non-canonical constructors for val (A +) and con (A -), so long as we can justify them by maintaining the
vfact and cfact properties.

Given this generic definition of syntax, we can define a generic big-step operational semantics:
result : type.
halt : i -> result.
eval : exp # -> result -> type. %mode eval +E -R.

To define (the Twelf logic program) eval, we first need (another logic program) load:

load : sub X∆ -> exp (X∆ ` J) -> exp J -> type. %mode load +Xσ +T -T’.
ld/nil : load nil (λ· T) T.
ld/++ : load (Xσ1 ++ Xσ2) (λ, T) T’’ <- load Xσ1 T T’ <- load Xσ2 T’ T’’.
ld/x : load Xσ (λ T*) (T* Xσ).

Then we can define eval in four easy clauses:
ev/throw+ : eval (throw K V) R <- vfact V P Xσ <- cbody K P E <- eval (let Xσ E) R.
ev/throw- : eval (throw K V) R <- cfact K D Xσ <- vbody V D E <- eval (let Xσ E) R.
ev/let : eval (let Xσ E) R <- load Xσ E E’ <- eval E’ R.
ev/abort : eval (abort N) (halt N).

The really interesting clauses here are ld/x in the definition of load, and ev/throw+ and ev/throw- in the
definition of eval, which all take advantage of the “higher-orderness” of the syntax, in the different senses of
“higher-order”. The load clause uses HOAS in the traditional sense, applying LF-level substitution to perform
substitution on terms. The two eval clauses, on the other hand, appeal to Twelf-level logic programming to
perform the application of defunctionalized Ω-rules. We elide here the keywords instructing Twelf to verify
that the definition of eval is exhaustive and deterministic.

With the generic portion of the language definition complete, we now move to particular examples. We
begin by defining some of the standard polarized connectives (cf. Example 1):

1 : pos.
#* : ·  1 + true.

⊗ : pos -> pos -> pos. %infix right 14 ⊗.
#, : X∆1  A + true -> X∆2  B + true -> (X∆1 , X∆2)  A ⊗ B + true. %infix right 11 #,.

0 : pos.
⊕ : pos -> pos -> pos. %infix right 13 ⊕.

#Inl : X∆  A + true -> X∆  A ⊕ B + true.
#Inr : X∆  B + true -> X∆  A ⊕ B + true.

→ : pos -> neg -> neg. %infix right 12 →.
#; : X∆1  A + true -> X∆2  B - false -> (X∆1 , X∆2)  A → B - false. %infix right 11 #;.

& : neg -> neg -> neg. %infix right 13 &.
#Fst : X∆  A - false -> X∆  A & B - false.
#Snd : X∆  B - false -> X∆  A & B - false.

↓ : neg -> pos. ↑ : pos -> neg.
_v : A - true  ↓ A + true. _k : A + false  ↑ A - false.

Observe that whenever we declare a new (object-level) type constructor, we also introduce a set of pattern
constructors which define the meaning of the type. Thus the dictionary entries for 1, ⊗, 0, and ⊕ look very
much like standard datatype definitions. (The definitions of & and → appear less conventional because they
are stated in terms of continuation patterns, but this is simply a dual principle.) We can likewise define
constructors for general recursive types (note the use of higher-order abstract syntax):
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rec+ : (pos -> pos) -> pos.
#Fold : X∆  A (rec+ A) + true -> X∆  rec+ A + true.

rec- : (neg -> neg) -> neg.
#Unfold : X∆  A (rec- A) - false -> X∆  rec- A - false.

Using these type constructors, we can derive some standard inductive and coinductive types, such as
nat = rec+ [X] 1 ⊕ X and stream A = rec- [X] A & X. Finally, along different lines, we define int:

int : pos.
#I : i -> ·  int + true.

Recall that i is the LF-level type of integers. The object-level type int therefore supports “native arithmetic”,
so to speak, with different relations (i.e., Twelf logic programs) on i (such as add : i -> i -> i -> type
and mult : i -> i -> i -> type, etc.) serving as a “foreign-function interface” for int. We will illustrate
this shortly, but to warm up let us first define a very simple but useful continuation:

exit : con (int +).
exit/_ : cbody exit (#I N) (λ· abort N).

exit is the int-continuation that reads a native integer and aborts with that integer. Again observe the
overall form of the definition: first we declare a constant K : con (A +), and then we give clauses inhabiting
cbody K P1 E1, cbody K P2 E2, etc. (Here, we only used a single cbody clause, which we can verify is
enough with the appropriate %total and %unique checks.)

Now we define plus, a curried function (negative value) on ints in continuation-passing style:

plus : val (int → int → ↑ int -).
plus/_ : vbody plus ((#I M) #; (#I N) #; _k) (λ, λ· λ, λ· λ [k] throw k (v+ (#I P) nil))

<- add M N P.

Modulo the bureaucratic string of λ’s, this definition is dead simple, just appealing to the meta-operation add
(with the standard logic programming definition). (Compare it with the definition further below of plus*,
the corresponding curried function on the recursive datatype nat.)

Before we move on, we can try evaluating a program (here z : i and s : i -> i and i2 = s s z):

%query 1 * eval (throw (c- ((#I i2) #; (#I i2) #; _k) (nil ++ nil ++ exit)) plus) R.

Indeed the Twelf server answers R = halt (s s s s z), although it might be hard recognizing the question
in this syntax ( “2 + 2 = ?”). For more perspicuous programs, we can start building up some syntactic sugar.
Because working directly with values in factorized form can get cumbersome, we declare additional value
constructors for the positive connectives, such as:

, : val (A +) -> val (B +) -> val (A ⊗ B +). %infix none 9 ,.
inl : val (A +) -> val (A ⊕ B +). inr : val (B +) -> val (A ⊕ B +).
fold : val (A (rec+ A) +) -> val (rec+ A +).

But it is not enough to stipulate these constructors—we must justify them by extending vfact, e.g., by:

,/_ : vfact (V1 , V2) (P1 #, P2) (Xσ1 ++ Xσ2) <- vfact V1 P1 Xσ1 <- vfact V2 P2 Xσ2.

Using these new constructors we can also derive some additional syntactic sugar, e.g.:

zz : val (nat +) = fold (inl (v+ #* nil)).
ss : val (nat +) -> val (nat +) = [n] fold (inr n). %prefix 9 ss.

Next we introduce some syntactic sugar for building negative values and positive continuations, in defunc-
tionalized style. Here we define the continuation constructor µ~:9

9 With the name inspired by [33]—the reader can try defining the dual constructor µ (or consult the online source).
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µ~ : (val (A +) -> exp #) -> con (A +).
µ~/_ : cbody (µ~ K) P (λ [σ] K (v+ P σ)).

Note that because µ~ is a higher-order LF constructor, we will use it precisely when we don’t need to do any
pattern-matching on the argument, i.e., when the body of the continuation can be defined parametrically.
The following constructors provide sugar for function abstraction and application:10

fn : (val (A +) -> val (B -)) -> val (A → B -).
fn/_ : vbody (fn V) (P #; D) (λ, λ [σ1] λ [σ2] let σ2 (E (v+ P σ1)))

<- {x} vbody (V x) D (E x).
@ : val (A → B -) -> val (A +) -> val (B -). %infix left 11 @.
@/_ : vbody (F @ V) D (λ [σ] let (Xσ0 ++ σ) E) <- vfact V P Xσ0 <- vbody F (P #; D) E.

And finally, a useful bit of syntactic sugar for plugging a value of type ↑A with a continuation:

$ : val (↑ A -) -> con (A +) -> exp # = [v] [k] throw (c- _k k) v. %infix none 10 $.

Using some of this sugar, we define plus* (here #Zz and #Ss are the derived pattern constructors for nat):

plus* : val (nat → nat → ↑ nat -).
plus*/z : vbody plus* (#Zz #; N #; _k) (λ, λ· λ, λ [σ] λ [k]

throw k (v+ N σ)).
plus*/s : vbody plus* ((#Ss M) #; N #; _k) (λ, λ [σ1] λ, λ [σ2] λ [k]

plus* @ (v+ M σ1) @ (v+ N σ2) $ µ~ [x] throw k (ss x)).

Except for some uninteresting contortions to bind substitution variables and carry them through, the body
of plus* corresponds to the standard recursive definition of addition in continuation-passing style. Observe
that for the first time we are using two separate clauses to define a defunctionalized value, applying case-
analysis on the pattern. It goes without saying that Twelf verifies this definition is %total and %unique (but
would complain, say, if we left out the plus*/z clause).

This time we try asking “2 + 3 = ?”, hopefully in more recognizable form (to convert the result of
plus* into a native int, we use a continuation transformer nat2int : con (int +) -> con (nat +), whose
definition is omitted here):

%query 1 * eval (plus* @ (ss ss zz) @ (ss ss ss zz) $ nat2int exit) R.

And indeed, Twelf answers that R = halt (s s s s s z).
To end this section, we will work up to a more significant example, building macros that let us view

direct-style programs in call-by-value lambda calculus (with products, sums, natural numbers, an effectful
abort command, and left-to-right evaluation order) as syntactic sugar for focusing proofs—or, if you prefer,
we build a continuations semantics of lambda calculus via pattern-based focusing. Lambda calculus values
will be represented simply by values of positive type, while arbitrary terms will be represented by negative
values of ↑’d type:

%abbrev vl : pos -> type = [A] val (A +).
%abbrev tm : pos -> type = [A] val (↑ A -).

As mentioned in the footnote, we decompose the call-by-value function space like so:

→v : pos -> pos -> pos = [A] [B] ↓ (A → ↑ B). %infix right 12 →v.

Now we give some standard elimination forms for products and sums, as continuation constructors:

split : (val (A +) -> val (B +) -> exp #) -> con (A ⊗ B +).
split/_ : cbody (split E) (P1 #, P2) (λ, λ [σ1] λ [σ2] E (v+ P1 σ1) (v+ P2 σ2)).
case : con (A +) -> con (B +) -> con (A ⊕ B +).

10 Note that → is neither call-by-value nor call-by-name, but a more primitive function space. Below we explain the
call-by-value decomposition, A→v B = ↓(A→ ↑B) [15, Ch. 4].
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case/inl : cbody (case K1 K2) (#Inl P) E1 <- cbody K1 P E1.
case/inr : cbody (case K1 K2) (#Inr P) E2 <- cbody K2 P E2.

as well as a control operator letcc for introducing ↑’d values, and a continuation constructor force for
eliminating ↓’d values:
letcc : (con (A +) -> exp #) -> val (↑ A -).
letcc/_ : vbody (letcc E) _k (λ [k] E k).
force : (val (A -) -> exp #) -> con (↓ A +).
force/_ : cbody (force E) _v (λ [x] E x).

Finally, we define the embedding of direct-style as a collection of macros for building tms:
! : vl A -> tm A = [x] letcc [k] throw k x. %prefix 9 !.
Pair : tm A -> tm B -> tm (A ⊗ B)

= [e1] [e2] letcc [k] e1 $ µ~ [x1] e2 $ µ~ [x2] throw k (x1 , x2).
Fst : tm (A ⊗ B) -> tm A = [e] letcc [k] e $ split [x] [y] throw k x.
Snd : tm (A ⊗ B) -> tm B = [e] letcc [k] e $ split [x] [y] throw k y.
Inl : tm A -> tm (A ⊕ B) = [e] letcc [k] e $ µ~ [x] throw k (inl x).
Inr : tm B -> tm (A ⊕ B) = [e] letcc [k] e $ µ~ [x] throw k (inr x).
Case : tm (A ⊕ B) -> (vl A -> tm C) -> (vl B -> tm C) -> tm C

= [e] [f] [g] letcc [k] e $ case (µ~ [x] f x $ k) (µ~ [y] g y $ k).
Fn : (vl A -> tm B) -> tm (A →v B) = [f] ! v+ _v (fn [x] letcc [k] f x $ k).
App : tm (A →v B) -> tm A -> tm B = [f] [e] letcc [k] f $ force [f0] e $ µ~ [x] f0 @ x $ k.
Z : tm nat = ! zz.
S : tm nat -> tm nat = [e] letcc [k] e $ µ~ [x] throw k (ss x). %prefix 9 S.
Plus : tm nat -> tm nat -> tm nat

= [e1] [e2] letcc [k] e1 $ µ~ [n1] e2 $ µ~ [n2] plus* @ n1 @ n2 $ k.
Abort : tm nat -> tm A = [e] letcc [k] e $ nat2int exit.

For convenience, we define an LF type abbreviation run E N = eval (E $ nat2int exit) (halt N), rep-
resenting the fact that a nat-computation terminates with result n. We can now run direct-style programs
directly. For example, Twelf answers all of the following queries correctly:
%query 1 * run (Plus (S S Z) (S S S Z)) N1. % N1 = s s s s s z
%query 1 * run (Plus (S S Z) (Abort (S Z))) N2. % N2 = s z
%query 1 * run (Plus (Abort Z) (Abort (S Z))) N3. % N3 = z
%query 1 * run (App (Fn [x] Plus (! x) (S Z)) (S Z)) N4. % N4 = s s z

And this is all still accomplished in an entirely generic way! Since the four clauses given a few pages back,
we have not touched the definition of eval.

4 Conclusions

I hope to have offered some intriguing examples of the power of pattern-based focusing, particularly when
combined with traditional higher-order abstract syntax, and to have shown that Ω-rules need not be so mys-
tical when viewed through the lens of defunctionalization. Obviously, I would like to get a better theoretical
understanding of the precise capabilities of this representation technique. Considerable work already exists in
the field of infinitary proof theory on reading finite derivations as notation systems for infinite derivations—
particularly by Mints [34,35], Buchholz [36], and Schwichtenberg [37]—and it could be profitable to translate
their results to the realm of focusing proofs and the Curry-Howard correspondence.

Acknowledgements. Many thanks to the anonymous PSTT reviewer for detailed and insightful sug-
gestions which led to the improvement of both the informal presentation and the Twelf code.
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