
We only consider restarts in combination with     .

An area so attractive that local exploration (     ) always leads
to the same (local) optima.

Information about a slope is deceptive if local exploration (     ) leads to
a local optimum. It is guiding if      leads to a global optimum.

We consider a sequence of optima that is improving in the
distance to the starting position. In between these optima,
there are worse positions but with guiding information.

Problem: If the basin of attraction is large but suboptimal,
it is hard to escape.

Key insights: Restarts are bene�cial and better than larger
search distances if the basin of attraction of the global opti-
mum is large.

Escaping Local Optima
A Theory-Driven Discussion
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Details for Nerds

local distant

Target

Equipment

Multiple Targets
Iterated Optima

Deceptive vs. Guiding
Information

Basins of Attraction

As adventurer, you have two possibilities of advancing your search

explore at a set distance, never going to worse places call the helicopter

restart

Variants

…   explore only in your direct neighborhood
…   go anywhere randomly
        (cold restart)

…   go anywhere locallly, even
        worse places (warm restart)

…   explore in increasing neighborhoods

…   explore anywhere, with a distribution centered
        around your position, then continue locally

Always do one of these: Maybe do one of these from time to time:

Results

Results

Problem: If there are many better places than my current position, it is
easier to improve. The slope to the better positions is important.

Problem: If deceptive regions are large, they are hard to overcome. If
guiding information is close to a local optimum, one can still land in the
local optimum if the search distance is too large.

Problem: Reaching one optimum can be costly. Doing so
multiple times can become more challenging.

Key insights: Using global moves works very well. In the case of
guiding information, warm restarts are also very useful.

Key insights: Larger search distances are useful. Warm restarts only work
for guiding information, but they do so very well.

Key insights: Using larger search distances helps. However,
restarting does not, as each restart only has a decent chance
to be successful so that iterated optima pose a problem.

(starting from a local optimum)

Results (starting from a local optimum)
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Results (starting from a local optimum)
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Conclusion

Any modi�cation to basic local exploration is useful.

Each modi�cation has advantages and disadvantages.

For our settings, using larger search distances proves
typically more useful than using restarts.

Search space:

We analyze the run time of these algorithms on various functions, found below.

{0, 1}�

� : {0, 1}� → R …  �tness function, to be maximized

…  uniformly at randomrandom

…  number of �tness function evaluations until the global optimum
       is created for the �rst time

run time

Variable neighborhood search (VNS [1]). First, go in random order through all
solutions that di�er in exactly one bit from the current solution. Once all solutions
have been looked at, go through all solutions that di�er in exactly two bits, and so
on. If a solution is found that is not worse than the current one, the new solution is
kept and VNS starts creating solutions that di�er in one bit.

Algorithms

Random local search (RLS). Create a neighbor by randomly �ipping a single bit.
If the new solution is not worse in �tness than the old, keep the new one.

RLS + warm restarts (wr). The same as with cold restarts, but when restarted, a
random solution that di�ers in exactly one bit from the current solution is chosen.

RLS + cold restarts (cr). Uses a parameter                   . Like RLS, but after                
consecutive iterations without improvement, a random solution is chosen and
the current solution discarded.

� ∈ R>0 � ln�

(1+1) memetic algorithm (MA [2]). Create a new solution by �ipping each bit of
the current solution independently with probability         . Afterward, in a random
order, �ip each bit, keeping on-the-�y all �ips that improve the solution. If this new
solution is not worse than the current one, keep the new solution.

1/�

TwoMaxAlgorithm

RLS ∞ w.p. at least 0.5
cr-RLS, � ∈ ω(�) ex. O

(

� log(��)
)

wr-RLS, � ∈ ω(�) �Ω(�) w.p. at least
(

1 − o(1)
)

0.5

(1+1) MA �Ω(�) w.p. at least 0.5

VNS Ω(2�) w.p. at least 0.5

Basins of Attraction

…  number of 1s of � ∈ {0, 1}�|� |1 …  with probabilityw.p.

…  expectedex.

RLS ∞ w.p. 1 − o(1) ∞ w.p. 1 − o(1)

cr-RLS ex. Ω(2�) ex. Ω(2�/��)

wr-RLS, � ∈ Ω(�) ex. �ω(�) ex. Θ(�3 log�)

VNS ex. Θ(��) ex. Θ(��)

(1+1) MA ex. Θ(��+1) ex. Θ(�3)

Algorithm Jump� Cliff�

Deceptive vs. Guiding Information

RLS ∞ w.p. 1 − o(1) ∞ w.p. 1 − o(1)

cr-RLS ex. Ω(2�) ex. Ω(2
�
( �
�/4−1

)

−1
)

wr-RLS, � ∈ Ω(�) ex. �ω(�) ex. Θ(� log�)

VNS ex. Θ(��−1) ex. Θ(��−1)

(1+1) MA ex. Θ(�) ex. Θ(�)

Algorithm ShiftedJump� ShiftedCliff�

Multiple Targets

RLS ∞ w.p. 1 − o(1) ∞ w.p. 1 − o(1)

cr-RLS ex. Ω(2�) ex. Ω(2�)

wr-RLS, � ∈ Ω(� log�) ex. O(�3 + �2 log�)�ω(1) w.p. 1 − o(1)

VNS ex. Θ(��+1) ex. Θ(��)

(1+1) MA ex. Θ(�3) ex. Θ(�3)

Algorithm HurdleRidge� CliffRidge�

Iterated Optima

Function Bestiary

Information for Nerds
[1] P. Hansen, N. Mladenović, J. Brimberg, and J.A. Moreno Pérez. Variable neighborhood
[1] search. In: Handbook of Heuristics. Springer, 2019, 57–97.

[2] P.T.H. Nguyen and D. Sudholt. Memetic algorithms outperform evolutionary algorithms
[2] in multimodal optimisation. Arti�cial Intelligence 287 (2020), 103345.

The title is set in the font family Koara.
The content is set in the font family Myriad Pro.
Some grapics are taken from svgrepo.com.

The math was set via the plugin
LaTeX2AI.

|� |1

TwoMax(�)

0 �/2 �

�

�/2

� ↦→

{

� + 1 if � = 1
� ,

max{|� |0, |� |1} else

|� |10 �

� + �

Jump� (�)

�

� − �
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{

|� |1 + � if |� |1 ∈ [� − �] ∪ {�},

|� |0 else
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�
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(� + 1) − 2 else

HurdleRidge
�
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� + �
�
( |� |1) if � = 1
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|� |0 else
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|� |0 if � ≠ 1
|� |10

�−|� |1 ,

� + |� |1 if |� |1 ∈ [� − �],

� + |� |1 − � + 1/2 else


