Escaping Local Optima

Key insights: Using global moves works very well. In the case of guiding information, warm restarts are also very useful.

Basins of Attraction

An area so attractive that local exploration (>>) always leads to the same (local) optima.

Problem: If the basin of attraction is large but suboptimal, it is hard to escape.

Results

Key insights: Restarts are beneficial and better than larger search distances if the basin of attraction of the global optimum is large.

Conclusion

Any modification to basic local exploration is useful.

Each modification has advantages and disadvantages.

For our settings, using larger search distances proves typically more useful than using restarts.

A Theory-Driven Discussion

Target

As adventurer, you have *two possibilities* of advancing your search

explore at a set distance, never going to worse places

Variants

Always do one of these:

... explore only in your direct neighborhood

explore in increasing neighborhoods

explore anywhere, with a distribution centered around your position, then continue locally

Maybe do one of these from time to time:

restart

call the helicopter

go anywhere randomly (cold restart)

go anywhere locallly, even worse places (*warm restart*)

We only consider restarts in combination with \mathcal{P} .

tobias.friedrich@hpi.de

timo.koetzing@hpi.de martin.krejca@polytechnique.edu

Iterated Optima

We consider a sequence of optima that is improving in the distance to the starting position. In between these optima, there are worse positions but with guiding information.

Problem: Reaching one optimum can be costly. Doing so multiple times can become more challenging.

?

Results (starting from a local optimum)

Key insights: Using larger search distances helps. However, restarting does not, as each restart only has a decent chance to be successful so that iterated optima pose a problem.

Deceptive vs. Guiding Information

Information about a slope is *deceptive* if local exploration (*p*) leads to a local optimum. It is *guiding* if P leads to a global optimum.

Problem: If deceptive regions are large, they are hard to overcome. If guiding information is close to a local optimum, one can still land in the local optimum if the search distance is too large.

Results (starting from a local optimum)

 $(\boldsymbol{?})$

Key insights: Larger search distances are useful. Warm restarts only work for guiding information, but they do so very well.

Information for Nerds

1] P. Hansen, N. Mladenović, J. Brimberg, and J.A. Moreno Pérez. Variable neighborhood search. In: *Handbook of Heuristics*. Springer, 2019, 57–97. [2] P.T.H. Nguyen and D. Sudholt. Memetic algorithms outperform evolutionary algorithms in multimodal optimisation. *Artificial Intelligence* 287 (2020), 103345.

è. The title is set in the font family Koara. The content is set in the font family **Myriad Pro**. Some grapics are taken from svgrepo.com.

The math was set via the plugin LaTeX2AI.

 $|n + |\mathbf{x}|_1 - d + 1/2$ else