Evolutionary Algorithms and Parameter Control

Carsten Witt

Technical University of Denmark, Kgs. Lyngby, Denmark

September 29, 2021

Why Evolutionary Algorithms?

White-box vs. black-box optimization

Task: find optimum of a function $f: S \to \mathbb{R}$

If we have explicit representation of f, including derivatives, we can apply classical mathematical optimization techniques (white-box scenario).

Why Evolutionary Algorithms?

White-box vs. black-box optimization

Task: find optimum of a function $f: S \to \mathbb{R}$

If we have explicit representation of f, including derivatives, we can apply classical mathematical optimization techniques (white-box scenario).

If f is only given implicitly (e.g., outcome of an experiment), we are in a black-box scenario where only sampling f reveals information.

Further possible challenges: uncertainty, e.g. noise and dynamic functions

Why Evolutionary Algorithms?

White-box vs. black-box optimization

Task: find optimum of a function $f: S \to \mathbb{R}$

If we have explicit representation of f, including derivatives, we can apply classical mathematical optimization techniques (white-box scenario).

If f is only given implicitly (e.g., outcome of an experiment), we are in a black-box scenario where only sampling f reveals information.

Further possible challenges: uncertainty, e.g. noise and dynamic functions

Evolutionary Algorithms (EAs) are well-established black-box optimization techniques with numerous applications in engineering.

More general umbrella term: Randomized Optimization Heuristics

Applications of Evolutionary Algorithms

• Complex optimization problems, e.g., planning the layout of a wind farm (Univ. Adelaide, AUS), minimizing waste in 3D printing, ...

(Erik Wilde, CC BY-SA)

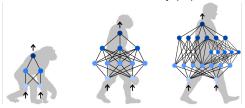
(DOI: 10.1145/3071178.3071310)

Applications of Evolutionary Algorithms

• Complex optimization problems, e.g., planning the layout of a wind farm (Univ. Adelaide, AUS), minimizing waste in 3D printing, ...

(DOI: 10.1145/3071178.3071310)

Optimizing the topology and weights of a neural network
 → Neuroevolution, extremely popular these days

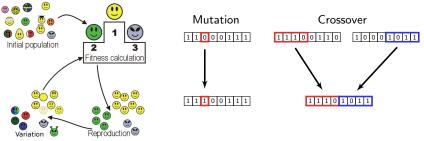


(https://github.com/PaulPauls/Primer_on_Neuroevolution_Blog_Post/)

"Evolution is the new deep learning" (R. Miikkulainen, Cognizant Tech.)

What are Evolutionary Algorithms?

Optimization loop inspired by evolution theory ("survival of the fittest")



Crucial design components

. . .

- Representation: what is the search space S? \mathbb{R}^n , $\{0,1\}^n$, Σ_n , ...?
- Population size: how many solutions from S to maintain in parallel?
- Selection: which solutions should undergo variation?
- Variation: how to mutate solutions? How to combine two solutions to a new one (crossover)?

4/11

A Typical Evolutionary Algorithm

Pseudocode of "Generational EA"

```
Initialize population P_0 of size \mu. Set t \leftarrow 0.

while stopping criterion not fulfilled do

for i \leftarrow 1, \dots, \mu do

Choose two individuals x and y from P_t by applying selection.

Create z by applying crossover to x and y.

Create z' by applying mutation to z.

Add z' to P_{t+1}. (assumption: P_{t+1} initially empty)

end for

t \leftarrow t + 1.

end while
```

A Typical Evolutionary Algorithm

Pseudocode of "Generational EA"

```
Initialize population P_0 of size \mu. Set t \leftarrow 0.

while stopping criterion not fulfilled do

for i \leftarrow 1, \dots, \mu do

Choose two individuals x and y from P_t by applying selection.

Create z by applying crossover to x and y.

Create z' by applying mutation to z.

Add z' to P_{t+1}. (assumption: P_{t+1} initially empty)

end for

t \leftarrow t+1.

end while
```

Scheme is typical but does not cover all variants of EAs. Not considered:

varying population size

• . . .

• mutation and crossover not performed in every "generation" (\rightarrow parameters for mutation and crossover probability)

Immense empirical knowledge on parameter choices for EAs available. Want to support parameter choice using theory: runtime analysis.

A Very Simple Scenario

Algorithm: (1+1) EA for maximization of $f: \{0,1\}^n \to \mathbb{R}$

t := 0. Choose u.a.r. $x_0 \in \{0, 1\}^n$.

repeat

Create x' by flipping each bit in x_t independ. w. prob. p (often $\frac{1}{n}$). $x_{t+1} := x'$ if $f(x') \ge f(x_t)$, and $x_{t+1} := x_t$ otherwise. t := t + 1. **until** some stopping criterion is fulfilled.

Runtime of (1+1) EA: number of iterations t until optimum found.

A Very Simple Scenario

Algorithm: (1+1) EA for maximization of $f: \{0,1\}^n \to \mathbb{R}$

t := 0. Choose u.a.r. $x_0 \in \{0, 1\}^n$.

repeat

Create x' by flipping each bit in x_t independ. w. prob. p (often $\frac{1}{n}$). $x_{t+1} := x'$ if $f(x') \ge f(x_t)$, and $x_{t+1} := x_t$ otherwise. t := t + 1. **until** some stopping criterion is fulfilled.

Runtime of (1+1) EA: number of iterations t until optimum found.

A very simple problem

 $f(x_1, \ldots, x_n) = w_1 x_1 + \cdots + w_n x_n$, where $w_i \in \mathbb{R}$ (linear function)

Static parameter control (= optimization)

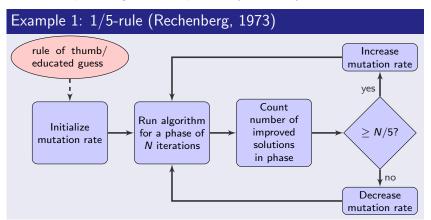
Theorem (W., 2013): p = 1/n minimizes expected runtime of (1+1) EA on any linear function $\rightarrow en \ln n + O(n)$.

Dynamic Parameter Control

Fixing mutation prob. at 1/n throughout the run is a compromise. If far away from optimum, progress is easy \rightarrow higher prob. promising.

Dynamic Parameter Control

Fixing mutation prob. at 1/n throughout the run is a compromise. If far away from optimum, progress is easy \rightarrow higher prob. promising. Idea: learn promising mutation probability on the fly based on successes.



EAs with dynamic parameter control are also called self-adjusting EAs.

Dynamic Parameter Control for Mutation Strength

Doerr et al., 2016: learn the number $k \in \{1, ..., r\}$ of bits flipped by the (1+1) EA like in a multi-armed bandit problem.

Ex. 2: self-adjusting (1+1) EA learning parameter confidences

- Assign each $k \in \{1, \ldots, r\}$ a confidence c_k .
- With probability 1 − ε, select k with highest confidence and with probability ε, choose a random k ∈ {1,..., r}. Flip k bits u.a.r.
- Update confidences based on decay parameter δ :

$$c_i(t) \coloneqq \frac{\sum_{s=1}^t \mathbb{1}_{k(s)=i}(1-\delta)^{t-s}(f(x_s)-f(x_{s-1}))}{\sum_{s=1}^t \mathbb{1}_{k(s)=i}(1-\delta)^{t-s}}$$

• Rest of algorithm like (1+1) EA.

Dynamic Parameter Control for Mutation Strength

Doerr et al., 2016: learn the number $k \in \{1, ..., r\}$ of bits flipped by the (1+1) EA like in a multi-armed bandit problem.

Ex. 2: self-adjusting (1+1) EA learning parameter confidences

- Assign each $k \in \{1, \ldots, r\}$ a confidence c_k .
- With probability 1 − ε, select k with highest confidence and with probability ε, choose a random k ∈ {1,..., r}. Flip k bits u.a.r.
- Update confidences based on decay parameter δ :

$$c_i(t) \coloneqq \frac{\sum_{s=1}^t \mathbb{1}_{k(s)=i}(1-\delta)^{t-s}(f(x_s)-f(x_{s-1}))}{\sum_{s=1}^t \mathbb{1}_{k(s)=i}(1-\delta)^{t-s}}$$

• Rest of algorithm like (1+1) EA.

Up to lower-order terms, expected optimization time on ONEMAX benchmark is as good as if an oracle always told the optimal k. Runtime $\leq n \ln n - 0.25n \rightarrow$ speed-up over static case roughly 0.14n.

Dynamic Parameter Control for Mutation Strength

Doerr et al., 2016: learn the number $k \in \{1, ..., r\}$ of bits flipped by the (1+1) EA like in a multi-armed bandit problem.

Ex. 2: self-adjusting (1+1) EA learning parameter confidences

- Assign each $k \in \{1, \ldots, r\}$ a confidence c_k .
- With probability 1 − ε, select k with highest confidence and with probability ε, choose a random k ∈ {1,..., r}. Flip k bits u.a.r.
- Update confidences based on decay parameter δ :

$$c_i(t) \coloneqq \frac{\sum_{s=1}^t \mathbb{1}_{k(s)=i}(1-\delta)^{t-s}(f(x_s)-f(x_{s-1}))}{\sum_{s=1}^t \mathbb{1}_{k(s)=i}(1-\delta)^{t-s}}$$

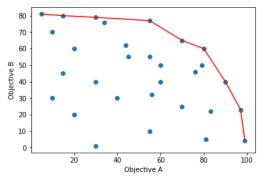
• Rest of algorithm like (1+1) EA.

Up to lower-order terms, expected optimization time on ONEMAX benchmark is as good as if an oracle always told the optimal k. Runtime $\leq n \ln n - 0.25n \rightarrow$ speed-up over static case roughly 0.14n. Empirical promising performance on MST instances.

(1+1) EA too simple to see pronounced effect of varying mutation rate. Parameter control most promising together with populations.

(1+1) EA too simple to see pronounced effect of varying mutation rate.Parameter control most promising together with populations.Populations:

- can diversify the search (cover different areas of search space)
- crucial in multi-objective optimization



Consider an example of speed-up by combining populations, mutation, and parameter control.

Ex. 3: self-adjusting (1+ λ) EA using two rates for offspring

Select x uniformly at random from $\{0,1\}^n$ and set $r_0 \leftarrow 2$. **repeat**

for $i \leftarrow 1, \dots, \lambda$ do

Create y_i by flipping each bit in a copy of x independently with probability $\frac{r_t}{2n}$ if $i \le \lambda/2$ and with probability $\frac{2r_t}{n}$ otherwise. end for

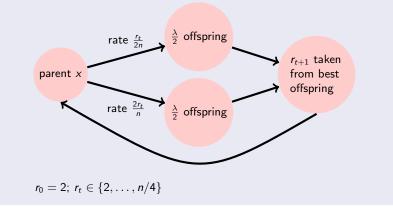
 $x^* \leftarrow \arg \max_{y_i} f(y_i)$ (breaking ties randomly). if $f(x^*) \ge f(x)$ then

 $x \leftarrow x^*$.

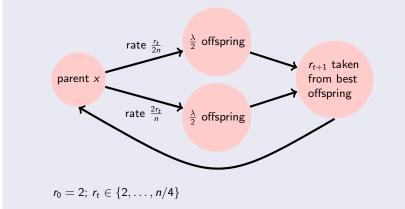
end if

Replace r_t with the mutation rate that x^* has been created with. Replace r_t with min{max{2, r_t }, n/4}; $t \leftarrow t + 1$ until some stopping criterion is fulfilled.

Ex. 3: self-adjusting $(1+\lambda)$ EA using two rates for offspring



Ex. 3: self-adjusting (1+ λ) EA using two rates for offspring



Theorem (Doerr et al., 2018): self-adjusting $(1+\lambda)$ EA asymptotically faster on ONEMAX benchmark (time $O(n/\log \lambda)$) than static variant $(O(n \log \log \lambda / \log \lambda))$

Param. Control in Discrete Optimization: Recent Research Highlights

- Self-adjusting (1+(λ, λ)) GA with 1/5-rule optimizes ONEMAX in O(n), beating any static parameter setting [Doerr and Doerr, 2015]; similar speedups on random 3-CNF formulas [Buzdalov and Doerr, 2017]
- Self-adjusting (1+1) EA with stagnation detection much more efficient than static variant at escaping local optima [Rajabi and W., 2020]
- With "¹/₅-rule" best possible runtime (up to *o*(1)) on LEADINGONES benchmark [Doerr et al., 2019]

Param. Control in Discrete Optimization: Recent Research Highlights

- Self-adjusting (1+(λ, λ)) GA with 1/5-rule optimizes ONEMAX in O(n), beating any static parameter setting [Doerr and Doerr, 2015]; similar speedups on random 3-CNF formulas [Buzdalov and Doerr, 2017]
- Self-adjusting (1+1) EA with stagnation detection much more efficient than static variant at escaping local optima [Rajabi and W., 2020]
- With "¹/₅-rule" best possible runtime (up to *o*(1)) on LEADINGONES benchmark [Doerr et al., 2019]

Research questions

- Great variety of mechanisms for self-adaptation. Compare these empirically and theoretically. Suggestions for new mechanisms?
- Advance and unify the toolbox for the analysis (so far many ad-hoc "drift" theorems and hard-to-compare techniques)
- Analyses on combinatorial optimization problems (on graphs etc.)
- Relation to hyperheuristics?

Param. Control in Discrete Optimization: Recent Research Highlights

- Self-adjusting (1+(λ, λ)) GA with 1/5-rule optimizes ONEMAX in O(n), beating any static parameter setting [Doerr and Doerr, 2015]; similar speedups on random 3-CNF formulas [Buzdalov and Doerr, 2017]
- Self-adjusting (1+1) EA with stagnation detection much more efficient than static variant at escaping local optima [Rajabi and W., 2020]
- With "¹/₅-rule" best possible runtime (up to *o*(1)) on LEADINGONES benchmark [Doerr et al., 2019]

Research questions

- Great variety of mechanisms for self-adaptation. Compare these empirically and theoretically. Suggestions for new mechanisms?
- Advance and unify the toolbox for the analysis (so far many ad-hoc "drift" theorems and hard-to-compare techniques)
- Analyses on combinatorial optimization problems (on graphs etc.)
- Relation to hyperheuristics?