
1/11

Evolutionary Algorithms and Parameter Control

Carsten Witt

Technical University of Denmark, Kgs. Lyngby, Denmark

September 29, 2021



2/11

Why Evolutionary Algorithms?

White-box vs. black-box optimization

Task: find optimum of a function f : S → R

If we have explicit representation of f , including derivatives, we can apply
classical mathematical optimization techniques (white-box scenario).

If f is only given implicitly (e. g., outcome of an experiment), we are in a
black-box scenario where only sampling f reveals information.

Further possible challenges: uncertainty, e. g. noise and dynamic functions

Evolutionary Algorithms (EAs) are well-established black-box
optimization techniques with numerous applications in engineering.

More general umbrella term: Randomized Optimization Heuristics



2/11

Why Evolutionary Algorithms?

White-box vs. black-box optimization

Task: find optimum of a function f : S → R

If we have explicit representation of f , including derivatives, we can apply
classical mathematical optimization techniques (white-box scenario).

If f is only given implicitly (e. g., outcome of an experiment), we are in a
black-box scenario where only sampling f reveals information.

Further possible challenges: uncertainty, e. g. noise and dynamic functions

Evolutionary Algorithms (EAs) are well-established black-box
optimization techniques with numerous applications in engineering.

More general umbrella term: Randomized Optimization Heuristics



2/11

Why Evolutionary Algorithms?

White-box vs. black-box optimization

Task: find optimum of a function f : S → R

If we have explicit representation of f , including derivatives, we can apply
classical mathematical optimization techniques (white-box scenario).

If f is only given implicitly (e. g., outcome of an experiment), we are in a
black-box scenario where only sampling f reveals information.

Further possible challenges: uncertainty, e. g. noise and dynamic functions

Evolutionary Algorithms (EAs) are well-established black-box
optimization techniques with numerous applications in engineering.

More general umbrella term: Randomized Optimization Heuristics



3/11

Applications of Evolutionary Algorithms

• Complex optimization problems, e. g., planning the layout of a wind
farm (Univ. Adelaide, AUS), minimizing waste in 3D printing, . . .

(Erik Wilde, CC BY-SA) (DOI: 10.1145/3071178.3071310)

• Optimizing the topology and weights of a neural network
→ Neuroevolution, extremely popular these days

(https://github.com/PaulPauls/Primer_on_Neuroevolution_Blog_Post/)

“Evolution is the new deep learning”(R. Miikkulainen, Cognizant Tech.)

https://github.com/PaulPauls/Primer_on_Neuroevolution_Blog_Post/


3/11

Applications of Evolutionary Algorithms

• Complex optimization problems, e. g., planning the layout of a wind
farm (Univ. Adelaide, AUS), minimizing waste in 3D printing, . . .

(Erik Wilde, CC BY-SA) (DOI: 10.1145/3071178.3071310)

• Optimizing the topology and weights of a neural network
→ Neuroevolution, extremely popular these days

(https://github.com/PaulPauls/Primer_on_Neuroevolution_Blog_Post/)

“Evolution is the new deep learning”(R. Miikkulainen, Cognizant Tech.)

https://github.com/PaulPauls/Primer_on_Neuroevolution_Blog_Post/


4/11

What are Evolutionary Algorithms?
Optimization loop inspired by evolution theory (“survival of the fittest”)

Variation

1 1 0 0 0 1 1 1

1 1 1 0 0 1 1 1

Mutation

1 1 1 0 0 1 1 0 1 0 0 0 1 0 1 1

1 1 1 0 1 0 1 1

Crossover

Crucial design components

• Representation: what is the search space S? Rn, {0, 1}n, Σn, . . . ?

• Population size: how many solutions from S to maintain in parallel?

• Selection: which solutions should undergo variation?

• Variation: how to mutate solutions? How to combine two solutions
to a new one (crossover)?

• . . .



5/11

A Typical Evolutionary Algorithm

Pseudocode of “Generational EA”

Initialize population P0 of size µ. Set t ← 0.
while stopping criterion not fulfilled do

for i ← 1, . . . , µ do
Choose two individuals x and y from Pt by applying selection.
Create z by applying crossover to x and y .
Create z ′ by applying mutation to z .
Add z ′ to Pt+1. (assumption: Pt+1 initially empty)

end for
t ← t + 1.

end while

Scheme is typical but does not cover all variants of EAs. Not considered:

• varying population size

• mutation and crossover not performed in every “generation”
(→ parameters for mutation and crossover probability)

• . . .

Immense empirical knowledge on parameter choices for EAs available.
Want to support parameter choice using theory: runtime analysis.



5/11

A Typical Evolutionary Algorithm

Pseudocode of “Generational EA”

Initialize population P0 of size µ. Set t ← 0.
while stopping criterion not fulfilled do

for i ← 1, . . . , µ do
Choose two individuals x and y from Pt by applying selection.
Create z by applying crossover to x and y .
Create z ′ by applying mutation to z .
Add z ′ to Pt+1. (assumption: Pt+1 initially empty)

end for
t ← t + 1.

end while

Scheme is typical but does not cover all variants of EAs. Not considered:

• varying population size

• mutation and crossover not performed in every “generation”
(→ parameters for mutation and crossover probability)

• . . .

Immense empirical knowledge on parameter choices for EAs available.
Want to support parameter choice using theory: runtime analysis.



6/11

A Very Simple Scenario

Algorithm: (1+1) EA for maximization of f : {0, 1}n → R

t := 0. Choose u. a. r. x0 ∈ {0, 1}n.
repeat

Create x ′ by flipping each bit in xt independ. w. prob. p (often 1
n ).

xt+1 := x ′ if f (x ′) ≥ f (xt), and xt+1 := xt otherwise.
t := t + 1.

until some stopping criterion is fulfilled.

Runtime of (1+1) EA: number of iterations t until optimum found.

A very simple problem

f (x1, . . . , xn) = w1x1 + · · ·+ wnxn, where wi ∈ R (linear function)

Static parameter control (= optimization)

Theorem (W., 2013): p = 1/n minimizes expected runtime of (1+1) EA
on any linear function → en ln n + O(n).



6/11

A Very Simple Scenario

Algorithm: (1+1) EA for maximization of f : {0, 1}n → R

t := 0. Choose u. a. r. x0 ∈ {0, 1}n.
repeat

Create x ′ by flipping each bit in xt independ. w. prob. p (often 1
n ).

xt+1 := x ′ if f (x ′) ≥ f (xt), and xt+1 := xt otherwise.
t := t + 1.

until some stopping criterion is fulfilled.

Runtime of (1+1) EA: number of iterations t until optimum found.

A very simple problem

f (x1, . . . , xn) = w1x1 + · · ·+ wnxn, where wi ∈ R (linear function)

Static parameter control (= optimization)

Theorem (W., 2013): p = 1/n minimizes expected runtime of (1+1) EA
on any linear function → en ln n + O(n).



7/11

Dynamic Parameter Control

Fixing mutation prob. at 1/n throughout the run is a compromise.
If far away from optimum, progress is easy → higher prob. promising.

Idea: learn promising mutation probability on the fly based on successes.

Example 1: 1/5-rule (Rechenberg, 1973)

Initialize
mutation rate

rule of thumb/
educated guess

Run algorithm
for a phase of
N iterations

Count
number of
improved
solutions
in phase

≥ N/5?

Increase
mutation rate

Decrease
mutation rate

yes

no

EAs with dynamic parameter control are also called self-adjusting EAs.



7/11

Dynamic Parameter Control

Fixing mutation prob. at 1/n throughout the run is a compromise.
If far away from optimum, progress is easy → higher prob. promising.

Idea: learn promising mutation probability on the fly based on successes.

Example 1: 1/5-rule (Rechenberg, 1973)

Initialize
mutation rate

rule of thumb/
educated guess

Run algorithm
for a phase of
N iterations

Count
number of
improved
solutions
in phase

≥ N/5?

Increase
mutation rate

Decrease
mutation rate

yes

no

EAs with dynamic parameter control are also called self-adjusting EAs.



8/11

Dynamic Parameter Control for Mutation Strength
Doerr et al., 2016: learn the number k ∈ {1, . . . , r} of bits flipped by the
(1+1) EA like in a multi-armed bandit problem.

Ex. 2: self-adjusting (1+1) EA learning parameter confidences

• Assign each k ∈ {1, . . . , r} a confidence ck .

• With probability 1− ε, select k with highest confidence and with
probability ε, choose a random k ∈ {1, . . . , r}. Flip k bits u. a. r.

• Update confidences based on decay parameter δ:

ci (t) :=

∑t
s=1 1k(s)=i (1− δ)t−s(f (xs)− f (xs−1))∑t

s=1 1k(s)=i (1− δ)t−s

• Rest of algorithm like (1+1) EA.

Up to lower-order terms, expected optimization time on OneMax
benchmark is as good as if an oracle always told the optimal k.

Runtime ≤ n ln n − 0.25n → speed-up over static case roughly 0.14n.

Empirical promising performance on MST instances.



8/11

Dynamic Parameter Control for Mutation Strength
Doerr et al., 2016: learn the number k ∈ {1, . . . , r} of bits flipped by the
(1+1) EA like in a multi-armed bandit problem.

Ex. 2: self-adjusting (1+1) EA learning parameter confidences

• Assign each k ∈ {1, . . . , r} a confidence ck .

• With probability 1− ε, select k with highest confidence and with
probability ε, choose a random k ∈ {1, . . . , r}. Flip k bits u. a. r.

• Update confidences based on decay parameter δ:

ci (t) :=

∑t
s=1 1k(s)=i (1− δ)t−s(f (xs)− f (xs−1))∑t

s=1 1k(s)=i (1− δ)t−s

• Rest of algorithm like (1+1) EA.

Up to lower-order terms, expected optimization time on OneMax
benchmark is as good as if an oracle always told the optimal k.

Runtime ≤ n ln n − 0.25n → speed-up over static case roughly 0.14n.

Empirical promising performance on MST instances.



8/11

Dynamic Parameter Control for Mutation Strength
Doerr et al., 2016: learn the number k ∈ {1, . . . , r} of bits flipped by the
(1+1) EA like in a multi-armed bandit problem.

Ex. 2: self-adjusting (1+1) EA learning parameter confidences

• Assign each k ∈ {1, . . . , r} a confidence ck .

• With probability 1− ε, select k with highest confidence and with
probability ε, choose a random k ∈ {1, . . . , r}. Flip k bits u. a. r.

• Update confidences based on decay parameter δ:

ci (t) :=

∑t
s=1 1k(s)=i (1− δ)t−s(f (xs)− f (xs−1))∑t

s=1 1k(s)=i (1− δ)t−s

• Rest of algorithm like (1+1) EA.

Up to lower-order terms, expected optimization time on OneMax
benchmark is as good as if an oracle always told the optimal k.

Runtime ≤ n ln n − 0.25n → speed-up over static case roughly 0.14n.

Empirical promising performance on MST instances.



9/11

Asymptotic Speed-ups Through Parameter Control
(1+1) EA too simple to see pronounced effect of varying mutation rate.

Parameter control most promising together with populations.

Populations:

• can diversify the search (cover different areas of search space)

• crucial in multi-objective optimization

Consider an example of speed-up by combining populations, mutation,
and parameter control.



9/11

Asymptotic Speed-ups Through Parameter Control
(1+1) EA too simple to see pronounced effect of varying mutation rate.

Parameter control most promising together with populations.

Populations:

• can diversify the search (cover different areas of search space)

• crucial in multi-objective optimization

Consider an example of speed-up by combining populations, mutation,
and parameter control.



10/11

Asymptotic Speed-ups Through Parameter Control

Ex. 3: self-adjusting (1+λ) EA using two rates for offspring

Select x uniformly at random from {0, 1}n and set r0 ← 2.
repeat

for i ← 1, . . . , λ do
Create yi by flipping each bit in a copy of x independently with
probability rt

2n if i ≤ λ/2 and with probability 2rt
n otherwise.

end for
x∗ ← argmaxyi f (yi ) (breaking ties randomly).
if f (x∗) ≥ f (x) then
x ← x∗.

end if
Replace rt with the mutation rate that x∗ has been created with.
Replace rt with min{max{2, rt}, n/4}; t ← t + 1

until some stopping criterion is fulfilled.

Theorem (Doerr et al., 2018): self-adjusting (1+λ) EA asymptotically
faster on OneMax benchmark (time O(n/log λ)) than static variant
(O(n log log λ/log λ))



10/11

Asymptotic Speed-ups Through Parameter Control

Ex. 3: self-adjusting (1+λ) EA using two rates for offspring

parent x

λ
2
offspringrate rt

2n

λ
2
offspringrate 2rt

n

rt+1 taken
from best
offspring

r0 = 2; rt ∈ {2, . . . , n/4}

Theorem (Doerr et al., 2018): self-adjusting (1+λ) EA asymptotically
faster on OneMax benchmark (time O(n/log λ)) than static variant
(O(n log log λ/log λ))



10/11

Asymptotic Speed-ups Through Parameter Control

Ex. 3: self-adjusting (1+λ) EA using two rates for offspring

parent x

λ
2
offspringrate rt

2n

λ
2
offspringrate 2rt

n

rt+1 taken
from best
offspring

r0 = 2; rt ∈ {2, . . . , n/4}

Theorem (Doerr et al., 2018): self-adjusting (1+λ) EA asymptotically
faster on OneMax benchmark (time O(n/log λ)) than static variant
(O(n log log λ/log λ))



11/11

Param. Control in Discrete Optimization: Recent Research
Highlights

• Self-adjusting (1+(λ, λ)) GA with 1/5-rule optimizes OneMax in
O(n), beating any static parameter setting [Doerr and Doerr, 2015];
similar speedups on random 3-CNF formulas [Buzdalov and Doerr, 2017]

• Self-adjusting (1+1) EA with stagnation detection much more
efficient than static variant at escaping local optima [Rajabi and W., 2020]

• With “ 1
5 -rule” best possible runtime (up to o(1)) on LeadingOnes

benchmark [Doerr et al., 2019]

Research questions

• Great variety of mechanisms for self-adaptation. Compare these
empirically and theoretically. Suggestions for new mechanisms?

• Advance and unify the toolbox for the analysis (so far many ad-hoc
“drift” theorems and hard-to-compare techniques)

• Analyses on combinatorial optimization problems (on graphs etc.)

• Relation to hyperheuristics?



11/11

Param. Control in Discrete Optimization: Recent Research
Highlights

• Self-adjusting (1+(λ, λ)) GA with 1/5-rule optimizes OneMax in
O(n), beating any static parameter setting [Doerr and Doerr, 2015];
similar speedups on random 3-CNF formulas [Buzdalov and Doerr, 2017]

• Self-adjusting (1+1) EA with stagnation detection much more
efficient than static variant at escaping local optima [Rajabi and W., 2020]

• With “ 1
5 -rule” best possible runtime (up to o(1)) on LeadingOnes

benchmark [Doerr et al., 2019]

Research questions

• Great variety of mechanisms for self-adaptation. Compare these
empirically and theoretically. Suggestions for new mechanisms?

• Advance and unify the toolbox for the analysis (so far many ad-hoc
“drift” theorems and hard-to-compare techniques)

• Analyses on combinatorial optimization problems (on graphs etc.)

• Relation to hyperheuristics?



11/11

Param. Control in Discrete Optimization: Recent Research
Highlights

• Self-adjusting (1+(λ, λ)) GA with 1/5-rule optimizes OneMax in
O(n), beating any static parameter setting [Doerr and Doerr, 2015];
similar speedups on random 3-CNF formulas [Buzdalov and Doerr, 2017]

• Self-adjusting (1+1) EA with stagnation detection much more
efficient than static variant at escaping local optima [Rajabi and W., 2020]

• With “ 1
5 -rule” best possible runtime (up to o(1)) on LeadingOnes

benchmark [Doerr et al., 2019]

Research questions

• Great variety of mechanisms for self-adaptation. Compare these
empirically and theoretically. Suggestions for new mechanisms?

• Advance and unify the toolbox for the analysis (so far many ad-hoc
“drift” theorems and hard-to-compare techniques)

• Analyses on combinatorial optimization problems (on graphs etc.)

• Relation to hyperheuristics?

Thank you!


	Introduction

