Evolutionary Algorithms and Parameter Control

Carsten Witt

Technical University of Denmark, Kgs. Lyngby, Denmark

September 29, 2021



Why Evolutionary Algorithms?

White-box vs. black-box optimization

Task: find optimum of a function f: S — R

If we have explicit representation of f, including derivatives, we can apply
classical mathematical optimization techniques (white-box scenario).



Why Evolutionary Algorithms?

White-box vs. black-box optimization

Task: find optimum of a function f: S — R
If we have explicit representation of f, including derivatives, we can apply
classical mathematical optimization techniques (white-box scenario).

If f is only given implicitly (e.g., outcome of an experiment), we are in a
black-box scenario where only sampling f reveals information.

Further possible challenges: uncertainty, e. g. noise and dynamic functions



Why Evolutionary Algorithms?

White-box vs. black-box optimization

Task: find optimum of a function f: S — R
If we have explicit representation of f, including derivatives, we can apply
classical mathematical optimization techniques (white-box scenario).

If f is only given implicitly (e.g., outcome of an experiment), we are in a
black-box scenario where only sampling f reveals information.

Further possible challenges: uncertainty, e. g. noise and dynamic functions

Evolutionary Algorithms (EAs) are well-established black-box
optimization techniques with numerous applications in engineering.

More general umbrella term: Randomized Optimization Heuristics



Applications of Evolutionary Algorithms

® Complex optimization problems, e. g., planning the layout of a wind
farm (Univ. Adelaide, AUS), minimizing waste in 3D printing, ...

(Erik Wilde, CC BY-SA) (DOI: 10.1145/3071178.3071310)



https://github.com/PaulPauls/Primer_on_Neuroevolution_Blog_Post/

Applications of Evolutionary Algorithms

® Complex optimization problems, e. g., planning the layout of a wind
farm (Univ. Adelaide, AUS), minimizing waste in 3D printing, ...

(Erik Wilde, CC BY-SA) (DOI: 10.1145/3071178.3071310)

® Optimizing the topology and weights of a neural network
— Neuroevolution, extremely popular these days

1
(https://github.com/PaulPauls/Primer_on_Neuroevolution_Blog_Post/)

“Evolution is the new deep learning” (R. Miikkulainen, Cognizant Tech.)


https://github.com/PaulPauls/Primer_on_Neuroevolution_Blog_Post/

What are Evolutionary Algorithms?

Optimization loop inspired by evolution theory (“survival of the fittest”)

°e® ®
S0 %o ™ Mutation Crossover
OpS
. (’ .1© [1]1Jofofo1]1]1] [iTiTiToJo 1 1]o 1JoJoJo[1 o 1]1]
Initial populatlon 2 3
Fitness calculation l \ /
0L \® BHNDOROD [BEBOBODE]
©) @M Oa®
0. @ (@)
()
® @
Variation Reproductlon@

Crucial design components

® Representation: what is the search space S? R”, {0,1}", X, ...?
® Population size: how many solutions from S to maintain in parallel?
® Selection: which solutions should undergo variation?

® \/ariation: how to mutate solutions? How to combine two solutions
to a new one (crossover)?



A Typical Evolutionary Algorithm

Pseudocode of “Generational EA”

Initialize population Py of size p. Set t < 0.
while stopping criterion not fulfilled do
for i< 1,...,udo
Choose two individuals x and y from P: by applying selection.
Create z by applying crossover to x and y.
Create z’ by applying mutation to z.
Add Z’ to Pt+1. (assumption: Py, 1 initially empty)
end for
tt+1.
end while



A Typical Evolutionary Algorithm

Pseudocode of “Generational EA”

Initialize population Py of size p. Set t < 0.
while stopping criterion not fulfilled do
for i< 1,...,udo
Choose two individuals x and y from P: by applying selection.
Create z by applying crossover to x and y.
Create z’ by applying mutation to z.
Add Z’ to Pt+1. (assumption: Py, 1 initially empty)
end for
tt+1.
end while

Scheme is typical but does not cover all variants of EAs. Not considered:
® varying population size

® mutation and crossover not performed in every “generation”
(— parameters for mutation and crossover probability)

Immense empirical knowledge on parameter choices for EAs available.
Want to support parameter choice using theory: runtime analysis.



A Very Simple Scenario

Algorithm: (141) EA for maximization of f: {0,1}" — R

t := 0. Choose u.a.r. xo € {0,1}".

repeat
Create x" by flipping each bit in x; independ. w. prob. p (often 1).
Xer1 = X' if F(x") > f(x¢), and x¢11 := X; otherwise.
t:=t+1.

until some stopping criterion is fulfilled.

Runtime of (1+1) EA: number of iterations t until optimum found.



A Very Simple Scenario

Algorithm: (141) EA for maximization of f: {0,1}" — R

t := 0. Choose u.a.r. xo € {0,1}".

repeat
Create x" by flipping each bit in x; independ. w. prob. p (often 1).
Xer1 = X' if F(x") > f(x¢), and x¢11 := X; otherwise.
t:=t+1.

until some stopping criterion is fulfilled.

Runtime of (1+1) EA: number of iterations t until optimum found.

A very simple problem

f(X1y ..., Xn) = waxy + -+ - + Wpxn, where w; € IR (linear function)

Static parameter control (= optimization)

Theorem (W., 2013): p = 1/n minimizes expected runtime of (1+1) EA
on any linear function — enlnn+ O(n).



Dynamic Parameter Control

Fixing mutation prob. at 1/n throughout the run is a compromise.
If far away from optimum, progress is easy — higher prob. promising.



Dynamic Parameter Control

Fixing mutation prob. at 1/n throughout the run is a compromise.
If far away from optimum, progress is easy — higher prob. promising.

Idea: learn promising mutation probability on the fly based on successes.

Increase
mutation rate

Example 1: 1/5-rule (Rechenberg, 1973)

rule of thumb/
educated guess

Y
Count
s Run algorithm number of
Initialize .
T . for a phase of improved
N iterations solutions

in phase

Decrease
mutation rate

EAs with dynamic parameter control are also called self-adjusting EAs.



Dynamic Parameter Control for Mutation Strength

Doerr et al., 2016: learn the number k € {1,..., r} of bits flipped by the
(141) EA like in a multi-armed bandit problem.

Ex. 2: self-adjusting (1+1) EA learning parameter confidences

® Assign each k € {1,...,r} a confidence c.

® With probability 1 — ¢, select k with highest confidence and with
probability €, choose a random k € {1,...,r}. Flip k bits u.a.r.

® Update confidences based on decay parameter §:

ci(t) = D1 Lue)=i(L = 8)'°(F(x5) — F(xs-1))
| > emt Lie)=i(1 = 0)t

® Rest of algorithm like (141) EA.




Dynamic Parameter Control for Mutation Strength

Doerr et al., 2016: learn the number k € {1,..., r} of bits flipped by the
(141) EA like in a multi-armed bandit problem.

Ex. 2: self-adjusting (1+1) EA learning parameter confidences

® Assign each k € {1,...,r} a confidence c.

® With probability 1 — ¢, select k with highest confidence and with
probability €, choose a random k € {1,...,r}. Flip k bits u.a.r.

® Update confidences based on decay parameter §:

ci(t) = D1 Lue)=i(L = 8)'°(F(x5) — F(xs-1))
| > emt Lie)=i(1 = 0)t

® Rest of algorithm like (141) EA.

Up to lower-order terms, expected optimization time on ONEMAX
benchmark is as good as if an oracle always told the optimal k.

Runtime < nlnn — 0.25n — speed-up over static case roughly 0.14n.



Dynamic Parameter Control for Mutation Strength

Doerr et al., 2016: learn the number k € {1,..., r} of bits flipped by the
(141) EA like in a multi-armed bandit problem.

Ex. 2: self-adjusting (1+1) EA learning parameter confidences

® Assign each k € {1,...,r} a confidence c.

® With probability 1 — ¢, select k with highest confidence and with
probability €, choose a random k € {1,...,r}. Flip k bits u.a.r.

® Update confidences based on decay parameter §:

SE Bagyoi{1 = ) () = £ 1)
> emt Lie)=i(1 = 0)t

® Rest of algorithm like (141) EA.

C,'(t) =

Up to lower-order terms, expected optimization time on ONEMAX
benchmark is as good as if an oracle always told the optimal k.

Runtime < nlnn — 0.25n — speed-up over static case roughly 0.14n.
Empirical promising performance on MST instances.



Asymptotic Speed-ups Through Parameter Control

(1+41) EA too simple to see pronounced effect of varying mutation rate.

Parameter control most promising together with populations.



Asymptotic Speed-ups Through Parameter Control

(1+41) EA too simple to see pronounced effect of varying mutation rate.
Parameter control most promising together with populations.
Populations:

® can diversify the search (cover different areas of search space)

® crucial in multi-objective optimization

Objective B

Objective A

Consider an example of speed-up by combining populations, mutation,
and parameter control.



Asymptotic Speed-ups Through Parameter Control

Ex. 3: self-adjusting (1+\) EA using two rates for offspring

Select x uniformly at random from {0,1}" and set rp < 2.
repeat

fori<1,...,Ado
Create y; by flipping each bit in a copy of x independently with
probability 5t if i < A\/2 and with probability % otherwise.
end for
x* < argmaxy, f(y;) (breaking ties randomly).
if f(x*) > f(x) then
X 4 x*.
end if
Replace r; with the mutation rate that x* has been created with.
Replace r; with min{max{2, r;},n/4}; t + t+1
until some stopping criterion is fulfilled.



Asymptotic Speed-ups Through Parameter Control

Ex. 3: self-adjusting (1+\) EA using two rates for offspring

e ostpring
/ \ Feos taken
parent x from best
\ / offspring

rate <F 2 offspring

n=2rec{2,...,n/4}



Asymptotic Speed-ups Through Parameter Control

Ex. 3: self-adjusting (1+\) EA using two rates for offspring

e ostpring
/ \ Feos taken
parent x from best
\ / offspring

rate <F 2 offspring

n=2rec{2,...,n/4}

Theorem (Doerr et al., 2018): self-adjusting (14+A) EA asymptotically
faster on ONEMAX benchmark (time O(n/log A)) than static variant

(O(nloglog A/log A))



Param. Control in Discrete Optimization: Recent Research

Highlights

e Self-adjusting (1+(X, X)) GA with 1/5-rule optimizes ONEMAX in
O(n), beating any static parameter setting [Doerr and Doerr, 2015];
similar speedups on random 3-CNF formulas [Buzdalov and Doerr, 2017]

® Self-adjusting (1+1) EA with stagnation detection much more
efficient than static variant at escaping local optima [Rajabi and W., 2020]

® With “%-rule” best possible runtime (up to o(1)) on LEADINGONES
benchmark [Doerr et al., 2019]



Param. Control in Discrete Optimization: Recent Research

Highlights

® Self-adjusting (14+(X, A)) GA with 1/5-rule optimizes ONEMAX in
O(n), beating any static parameter setting [Doerr and Doerr, 2015];
similar speedups on random 3-CNF formulas [Buzdalov and Doerr, 2017]

® Self-adjusting (1+1) EA with stagnation detection much more
efficient than static variant at escaping local optima [Rajabi and W., 2020]

® With “%-rule” best possible runtime (up to o(1)) on LEADINGONES
benchmark [Doerr et al., 2019]

Research questions

® Great variety of mechanisms for self-adaptation. Compare these
empirically and theoretically. Suggestions for new mechanisms?

® Advance and unify the toolbox for the analysis (so far many ad-hoc
“drift” theorems and hard-to-compare techniques)

® Analyses on combinatorial optimization problems (on graphs etc.)

® Relation to hyperheuristics?



Param. Control in Discrete Optimization: Recent Research

Highlights

® Self-adjusting (14+(X, A)) GA with 1/5-rule optimizes ONEMAX in
O(n), beating any static parameter setting [Doerr and Doerr, 2015];
similar speedups on random 3-CNF formulas [Buzdalov and Doerr, 2017]

® Self-adjusting (1+1) EA with stagnation detection much more
efficient than static variant at escaping local optima [Rajabi and W., 2020]

® With “%-rule” best possible runtime (up to o(1)) on LEADINGONES
benchmark [Doerr et al., 2019]

Research questions

® Great variety of mechanisms for self-adaptation. Compare these
empirically and theoretically. Suggestions for new mechanisms?

® Advance and unify the'toolbox for the analysisi(se far many ad-hoc
“drift” theorems and hard-to-compare techniques)

® Analyses on combinatorial optimization problems (on graphs etc.)
® Relation to hyperheuristics?



	Introduction

