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Bipolar varieties and real solving of a singular
polynomial equation†
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Abstract
In this paper we introduce the concept of a bipolar variety of a real algebraic hypersurface.

This notion is then used for the design and complexity estimations of a novel type of algorithms
that finds algebraic sample point for the connected component of a singular real hypersurface.
The complexity of these algorithms is polynomial in the maximal geometric degree of the bipolar
varieties of the given hypersurface and in this sense intrinsic.
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§1. Introduction
This paper is based on the concept of polar varieties which classically goes back to F. Severi and
J. A. Todd in the 1930’s and beyond that to the work of J.-V. Poncelet in the period of 1813–
1829. The modern theory started in 1975 with essential contributions due to R. Piene [19] (global
theory), B. Teissier and D. T. Lê [29] and [17], J. P. Henry and M. Merle [13] (local theory), J. P.
Brasselet and others (see [30], [19] and [7] for a historical account and references). The aim was a
deeper understanding of the structure of singular varieties. On the other hand, classic (and dual) polar
varieties became about ten years ago a fundamental tool for the design of efficient computer procedures
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with intrinsic complexity which find real algebraic sample points for the connected components of
complete intersection varieties with smooth real trace ([1], [2], [3], [4],[26], [27]). Our method for
finding smooth sample points in singular real hypersurfaces relies on a deformation which leads us
to the consideration of non–generic polar varieties. The same problem is treated by a different (the
so–called "critical point") method in [24] and [28].

§2. Geometric foundation and computational complexity
Let V be a complex affine algebraic variety given by a polynomial f(x1, . . . , xn) of degree d ≥ 2 over
the rational numbers. We assume that the real trace VR of V is non–empty and that the gradient
J(f) := ( ∂f

∂x1
, . . . , ∂f

∂xn
) of f does not vanish identically on any connected component of VR . Thus

VR is a real hypersurface. Suppose that f is given by a division–free arithmetic circuit (straight–line
program) of size L (see [8] for an exact definition and the underlying complexity model).

For any 1 ≤ i ≤ n− 1 let A := [ak,l] 1≤k≤n−i
1≤l≤n

be a (complex or real) ((n− i)×n) –matrix of maximal
rank rk A = n − i . Recall that the i –th open (classic) polar variety Pi(A) of V associated with
A consists of the smooth points of V where the tangent plane does not intersect transversally the
kernel of A . If A is generic, Pi(A) coincides with the usual notion of a (classic) polar variety ([19]
and [29]). In this case we call the polar variety Pi(A) (fully) generic.

Suppose that the polar variety Pi(A) is generic and non–empty. Then Pi(A) is of pure codimension
i in V , normal and Cohen–Macaulay at any point which is smooth in V . Moreover there exist
canonical equations of degree nd that describe Pi(A) locally as transversal (and hence as reduced,
complete) intersection outside of a subvariety at least of codimension one. If VR is smooth and
compact and A is real then the real trace Pi(A) ∩ Rn contains an algebraic sample point for every
connected component of VR and therefore Pi(A) is non–empty (see [3, 4] and [5]). This may happen
to be wrong in case that VR is not smooth anymore, even if VR is compact.

Fortunately, we have at our disposal the canonical desingularization of determinantal varieties – à
la Room–Kempf [25] – in order to inspire us. Let us introduce the incidence variety defined by the
condition:

f(x) = 0, J(f)T (x) λ + AT µ = 0 (∗).

Here J(f)T denotes the transposed gradient of f and x has to be interpreted as a point of the
n–dimensional complex affine space An , A is a complex ((n − i) × n) –matrix of maximal rank, λ
belongs to A1 and µ to An−i , with µ 6= 0 . we denote the set of points (x, a, λ, µ) ∈ An×A(n−i)×n×
A1 × A(n−i) which satisfy the condition (∗) and the open restrictions above by Hi .
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In the special case i := n− 1 , the matrix a = an−1 is a n –tuple, and if a ∈ Rn , then the real trace
of Hi describes the extremal points and the Lagrange multipliers of the real valued function induced
by a on VR .

Moreover, the image of Hi under its canonical projection into An is exactly the set of non–singular
points of V . It is somewhat lengthy, but not difficult to show that Hi is a locally closed and smooth
algebraic subvariety of the affine ambient space An × A(n−i)×n × A1 × An−i . Furthermore Hi is of
pure dimension (n− i)(n + 1) and the equations (∗) intersect transversally at any point of Hi .

We consider now the configuration space

Ei := {(x, a, λ, µ) ∈ An × A(n−i)×n × A1 × An−i | rk a = n− i, µ 6= 0}.

Ei is an open subset of An × A(n−i)×n × A1 × An−i and hence a smooth algebraic variety.
The algebraic group Gi := GL(n− i)×GL(1) acts in the following way from the right on Ei :

For g := (b, t) ∈ Gi and e := (x, a, λ, µ) ∈ Ei let e · g := (x, bT a, tb, tb−1 · µ).

We denote by E∗i the (topological) orbit space of Ei with respect to Gi . Since the algebraic group
Gi is linearly reductive, E∗i owns a natural structure of an algebraic variety (see [18]). It turns out
that E∗i is smooth and equidimensional. Observe that Hi is a subvariety of Ei and that the action
of Gi on Ei leaves Hi invariant.

By standard arguments of algebraic geometry one sees that E∗i is a smooth and equidimensional
algebraic variety of dimension ri := n + i(n − i) with a canonical atlas of Ni :=

(
n

n−i

)
(n − i) open

charts Uk, 1 ≤ k ≤ Ni which are all isomorphic to Ari . Let ϕi : Ei → E∗i be the morphism of
algebraic varieties which maps each point of Ei onto its Gi –orbit. Then ϕi is a smooth morphism
of analytic manifolds. Let Si := ϕi(Hi) and Si,k := Si ∩ Uk for 1 ≤ k ≤ Ni . The geometric main
issue is the following result.

Lemma 2.1. Let 1 ≤ k ≤ Ni . Then, identifying Uk with Ari , the constructible set Si,k becomes
a smooth closed subvariety of the affine space Ari . Moreover, Si,k is equidimensional of dimension
Di := i(n− i)− 1 and given as a transversal intersection of n + 1 equations of degree d which have
a circuit representation of size O(L + n + i(n − i)) . In particular, Si is a smooth subvariety of E∗i
and the varieties Si,k, 1 ≤ k ≤ Ni , form an open atlas of Si .

Proof. Without loss of generality we may identify Uk with

{(x, a, λ, µ) ∈ Ei | a = [In−i, ã], ã ∈ A(n−i)×i, µ = (1, µ̃), µ̃ ∈ An−i−1},
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where In−i denotes the ((n−i)×(n−i)) identity matrix and [In−i, ã] the complex ((n−i)×n) –matrix
whose first n− i columns form In−i and whose remaining i columns form the ((n− i)× i) –matrix
ã .

Then Si,k may be identified with the points (x, ã, λ, µ̃) ∈ An × A(n−i)×i × A1 × An−i−1 with ã =
[ãk,l] 1≤k≤n−i

n−i+1≤l≤n
and µ̃ = (µ̃2, . . . , µ̃n−i) , satisfying the polynomial conditions

f(x) =0,

∂f

∂x1
(x) λ + 1 =0,

(∗∗) ∂f

∂xl
(x) λ + µl =0, 2 ≤ l ≤ n− i,

∂f

∂xl
(x) λ + ã1,l +

n−i∑
k=2

ãk,l µk =0, n− i < l ≤ n.

Let z = (x, ã, λ, µ̃) be any such point. For 1 ≤ j ≤ i let Zj(z) be the complex (i× (n− i)) –matrix
whose rows are all zero except the row number j which is (1, µ̃2, . . . , µ̃n−i) . The Jacobian of the
polynomial equation system (∗) at z is

M(z) :=


J(f)(x) 0 O O · · · O

∗ ∂f
∂x1

(x) O O · · · O

∗ ∗ In−i−1 O · · · O
∗ ∗ ∗ Z1 · · · Zi

 .

From the second equation of (∗∗) we deduce ∂f
∂x1

(x) 6= 0 and therefore M(z) has maximal rank
n + 1 . This implies that the equations of (∗∗) intersect transversally at the point z . Since z was an
arbitrary point satisfying the polynomial conditions (∗∗) , the lemma follows by standard arguments
of differential geometry and commutative algebra. �

Since the manifold Si,k is a smooth, closed algebraic subvariety of Ari we may apply the algorithmic
procedure designed in [3] and [4] or [28] to the equation system (∗∗) in order to find algebraic sample
points for the connected components of the real variety (Si,k)R . The complexity of this algorithm is
linear in L and polynomial in d, n and δi,k , where δi,k is the maximal degree of the generic dual
polar varieties of Si,k . We denote for 1 ≤ j ≤ Di, 1 ≤ k ≤ Ni these polar varieties by Bi,j,k and
call them bipolar varieties of V . In the sequel we shall suppose without loss of generality that the
bipolar varieties of V are associated with real matrices.
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For a given index 1 ≤ i ≤ n− i the maximal geometric degree of the bipolar variety of V , namely

δi := max{deg Bi,j,k | 1 ≤ j ≤ Di, 1 ≤ k ≤ Ni} = max{δi,k | 1 ≤ k ≤ Ni},

is an invariant of V . For fixed indices 1 ≤ i ≤ n− 1 and 1 ≤ k ≤ Ni , the bipolar varieties of V are
organized with decreasing codimension j in strictly ascending chains as follows:

Bi,Di,k ⊂ · · · ⊂ Bi,j,k ⊂ · · · ⊂ Bi,1,k ⊂ Bi,0,k = Si,k.

Finally with i running from n − 1 to 1 , we obtain a three–dimensional lattice of bipolar varieties.
A walk in this lattice is a path which starts with some n –tuple of zero–dimensional bipolar varieties
(Bi1,Di1 ,k)1≤k≤n and ends with some orbit variety Si2 . At each step, the index i or the codimension j
decreases and the bipolar varieties visited along the walk, modulo suitable sections and identifications,
form ascending chains of bipolar varieties of dimension exactly increasing by one. Their real trace is
dense. Running through a given walk in the reverse mode, we obtain an algorithmic strategy, which
as soon that it finds smooth real points on the bipolar varieties, projects them on smooth real points
of V . Observe that we obtain as a bonus certain ((n− i)×n) –matrices A with real algebraic entries
and with them real algebraic sample points of the the (non–generic) polar varieties Pi(A) .

This argumentation explains fairly well the geometric ideas behind our approach to point finding in
singular real hypersurfaces.

For given 1 ≤ i ≤ n − 1 , an algorithm which follows textually our explanations would involve
computations with polynomials in O(n+(n−i)2) variables. This woul lead to a worst case complexity
estimation of dO(n+(n−i)2) whereas the expected worst case complexity is dO(n) . There are two ways
out of this dilemma. One way is to choose i close to n − 1 or to remodel the deformation of J(f)
used in the equation system (∗) in the spirit of the concept of sufficiently generic varieties introduced
in [5].

If we choose i := n− 1 we obtain an intrinsic variant of the so called ”critical point” method, which
is often used in a geometrically unstructured way with extrinsic complexity bounds.

Summarizing we have the following complexity result.

Theorem 2.2. Let f(x1, . . . , xn) be a polynomial of degree d ≥ 2 defining as before complex and real
hypersurfaces V and VR . Suppose that f is given by a straight–line program of size L . Then each
walk W yields a procedure RW that finds at least one real algebraic sample point for each connected
component of VR . The sequential time complexity of the procedure RW is linear in L and polynomial
in d , n and a suitable geometric quantity δW . The quantity δW is the maximal degree of the bipolar
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varieties of V visited during the walk and is therefore an intrinsic invariant of V and W . It bounds
also the number and the algebraic degree of the sample points produced by RW .

As said before, for suitably chosen walks W the quantity δW and the complexity of the procedure
RW are in worst case of order d O(n) , which meets all previously known algorithmic bounds (see
[12], [9], [20] and [14] for original contributions and [15], [21, 22, 23] and [6] for forthcoming work).
Following [11], [10] and [16] dΩ(n) is also a lower bound for the worst case complexity of elimination
problems like the one under consideration. The only way out of this dilemma is the introduction of
intrinsic complexity measures like δW .

§3. A computational example
We are going now to illustrate our approach to find sample points in singular real hypersurfaces V
by an explicit calculation in the case n := 2 , i.e., when VR is a singular algebraic curve in the plane
R2 .
Let f be a non–constant squarefree polynomial in two variables x and y with real coefficients, V
the complex plane curve defined by f and let VR be the real trace of V . We suppose as before that
VR is a real curve, i.e., VR is non–empty and does not contain isolated points. This implies that
J(f) does not vanish identically on any connected component of VR . For the sake of simplicity, we
suppose that ∂f

∂x satisfies already this condition (this may be achieved by a generic linear coordinate
transformation of x and y ). The smooth variety S1 introduced in the previous section has two
charts S1,1 and S1,2 . Without loss of generality we may identify S1,1 with the subvariety W of C4

consisting of all complex solutions of the system

f(x, y) = 0

(1) λ
∂f

∂x
(x, y) + 1 = 0

λ
∂f

∂y
(x, y) + a = 0.

Since, by assumption, VR contains points where ∂f
∂x does not vanish, we conclude that the real variety

WR is non–empty. If VR is singular, then WR is non–compact.

Let (α, β, γ, δ) ∈ R4 be an arbitrary point belonging to an open set O of genericity (the genericity
condition of O will become clear in the sequel). The bipolar variety B := B1,1,1 which depends on
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the polynomial and the chart S1,1 , is a dual polar variety of the smooth (and non-compact) variety
W which consists of the critical points of the distance function to the point (α, β, γ, δ) , restricted
to W . In terms of equations, B is defined by the system (1) and by

det



∂f
∂x

∂f
∂y 0 0

λ∂2f
∂x2 λ ∂2f

∂x∂y
∂f
∂x 0

λ ∂2f
∂x∂y λ∂2f

∂y2
∂f
∂y 1

α− x β − y γ − λ δ − a


= 0.

We are now going to show that B contains real points (at least one in each connected component of
WR ).

For every point (x, y, a, λ) of WR the matrix

M :=


∂f
∂x 0 0

λ∂2f
∂x2

∂f
∂x 0

λ ∂2f
∂x∂y

∂f
∂y 1


is regular, since ∂f

∂x does not vanish at any point of WR .

Thus we may infer that y is a parameter of the real variety WR Therefore, WR may be interpreted
as the graph of a map (x(y), λ(y), a(y)) .

Differentiating the equation system (1) with respect to y , we conclude that for any point (x, y, a, λ) ∈
WR

(2) M

x′

λ′

a′

 +


∂f
∂y

λ ∂2f
∂x∂y

λ∂2f
∂y2

 = 0.

holds.
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Choosing the set of genericity O outside of the real variety WR , we have (α, β, γ, δ) /∈ WR . Since
WR is closed in R4 , there exists a point (x, y, λ, a) in WR such that the distance (α − x)2 + (β −
y)2 + (γ − λ)2 + (δ − a)2 is minimal (in fact, such a point exists in every connected component of
WR ). It is obvious that such a point satisfies the condition:

(3) (α− x)x′ + (β − y) + (γ − λ)λ′ + (δ − a)a′ = 0.

We consider now the augmented matrix:

M̃ :=



∂f
∂x 0 0

λ∂2f
∂x2

∂f
∂x 0

λ ∂2f
∂x∂y

∂f
∂y 1

α− x γ − λ δ − a


.

From the equations (2) and (3) we deduce

M̃

x′

λ′

a′

 +



∂f
∂y

λ ∂2f
∂x∂y

λ∂2f
∂y2

β − y


= 0.

This implies

(4) det



∂f
∂x

∂f
∂y 0 0

λ∂2f
∂x2 λ ∂2f

∂x∂y
∂f
∂x 0

λ ∂2f
∂x∂y λ∂2f

∂y2
∂f
∂y 1

α− x β − y γ − λ δ − a


= 0,

This means that the minimizing point considered above belongs to the bipolar variety B . From the
argumentation in the previous section we conclude now that for a generic choice of (α, β, γ, δ) in R4
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the bipolar variety B is zero-dimensional or empty. Our preceding calculation excludes the second
alternative. Therefore, B contains a real point (x, y, a, λ) . Thus (x, y) is a real algebraic point of
VR which satisfies the condition ∂f

∂x (x, y) 6= 0 .

Let us illustrate this argumentation by the simple example of an algebraic curve consisting of two
non–colinear lines. The intersection of this two lines is a double point of the curve. Thus let us
consider f(x, y) := x2 − y2 and observe that the Gauss–map of V := {(x, y) ∈ C2 | f(x, y) = 0} is
degenerated. The system (1) takes now the following form:

x2 − y2 = 0
(1′) 2λx + 1 = 0

−2λy + a = 0.

Consequently the equation (4) becomes

(4′) det


x −y 0 0
λ 0 x 0
0 −2λ −2y 1

α− x β − y γ − λ δ − a

 = 0.

We consider now the connected component of VR which is defined by the equation x − y = 0 (the
case of the component of VR given by the equation x+y = 0 is treated similarly). On this connected
component equation (4′) becomes:

det


x −x 0 0
− 1

2x 0 x 0
0 1

x −2x 1
α− x β − x γ + 1

2x δ + 1

 = 0.

This latter equation may be rewritten as

0 = −(α− x)x2 + (β − x)x2 − (γ +
1
2x

)
1
2
− 2(δ + 1)x = (α− β)x2 +

γ

2
+

1
4x

− 2(δ + 1)x,

i.e., as
(5′) (α− β)x3 + 2(δ + 1)x2 +

γ

2
x +

1
4

= 0.
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Since (α, β, γ, δ) was chosen generically in R4 , we have α 6= β . Therefore the equation (5′) has a
real solution u 6= 0 .

This implies that the real algebraic point (u, u,− 1
2u ,−1) belongs to the bipolar variety B , and hence

(u, u) ∈ R2 , the point found by our procedure, is an algebraic sample point of VR which belongs to
the connected component under consideration.
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