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Abstract. Isolated multiple zeroes or clusters of zeroes of analytic
maps with several variables are known to be difficult to locate and
approximate. This article is in the vein of the α-theory, initiated by
M. Shub and S. Smale in the beginning of the eighties. This theory
restricts to simple zeroes, i.e., where the map has corank zero. In this
article we deal with situations where the analytic map has corank one
at the multiple isolated zero, which has embedding dimension one in
the frame of deformation theory. These situations are the least degener-
ate ones and therefore most likely to be of practical significance. More
generally, we define clusters of embedding dimension one. We provide
a criterion for locating such clusters of zeroes and a fast algorithm for
approximating them, with quadratic convergence. In case of a cluster
with positive diameter our algorithm stops at a distance of the cluster
which is about its diameter.
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Introduction

In both theory and practice, dealing with multiple zeroes and clusters
of zeroes of multivariate analytic maps remains a challenging problem. The
now classical α-theory developed by M. Shub and S. Smale restricts to simple
zeroes. At such zeroes the map is of minimal corank, i.e., zero in our context,
and this property remains of course valid in an open neighborhood. In
this article we treat the next case, i.e., where the corank of the analytic
map is 1 at the multiple zero. Note that this implies, through the implicit
function theorem, that the zero lies on a smooth locus of a curve, hence
its embedding dimension is 1. In the context of numerical analysis, the
right issue is to isolate and approximate clusters of zeroes, simple or not.
Therefore, the right hypothesis is not the corank at most 1 condition in a
ball, but the embedding 1 condition, as we exemplify in the next paragraphs.
Our generalization of the α-theory is done under this latter hypothesis, which
actually covers a large class of singularies encountered in practice.

Preliminaries. We start by setting basic definition and conventions used
all along this text. Then, we introduce and illustrate the embedding dimen-
sion 1 condition.

First Definitions and Conventions. We denote by R the field of real num-
bers, by C the field of complex numbers and by ı ∈ C the square root
of −1 with positive imaginary part. For any z ∈ R (resp. z ∈ C), |z|
denotes the absolute value of z (resp. the modulus of z). On Cn we con-
sider the canonical Hermitian norm denoted ‖.‖. Let ζ ∈ Cn and r ≥ 0
be a real number, then we let B(ζ, r) := {x ∈ Cn, ‖x− ζ‖ < r} and
B̄(ζ, r) := {x ∈ Cn, ‖x− ζ‖ ≤ r}. For any real number u and any integer
m ≥ 1, we introduce the auxiliary function

ψm(u) := 2(1− u)m+1 − 1.

We will also use ψ(u) := ψ1(u) = 1− 4u+ 2u2. For a compact subset Z of
Cn, the diameter of Z is the maximum distance between any two points of
Z.

Let f denote an analytic map from an open subset U of Cn to Cm and
a ∈ U . Then its kth derivative Dkf(a) belongs to the space Lk(Cn; Cm) of
C-multilinear maps from k copies of Cn to Cm. For any L ∈ Lk(Cn; Cm),
we use the following norm:

‖L‖ := sup
u1∈Cn,...,uk∈Cn

‖u1‖=···=‖uk‖=1

‖L(u1, . . . , uk)‖.

If h denotes a one variable complex function then h(k) (resp. h′ and
h′′) represents its kth derivative (resp. the first and the second derivative).
We denote by R{t} the algebra of real power series with positive radius of
convergence. We say that a series λt/(1 − ρt) is a geometric series, for the
sequence of its coefficients is in geometric progression. We widely use the
following notation for the exponential generating series of the norms of the
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derivatives of f at a ∈ Cn:

[f ]a :=
∑
k≥0

‖Dkf(a)‖ t
k

k!
∈ R{t}. (1)

We consider the following partial order ≤ over R{t}. Let F and G be in
R{t}, we write F ≤ G when F (k)(0) ≤ G(k)(0) for all k ≥ 0. Then we say
that a power series F ∈ R{t} is a majorant series for an analytic map f at
a point a if [f ]a ≤ F . For the sake of completeness, Section 1 provides the
main properties on majorant series we use in this article.

Concerning Newton’s operator, we will use the following notation:

N(f ;x) := x−Df(x)−1f(x),

and for Schröder’s operator [43] (if f is a univariate map) we write:

Nm(f ;x) := x−m
f(x)
f ′(x)

.

Of course, for analytic functions, N1 and N coincide.

Point Estimates. So called point estimates are quantities defined from norms
of differential maps at a given point. Let f denote an analytic map from
U ⊆ Cn to Cn and a a point of U . Three important such quantities are used
for simple zeroes: γ, β and α. The first one, namely γ(f ; a), helps control
the function locally:

γ(f ; a) := sup
k≥2

∥∥∥∥∥Df(a)−1 f
(k)(a)
k!

∥∥∥∥∥
1

k−1

.

In particular, the radius of convergence of the power series expansion of
f at a is at least 1/γ. The second quantity is the length of the Newton
iteration step: β(f ; a) :=

∥∥Df(a)−1f(a)
∥∥; the third one is their product

α(f ; a) := β(f ; a)γ(f ; a). In terms of geometric majorant series, it will be
convenient to use

F (f, a; t) := β(f ; a) +
t

1− γ(f ; a)t
, since

[
Df(a)−1f

]
a
≤ F (f, a; t). (2)

For univariate maps, in order to deal with clusters of m zeroes, counting
multiplicities, and multiple zeroes of multiplicity m, the previous quantities
are generalized as follows, for any l ∈ {0, . . . ,m− 1}:

γm(f ; a) := sup
k≥m+1

(
m!|f (k)(a)|
k!|f (m)(a)|

) 1
k−m

,

βm,l(f ; a) := sup
l≤k≤m−1

(
m!|f (k)(a)|
k!|f (m)(a)|

) 1
m−k

,

αm,l(f ; a) := γm(f ; a)βm,l(f ; a).

(3)

As expected, these quantities coincide with the previous ones when letting
m = 1 and l = 0. For short we let βm := βm,0 and αm := αm,0. If γm = 0
then we consider 1/γm = +∞, as a natural convention.
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Clusters of Embedding Dimension One. Formally speaking, by cluster we
only mean set. In the context of clusters of zeroes, this word is convenient
to refer to a set of zeroes whose diameter is small compared to the distance
to other zeroes.

Let F be an analytic map defined on a connected open subset U ⊆ Cn to
Cn. A set of zeroes of F is said to be a cluster of zeroes of embedding dimen-
sion 1 if there exist two vector subspaces S and T of Cn of codimension 1
and a ball B(ζ, r) ⊆ U containing the cluster and such that PrT ◦DF (x)
is invertible on S, for all x ∈ B(ζ, r), where PrT denotes the orthogonal
projection to T .

In this situation, one can choose orthonormal bases at the source and
the target of F that satisfy: if (x, y) = (x1, . . . , xn−1, y) are the new co-
ordinates at the source and (f1, . . . , fn−1, g) at the target then the partial
derivative of f = (f1, . . . , fn−1) with respect to the variables x is invertible
in B(ζ, r). Let ζx and ζy respectively denote the x and y coordinates of ζ.
The implicit function theorem implies that there exists an analytic function
φ(y) : W → Cn−1 defined on a neighborhood W of ζy such that φ(ζy) = ζx
and f(φ(y), y) = 0 holds in W . Up to restricting W , h(y) := g(φ(y), y) is
well defined on W . Looking for zeroes of F is then reduced to looking for
zeroes on a smooth curve, and, after parametrization, for zeroes of a univari-
ate analytic function. This motivated us to use this embedding dimension
terminology.

Note that multiple zeroes of corank 1 are clusters of embedding dimen-
sion 1. In addition, this embedding dimension 1 property is preserved under
small deformations (by deformation, we refer to the classical theory given
in [3]).
Example 1: The common archetype is the map

(x1, . . . , xn−1, y) 7→ (x1, . . . , xn−1, y
m),

which admits the origin as a zero of multiplicitym and corank 1. All multiple
zeroes of corank 1 and multiplicity m are analytically equivalent to this
example.
Example 2: Fat point of multiplicity 4 and corank 1. Let us consider an
ellipse and one of its superosculating circle. They intersect at such a point:
coordinates can be easily found when the situation is described by the equa-
tions x2

1 − 4x1 + 4y2 and x2
1 − x1 + y2 (here n = 2).

Counterexample: Let F := (x1, y) 7→ (x2
1 − e, y2 − e), for a positive real

parameter e and consider the cluster composed of the four zeroes of F .
Since the origin belongs the convex hull of this cluster, any ball containing
the cluster also contains the origin. It follows that this cluster can not have
embedding dimension 1 since DF (0, 0) = 0.

All along this text, we assume that the map F is already given with well
suited sets of coordinates (x, y) and (f, g) that satisfy the above properties.
If this were not the case it would suffice to perform a random change of
orthonormal coordinates. The methods presented here for cluster location
and approximation are not designed to treat all clusters of embedding di-
mension 1 but only the ones that are sufficiently small in some sense we
precisely quantify in terms of point estimates.
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Main Notation. The following notation is used in the remainder of the in-
troduction and, then, from Section 3.3: in the first sections, we present
fundamental results that we need but which are not specific to clusters of
embedding dimension 1.

Let U ⊆ Cn be an open subset, ζ ∈ U , x the set of the n− 1 first coordi-
nates and y the last coordinate of Cn; ζx and ζy represent the coordinates
in x and y respectively of ζ. Let f : U → Cn−1 and g : U → C be two
analytic maps. When U is connected, the open set Uf and Ug respectively
denote the maximal analyticity domains of f and g that contain U . Instead
of considering only the implicit function defined when f equals 0, we intro-
duce the following map Σ that allows one to handle the family of implicit
functions defined when f equals a certain parameter that varies in a neigh-
borhood of 0. Note that this map is classical for proving the equivalence
between the local compositional inverse function and the implicit function
theorems. Namely, for any (x0, y0) ∈ U such that Dxf(x0, y0) is invertible,
we introduce

Σ(f, x0, y0;x, y) : U → Cn

(x, y) 7→ (Dxf(x0, y0)−1f(x, y), y),

which is invertible in a neighborhood of (x0, y0), its inverse is denoted by
Φ(f, x0, y0; z, y) and is defined on a neighborhood of (z0, y0), where z0 :=
Dxf(x0, y0)−1f(x0, y0). We also introduce

h(f, g, x0, y0; z, y) := g(Φ(f, x0, y0; z, y)).

For convenience, we also use the notation φ(f, x0, y0; y) for representing the
n− 1 first coordinates of Φ(f, x0, y0; 0, y), so

(φ(f, x0, y0; y), y) = Φ(f, x0, y0; 0, y)

holds. Then, in a certain neighborhood of (x0, y0) (that will be described
precisely when needed) the system f(x, y) = g(x, y) = 0 becomes equivalent
to

h(f, g, x0, y0; 0, y) = 0, x = φ(f, x0, y0; y),

hence reduces to considering a univariate equation.

By construction, we have f(φ(f, x0, y0; y), y) = 0, hence φ does not depend
on (x0, y0) in a neighborhood of (x0, y0). In particular, φ actually represents
the parameterization of the implicit function defined by f = 0. Recall that
if (x0, y0) is an isolated solution of f = g = 0 then its multiplicity equals
the multiplicity of y0 as a solution of h(f, g, x0, y0; 0, y) = 0.

For any l ≥ 0, all along this text, we study the lth deflated map (f, g[l])
obtained from (f, g) according to the following recursive definition:

g[0] = g, g[l+1] =
det(D(f, g[l]))

det(Dxf)
, for l ≥ 0, (4)

where det denotes the determinant map, the implicit basis that we consider
is the canonical one given by (x, y). Lastly, when writing h(f, g, x0, y0; z, .),
we mean the single complex variable map of y, for fixed z.
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Our Contributions. In this article we provide a numerical criterion for
locating clusters of embedding dimension 1. Then we exhibit and analyze a
natural approximation algorithm and show that quadratic approximation is
possible with an overhead cost that is only polynomial in the multiplicity:
roughly speaking, the main feature of our algorithm is that it stops the
iteration at a distance of the cluster which is proved to be about the diameter
of this cluster. Our techniques naturally extend and rely on the results of [12]
for location and approximation of clusters of zeroes of analytic functions in
one variable.

The first section is devoted to prerequisites on majorant series and clas-
sical results on location and approximation of simple zeroes, following the
now classical α-theory. We provide a new synthetic shorter presentation of
Pellet’s location criterion, the γ- and α-theorems, thanks to the mechanical
majorant series point of view. In the vein of Kantorovich’s analysis, we gen-
eralize the α-theorem given in [55] in order to show that if Pellet’s criterion
is satisfied at x0 then the Newton iterates of x0 converge to a simple zero.

In the frame of our main notation above, given (x0, y0) ∈ U , for short we
write h(z, y) instead of h(f, g, x0, y0; z, y). All along this text we often make
use of such abbreviations. From a theoretical point of view, the multivariate
situation on which we focus here reduces to one variable when considering
the equation h(0, .) = 0, as explained above. In order to turn this basic idea
into practical algorithms two main ingredients are needed: first a quanti-
tative version of the implicit function theorem and then a quantification of
the variations of point estimates of h(z, y) when z varies for fixed y.

Implicit functions are handled via local inversion, which is treated in
Section 2. We improve the recent result given in [8]: namely, we provide a
sharper geometric series majoration of the inverse map, in cases where the
derivative at the given point is different from identity.

Section 3 is devoted to quantify how βm,l(h(z, .); y) and γm(h(z, .); y) vary
with respect to z when y is constant. The common archetype the reader
may keep in mind is h(z, y) = zyl+ym: the diameter of the cluster of zeroes
of Dl

yh(z, .) = 0 varies like ‖z‖1/(m−l). Therefore in order to approximate
Dl
yh(0, y) at a usable scale, ‖z‖1/(m−l) will be required to be sufficiently

small. The rest of this section contains a proof of the following relation:

Dl
yh(f, g, x0, y0; z, y) = g[l] ◦ Φ(f, x0, y0; z, y),

which provides an efficient way of computing Taylor expansions of h. For the
sake of completeness, we recall the location criterion of [12] for univariate
maps, that we use in next sections. We also recall the relation between
diameters of clusters and βm,l: briefly speaking, for a univariate function q,
if αm,l(q; a) is sufficiently small then q(l) admits a cluster of m − l zeroes
in a ball centered at a of radius about βm,l(q; a). In addition, if a lies in
the convex hull of this cluster then the diameter of the cluster is also about
βm,l(q; a). This crucial result allows one to get approximations of diameters
of clusters. When we say that a point lies far from or close to the cluster,
we refer to its diameter as the implicit scale.



CLUSTERS OF EMBEDDING DIMENSION ONE 7

Section 4 deals with cluster location. This means finding (a) a point; (b)
an estimate for the radius of a ball centered at this point and containing ze-
roes; (c) the radius of a zero-free region beyond this ball. We generalize [12,
Section 1], that restricts to univariate functions and [9], that deals with our
present case of study but restricting to clusters containing 2 zeroes (that is
m = 2 in our context).

For any l′ ≤ l, in Section 5, we generalize the one variable approx-
imation algorithm presented in [12, Section 4]. Roughly speaking, our
algorithm proceeds this way: we first compute (x′0, y0) such that z′0 :=
Dxf(x0, y0)−1f(x′0, y0) is of order 2(m− l′), then we compute the Schröder
iterate y′0 := Nm−l(Dl

yh(z
′
0, .); y0). Depending on the position of y0 with

respect to the cluster of zeroes of Dl′
y h(z

′
0, .), y1 will be chosen among y0

and y′0. We also exhibit a stopping criterion ensuring that the whole process
stops close to the cluster of Dl′

y h(0, .).
When using our algorithm with l = l′ = 0, the computation of y′0 only

requires the first derivative of h. On the opposite, with l = m−1 and l′ = 0,
our algorithm is close to performing Newton’s iteration on the full deflated
map. Our stopping criterion then allows one to stop this iteration close to
the cluster of the original system. These extreme cases motivate this unified
presentation in terms of l and l′.

The last section presents experimental results and some implementation
issues.

Related Work. In the following paragraphs, we discuss other approaches
to cluster detection and to generalizations of Newton’s iteration. Recall that
the univariate case that we generalize here is treated in [12], to which we
refer for the bibliography. Here, we focus on several variables maps.

α-Theory. In dimension larger than one and in the spirit of the α-theory
developed by Shub and Smale [46, 44, 45, 47, 4], the only quantitative result
generalizing simple zeroes is due to Dedieu and Shub. In [9], they present
a qualitative version of Rouché’s theorem that guarantees the existence of
clusters of two zeroes. In this article, we present a more general criterion
that deals with higher multiplicities. We also provide an approximation
algorithm based on Schröder’s operator [43, 53]. As for simple zeroes, all
our results are effective and certified, as exemplified in the last section.

In the next paragraphs, we present other works concerning approximation
of multiple zeroes, that are outside the scope of the α-theory. This presenta-
tion is not intended to be exhaustive but tends to reflect some mainstreams
among a vast amount of literature, to which our results are most related.

Deflation. In the multivariate case, the idea of deflation can be generalized
to deal with multiple zeroes: deflation algorithms mainly consist in differ-
entiating well chosen equations, according to the nature of the singularity.
Ojika, Watanabe, Mitsui [36] and then Ojika [35] proposed a so-called mod-
ified deflation algorithm based on hybrid symbolic and numerical computa-
tions. In [32], this technique is improved and the number of deflation stages
is proved to be bounded by the multiplicity. The questions of complexity and
stability of these mixed approaches have not been studied yet. On the other
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hand, in the computer algebra framework (that concerns non archimedian
valuated fields) a general deflation algorithm has been described in [31]: this
gives an algorithm for quadratic approximation of multiple zeroes in time
which remains polynomial in the multiplicity. Yet this method has not led
to numerical experiments.

The present work deals with a particular case of deflated systems of depth
one, according to the terminology of [31]. The main difference is that we
deal with clusters instead of multiple zeroes, which turns out to be much
more difficult. Dealing with clusters of embedding dimension higher that 1
by means of deflated systems of depth higher than one is a difficult challenge.

Corrected Newton Methods. Experimentally, if Newton’s method converges
to an isolated singularity then the convergence is linear. A quantitative
analysis of this property is complicated. Several authors have contributed to
this topic. Motivated by Ostrowski [37], Rall studied some particular cases
in [40]. Then, based on Reddien’s advances [41, 42], Decker and Kelley [6, 7]
precise the convergence rate for singular problems of first and second orders
for maps between Banach spaces. Griewank and Osborne [14, 16, 15] propose
generalizations and precise convergence domains.

In the univariate case, corrected operators are well known from Schröder’s
work [43] and have been improved by Van de Vel [53, 54]. Recently, this
approach has been generalized to Pham systems [26].

In general, correcting Newton’s iteration to restablish quadratic conver-
gence has been studied in numerous works. In this vein, an important class
of approximation methods is based on a so called regularization of the New-
ton correction: we refer to [2, Theorem 1] for recent advances and references
on this subject. In fact, the construction described therein is obtained from
the one we mention in the next paragraph.

Bordering Techniques. So-called bordering techniques form a large class of
methods to deal with singularities. As for the deflation techniques, the main
idea is the construction of a system that admits a simple solution in place of
the singular solution of the original system, hence Newton’s operator can be
used. For double zeroes, this technique is explored in [56, 57, 15, 22, 23, 33].
Tsuchiya [52] is based on [57] and treats multiple zeroes having corank 1.

Augmented Systems. The construction of augmented systems can also be
used to approximate isolated singular zeroes. Roughly speaking, the basic
idea consists in introducing new variables corresponding to coordinates of
vectors belonging to some kernels of well chosen linear maps constructed
from derivatives of the given map and depending on the type of the singu-
larity.

The number of articles dealing with these techniques is too huge to cite
them all, we refer to [17, 39, 18, 13] for historical details and references. The
most general method is exposed in [30] (as a generalization of [28, 29]) and
is extended to Banach spaces in [20].

Cluster Approximation. Among all these techniques, the cluster approxi-
mation problem remains unexplored: relating the zeroes of bordered, aug-
mented or deflated systems to the ones of the original problem is still an
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open question in full generality. For the first time, we solve this problem
here for clusters of embedding dimension 1. Our use of the implicit func-
tion theorem by means of truncated power series computations is a major
difference compared to the other aforementioned methods. In particular,
we do not introduce extra unknowns at the opposite of the construction of
augmented systems.

Algebraic Topology. Far from our present concerns, a vast amount of results
for locating zeroes of analytic maps are designed from numerical integration
and residue formula. We refer to [27] for an exposition of some of these re-
sults and for an historical presentation. Other original zero counting related
methods are based on topological degree theory [51, 25].

Global Techniques. Lastly, from a global point of view, it is worth men-
tioning that several techniques for polynomial system solving are robust in
presence of multiplicities and clusters, but their complexities take into ac-
count all the zeroes of the systems. Originating from commutative algebra,
let us mention recent advances in Gröbner basis computation [10, 11] and
geometric solving [31]. From a numerical point of view, formal computations
can be used as a preprocess: for instance geometric solving brings back to
solving a univariate polynomial, or suitable constructions bring back to lin-
ear algebra, as in [5]. Pure numerical techniques mostly rely on homotopy
continuation, as in [34, 50, 48, 49], for example.

1. α-Theory for Simple Zeroes

For the sake of completeness this first section gathers materials of α-theory
for simple zeroes. We start with Pellet’s location criterion, which we directly
prove via Rouché’s theorem. Then we recall the γ-theorem, generalize [55]
to majorant series and prove the α-theorem. In this section, we never use
our main notation from the introduction.

1.1. Majorant Series. We briefly recall the main basic properties of ma-
jorant series and geometric majorant series. We refer to [12, Appendix A]
for proofs. Recall that R{t} denotes the algebra of real power series of pos-
itive radius of convergence, partially ordered by ≤, as defined earlier. This
partial order satisfies the following basic compatibility rules, that will be
used without explicit reference in the sequel.

Proposition 1.1. The partial order on R{t} satisfies the following compat-
ibility rules:

a. For all nonnegative x in R, x ≥ 0, seen as the constant function in
R{t};

b. For all F in R{t}, F ≥ 0 is equivalent to −F ≤ 0;
c. For all F , G and H in R{t}, if F ≤ G then F +H ≤ G+H;
d. For all F , G and H in R{t}, if F ≤ G and H ≥ 0 then FH ≤ GH.

Let f denote an analytic map from a connected open subset U ⊆ Cn to
Cm. As defined in (1), the map [.] satisfies the following basic properties:

Proposition 1.2. According to the above notation, for any a ∈ U we have:
a. [f ]a ≥ 0;
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b. [f ]a = 0 is equivalent to f = 0 in a neighborhood of a;
c. [cf ]a = |c| [f ]a, for all c ∈ C;
d. [f + g]a ≤ [f ]a + [g]a.

Next follows a list of less basic properties. Let a ∈ U , F be such that
[f ]a ≤ F .

Proposition 1.3. (Differentiation) [Df ]a ≤ F ′.

Let b ∈ U be such that ‖b− a‖ is less than the radius of convergence of F .

Proposition 1.4. (Evaluation) ‖f(b)‖ ≤ F (‖a− b‖).
Proposition 1.5. (Translation) [f ]b ≤ F (t+ ‖a− b‖).

Corollary 1.6. (Translation for geometric series) If F = F (0)+ λt
1−ρt , then

[f − f(b)]b ≤
λ′t

1− ρ′t
,

with λ′ := λ/(1− ρ‖b− a‖)2 and ρ′ := ρ/(1− ρ‖b− a‖).
Proposition 1.7. (Product) Let f be an analytic map from U to L(Cn; Cm)
and g be an analytic map from U to L(Cp; Cn), then we have:

[h]a ≤ [f ]a [g]a ,

where h is defined by

h : U → L(Cp; Cm)

x 7→ f(x) ◦ g(x).
In particular, it follows that the product of majorant series of univariate

functions is a majorant series for the product of these functions.

Proposition 1.8. (Composition) Let g be an analytic map from Cm to Cp,
defined in the neighborhood of f(a) and G be such that [g]f(a) ≤ G. Let
h := g ◦ f , then we have

[h]a ≤ G ◦ (F − F (0)).

Corollary 1.9. (Composition for geometric series) According to the nota-
tion of the previous proposition, if F = F (0) + λf t

1−ρf t
, G = G(0) + λgt

1−ρgt
,

then
[h− h(a)]a ≤

λt

1− ρt
, where λ := λfλg, ρ := ρf + λfρg.

In addition, f(B(a, 1/ρ)) ⊆ B(f(a), 1/ρg).

Lastly, we recall a formula concerning inversion of linear maps.

Proposition 1.10. (Inversion) Let U be an open neighborhood of a in Cn

and f be analytic from U to L(Cm; Cm) such that f(a) = Id. Let F ∈ R{t}
such that [f ]a ≤ F , then [

f−1
]
a
≤ 1

1 + F (0)− F
.

In addition, the radius of convergence of 1
1+F (0)−F (t) is at least

ρ̄ := sup (s < ρ | 1 + F (0)− F (r) > 0, for all r ∈ [0, s]) ,

where ρ denotes the radius of convergence of F .
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Proof. The series majoration corresponds to [12, Proposition A.8]. For any
z ∈ B(0, ρ̄), the triangular inequality and F ≥ 0 imply

|1 + F (0)− F (z)| ≥ 1− |F (z)− F (0)| ≥ 1− F (|z|) + F (0) > 0,

which means that z 7→ 1 + F (0)− F (z) does not vanish in B(0, ρ̄). �

1.2. Location of Simple Zeroes. We show that the optimal location crite-
rion (in terms of the quantity α) given in [55] can be deduced from Rouché’s
theorem. We start with the following proposition, that generalizes Pellet’s
criterion [38] to simple zeroes of several variables maps. We follow the same
presentation as in [12, Section 1].

For the rest of this section, f denotes an analytic map from a connected
open subset U ⊆ Cn to Cn, x0 belongs to U and Df(x0) is assumed to be
invertible. For short we let α := α(f ;x0), β := β(f ;x0), γ := γ(f ;x0). For
a majorant series F , we will often use the notation

F̃ := F − (1 + F ′(0))t.

Proposition 1.11. Let F ∈ R{t} be such that
[
Df(x0)−1f

]
x0
≤ F . Let

r > 0 be a real number smaller than the radius of convergence of F such
that B̄(x0, r) ⊆ U and

F̃ (r) < 0 (5)
then f has exactly one simple zero in B̄(x0, r).

Proof. First observe that it is not restrictive to assume Df(x0) = Id. We
introduce g : U → Cn, g(x) := f(x)− f(x0). Let w 6= x0 be such that s :=
‖w − x0‖ ≤ r. By Taylor expansion, we have g(w) = w−x0 +Ox0(w−x0)2,
then by the triangular inequality, we get

‖g(w)‖
s

≥ 1−
∑
j≥2

F (j)(0)
j!

sj−1 ≥ 1− F (r)− F (0)− rF ′(0)
r

>
F (0)
r

,

where the last inequality follows from (5). Here Ox0 represents the classical
Landau “big O” notation in the neighborhood of x0. As a consequence, x0

is the only simple zero of g in the ball B̄(x0, r). Moreover, when s = r,
the inequality above yields ‖f(w)− g(w)‖ < ‖g(w)‖. In particular, g(w)
does not vanish and therefore the multivariate generalization of Rouché’s
theorem [1, Chapter 1, Theorem 2.5] asserts that f and g have the same
number of zeroes in B̄(x0, r), counting multiplicities. �

We now examine the important special case where F = F (f, x0; t), as
defined in (2): inequality (5) rewrites

F̃ (f, x0; r) := β − r +
γr2

1− γr
< 0. (6)

Assuming γr < 1 and B̄(x0, r) ⊆ U , the previous proposition specializes to:
if F̃ (f, x0; r) < 0 then f has exactly one simple zero in B̄(x0, r).
F̃ (f, x0; r) is convex on the range 0 ≤ r < 1/γ, and inequality (6) admits

solutions in this range if and only if α < 3− 2
√

2. In addition, by convexity,
this set of solutions forms a range that we write (r−(f ;x0), r+(f ;x0)), where
r−(f ;x0) and r+(f ;x0) (that may be infinity) are the roots of F̃ (f, x0; r) = 0.
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For short, we let r− := r−(f ;x0) and r+ := r+(f ;x0) and a direct calculation
yields:

r− := β
2

1 + α+
√

1− 6α+ α2
, r+ :=

1 + α+
√

1− 6α+ α2

4γ
. (7)

If α 6= 0 then the following inequality chain follows from the facts that r−

is convex increasing while r+ is concave decreasing as functions of α:

β < (1 + α)β < r− <

(
1 +

(
2 + 3

√
2

2

)
α

)
β <

(
1 +

√
2

2

)
β < (8)

1−
√

2
2

γ
<

1− (1 +
√

2)α
2γ

< r+ <
1− α

2γ
<

1
2γ
. (9)

We summarize this discussion in the following theorem.

Theorem 1.12. [55, Proposition 2] If α < 3−2
√

2 then for any r such that
r− ≤ r < r+ and B̄(x0, r) ⊆ U , f has exactly one simple zero in B̄(x0, r).

It is worth mentioning that this result is sharp, for it applies to F̃ (f, x0; r),
seen as a univariate map of r: at r = 0, it is easy to see β(F̃ (f, x0; .); 0) = β

and γ(F̃ (f, x0; .); 0) = γ. In practice, the next corollary will reveal easier to
use:

Corollary 1.13. If α < 3 − 2
√

2 and B̄(x0, (1 +
√

2/2)β) ⊆ U then f has
exactly one simple zero in both B̄(x0, (1+

√
2/2)β) and B(x0, (1−

√
2/2)/γ)∩

U .

Proof. We apply the previous theorem with the analytic extension of f on
B(x0, 1/γ), for r = (1 +

√
2/2)β (according to (8)) and then for any r in a

left neighborhood of (1−
√

2/2)/γ (according to (9)). �

1.3. Translations of Point Estimates. From estimates at a given point,
getting upper bounds on the same quantities at another close point is a
central operation. The following proposition will be used in proofs of the γ
and α-theorems below.

Proposition 1.14. Let F be such that
[
Df(x0)−1f

]
x0
≤ F , then[

Df(x0)−1Df
]
x0
≤ F ′ and

[
Df−1Df(x0)

]
x0
≤ − 1

F̃ ′
.

Proof. Again we can assume Df(x0) = Id and start with differentiating
[f ]x0

≤ F : according to Proposition 1.3, we obtain [Df ]x0
≤ F ′. Then the

second majoration follows from Proposition 1.10. �

Translations of α, β and γ are useful for various tasks, we shall use them
several times.

Proposition 1.15. [4, Chapter 8, Proposition 3] Let x1 ∈ U , r := ‖x1 − x0‖
such that u := γr < 1−

√
2/2, then

a. α(f ;x1) ≤
α(1− u) + u

ψ(u)2
;

b. β(f ;x1) ≤
(1− u)
ψ(u)

(β(1− u) + r);
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c. γ(f ;x1) ≤
γ

(1− u)ψ(u)
;

d. ‖Df(x1)−1Df(x0)‖ ≤
(1− u)2

ψ(u)
;

e. ‖Df(x0)−1Df(x1)‖ ≤
1

(1− u)2
.

Proof. Using the previous proposition with F = F (f, x0; t), we find:[
Df(x0)−1Df

]
x0
≤ 1

(1− γt)2
and

[
Df−1Df(x0)

]
x0
≤ (1− γt)2

ψ(γt)
.

Parts (d) and (e) directly follow via Proposition 1.4.
Then, we use the translation property for majorant series: according to

Proposition 1.5, we have
[
Df(x0)−1f

]
x1
≤ F (f, x0; r + t), hence[

Df(x0)−1f
]
x1
≤ β +

r + t

1− γ(r + t)

= β +
r

1− u
+

1
(1− u)2

t

1− γ
1−u t

.

From
[
Df(x1)−1f

]
x1
≤ ‖Df(x1)−1Df(x0)‖

[
Df(x0)−1f

]
x1

, we deduce:

[
Df(x1)−1f

]
x1
≤ (1− u)2

ψ(u)

(
β +

r

1− u
+

1
(1− u)2

t

1− γ
1−u t

)
,

from which directly follow Parts (b) and (c), and finally (a). �

1.4. γ-Theorem. The γ-theorem quantifies the convergence of Newton’s
operator from point estimates at the zero. It is useful for homotopy contin-
uation, when combined to the previous upper bounds on translation.

Theorem 1.16. [4, Chapter 8, Proposition 1] Let ζ ∈ U and r > 0 be a
real number such that f(ζ) = 0, Df(ζ) is invertible, B̄(ζ, r) ⊆ U , u :=
γ(f ; ζ)r < 1 −

√
2/2 and u/ψ(u) ≤ 1. Then, for any x0 ∈ B̄(ζ, r) the

sequence (xk)k∈N recursively defined by xk+1 := N(f ;xk) is well defined,
has all elements belonging to B̄(ζ, r) and

‖xk − ζ‖ ≤
(

u

ψ(u)

)2k−1

‖x0 − ζ‖, for all k ≥ 0.

Proof. A direct calculation gives:[
Df(ζ)−1(Df(x)x− f(x))

]
ζ
≤ tF ′(f, ζ; t)− F (f, ζ; t).

Using Propositions 1.14 and 1.7 then yields:[
x−Df(x)−1f(x)

]
ζ

=
[
(Df(x)−1Df(ζ))(Df(ζ)−1(Df(x)x− f(x)))

]
ζ

≤ − tF
′(f, ζ; t)− F (f, ζ; t)

F̃ (f, ζ; t)
=

γ(f ; ζ)t2

ψ(γ(f ; ζ)t)
.

By means of Proposition 1.4, evaluating this series majoration at x = x0

and t = r gives

‖x1 − ζ‖ ≤ γ(f ; ζ)
ψ(u)

‖x0 − ζ‖2 ≤ u

ψ(u)
‖x0 − ζ‖ ≤ ‖x0 − ζ‖.
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A straightforward induction concludes the proof. �

Combining the previous results actually leads to a weak α-theorem (see
next subsection). More precisely, let x0 ∈ U be such thatDf(x0) is invertible
and B̄(x0, (1+

√
2/2)β) ⊆ U . Let v := (1+

√
2/2)α and assume v < 1−

√
2/2,

which is equivalent to α < 3− 2
√

2. Then, from Corollary 1.13, there exists
a simple zero ζ in B̄(x0, (1 +

√
2/2)β). Let u := v

(1−v)ψ(v) and assume

u < 1−
√

2/2 and u
ψ(u) ≤ 1, Proposition 1.15 gives:

γ(f ; ζ) ≤ γ

(1− v)ψ(v)
,

hence γ(f ; ζ)(1 +
√

2/2)β ≤ u and Theorem 1.16 asserts quadratic conver-
gence from x0. The supremum value α̂ of the α’s satisfying these conditions
is:

α̂ := sup
(

v

1 +
√

2/2
| 0 ≤ v < 1−

√
2/2, u < 1−

√
2/2,

u

ψ(u)
≤ 1
)
.

An easy calculation produces 0.06571 < α̂ < 0.06572. This is not the
best possible value. Indeed the optimal condition on α yielding quadratic
convergence of Newton iterator is given in [55, Theorem 1]: the critical value
is 3− 2

√
2 ≈ 0.17157. This is the next result we recall.

1.5. α-Theorem. The α-theorem below presents a huge interest in practice
since it combines location and quantitive approximation from estimates at
the inital point. As in [55], we use the dominating sequence technique, that
consists in exhibiting an increasing sequence tk of nonnegative real numbers
such that ‖xk+1 − xk‖ ≤ tk+1 − tk, where xk are the Newton iterates of x0.
This idea goes back to Kantorovich [24]. The next theorem shows that once
Pellet’s criterion is satisfied at x0 then the Newton iterates of x0 converge
quadratically to a simple zero. We generalize the original idea of [55] to
majorant series. We do not use Proposition 1.11, but provide another proof
that does not rely on Rouché’s theorem.

Theorem 1.17. Let F ∈ R{t} be such that
[
Df(x0)−1f

]
x0
≤ F . Let r > 0

be a real number smaller than the radius of convergence of F such that
B̄(x0, r) ⊆ U and F̃ (r) < 0. Then f has exactly one simple zero ζ in
B̄(x0, r). In addition, the sequences (xk)k∈N recursively defined by xk+1 :=
N(f ;xk) and (tk)k∈N recursively defined by t0 = 0 and tk+1 := N(F̃ ; tk) are
well defined: xk belongs to B̄(x0, r), for all k ≥ 0, converges quadratically to
ζ, tk is increasing and converges quadratically to the first nonnegative root
r− of F̃ . Convergences compare this way:

a. ‖xk − xk+1‖ ≤ tk+1 − tk;
b. ‖Df(x0)−1f(xk)‖ ≤ tk+1 − tk;
c. ‖xk − ζ‖ ≤ r− − tk.

Proof. Let us first deal with the degenerate case when F ′′ = 0. In this
situation xk = ζ, tk = r− = β, for all k ≥ 1 and the theorem trivially holds.

From now on, we assume F ′′ 6= 0. In particular this implies that F̃ is
strictly convex on [0, r]. Since F̃ (0) ≥ 0 and F̃ (r) < 0 we deduce that there
exists a unique zero r− of F̃ in [0, r].
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From convexity, we also deduce that tk is increasing and converges to r−.
The dominating sequence technique consists in proving

‖xk+1 − xk‖ ≤ tk+1 − tk. (10)

For this purpose, we proceed by induction on k: if k = 0 then ‖x1 − x0‖ =
F (0) = F̃ (0) = t1, since F̃ ′(0) = −1. Now, we assume that inequality (10)
holds up to a certain index k − 1 ≥ 0. First, it is easy to check

‖xk − x0‖ ≤ ‖xk − xk−1‖+ · · ·+ ‖x1 − x0‖
≤ tk − tk−1 + · · ·+ t1 − t0 = tk − t0 ≤ r−. (11)

Since F̃ ′ does not vanish on [0, r−], Proposition 1.10 implies that the radius
of convergence of −1/F̃ ′(t) is larger than r−. Therefore Propositions 1.14
and 1.4 yield:

‖Df(xk)−1Df(x0)‖ ≤ − 1
F̃ ′(tk)

. (12)

On the other hand, by definition of xk, one can write:

Df(x0)−1f(xk) = Df(x0)−1(f(xk)− f(xk−1)−Df(xk−1)(xk − xk−1)),

so that a second order Taylor formula with integral remainder gives:
Df(x0)−1f(xk) =∫ 1

0
(1− τ)Df(x0)−1D2f(xk−1 + τ(xk − xk−1))(xk − xk−1)2dτ.

By Proposition 1.3, one has
[
Df(x0)−1D2f

]
x0
≤ F ′′ and then, using Propo-

sition 1.4, we deduce:
∥∥Df(x0)−1f(xk)

∥∥ ≤∫ 1

0
(1− τ)F̃ ′′(τtk + (1− τ)tk−1)(tk − tk−1)2dτ = F̃ (tk). (13)

Combining (12) and (13) leads to:

‖xk+1 − xk‖ ≤ ‖Df(xk)−1f(xk)‖
≤ ‖Df(xk)−1Df(x0)‖‖Df(x0)−1f(xk)‖

≤ −F̃ (tk)/F̃ ′(tk) = tk+1 − tk,

which gives (10). We deduce that the sequence (xk)k∈N converges to a limit
that we write ζ. By construction, we have f(ζ) = 0. From (11), we get
ζ ∈ B̄(x0, r

−), thus ζ is a simple zero.

Next, Part (b) follows from (13) this way:

‖Df(x0)−1f(xk)‖ ≤ F̃ (tk) = −F̃ ′(tk)(tk+1 − tk)

≤ −F̃ ′(0)(tk+1 − tk) = tk+1 − tk.

Lastly, Part (c) comes from

‖xk − ζ‖ ≤
∑
i≥k

‖xi − xi+1‖ ≤
∑
i≥k

(ti+1 − ti) = r− − tk.
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It remains to show that ζ is the only zero of f in B̄(x0, r). Let ζ ′ denote
another zero in this ball. Let R > r be smaller than the radius of convergence
of F such that F̃ (R) ≤ 0. We introduce θ := ‖x0 − ζ ′‖/R < 1 and claim

‖xk − ζ ′‖ ≤ θ2k
(R− tk), for all k ≥ 0, (14)

from which immediately follows ζ = ζ ′. We prove this claim by induction
on k. The case k = 0 follows from the definition of θ. Assume that (14)
holds at k ≥ 0, by construction, one can write:

xk+1 − ζ ′ = −Df(xk)−1
(
f(xk) +Df(xk)(ζ ′ − xk)

)
= Df(xk)−1

∫ 1

0
(1− τ)D2f(xk + τ(ζ ′ − xk))(ζ ′ − xk)2dτ,

using again Taylor formula with integral remainder and f(ζ ′) = 0. Using
the induction hypothesis and Proposition 1.14, we deduce:

‖xk+1 − ζ ′‖ ≤ − θ2k+1

F̃ ′(tk)

∫ 1

0
(1− τ)F̃ ′′(tk + τθ2k

(R− tk))(R− tk)2dτ.

Since F̃ ′′ is increasing, we can omit the factor θ2k−1 under the integral.
Using F̃ (R) ≤ 0, we deduce:

‖xk+1 − ζ ′‖ ≤ −θ2k+1 F̃ (R)− F̃ (tk)− F̃ ′(tk)(R− tk)
F̃ ′(tk)

≤ θ2k+1 F̃ (tk) + F̃ ′(tk)(R− tk)
F̃ ′(tk)

= θ2k+1
(R− tk+1). �

Specializing F to F (f, x0; .), we recover the following result by calculating
an explicit expression for tk:

Corollary 1.18. (α-theorem) [55] If B̄ := B̄(x0, (1 +
√

2/2)β) ⊆ U and
α < 3 − 2

√
2 then f has exactly one simple zero ζ in B̄ and the sequence

(xk)k∈N recursively defined by xk+1 := N(f ;xk) is well defined. In addition,
xk belongs to B̄ and for all k ≥ 0:

a. ‖xk − xk+1‖ ≤ q2
k−1β,

b. ‖Df(x0)−1f(xk)‖ ≤ q2
k−1β,

c. ‖xk − ζ‖ ≤ q2
k−1r−,

where q :=
2r− − β

2r+ − β
< 1 if α 6= 0 and q = 0 otherwise (in all cases we use

the convention q0 = 1).

Using (7), note that q rewrites in terms of α only:

q(α) :=
4α

(1− α+
√

1− 6α+ α2)2
. (15)

It follows that q and q/α are continuous on [0, 3− 2
√

2).

Proof. The case α = 0 is straightforward with the convention. We now
assume α 6= 0. It is classical to get an explicit formula of tk by means
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of introducing sk := tk−r−
tk−r+ . Then, writing F̃ (f, x0; t) = 2γ (t−r−)(t−r+)

1−γt , we
deduce

F̃ ′(f, x0; t)
F̃ (f, x0; t)

=
1

t− r−
+

1
t− r+

+
γ

1− γt

and

sk+1 =
tk − r− − F̃ (f,x0;tk)

F̃ ′(f,x0;tk)

tk − r+ − F̃ (f,x0;tk)

F̃ ′(f,x0;tk)

=
(tk − r−) F̃

′(f,x0;tk)

F̃ (f,x0;tk)
− 1

(tk − r+) F̃
′(f,x0;tk)

F̃ (f,x0;tk)
− 1

= s2k
1 + γ tk−r

+

1−γtk

1 + γ tk−r
−

1−γtk

= s2kqs,

where qs := 1−γr+
1−γr− . From s0 = r−/r+ and the definitions of r− and r+, it

is easy to see that α < 3 − 2
√

2 is equivalent to qss0 < 1. Then, one can
check q = qss0 and an easy induction gives sk = q2

k−1s0. It follows that
sk converges quadratically to 0 and tk converges quadratically to r−, since
tk = r− 1−sk/s0

1−sk
. In order to prove Part (a) we write

tk+1 − tk =
r+ − r−

1− sk

sk − sk+1

1− sk+1

and then deduce
tk+1 − tk
t1 − t0

=
sk − sk+1

s0 − s1

1− s0
1− sk

1− s1
1− sk+1

=
sk
s0

1− qssk
1− qss0

1− s0
1− sk

1− qss
2
0

1− qss2k
≤ sk
s0
,

the last inequality follows from qs ≤ 1. Parts (a) and (b) follow from the
previous theorem. Lastly, we deduce from Part (c) of the previous theorem:

‖xk − ζ‖ ≤ r− − tk = r−
sk
s0

1− s0
1− sk

≤ r−
sk
s0
. �

2. Local Compositional Inverse

The first main ingredient of our location and approximation algorithms is
a quantitative version of the local compositional inverse function theorem.
This section is devoted to the following theorem. We do not use our main
notation from the introduction yet.

Theorem 2.1. Let U ⊆ Cn be an open subset, f : U → Cn be an analytic
map and ζ ∈ U be such that Df(ζ) is invertible. Let σ ≥ ‖Df(ζ)−1‖,
γ ≥ γ(f ; ζ), Bf := B

(
ζ, 1−

√
2/2
γ

)
and assume Bf ⊆ U . Then there exists a

unique map g with the following properties:
a. g is defined and analytic in

Bg := B

(
f(ζ),

1
(3 + 2

√
2)σγ

)
;

b. g(Bg) ⊆ Bf ;
c. f ◦ g(b) = b, for all b ∈ Bg;
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d. For all b ∈ Bg there exists only one a ∈ Bf such that f(a) = b. In
addition, we have a = g(b) and ‖a− ζ‖ ≤ (1 +

√
2/2)β(f − b; ζ);

e. [g − ζ]f(ζ) ≤
σt

1− (3 + 2
√

2)σγt
.

Proof. Let b ∈ Bg, fb(x) = f(x)−b defined on Bf . Then γ(fb; ζ) = γ(f ; ζ) ≤
γ and

α(fb; ζ) ≤ γσ‖f(ζ)− b‖ < 3− 2
√

2.

Hence Corollary 1.13 applies: fb(x) admits one simple zero a in Bf , we
define g(b) := a. By construction, g is defined and analytic on Bg, hence
Parts (b), (c) and (d) hold. Lastly, proving Part (e) is the goal of the rest
of this section. �

Remark that, according to the notation of this proof, Corollary 1.18 im-
plies that Newton’s operator on fb converges quadratically from ζ to a.
Except for Part (e), this theorem and the above proof are similar to [4,
Chapter 8, Theorem 7]. It is also worth mentioning that Part (e) also im-
plies [8, Corollary 3.4] in a straightforward way.

In order to prove the last statement (e), we now focus on the behaviour
of majorant series under local compositional inversion. Then we deduce the
claimed bound by specializing to geometric majorant series. The following
results generalize and slightly improve those of [8, Section 3]. We also give
different and simpler proofs. We start from the same proposition:

Proposition 2.2. [8, Theorem 3.2] Let f be an analytic map from an open
neighbourhood U of a in Cn to Cn such that Df(a) = Id. Then f is invertible
in a neighbourhood of f(a). Let H ∈ t2R{t} be such that [f − f(a)]a ≤
t+H. Let F := t−H, and F−1 denote the compositional inverse of F , then[
f−1 − a

]
f(a)

≤ F−1.

Proof. We refer to the proof of [8], based on Faà di Bruno’s formula. �

By considering inverses on the left and inverses on the right, we now relax
the condition Df(a) = Id.

Corollary 2.3. Let f be an analytic map from an open neighbourhood U of
a in Cn to Cn. Assume that Df(a) is invertible, then f is invertible in a
neighbourhood of f(a). Let g1 and g2 be defined by

g1(x) := f(a+Df(a)−1x)− f(a), g2(x) := Df(a)−1(f(a+ x)− f(a)).

For i ∈ {1, 2}, let Hi ∈ t2R{t} satisfy [gi]0 ≤ t +Hi. Define Fi := t −Hi.
Then [

Df(a)(f−1 − a)
]
f(a)

≤ F−1
1 (t),[

f−1 ◦Df(a)− a
]
Df(a)−1f(a)

≤ F−1
2 (t).

Hence[
f−1 − a

]
f(a)

≤ ‖Df(a)−1‖F−1
1 (t) and

[
f−1 − a

]
f(a)

≤ F−1
2 (‖Df(a)−1‖t).



CLUSTERS OF EMBEDDING DIMENSION ONE 19

Proof. Since Dgi(0) = Id, i ∈ {1, 2}, we apply the previous proposition with
gi and Hi at 0. Then we use the fact that

f−1(y) = a+Df(a)−1g−1
1 (y − f(a)) = a+ g−1

2 (Df(a)−1(y − f(a))). �

Now we specialize this last corollary to the special case of geometric ma-
jorant series and obtain:

Corollary 2.4 (for Geometric majorant series). Let f be an analytic map
from an open neighbourhood U of a in Cn to Cn. Assume that Df(a) is
invertible.

a. If [f − f(a)]a ≤ λt/(1− ρt) then[
Df(a)(f−1 − a)

]
f(a)

≤ t

1− ϑρ‖Df(a)−1‖t
.

b. If
[
Df(a)−1(f − f(a))

]
a
≤ λ‖Df(a)−1‖t

1− ρt
then

[
f−1 ◦Df(a)− a

]
Df(a)−1f(a)

≤ t

1− ϑρt
.

In both cases, ϑ denotes the largest root of P (x) := 1−2(1+2‖Df(a)−1‖λ)x+
x2.

Observe that the defining polynomial P for ϑ admits two nonnegative real
roots and that ϑ is larger than one.

Proof. For Part (a), we apply the previous corollary withH1 = µρ̄t2/(1−ρ̄t),
where µ = ‖Df(a)−1‖λ and ρ̄ = ρ‖Df(a)−1‖. We are then led to study the
inverse G of

F = t− µρ̄t2

1− ρ̄t
.

This inverse is given by the explicit formula

G =
1 + ρ̄t−

√
1− 2(1 + 2µ)ρ̄t+ ρ̄2t2

2ρ̄(1 + µ)
.

The rest of the proof is thus concentrated in the study of one specific map,
which is performed in Lemma 2.6 below.

For Part (b) we apply the previous corollary with H2 = µρt2/(1−ρt) and
the rest is similar to Part (a). �

Let us conclude:

Proof of Part (e) of Theorem 2.1. The proof follows from Part (b) of the
previous corollary applied with λ = 1/‖Df(a)−1‖, ρ = γ(f ; a) and ϑ =
3 + 2

√
2. �

Before coming to technical lemmas, we give two examples illustrating the
sharpness of the previous corollary.

First, we consider f = t− t2/(1− t). Then Part (a) or (b) of the corollary
applies with λ = ρ = f ′(0) = 1 and gives the bound

[
f−1

]
0
≤ t/(1− ϑt) =:

B(t), with ϑ = 3 + 2
√

2. The value of ϑ in the denominator is optimal.
Indeed, from the explicit formula for G above, we can use Darboux’s the-
orem [19] to deduce that as n tends to infinity, the nth coefficient of the
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Taylor expansion of G at the origin behaves like κϑnn−3/2 for some con-
stant κ. A smaller constant ϑ′ < ϑ in the denominator of B would lead to
an asymptotic bound of order ϑ′n, incompatible with the actual behaviour.
Concerning the numerator of B, it is also optimal since the first coefficient
of f−1 is 1.

Our second example is f = t − 2t2/(1 − t). As in the previous example,
ρ = f ′(0) = 1, but now, λ = 2. The value of ϑ given by Part (a) is 5 +
2
√

6 ≈ 9.90, which again is optimal with respect to the asymptotic behaviour
of the Taylor coefficients, while the numerator is again sharp for the first
coefficient. Applying Part (b) yields γ(f−1; 0) ≤ (3 + 2

√
2)2 ≈ 11.66, which

illustrates the gain in dealing with a majorant geometric series given by two
real numbers instead of only the gamma estimate.

Let us now complete the proof of Corollary 2.4. The following lemma is
probably classical, although we could not find a reference to it.

Lemma 2.5. Let P (t) :=
∑p

i=0 ait
i be a polynomial with real coefficients

such that a0 > 0 and the Taylor series of 1/P at the origin has nonnegative
coefficients. Let un be a sequence satisfying the inequality

R(u;n) :=
p∑
i=0

ap−iun+i ≤ 0, n ≥ 0. (16)

Let vn be a sequence defined by vi = ui, for 0 ≤ i < p and R(v;n) = 0 for
n ≥ 0. Then un ≤ vn for all n ≥ 0.

Proof. Let U(t) :=
∑
unt

n (resp. V (t) :=
∑
vnt

n) be the generating series
of the sequence un (resp. vn). By multiplying (16) by tn+p and summing
over n, we get an inequality

P (t)U(t) ≤ P (t)V (t).

Observe that P (t)V (t) is a polynomial of degree at most p − 1. Since 1/P
has nonnegative coefficients, Part (d) of Proposition 1.1 allows to multiply
both sides of the inequality by 1/P . Extracting coefficients of tn on both
sides then concludes the proof. �

Lemma 2.6. Let P (t) = 1−2νt+t2, with ν > 1 and G(t) =
1 + t−

√
P (t)

1 + ν
.

Then
[G]0 ≤

t

1− ϑt
,

where ϑ is the largest root of P .

Proof. The function G satisfies the linear differential equation

P (t)G′(t) + (ν − t)G(t) = 1− t.

It follows that the sequence {un} of its Taylor coefficients at the origin
satisfies the linear recurrence equation

un =
(

2− 3
n

)
νun−1 −

(
1− 3

n

)
un−2, n ≥ 3, (17)

with initial conditions u0 = 0, u1 = 1, u2 = (ν − 1)/2. We now prove that

0 < un < 2νun−1 − un−2, n ≥ 4. (18)
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To this aim, we first prove by induction that un > un−1 for n ≥ 3. For n = 3,
we have u3 = νu2 from (17) which gives the desired inequality since ν > 1
and u2 > 0. For n ≥ 3, let vn = un/un−1 and assume vn−1 > 1, then (17)
implies

vn =
(

2− 3
n

)
ν − 1− 3/n

vn−1
≥ 1 + (2− 3/n)(ν − 1) > 1.

From un/un−1 > 1, the sign of un follows (u2 being positive) and since ν >
1, we also get vn < 2ν − 1/vn−1 for n ≥ 4, whence the second part of the
desired inequality (18). The polynomial P can be written (1− ϑt)(1− t/ϑ)
with ϑ its largest positive root. It follows that the Taylor series of 1/P at
the origin has nonnegative coefficients. We can therefore apply the previous
lemma to the sequence un+2, which gives

G(t)− u0 − u1t

t2
≤ u2 + (u3 − 2νu2)t

P (t)
.

Isolating G(t)/t and computing a partial fraction expansion of the right-
hand side gives

G(t)
t

≤ 1 +
ν(1− ν)

2
+

C(ϑ)
1− ϑt

+
C(1/ϑ)
1− t/ϑ

,

with C(ϑ) = ν−1
2 (ν − ϑ/2). Now, obviously (since ϑ > 1)

1
1− t/ϑ

− 1 ≤ ϑ−2

1− ϑt
− ϑ−2,

which makes it possible to bound the last summand in terms of the second
one. A straightforward computation gives C(ϑ)+C(1/ϑ)/ϑ2 = (ν−1)/(2ϑ).
The proof is concluded by showing that this last quantity is smaller than 1.
Indeed, by writing ϑ = ν +

√
ν2 − 1 and dividing by ν − 1, we see that

ϑ/(ν − 1) > 2, which is sufficient. The numerator 1 is then dictated by the
first coefficient u1 = 1. �

3. Reduction to One Variable

This section contains the last ingredients that are used in the next sections
to reduce the location and approximation techniques from several variables
to one variable, as explained in the introduction. We start by recalling the
main result we shall use on location of clusters of analytic functions from [12,
Section 1]. Then, as required by the univariate approximation algorithm
of [12, Section 4], we provide a function Bm,l that computes approximations
of βm,l. Next, we prove formula (4) from the introduction, that relates Dl

yh

to g[l] and, lastly, we provide bounds on translation with respect to z of
point estimates of maps h(z, .).

3.1. Clusters of Zeroes of Univariate Functions. For the sake of com-
pleteness we recall the following result.

Theorem 3.1. [12, Corollary 1.8] Let f denote an analytic function defined
on a connected open subset U ⊆ C, let m ≥ 1 be an integer, l ∈ {0, . . . ,m−
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1}, z ∈ U be such that f (m)(z) 6= 0,

m− l

m

m+ 1
m+ 1− l

αm,l(f ; z) ≤ 1/9

and B̄(z, 3m−lm βm,l(f ; z)) ⊆ U . Then, f (l) has m− l zeroes, counting multi-
plicities, in B̄(z, 3m−lm βm,l(f ; z)) and B̄(z, m+1−l

3(m+1)γm(f ;z)) ∩ U .

Let us recall from [12, Section 2] that if αm,l(f ; z) is sufficiently small and
if z is in the convex hull of the cluster of zeroes of f (l) located by the previous
proposition then the diameter of this cluster is about βm,l(f ; z). Roughly
speaking, this means that one can confound the diameter of this cluster and
βm,l(f ; z), for any point in the convex hull of the cluster. This is why we
focus on such quantities βm,l(f ; z) to approximate clusters in Section 5.

From [12, Section 4.1], we recall bounds on translation of αm,l, βm,l and
γm estimates that will be particularly useful in practice in our last section.

Proposition 3.2. [12, Proposition 4.3] Assume that U is connected, let
ζ ∈ U , m ≥ 1 be an integer such that f (m)(ζ) 6= 0 and l ∈ {0, . . . ,m − 1}.
Let γm := γm(f ; ζ) and βm,l := βm,l(f ; ζ), for short. Let z ∈ U , r := |z − ζ|
be such that u := γm(f ; ζ)r < 1− (1/2)1/(m+1), then f (m)(z) 6= 0 and

a. αm,l(f ; z) ≤ 1
ψm(u)2

(
αm,l(1− u)

l+1
m−l + (2m− 1)u

)
;

b. βm,l(f ; z) ≤ 1− u

ψm(u)

(
βm,l(1− u)

l+1
m−l + (2m− 1)r

)
;

c. γm(f, z) ≤ γm
ψm(u)(1− u)

;

d.

∣∣∣∣∣f (m)(ζ)
f (m)(z)

∣∣∣∣∣ ≤ (1− u)m+1

ψm(u)
;

e.

∣∣∣∣∣f (m)(z)
f (m)(ζ)

∣∣∣∣∣ ≤ 1
(1− u)m+1

.

3.2. Approximation of βm,l. Let U be a connected open subset of C, in
this subsection f denotes an analytic function defined on U . Let x0 and
x1 be two points in U , m ≥ 1 be an integer such that fm(x0) 6= 0 and let
l ∈ {0, . . . ,m− 1}. We show that βm,l(f ;x1) can be approximated from the
sole knowledge of a truncated Taylor expansion of f at x0 and upper bounds
on γm(f ; .) at x0 and x1. We introduce the following functions, that will be
used in Section 5:

Bm,l(f, x0;x1) := βm,l(p;x1), vm,l := min

(
1−

(
1
2

) 1
m+1

,
1

2m− l

)
,

τm,l,0(v) :=
(2m− l)2(1− v)

ψm(v)
, τm,l,1(v) := 1 +

(2m− l)v
ψm(v)

,

where p denotes the unique polynomial of degree at most 2m − l − 1 such
that f(x)−p(x) ∈ Ox0((x−x0)2m−l). These objects satisfy the requirements
stated in [12, Section 4.2], namely:
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Proposition 3.3. Let r := |x0 − x1|, γ̄m ≥ max(γm(f ;x0), γm(f ;x1)), v =
γ̄mr, if v < vm,l then

Bm,l(f, x0;x1) ≤ τm,l,1(v)βm,l(f ;x1) + τm,l,0(v)γ̄mr2,

βm,l(f ;x1) ≤ τm,l,1(v)Bm,l(f, x0;x1) + τm,l,0(v)γ̄mr2.

Proof. It suffices to set i = 2m− l in the next lemma. �

Lemma 3.4. Let i ≥ m + 1 be an integer and p(y) denote the unique
polynomial of degree at most i−1 such that f(x)−p(x) ∈ Ox0((x−x0)i). Let
r := |x1 − x0|, v := γm(f ;x0)r and assume v < 1−(1/2)1/(m+1) and iv < 1,
then |βm,l(f ;x1)− βm,l(p;x1)| ≤

(iv)
i−m
m−l

ψm(v)

(
min(βm,l(f ;x1), βm,l(p;x1)) + (1− v)ir

)
.

Proof. Let γm := γm(f ;x0) and σm := m!/|f (m)(x0)| = m!/|p(m)(x0)|. We
introduce the majorant series

R :=
γi−mm ti

1− γmt
,

so that σm [f − p]x0
≤ R. Let l ≤ k ≤ m. By [12, Lemma 4.1], one has

R(k)

k!
≤

γi−mm

(
i
k

)
ti−k

(1− γmt)k+1
≤ (iγmt)i−m(it)m−k

(1− γmt)k+1
.

Observe that γm(p;x0) ≤ γm and therefore both f (m)(x1) and p(m)(x1) do
not vanish, according to Proposition 3.2, and:∣∣∣∣ m!

σmp(m)(x1)

∣∣∣∣ ≤ (1− v)m+1

ψm(v)
,

∣∣∣∣ m!
σmf (m)(x1)

∣∣∣∣ ≤ (1− v)m+1

ψm(v)
.

Then we start with:∣∣∣∣∣m!f (k)(x1)
k!f (m)(x1)

− m!p(k)(x1)
k!p(m)(x1)

∣∣∣∣∣ ≤
∣∣∣∣∣m!f (k)(x1)
k!p(m)(x1)

− m!p(k)(x1)
k!p(m)(x1)

∣∣∣∣∣ (19)

+

∣∣∣∣∣m!f (k)(x1)
k!p(m)(x1)

− m!f (k)(x1)
k!f (m)(x1)

∣∣∣∣∣ .
Using majorant series evaluation via Proposition 1.4, we bound the first
term of the right-hand side of the last inequality:∣∣∣∣∣m!f (k)(x1)

k!p(m)(x1)
− m!p(k)(x1)
k!p(m)(x1)

∣∣∣∣∣ ≤
∣∣∣∣ m!
p(m)(x1)

∣∣∣∣
∣∣∣∣∣f (k)(x1)

k!
− p(k)(x1)

k!

∣∣∣∣∣
≤
∣∣∣∣ m!
σmp(m)(x1)

∣∣∣∣
∣∣∣∣∣R(k)(r)

k!

∣∣∣∣∣
≤ (1− v)m+1

ψm(v)
(iv)i−m(ir)m−k

(1− v)k+1

≤ (1− v)m−k

ψm(v)
(iv)i−m(ir)m−k.
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As for the second term we get:∣∣∣∣∣m!f (k)(x1)
k!p(m)(x1)

− m!f (k)(x1)
k!f (m)(x1)

∣∣∣∣∣ ≤
∣∣∣∣∣m!f (k)(x1)
k!f (m)(x1)

∣∣∣∣∣
∣∣∣∣ m!
p(m)(x1)

∣∣∣∣
∣∣∣∣∣f (m)(x1)

m!
− p(m)(x1)

m!

∣∣∣∣∣
≤ βm,l(f ;x1)m−k

∣∣∣∣ m!
σmp(m)(x1)

∣∣∣∣
∣∣∣∣∣R(m)(r)

m!

∣∣∣∣∣
≤ βm,l(f ;x1)m−k

(1− v)m+1

ψm(v)
(iv)i−m

(1− v)m+1

≤ βm,l(f ;x1)m−k
(iv)i−m

ψm(v)
.

Then using the assumption iv < 1, we conclude:

|βm,l(f ;x1)− βm,l(p;x1)| ≤
(iv)

i−m
m−l

ψm(v)
(βm,l(f ;x1) + (1− v)ir) ,

which is the first half of the claimed inequality. The second half is obtained
in a similar way, starting from (19) and exchanging the roles of f and p. �

3.3. Deflated Maps. From now on, we use main notation, given in the
introduction. For any integer l ≥ 0, in this text, we study the lth deflated
map (f, g[l]) obtained from (f, g) according to the following recursive formal
definition:

g[0] = g, g[l+1] =
det(D(f, g[l]))

det(Dxf)
, for l ≥ 0,

where det denotes the determinant map, the implicit basis being considered
is (x, y). For any (x0, y0) such that Dxf(x0, y0) is invertible, the relation
with h(f, g, x0, y0; z, y) is as follows.

Lemma 3.5. Let l ≥ 0, (x0, y0) ∈ U be such that Dxf(x0, y0) is invertible
and z0 := Dxf(x0, y0)−1f(x0, y0). The following relation holds in a neigh-
borhood of (z0, y0):

Dl
yh(f, g, x0, y0; z, y) = g[l] ◦ Φ(f, x0, y0; z, y).

Proof. For short, we let

h(z, y) := h(f, g, x0, y0; z, y), Φ(z, y) := Φ(f, x0, y0; z, y).

Let X denote the first n − 1 coordinates of DyΦ(z, y) and Y the last one.
By construction, we have Y = 1 and Dxf(x0, y0)−1f ◦ Φ(z, y) = z. In
a neighborhood of (z0, y0), differentiating this equality with respect to y
yields

Dxf(Φ(z, y))X +Dyf(Φ(z, y)) = 0.
On the other hand we have Dyh(z, y) = Dg(Φ(z, y))DyΦ(z, y), hence:

Dyh(z, y) = Dxg(Φ(z, y))X +Dyg(Φ(z, y))

= −Dxg(Φ(z, y))Dxf(Φ(z, y))−1Dyf(Φ(z, y)) +Dyg(Φ(z, y)).

For l = 1, the conclusion is a consequence of the classical Schur complement
formula, that comes from mapping determinant on each factor of(

Id 0
Dxg(Φ(z, y)) −1

)(
Dxf(Φ(z, y))−1 0

0 1

)(
Dxf(Φ(z, y)) Dyf(Φ(z, y))
Dxg(Φ(z, y)) Dyg(Φ(z, y))

)
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=
(

Id Dxf(Φ(z, y))−1Dyf(Φ(z, y))
0 −Dyh(z, y)

)
.

An easy induction on l concludes the proof. �

From a practical point of view, and by means of classical computations
with power series, starting from (x0, y0), one can obtain truncated Taylor
series expansions of Φ at (z0, y0) in order to deduce such expansions for h
via this lemma.

3.4. z-Translation of Point Estimates. Here we focus on quantifying
the variations of βm,l(h(z, .); y) and γm(h(z, .); y) when z varies, for fixed y,
where h denotes an analytic map from an open subset U of Cn−1 × C and
with values in C.

Proposition 3.6. Let h(z, y) be an analytic map defined on a connected
open neighborhood U of (z0, y0) to C. Let λ ≥ 0 and ρ ≥ 0 be two real num-
bers satisfying [h− h(z0, y0)](z0,y0) ≤

λt
1−ρt . Let m ≥ 1 and l ∈ {0, . . . ,m−1}

be integers such that |Dm
y h(z0, y0)| 6= 0 and let σm ≥ m!/|Dm

y h(z0, y0)|. Let
z1 be such that (z1, y0) ∈ U and

µ :=
ρ

1− ρ‖z1 − z0‖
, e :=

(
(m+ 1)σm

λ‖z1 − z0‖
1− ρ‖z1 − z0‖

)1/m

.

If ρ‖z1 − z0‖ < 1 and µe < 1 then |Dm
y h(z1, y0)| 6= 0 and

a. m!/|Dm
y h(z1, y0)| ≤

m!/|Dm
y h(z0, y0)|

1− (µe)m
and

m!/|Dm
y h(z0, y0)| ≤ (1 + (µe)m)m!/|Dm

y h(z1, y0)|;

b. βm,l(h(z1, .); y0) ≤
βm,l(h(z0, .); y0) + m

m+1µ
l

m−l e
m

m−l

1− (µe)m
and

βm,l(h(z0, .); y0) ≤ (1 + (µe)m)βm,l(h(z1, .); y0) +
m

m+ 1
µ

l
m−l e

m
m−l ;

c. γm(h(z1, .); y0) ≤
γm(h(z0, .); y0) + m+2

m+1µ

1− (µe)m
and

γm(h(z0, .); y0) ≤ (1 + (µe)m)γm(h(z1, .); y0) +
m+ 2
m+ 1

µ.

Proof. Let r := ‖z1 − z0‖. If ρ = 0 then m = 1 and the proposition
holds trivially. Now we assume ρ > 0. Inequalities ‖Dj

zDk
yh(z0, y0)‖ ≤

‖Dj+kh(z0, y0)‖, for all j ≥ 0 and k ≥ 0, rewrite into
[
Dk
yh(., y0)

]
z0
≤[

Dkh
]
(z0,y0)

. Differentiating majorant series, thanks to Proposition 1.3, we
obtain, for any k ≥ 1:[

Dk
yh(., y0)
k!

−
Dk
yh(z0, y0)
k!

]
z0

≤
[
Dkh

k!
− Dkh(z0, y0)

k!

]
(z0,y0)

≤ λρk−1

(1− ρt)k+1
− λρk−1.
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Evaluating at t = r, using Proposition 1.4, we deduce:∣∣∣∣∣ |Dk
yh(z1, y0)|
k!

−
|Dk

yh(z0, y0)|
k!

∣∣∣∣∣ ≤ λρk−1

(1− ρr)k+1
(1− (1− ρr)k+1)

≤ (k + 1)λρkr
(1− ρr)k+1

= (k + 1)µk
λr

1− ρr
,

since 1 − (1 − ρr)k+1 is an increasing concave function of r. Observe that
this last inequality also holds for k = 0. Rewriting the previous expressions
in terms of e and µ, we find:∣∣∣∣∣m!|Dk

yh(z1, y0)|
k!|Dm

y h(z0, y0)|
−
m!|Dk

yh(z0, y0)|
k!|Dm

y h(z0, y0)|

∣∣∣∣∣ ≤ k + 1
m+ 1

µk−m(µe)m. (20)

Letting k := m in this inequality we obtain:

1− (µe)m ≤ |Dm
y h(z1, y0)|/|Dm

y h(z0, y0)| ≤ 1 + (µe)m, (21)

which yields Part (a). Combining (20) and (21), we deduce, for any k ≥ 0:

m!|Dk
yh(z1, y0)|

k!|Dm
y h(z1, y0)|

≤
m!|Dk

yh(z0,y0)|
k!|Dm

y h(z0,y0)| + k+1
m+1µ

k−m(µe)m

1− (µe)m
(22)

and

m!|Dk
yh(z0, y0)|

k!|Dm
y h(z0, y0)|

≤ (1 + (µe)m)
m!|Dk

yh(z1, y0)|
k!|Dm

y h(z1, y0)|
+
k + 1
m+ 1

µk−m(µe)m. (23)

For short, we let βm,l := βm,l(h(z0, .); y0) and γm := γm(h(z0, .); y0). For
Part (b), let us consider l ≤ k ≤ m− 1, then (21) and (22) respectively lead
to:

βm,l(h(z1, .); y0) ≤
βm,l + µ−1 supl≤k≤m−1 bm,k(µe)

m
m−k

1− (µe)m

and

βm,l ≤ (1 + (µe)m)βm,l(h(z1, .); y0) + µ−1 sup
l≤k≤m−1

bm,k(µe)
m

m−k ,

where bm,k :=
(
k+1
m+1

) 1
m−k . Part (b) follows from supl≤k≤m−1(µe)

m
m−k =

(µe)
m

m−l and

sup
l≤k≤m−1

bm,k =
m

m+ 1
.

This equality can be seen as a consequence of the concavity of the log func-
tion:

log(bm,k) =
log(k + 1)− log(m+ 1)

(m+ 1)− (k + 1)

≤ log(m)− log(m+ 1)
(m+ 1)−m

= log(bm,m−1),
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which is an equality for k = m − 1. As for Part (c), calculations are very
similar. Letting k ≥ m + 1, and using µe < 1, inequalities (21) and (22)
respectively lead to:

γm(h(z1, .); y0) ≤
γm + µ supk≥m+1 cm,k

1− (µe)m

and

γm ≤ (1 + (µe)m)γm(h(z1, .); y0) + µ sup
k≥m+1

cm,k,

where cm,k :=
(
k+1
m+1

) 1
k−m . Part (c) follows from

sup
k≥m+1

cm,k =
m+ 2
m+ 1

.

Again, this equality can be seen as a consequence of the concavity of the log
function:

log(cm,k) =
log(k + 1)− log(m+ 1)

(k + 1)− (m+ 1)

≤ log(m+ 2)− log(m+ 1)
(m+ 2)− (m+ 1)

= log(cm,m+1). �

4. Cluster Location

In this section, we use our main notation stated in the introduction:
f : Uf → Cn−1 and g : Ug → C are analytic maps defined on maximal
analyticity domains. We present a method for locating clusters of zeroes of
the lth deflated map (f, g[l]).

In order to perform this location around a given point (x0, y0), we focus
on locating zeroes of Dl

yh(f, g, x0, y0; 0, .) around y0, which reduces to a
univariate situation. Unfortunately, it is not possible to compute point
estimates of h at (0, y0) in general. We have to content ourselves with
estimates at (z′0, y0), where z′0 := Dxf(x0, y0)−1f(x′0, y0) is small enough
for x′0 is obtained from x0 by means of Newton’s iteration. Our algorithm
together with its main properties are presented in the following theorem.

Theorem 4.1. Let f : Uf → Cn−1 and g : Ug → C be maximal analytic
maps with Uf ∩ Ug 6= ∅. Let (x0, y0) ∈ Uf ∩ Ug be such that Dxf(x0, y0)
is invertible. Let Σ(x, y) := Σ(f, x0, y0;x, y), h(z, y) := h(f, g, x0, y0; z, y).
Let m ≥ 1, l ∈ {0, . . . ,m − 1}, κ be the first integer such that 2κ ≥ m − l,
x′0 := Nκ(f(., y0);x0) and z′0 := Dxf(x0, y0)−1f(x′0, y0).

Let λg, ρg, βx, γx, σx, βm,l, γm, σm be given nonnegative real numbers.
We introduce the following quantities:

λΦ := σx; ρΦ := (3 + 2
√

2)σxγx;

λ := λgλΦ; ρ := ρΦ + λΦρg;

λ̄ :=
λ

(1− ρ(βx + ‖z′0‖))2
; ρ̄ :=

ρ

1− ρ(βx + ‖z′0‖)
;

µ̄ :=
ρ̄

1− ρ̄‖z′0‖
; ē :=

(
(m+ 1)σm

λ̄‖z′0‖
1− ρ̄‖z′0‖

)1/m

;
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β̄m,l :=
βm,l + m

m+1 µ̄
l

m−l ē
m

m−l

1− (µ̄ē)m
; γ̄m :=

γm + m+2
m+1 µ̄

1− (µ̄ē)m
;

r−y := 3
m− l

m
β̄m,l; r+y :=

m+ 1− l

3(m+ 1)γ̄m
;

r−x :=
λΦ(βx + r−y )

1− ρΦ(βx + r−y )
.

If

(L1) [g − g(x0, y0)](x0,y0) ≤
λgt

1− ρgt
;

(L2) σx ≥ ‖DΣ(x0, y0)−1‖;
(L3) βx ≥ β(Σ− (0, y0);x0, y0); γx ≥ γ(Σ;x0, y0);

(L4) ρ(βx + ‖z′0‖) < 1;

(L5) |Dm
y h(z

′
0, y0)| 6= 0; σm ≥ m!/|Dm

y h(z
′
0, y0)|;

(L6) βm,l ≥ βm,l(h(z′0, .); y0); γm ≥ γm(h(z′0, .); y0);

(L7) ρ̄‖z′0‖ < 1; µ̄ē < 1;

(L8)
m− l

m

m+ 1
m+ 1− l

β̄m,lγ̄m ≤ 1/9;

then (f, g[l]) has m− l zeroes, counting multiplicities, in

BΣ ∩Bg ∩ (B̄(x0, r
−
x )× B̄(y0, r

−
y ))

but also in
BΣ ∩Bg ∩ (Cn−1 × B̄(y0, r

+
y )),

where

BΣ := B

(
(x0, y0),

1−
√

2/2
γx

)
, Bg := B

(
(x0, y0),

1
ρg

)
.

Before entering the proof, let us explain the main idea and feature of the
method. First observe that if (x0, y0) = ζ is a multiple zero of multiplic-
ity m then the theorem applies. By continuity, it follows that the process
actually locates clusters of embedding dimension 1. Informally speaking,
by construction, we shall see below in (27) that z′0 belongs to O(βm−lx ),
hence ē

m
m−l ∈ O(βx). Therefore, we have β̄m,l ∈ O(βm,l + βx), which is the

motivation for the definition of κ above.

Proof of Theorem 4.1. Recall that Φ denotes the local inverse of Σ and, for
short, we let

z0 := Dxf(x0, y0)−1f(x0, y0), Φ(z, y) := Φ(f, x0, y0; z, y),

φ(y) denotes the n− 1 first coordinates of Φ(0, y) and we introduce:

BΦ := B

(
(z0, y0),

3− 2
√

2
σxγx

)
, Bh := B

(
(z0, y0),

1
ρ

)

and Bφ := B

(
y0,

1
ρ
− βx

)
.
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From (L3) (resp. (L1)), Σ (resp. g) is well defined on BΣ (resp. Bg).
Using (L3) and (L2), Theorem 2.1 ensures that Φ is well defined on BΦ,
Φ(BΦ) ⊆ BΣ and

[Φ− (x0, y0)](z0,y0) ≤
λΦt

1− ρΦt
. (24)

Composing this series majoration with that of (L1), Corollary 1.9 applied
with h = g◦Φ gives [h− h(z0, y0)](z0,y0) ≤ λt/(1−ρt) and Φ(Bh) ⊆ BΣ∩Bg.
From their definitions, observe that Bh ⊆ BΦ. It follows that h is well
defined on Bh.

From the definition of z0, one has ‖z0‖ = β(Σ − (0, y0);x0, y0) ≤ βx
(from (L3)), hence (L4) implies (0, y0) ∈ Bh. We deduce that φ(y) is well
defined on Bφ and Part (d) of Theorem 2.1 implies

{(x, y) ∈ BΣ | y ∈ Bφ, f(x, y) = 0} = {(φ(y), y) | y ∈ Bφ} , (25)

which, combined to Lemma 3.5, leads to:{
(x, y) ∈ BΣ ∩Bg | y ∈ Bφ, f(x, y) = g[l](x, y) = 0

}
(26)

=
{

(φ(y), y) | y ∈ Bφ, Dl
yh(0, y) = 0

}
.

From (L2) and the definition of Σ, we have σx ≥ 1 and therefore

γx ≤ σxγx = (3− 2
√

2)ρΦ ≤ (3− 2
√

2)ρ.

Successively using (L3) and (L4) we deduce:

β(Σ− (0, y0);x0, y0)γ(Σ;x0, y0) ≤ αx := βxγx ≤ (3− 2
√

2)ρβx < 3− 2
√

2.

hence Corollary 1.18 gives:

‖z′0‖ < q(αx)2
κ−1βx,

where the function q is defined in (15). Since q(αx) < 1 and by the definition
of κ, we deduce

‖z′0‖ < q(αx)m−l−1βx ≤ βx. (27)

Although we referred to this inequality just before the proof, as a motivation
of the definition of κ, we will not use it in the remainder of the proof.

Using the inequalities ‖z′0 − z0‖ ≤ βx + ‖z′0‖ and (L4), Corollary 1.6 on
majorant series translation leads to:[

h− h(z′0, y0)
]
(z′0,y0)

≤ λ̄t

1− ρ̄t
. (28)

We are now ready to deduce point estimates of h(0, .) from h(z′0, .) at y0.
Using (L5), (L6) and (L7), Proposition 3.6 yields: Dm

y h(0, y0) 6= 0 and

βm,l(h(0, .); y0) ≤ β̄m,l, γm(h(0, .); y0) ≤ γ̄m.

Using (L8), we now proceed to zero location, via Theorem 3.1: Dl
yh(0, y)

admits m − l zeroes Zh in B̄(y0, r
−
y ) and in B̄(y0, r

+
y ). Remark that γ̄m ≥

µ̄ ≥ ρ̄ ≥ ρ/(1− βxρ), from which follows:

βx + r−y ≤ βx + r+y < βx +
1
γ̄m

≤ 1
ρ
. (29)
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We deduce Zh ⊆ B̄(y0, r
−
y ) ⊆ B̄(y0, r

+
y ) ⊆ Bφ. From (26), we deduce, for

any ry ∈ {r−y , r+y }:{
(x, y) ∈ BΣ ∩Bg | y ∈ B̄(y0, ry), f(x, y) = g[l](x, y) = 0

}
=
{

(φ(y), y) | y ∈ B̄(y0, ry), Dl
yh(0, y) = 0

}
= {(φ(y), y) | y ∈ Zh} .

For ry = r+y , this gives the second half of the conclusion. As for the first half,
from (29) and the evaluation of (24), via Proposition 1.4, for any ζy ∈ Zh
we have

‖Φ(0, ζy)− Φ(z0, y0)‖ ≤ r−x ,

which concludes the proof. �

5. Cluster Approximation

In this section, we present an approximation algorithm for clusters of
embedding dimension 1, with the same features as the one given in [12]
for univariate functions: either quadratic convergence holds or the current
iterate lies at a distance of the cluster which is about its diameter. More
generally, we shall parameterize our operator by l ∈ {0, . . . ,m−1} and l′ ≤ l

in order to approximate clusters of (f, g[l′]) using the univariate Schröder
operator on Dl

yh (with respect to y).
We carry on with our main notation, f : Uf → Cn−1 and g : Ug → C

are analytic maps defined on maximal analyticity domains. We assume that
U := Uf ∩Ug is not empty and for short we let h(z, y) := h(f, g, x0, y0;x, y),
Σ(x, y) := Σ(f, x0, y0;x, y), Φ(z, y) := Φ(f, x0, y0; z, y) and (φ(y), y) :=
Φ(0, y), where (x0, y0) ∈ U denotes the initial point of the iteration. The
functions Bm,l′ , τm,l,0 and τm,l,1 are the ones introduced in Section 3.2.

We use the following quantities, that come from the univariate situa-
tion [12]:

θm,l,δ := δ
1
m

+
m+ 1

(m− l + 1)(m− l)
,

um,l,δ := max
(
u ≥ 0 | u < 1− (1/2)1/(l+2) and

θm,l,δu

ψl+1(u)
≤ 1
)
,

Cm,l,l′,δ(u) :=
1− u

ψm(u)

(1− u)
l′+1
m−l′ + θm,l,δ(2m−1)

ψl+1(u)(
1− θm,l,δu

ψl+1(u)

)2 .

5.1. Algorithm. The approximation algorithm depends on the initial point
(x0, y0) and on three positive real numbers ry, Gy and Gz that will be assigned
later.

An iteration of the algorithm computes (xk+1, yk+1) from (xk, yk). A
rough description is as follows: first, Newton iteration on f(., yk) is applied
a certain number of times with starting point xk to compute a new value x′k;
Then we compute z′k as the n − 1 first coordinates of Σ(x′k, yk) and the
Schröder operator is applied on Dl

yh(zk, .) with starting point yk, this gives
a value y′k; then a discussion takes place to determine which of yk and y′k
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should be taken for yk+1; finally, yk+1 is used in one Newton iteration on
f(., yk+1) with starting point xk to compute xk+1.

More formally, we introduce the operator Nm,l,l′(x, y), defined by the
following algorithm, in which κ represents the smallest integer such that
2κ ≥ 2(m− l′). We also introduce the flag Fy

m,l,l′(xk, yk) with values in the
set of symbols {∞,+,−, 1}, that keeps track of the branchings.

(xk+1, yk+1) := Nm,l,l′(xk, yk) is defined by
(1) x′k := Nκ(f(., yk);xk);
(2) z′k := Dxf(x0, y0)−1f(x′k, yk);
(3) if Dl+1

y h(z′k, yk) = 0
(4) then
(5) yk+1 := yk; Fy

m,l,l′(xk, yk) := ∞;
(6) else
(7) y′k := Nm−l(Dl

yh(z
′
k, .); yk);

(8) if y′k /∈ B̄(yk, 2ry)
(9) then

(10) yk+1 := yk; Fy
m,l,l′(xk, yk) := ∞;

(11) else
(12) if Bm,l′(h(z′k, .), yk; y′k) > Gy|yk − y′k|2
(13) then
(14) if Bm,l′(h(z′k, .), yk; y′k) < βm,l′(h(z′k, .); yk)
(15) then
(16) yk+1 := y′k; Fy

m,l,l′(xk, yk) := +;
(17) else
(18) yk+1 := yk; Fy

m,l,l′(xk, yk) := −;
(19) else
(20) yk+1 := y′k; Fy

m,l,l′(xk, yk) := 1;
(21) xk+1 := N(f(., yk+1);xk);
In a similar way, we introduce Fz

m,l,l′(xk, yk) that takes the value 1 if

Bm,l′(h(z′k, .), yk; yk+1) ≤ Gz‖z′k‖1/(m−l′)

and 0 otherwise. These flags are to be used for stopping the iteration.

Informally speaking, x′k is obtained from Newton’s iteration in order to
get ‖z′k‖1/(m−l′) of the second order, that is in O(‖(xk, yk)− ζ‖2). Then
we apply Schröder’s operator to Dl

yh(z
′
k, .) at yk. This is where we deeply

use [12, Section 4] and different cases happen. Step (10) corresponds to y′k
getting far from yk, which implies that yk is close to the cluster of Dl

yh(z
′
k, .).

On the other hand, Step (20) corresponds to the fact that y′k is closer to
this cluster at the second order. In the meanwhile, the test of Step (14)
determines the one among yk and y′k which is closer to this cluster. At the
end, the correction between yk+1 and yk is propagated to the x coordinates
at Step (21).

The convergence analysis of the sequence (xk, yk)k∈N is presented in the
following theorem. The way of turning it into a practical algorithm is the
goal of the next section.
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Theorem 5.1. Let ζ := (ζx, ζy) ∈ U be such that f(ζ) = 0 and Dxf(ζ)
is invertible. Let (x0, y0) ∈ B̄(ζ, r), for a given r ≥ 0. Let m be such that
Dm
y h(0, ζy) 6= 0, l ∈ {0, . . . ,m − 1} and l′ ≤ l. Let ry, γx, σx, λg, ρg, γ̄x,

δ̄x, β̄m,l′, γ̄m, σ̄m be given and let:

δ := 1;

λΦ := σx; ρΦ := (3 + 2
√

2)σxγx;

λ := λgλΦ; ρ := ρΦ + λΦρg;

lφ :=
λΦ

1− ρΦr
; Lφ := 1 + lφ; rx := 2Lφr; ux := γ̄xrx;

Lz := L2
φ

(
γ̄x

ψ(ux)

)2−1/(m−l′)( δ̄x
1− ux

)1/(m−l′)
; rz := (Lzr2)m−l

′
;

r̄ := 4ry;

λ̄ :=
λ

(1− ρr̄)2
; ρ̄ :=

ρ

1− ρr̄
;

µ̄ :=
ρ̄

1− ρ̄rz
; Lē :=

(
(m+ 1)

(
m

m+ 1

)m−l′
µ̄l

′
σ̄m

λ̄

1− ρ̄rz

)1/m

;

ē :=
(

(m+ 1)σ̄m
λ̄rz

1− ρ̄rz

)1/m

;

u := γ̄mry; v := 2u; ū := 3u;

C := τm,l′,1(v)Cm,l,l′,δ(u) + τm,l′,0(v);

Gy := Cγ̄m;

C̄ := τm,l′,1(v)C + τm,l′,0(v);

κ :=
τm,l′,1(v)

1− τm,l′,0(v)

C

;

κ̄ := τm,l′,1(v) +
τm,l′,0(v)

C
;

χ :=
1− ū

ψm(ū)

(
(1− ū)

l′+1
m−l′ +

2m− 1
um,l,δ

)
;

Ξ := κχ;

T1 :=
1

1− (µ̄ē)m
1− u

ψm(u)

(
(1− u)

l′+1
m−l′ +

3m−l
′

m (2m− 1)
1− (µ̄ē)m

)
;

T2 :=
L
m/(m−l′)
ē

1− (µ̄ē)m

(
1 +

1
1− (µ̄ē)m

3m−l
′

m (2m− 1)(1− u)
ψm(u)

)
;

Tβ := 2ΞT1;

Gz := 2ΞT2;

Ty := 3
m− l′

m

(
(1 + (µ̄ē)m)κ̄+ L

m/(m−l′)
ē /Gz

)
;
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Ly,1 := 3
m− l′

m

[
(1 + (µ̄ē)m)C̄γ̄m

(
1 + 3

m− l′

m
L
m/(m−l′)
ē Lzr

)2

(
1− 3

m− l′

m
(1 + (µ̄ē)m)C̄v

)−2
+ L

m/(m−l′)
ē Lz

]
;

Ly,2 := 3
m− l′

m

(
(1 + (µ̄ē)m)κ̄Gz + L

m/(m−l′)
ē

)
Lz;

Ly := max(Ly,1, Ly,2); Lx :=
4γ̄x
ψ(ux)

L2
φ + LφLy.

Assume:

(A1) γx ≥ γ(Σ; ζ); σx ≥ ‖DΣ(ζ)−1‖;

(A2) [g − g(ζ)]ζ ≤
λgt

1− ρgt
;

(A3) ρφr < 1;

(A4) γ̄x ≥ max(γ(Σ;φ(y), y) | y ∈ B̄(ζy, r));

(A5) δ̄x ≥ max(‖DΣ(φ(y), y)‖ | y ∈ B̄(ζy, r));

(A6) ux < 5−
√

17
4 ;

(A7) ry ≥ r;

(A8) ry ≥ 3
m− l′

m
max(βm,l′(h(z, .); y) | z ∈ B̄(0, rz), y ∈ B̄(ζy, r));

(A9) ρ(rz + r̄) < 1;

(A10) +∞ > σ̄m ≥ max(m!/|Dm
y h(0, y)| | y ∈ B̄(ζy, r̄));

(A11) β̄m,l′ ≥ max(βm,l′(h(z, .); y) | z ∈ B̄(0, rz), y ∈ B̄(ζy, r̄));

(A12) γ̄m ≥ max(γm(h(z, .); y) | z ∈ B̄(0, rz), y ∈ B̄(ζy, r̄));

(A13) ρ̄rz < 1; µ̄ē < 1;

(A14)
m− l′

m

m+ 1
m+ 1− l′

β̄m,l′ γ̄m ≤ 1/9;

(A15) ry
m+ 1

m+ 1− l′
γ̄m ≤ 1/12;

(A16) u < um,l,δ; ū < 1− (1/2)1/(m+1); v < vm,l′;

(A17) 3
m− l′

m
(1 + (µ̄ē)m)C̄v < 1;

(A18) Lyr < 1;

(A19) Lxr < 1.

Then, there exists a cluster Z0,ζy of m− l′ zeroes of Dl′
y h(0, .) in B̄(ζy, ry),

counting multiplicities. Assume that ζy belongs to the convex hull of Z0,ζy .
Let (xk, yk)k≥0 be the sequence formally defined by induction according to:

(xk+1, yk+1) := Nm,l,l′(xk, yk).

Let K be the first integer such that

Fy
m,l,l′(xK , yK) 6= 1 and Fz

m,l,l′(xK , yK) = 0,
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or +∞ if no such integer exists. Then, for all k ≤ K, (xk, yk) is well defined.
a. For all k < K we have:

‖(xk+1, yk+1)− ζ‖ ≤ Lx‖(xk, yk)− ζ‖2 ≤ r.

b. If K is finite then yK+1 is well defined and satisfies:

|yK+1 − ζy| ≤ TyBm,l′(h(z′K , .), yK ; yK+1) (30)

and

Bm,l′(h(z′K , .), yK ; yK+1) ≤ Tββm,l′(h(0, .); ζy). (31)

For short, we write βm,l′ := βm,l′(h(0, .); ζy). The rest of this section is
devoted to the proof of this theorem. The notation is the same as in the
theorem. We proceed by induction on k: we assume that ((xj , yj))0≤j≤k is
well defined up to a certain index k ≤ K and that all its elements belong to
B̄(ζ, r). The proof of Part (b) is addressed at the end of the section.

5.2. Definition Domains. We first provide definition domains for all the
maps involved in the algorithm. We introduce:

BΣ := B

(
ζ,

1−
√

2/2
γx

)
, Bg := B

(
ζ,

1
ρg

)
,

BΦ := B

(
(0, ζy),

1
ρΦ

)
, Bh := B

(
(0, ζy),

1
ρ

)
.

Lemma 5.2. Σ (resp. Φ) is well defined on BΣ (resp. BΦ). h is well
defined as the composition g ◦ Φ on Bh.

Proof. Using (A1) and (A2) we have BΣ ⊆ Uf , Bg ⊆ Ug and Theorem 2.1
about local inversion ensures that Φ is well defined on BΦ, Φ(BΦ) ⊆ BΣ and

[Φ− ζ](0,ζy) ≤
λΦt

1− ρΦt
. (32)

Then, according to Corollary 1.9 on majorant series composition applied to
h = g ◦ Φ, we get

[h− h(0, ζy)](0,ζy) ≤
λt

1− ρt
(33)

and Φ(Bh) ⊆ Bg, which means that h = g ◦ Φ is well defined on Bh. �

5.3. Uniform Convergence to the Curve. According to our hypotheses,
f(x, y) = 0 defines a smooth curve in a neighborhood of ζ. We perform a
uniform convergence analysis to this curve for the operator used in Step (1)
of the algorithm. We start with two lemmas.

Lemma 5.3. For all (a, b) ∈ B̄(ζx, r)× B̄(ζy, r) we have

‖(φ(b), b)− ζ‖ ≤ lφ|b− ζy|, (34)

‖a− φ(b)‖ ≤ Lφ‖(a, b)− ζ‖. (35)

Proof. Using (A3), the evaluation of (32) by means of Proposition 1.4 yields:

‖(φ(b), b)− ζ‖ = ‖Φ(0, b)− Φ(0, ζy)‖ ≤ lφ|b− ζy|,
which implies

‖a− φ(b)‖ ≤ ‖a− ζx‖+ ‖φ(b)− ζx‖ ≤ Lφ‖(a, b)− ζ‖. �
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Lemma 5.4. For any (a, b) ∈ B̄(ζx, r) × B̄(ζy, r), and any integers j ≥ 0
and p ≤ 2j, a′ := N j(f(., b), a) is well defined and

‖a′ − φ(b)‖ ≤
(
γ̄x‖a− φ(b)‖

ψ(ux)

)p−1

‖a− φ(b)‖ ≤ rx.

Proof. By the previous lemma, ‖a− φ(b)‖ ≤ 2Lφr = rx holds. Then, us-
ing (A4), we deduce γ(Σ;φ(b), b)‖a− φ(b)‖ ≤ ux, which, via (A6), implies
ux

ψ(ux) < 1. Thus Theorem 1.16 gives:

‖a′ − φ(b)‖ ≤
(
γ̄x‖a− φ(b)‖

ψ(ux)

)2j−1

‖a− φ(b)‖ ≤ rx.

Using ux
ψ(ux) < 1 yields the claimed bound. �

We are now able to deduce that z′k ∈ B̄(0, rz), which will be used several
times in the remainder of the proof, without explicit reference:

Corollary 5.5. ‖z′k‖ ≤ Lm−l
′

z ‖(xk, yk)− ζ‖2(m−l′) ≤ rz.

Proof. We apply the previous lemma to (a, b) := (xk, yk), j := κ and p :=
2(m− l′):

‖x′k − φ(yk)‖ ≤
(
γ̄x‖xk − φ(yk)‖

ψ(ux)

)2(m−l′)−1

‖xk − φ(yk)‖.

By means of (35) (instanciated at (a, b) := (xk, yk)), we deduce:

‖x′k − φ(yk)‖ ≤
(

γ̄x
ψ(ux)

)2(m−l′)−1

L
2(m−l′)
φ ‖(xk, yk)− ζ‖2(m−l′).

Using (A4) and (A5), we deduce the following series majoration:

[Σ− (0, yk)]Φ(0,yk) ≤
δ̄xt

1− γ̄xt
, (36)

which evaluates at (x′k, yk) since γ̄x‖x′k − φ(yk)‖ ≤ ux < 1 (from (A6)), by
means of Proposition 1.4:

‖z′k‖ = ‖Σ(x′k, yk)− (0, yk)‖

≤
δ̄x‖x′k − φ(yk)‖

1− ux
≤ Lm−l

′
z ‖(xk, yk)− ζ‖2(m−l′) ≤ rz. �

5.4. Uniform z-translation. From the previous result, ‖z′k‖1/(m−l′) be-
longs to O(‖(xk, yk)− ζ‖2). We are now ready to apply our bound of Sec-
tion 3.4 on z-translation in a uniform way with respect to y. We start
with a uniform series majoration of h. First of all, it is important to notice
that (A9) implies:

Bh ⊇ B̄(0, rz)× B̄(ζy, r̄).

Lemma 5.6. For all b ∈ B̄(ζy, r̄), we have: [h− h(0, b)](0,b) ≤
λ̄t

1− ρ̄t
.

Proof. This directly follows from Corollary 1.6, using (A9) and (33). �
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Lemma 5.7. For all (c, b) ∈ B̄(0, rz)× B̄(ζy, r̄), we have Dm
y h(c, b) 6= 0 and

βm,l′(h(0, .); b) ≤ (1 + (µ̄ē)m)βm,l′(h(c, .); b) + L
m/(m−l′)
ē ‖c‖1/(m−l′), (37)

βm,l′(h(c, .); b) ≤
βm,l′(h(0, .); b) + L

m/(m−l′)
ē ‖c‖1/(m−l′)

1− (µ̄ē)m
. (38)

Proof. Using (A10), (A13) and Lemma 5.6, Proposition 3.6 (with (z0, y0) :=
(0, b) and z1 := c) implies these bounds. �

5.5. Uniform Cluster Location. Now, we show quantitative results about
clusters of zeroes of Dl′

y h(c, .) when c varies.

Lemma 5.8. For any (c, b) ∈ B̄(0, rz)× B̄(ζy, r̄), there exists a cluster Zc,b
of m− l′ zeroes of the analytic extension of Dl′

y h(c, .) in

B̄

(
b, 3

m− l′

m
βm,l′(h(c, .); b)

)
and B̄

(
b,

m+ 1− l′

3(m+ 1)γm(h(c, .); b)

)
.

In addition, if b ∈ B̄(ζy, r) then

B̄

(
b, 3

m− l′

m
βm,l′(h(c, .); b)

)
⊆ B̄(b, ry).

Proof. The location of Zc,b directly follows from (A11), (A12) and (A14) and
Theorem 3.1. The last ball inclusion rephrases (A8). �

Lemma 5.9. For any (c, b) ∈ B̄(0, rz)× B̄(ζy, r) and any b′ ∈ B̄(b, 3ry), we
have Zc,b = Zc,b′. In particular, for any b′′ in the convex hull of Zc,b, we
have:

|b′′ − b′| ≤ 3
m− l′

m
βm,l′(h(c, .); b′).

Proof. From (A7), observe that b′ ∈ B̄(ζy, r̄), thus applying the previous
lemma at (c, b′) gives the existence of a cluster Zc,b′ contained in the ball
B̄(b′, 3m−l

′

m βm,l′(h(c, .); b′)) and also in B̄(b′, m+1−l′
3(m+1)γm(h(c,.);b′)). Then, for

any b′′ ∈ Zc,b one has:

|b′′ − b′| ≤ |b′′ − b|+ |b− b′|
≤ ry + |b− b′| (using the previous lemma)
≤ 4ry

≤ m+ 1− l′

3(m+ 1)γ̄m
(using (A15))

≤ m+ 1− l′

3(m+ 1)γm(h(c, .); b′)
(using (A12)).

We deduce Zc,b = Zc,b′ . �

We now specialize these lemmas to our situation. For this purpose, we
first notice:

Lemma 5.10. |yk+1 − ζy| ≤ 3ry ≤ r̄.

Proof. By construction, we have |yk − yk+1| ≤ 2ry. Since (A7) implies
|yk − ζy| ≤ r ≤ ry, we deduce: |yk+1 − ζy| ≤ |yk − yk+1|+ |yk − ζy| ≤ 3ry ≤
r̄. �
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This statement will be invoked several times in the remainder of the proof
without explicit reference. Lemma 5.9 is only used to prove the next two
corollaries. The first statement of Theorem 5.1 about the location of the
cluster Z0,ζy around ζy is a consequence of Lemma 5.8. From now, we
assume that ζy belongs to the convex hull of this cluster.

Corollary 5.11. There exist m− l′ zeroes of Dl′
y h(0, .) in B̄(ζy, ry) and

|yk+1 − ζy| ≤ 3
m− l′

m
βm,l′(h(0, .); yk+1).

Proof. The inequality directly follows from Lemma 5.9, applied with (c, b) :=
(0, ζy), b′ := yk+1 and b′′ := ζy (thanks to Lemma 5.10). �

The last corollary concerns the location of the cluster around (z′k, yk).

Corollary 5.12. There exist m − l′ zeroes of Dl′
y h(z

′
k, .) in B̄(yk, ry). We

denote by ζk a point lying in the convex hull of this cluster. Then one has:

|ζk − ζy| ≤ 3
m− l′

m
βm,l′(h(z′k, .); ζy) ≤ ry. (39)

Proof. The first part directly follows from Lemma 5.8 applied with (c, b) :=
(z′k, yk). From (A7), one has |yk − ζy| ≤ r ≤ ry, hence the first inequality
of (39) follows from applying Lemma 5.9 with (c, b) := (z′k, yk), b

′ := ζy and
b′′ := ζk. The second inequality directly follows from (A8). �

5.6. Uniform Cluster Approximation. Let ζk be the one defined in
Corollary 5.12. Here we show that the approximation algorithm of [12,
Section 4.4] applies to Dl

yh(z
′
k, .).

Lemma 5.13. The following alternative holds about yk+1:
a. If Fy

m,l,l′(xk, yk) 6= 1 then

βm,l′(h(z′k, .); yk+1) ≤ κ̄Bm,l′(h(z′k, .), yk; yk+1), (40)

Bm,l′(h(z′k, .), yk; yk+1) ≤ Ξβm,l′(h(z′k, .); ζk); (41)

b. If Fy
m,l,l′(xk, yk) = 1 then

βm,l′(h(z′k, .); yk+1) ≤ C̄γ̄m|yk − yk+1|2. (42)

Proof. It suffices to check that the conditions of [12, Theorem 4.5] are sat-
isfied with the analytic extension of h(z′k, .) at ζk with ry. Namely, making
use of |ζk − ζy| ≤ ry (Corollary 5.12), we check:

• The function Bm,l′ satisfies the required properties, thanks to Propo-
sition 3.3;

• Dm
y h(z

′
k, ζk) 6= 0 by Lemma 5.7;

• γ̄m ≥ γm(h(z′k, .); ζk), thanks to (A12);
• γ̄m ≥ max(γm(h(z′k, .); y) | y ∈ B̄(ζk, 3ry)), thanks to (A12) again;
• u < um,l,δ, ū < 1− (1/2)1/(m+1), v < vm,l′ , from (A16).

Part (b) is directly extracted from [12, Theorem 4.5, Part (c)]. As for
Part (a), we distinguish two cases.

First, if Dl+1
y h(z′k, yk) = 0 or Dl+1

y h(z′k, yk) 6= 0 and y′k /∈ B̄(yk, 2ry) then
from [12, Theorem 4.5, Part (a)] one has:

βm,l′(h(z′k, .); yk) ≤ χβm,l′(h(z′k, .); ζk).
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In the second case, y′k ∈ B̄(yk, 2ry) but Bm,l′(h(z′k, .), yk; y′k) > Gy|yk − y′k|2,
from [12, Theorem 4.5, Part (b)] one has

min(βm,l′(h(z′k, .); yk), βm,l′(h(z
′
k, .); y

′
k)) ≤ χβm,l′(h(z′k, .); ζk) (43)

and

βm,l′(h(z′k, .); y
′
k) ≤ κ̄Bm,l′(h(z′k, .), yk; y′k),

Bm,l′(h(z′k, .), yk; y′k) ≤ κβm,l′(h(z′k, .); y
′
k).

Since κ̄ ≥ 1 and βm,l′(h(z′k, .); yk) = Bm,l′(h(z′k, .), yk; yk), we deduce (40).
From (43) and κ ≥ 1, we also obtain

min(βm,l′(h(z′k, .); yk),Bm,l′(h(z′k, .), yk; y′k)) ≤ κχβm,l′(h(z′k, .); ζk),

which yields (41) by definition of yk+1. �

5.7. Proof of Part (a) of Theorem 5.1. We distinguish two cases:

Case 1: In this case, we assume Fy
m,l,l′(xk, yk) = 1. Combining Part (b) of

Lemma 5.13 and Lemma 5.7 (applied with (c, b) := (z′k, yk+1)), we deduce:

βm,l′(h(0, .); yk+1) ≤ (1 + (µ̄ē)m)C̄γ̄m|yk+1 − yk|2 + L
m/(m−l′)
ē ‖z′k‖1/(m−l′)

hence Corollaries 5.5 and 5.11 imply

|yk+1 − ζy| ≤ 3
m− l′

m

(
(1 + (µ̄ē)m)C̄γ̄m|yk+1 − yk|2

+ L
m/(m−l′)
ē Lz‖(xk, yk)− ζ‖2

)
. (44)

Then, from |yk − yk+1| ≤ |yk − ζy|+ |yk+1 − ζy| we deduce:

|yk − yk+1| ≤ |yk − ζy|+ 3
m− l′

m

(
(1 + (µ̄ē)m)C̄v|yk+1 − yk|

+ L
m/(m−l′)
ē Lz‖(xk, yk)− ζ‖2

)
.

Using (A17) yields

|yk − yk+1| ≤
|yk − ζy|+ 3m−l

′

m L
m/(m−l′)
ē Lz‖(xk, yk)− ζ‖2

1− 3m−l′m (1 + (µ̄ē)m)C̄v

≤
1 + 3m−l

′

m L
m/(m−l′)
ē Lzr

1− 3m−l′m (1 + (µ̄ē)m)C̄v
‖(xk, yk)− ζ‖. (45)

Combining (44) and (45) leads to

|yk+1 − ζy| ≤ Ly,1‖(xk, yk)− ζ‖2. (46)

Case 2: Now we examine the case when

Fy
m,l,l′(xk, yk) 6= 1 but Fz

m,l,l′(xk, yk) = 1.

Successively using Lemma 5.7 (with (c, b) := (z′k, yk+1)) and Part (a) of
Lemma 5.13, we deduce

βm,l′(h(0, .); yk+1) ≤
(
(1 + (µ̄ē)m)κ̄Gz + L

m/(m−l′)
ē

)
‖z′k‖1(m−l′),

which leads to, by means of Corollaries 5.11 and 5.5:

|yk+1 − ζy| ≤ Ly,2‖(xk, yk)− ζ‖2. (47)
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This concludes this second case.

We are now ready to conclude the proof of Part (a) of Theorem 5.1.
According to the definition of Ly and (A18), bounds (46) and (47) imply:

|yk+1 − ζy| ≤ Ly‖(xk, yk)− ζ‖2 ≤ ‖(xk, yk)− ζ‖ ≤ r. (48)

From Lemma 5.4 (applied with (a, b) := (xk, yk+1)), we have:

‖xk+1 − φ(yk+1)‖ ≤
γ̄x

ψ(ux)
‖xk − φ(yk+1)‖2.

Using Lemma 5.3, we also have

‖xk − φ(yk+1)‖ ≤ Lφ‖(xk, yk+1)− ζ‖
≤ Lφ(‖xk − ζx‖+ |yk+1 − ζy|)
≤ 2Lφ‖(xk, yk)− ζ‖,

from which follows:

‖xk+1 − φ(yk+1)‖ ≤
4γ̄x
ψ(ux)

L2
φ‖(xk, yk)− ζ‖2.

Lemma 5.3 then gives ‖φ(yk+1)− ζx‖ ≤ lφ|yk+1 − ζy|, from which we deduce:

‖xk+1 − ζx‖ ≤ ‖xk+1 − φ(yk+1)‖+ ‖φ(yk+1)− ζx‖

≤
(

4γ̄x
ψ(ux)

L2
φ + lφLy

)
‖(xk, yk)− ζ‖2. (49)

Combining (48) and (49) gives us:

‖(xk+1, yk+1)− ζ‖ ≤ ‖xk+1 − ζx‖+ |yk+1 − ζy| ≤ Lx‖(xk, yk)− ζ‖2,

and using (A19) concludes the proof of this part.

5.8. Proof of Part (b) of Theorem 5.1. We let k := K, from Corol-
lary 5.11 and Lemma 5.7 (applied with (c, b) = (z′k, yk+1)):

|yk+1 − ζy| ≤ 3
m− l′

m

(
(1 + (µ̄ē)m)βm,l′(h(z′k, .); yk+1)

+ L
m/(m−l′)
ē ‖z′k‖1/(m−l′)

)
.

Then, using Part (a) of Lemma 5.13 and the fact that Fz
m,l,l′(xK , yK) = 0,

we deduce inequality (30) of the theorem.
From Corollary 5.12, we know ζk ∈ B̄(ζy, ry) and therefore, Lemma 5.7

(applied with (c, b) = (z′k, ζk)) gives:

βm,l′(h(z′k, .); ζk) ≤
βm,l′(h(0, .); ζk) + L

m/(m−l′)
ē ‖z′k‖1/(m−l′)

1− (µ̄ē)m
.

Using again Fz
m,l,l′(xK , yK) = 0, we deduce:

βm,l′(h(z′k, .); ζk) ≤
βm,l′(h(0, .); ζk) + L

m/(m−l′)
ē Bm,l′(h(z′k, .), yk; yk+1)/Gz

1− (µ̄ē)m
.

(50)
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In a similar way, using Lemma 5.7 with (c, b) = (z′k, ζy), we obtain:

βm,l′(h(z′k, .); ζy) ≤
βm,l′ + L

m/(m−l′)
ē ‖z′k‖1/(m−l′)

1− (µ̄ē)m

≤
βm,l′ + L

m/(m−l′)
ē Bm,l′(h(z′k, .), yk; yk+1)/Gz

1− (µ̄ē)m
. (51)

On the other hand, by Corollary 5.12 and (A12) one has

γm(h(0, .); ζk)|ζk − ζy| ≤ u,

hence Proposition 3.2 yields, via (A16):

βm,l′(h(0, .); ζk) ≤
1− u

ψm(u)

(
βm,l′(1− u)

l′+1
m−l′ + (2m− 1)|ζk − ζy|

)
. (52)

From Part (a) of Lemma 5.13, we have:

Bm,l′(h(z′k, .), yk; yk+1) ≤ Ξβm,l′(h(z′k, .); ζk).

Then, from this inequality and successively using (50), (52), (39) and (51),
we deduce:

Bm,l′(h(z′k, .), yk; yk+1) ≤ Ξ(T1βm,l′ + T2/GzBm,l′(h(z′k, .), yk; yk+1)),

whence (31).

6. Numerical Experiments

In this section, we combine results of the two previous sections: from a
given starting point we locate clusters, then we compute upper bounds on
point estimates at the cluster and enter the approximation algorithm. We
relate numerical experiments with the resulting algorithm. Before all, we
explain basic devices used in our program.

We consider the following examples parameterized by the real positive
number N . For the sake of simplicity we restrict to polynomial maps.

Example 1: f1(x1, y) := x1 + 5x2
1, g(x1, y) := (ym − 10−mN )(1− ym). Here

n = 2 and (f, g) admits a cluster of m zeroes in a neighborhood of the origin,
which collapses to the origin when N tends to infinity.

Example 2: f1(x1, x2, y) := 10−4N +3x1+5x2+y+x2y
2+6x3

1x2+5x1x2y
2−

5x1y
3−x1y

4, f2(x1, x2, y) := 10−4N−x1+2x2+x1y−x1x2y−x1y
3−4x2y

3+
3x1x

3
2y, g(x1, x2, y) := 10−4N +x1 +11/2x2

1−2x2 +1419x3
2 +y3. Here n = 3

and (f, g) admits a cluster of 4 zeroes around the origin, which tends to a
multiple zero when N goes to infinity.

Computations are performed with the Maple computer algebra system
version 7. The Digits environment variable controls the number of decimal
digits that Maple uses when calculating with software long floating-point
numbers. Heuristically, in order to avoid rounding off problems, we set
this variable to 2mN . We leave this precision problem here for the sake of
simplicity.

6.1. Approximation of Point Estimates. We describe the formulas we
use in our implementation for computing upper bounds on point estimates.
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6.1.1. Computing δx and σx. At a given point (x0, y0), we first address the
problem of computing ‖DΣ(x0, y0)‖ and ‖DΣ(x0, y0)−1‖. Both problems
correspond to computing norms of matrices M of the form

M =
(

Id A
0 1

)
,

where A is a column vector of length n − 1, we use the following classical
formula:

Proposition 6.1. [21, Exercise 6.10, p. 116]

‖M‖2 = 1 +
1
2
‖A‖2 + ‖A‖

√
1 +

1
4
‖A‖2.

6.1.2. Majorant Series. Computing majorant series of polynomials reduces
to upper bounding the norms of all its derivatives. For this purpose, we make
use of the norm ‖.‖∞, as defined just below. More sophisticated devices
could be used but we retained this one for efficiency and simplicity reasons.

Let E := {e1, . . . , en} denote the canonical basis of Cn, A ∈ Ll(Cn; Cs),
it is fast to compute the norm ‖.‖∞, defined by

‖A‖∞ := max
u1∈E,...,ul∈E

‖Au1 . . . ul‖.

Then, we content ourselves with the following upper bound on the norm
of A:

Lemma 6.2. ‖A‖ ≤ nl‖A‖∞.

Proof. Let Ai1,...,il := Aei1 . . . eil . Let u1, . . . , ul be unit vectors of Cn, we
compute:

‖Au1 . . . ul‖ =

∥∥∥∥∥∥
n∑

i1=1

. . .

n∑
il=1

Ai1,...,ilu1,i1 · · ·ul,il

∥∥∥∥∥∥
≤ nl‖A‖∞,

where ui,j denotes the jth coordinate of ui. �

In particular, since the map Σ of Theorems 4.1 and 5.1 is polynomial, we
use the following upper bound:

γ(Σ; a, b) ≤ max
l≥2

(
nl
∥∥∥∥DΣ(a, b)−1D

lΣ(a, b)
l!

∥∥∥∥
∞

) 1
l−1

.

Concerning the computations of λg and ρg at a given point (a, b) such
that [g − g(a, b)](a,b) ≤ λgt/(1− ρgt), we arbitrarily take:

λg := max
l≥1

nl

l!
‖Dlg(a, b)‖∞, ρg := 1.
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m 2 2 2 3 4
N 5 10 20 10 10

‖(x0, y0)‖ 1.34 10−6 1.34 10−6 1.34 10−6 2.69 10−6 3.37 10−7

r−x 6.09 10−5 3.63 10−5 3.63 10−5 2.08 10−5 1.45 10−5

r−y 5.95 10−5 3.52 10−5 3.52 10−5 1.88 10−5 1.43 10−5

Table 1. Cluster location with Example 1

m 4 4 4
N 5 10 20

‖(x0, y0)‖ 1.32 10−5 1.32 10−5 1.32 10−5

r−x 1.15 10−4 1.15 10−4 1.15 10−4

r−y 9.15 10−5 9.15 10−5 9.15 10−5

Table 2. Cluster location with Example 2

6.1.3. Upper Bounds on γm. The last basic computation we deal with is the
computation of upper bounds on γm. The following proposition quantifies
how such a bound can be determined from a geometric series majoration,
exploiting the possible knowledge of a series expansion.

Proposition 6.3. Let q denote a one complex variable function, m an in-
teger such that q(m)(z) 6= 0, σm ≥ m!/|q(m)(z)| and λ, ρ be nonnegative real
numbers such that [q − q(z)]z ≤ λt/(1− ρt). Let i ≥ m+ 1, let p denote the
unique polynomial of degree at most i−1 such that q−p ∈ Oz((x−z)i) then

γm(p; z) ≤ γm(q; z) ≤ max
(
γm(p; z), ρ

(
σmλρ

m−1
) 1

i−m

)
.

Proof. By construction, we have σmλρm−1 ≥ 1, hence

sup
j≥i

(σmλρj−1)
1

j−m = sup
j≥i

ρ(σmλρm−1)
1

j−m = ρ(σmλρm−1)
1

i−m . �

6.2. Cluster Location. In Tables 1 and 2, we relate numerical experiments
with Theorem 4.1: the parameter l is set to 0 and (x0, y0) is computed as
(exp(ıπ/4), . . . , exp(ıπ/4)) times the largest negative power of 2 that satisfies
the conditions of the theorem. We indicate the values r−x and r−y (as defined
in the theorem): recall that B̄(x0, r

−
x ) × B̄(y0, r

−
y ) contains a cluster of m

zeroes.
We observe that the location process does not depend much on the size of

the cluster. As expected, the location becomes the more especially difficult
as the cardinality of the cluster increases.

We compute the requested upper bound on γm using Proposition 6.3
at (z′0, y0) with i := 2m and using the geometric series majoration given
in (28). The series expansion of h(z′0, .) at y0 is directly computed from the
one of Φ(z′0, .), which is obtained by means of the classical symbolic Newton
iteration.



CLUSTERS OF EMBEDDING DIMENSION ONE 43

This location process provides us a ball B̄((x0, y0), r) that contains the

cluster, when taking r :=
√

(r−x )2 + (r−y )2. We next detail how one can
make use of Theorem 5.1 from this radius r and the only estimates at the
initial point (x0, y0).

6.3. Algorithm from Estimates at the Initial Point. We are now ready
to describe how valid input quantities of Theorem 5.1 can be computed from
estimates at the initial point only. The strategy is the same as in Section 1.4:
we perform cluster location first and then deduce upper bounds on point
estimates in the cluster.

The initial point is still written (x0, y0). We assume that the location
criterion underlying Theorem 4.1 holds. Namely, we assume that there
exists a cluster of m− l′ zeroes of (f, g[l′]) in B̄((x0, y0), r). From these data,
we attempt to apply Theorem 5.1, as explained in the following algorithm.
Of course, the process breaks as soon as a computation is not possible or a
requirement fails. From now, ζ represents a point of the cluster.
• At (x0, y0), compute upper bounds γx0 , δx0 and σx0 on γ(Σ;x0, y0),
‖DΣ(x0, y0)‖ and ‖DΣ(x0, y0)−1‖ respectively. Use Proposition 1.15 to
compute (if possible) upper bounds γx, δx, σx of γ(Σ; ζ), ‖DΣ(ζ)‖ and
‖DΣ(ζ)−1‖, respectively (hence (A1) is satisfied).

• At (x0, y0) compute suitable values for λg,x0 and ρg,x0 in order to have
[g − g(x0, y0)](x0,y0) ≤ λg,x0t/(1 − ρg,x0t). Use Corollary 1.6 to compute
(if possible) λ and ρ satisfying (A2).

• Compute λΦ, ρΦ, λ, ρ, require (A3) and compute lφ, Lφ and rx.
• Use Proposition 1.15 to compute (if possible) upper bounds γ̄x and δ̄x

of max(γ(Σ;x, y) | (x, y) ∈ B̄(ζ, lφr)) and max(‖DΣ(x, y)‖ | (x, y) ∈
B̄(ζ, lφr)). According to Lemma 5.3, conditions (A4) and (A5) are satis-
fied. Invoking this lemma is legitimate since it only makes use of (A1),
(A2) and (A3). This is the reason why we have introduced (A3) in the
statement of Theorem 5.1 although it is a consequence of (A9).

• Compute ux, require (A6) and compute Lz, rz.
• Compute x′0, z

′
0.

• Compute the series expansion of h(z′0, .) at y0 at precision 2(m− l′) and,
then, upper bounds on βm,l′(h(z′0, .); y0), m!/|Dm

y h(z
′
0, y0)|. From λ, ρ

and using Corollary 1.6, compute (if possible) a geometric majorant series
λ′t/(1 − ρ′t) of h − h(z′0, y0) at (z′0, y0). Then use Proposition 6.3 to
compute an upper bound on γm(h(z′0, .); y0) (we set the parameter i to
2(m− l′) in our program).

• Use λ′, ρ′ and Proposition 3.6 to compute (if possible) upper bounds on:

max(βm,l′(h(z, .); y0) | z ∈ B̄(z′0, ‖z′0‖+ rz)),

max(γm(h(z, .); y0) | z ∈ B̄(z′0, ‖z′0‖+ rz)),

max(m!/|Dm
y h(z, y0)| | z ∈ B̄(z′0, ‖z′0‖+ rz)).

• Use Proposition 3.2 and the previous quantities to compute (if possible)
an upper bound on

3
m− l′

m
max(βm,l′(h(z, .); y) | z ∈ B̄(z′0, ‖z′0‖+ rz), y ∈ B̄(y0, 2r))
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N 10 20 40 80
‖(x0, y0)‖ 2.05 10−11 2.05 10−11 2.05 10−11 2.05 10−11

ry 1.96 10−8 1.39 10−8 1.39 10−8 1.39 10−8

Gy 1.05 105 1.05 105 1.05 105 1.05 105

Gz 6.80 103 6.79 103 6.79 103 6.79 103

K 0 1 2 3
Fy
m,l,l′ − 1,− 1,+,− 1, 1,−,−

Fz
m,l,l′ 0 1, 0 1, 1, 0 1, 1, 1, 0

‖xK+1‖ 1.05 10−21 5.60 10−42 1.57 10−82 1.23 10−163

|yK+1| 1.45 10−11 6.87 10−30 3.24 10−48 2.92 10−98

Bm,l′(yK+1) 1.00 10−10 1.00 10−20 1.00 10−40 1.00 10−80

Table 3. Cluster approximation with Example 1 and m = 2

N 10 20 40 80
‖(x0, y0)‖ 1.02 10−11 1.02 10−11 1.02 10−11 1.02 10−11

ry 3.90 10−8 2.62 10−8 2.62 10−8 2.62 10−8

Gy 1.20 106 1.19 106 1.19 106 1.19 106

Gz 9.59 104 9.49 104 9.49 104 9.49 104

K 0 1 2 3
Fy
m,l,l′ ∞ 1,∞ 1,∞,∞ 1,+,∞,∞

Fz
m,l,l′ 0 1, 0 1, 1, 0 1, 1, 1, 0

‖xK+1‖ 2.64 10−22 3.50 10−43 6.13 10−85 1.88 10−168

|yK+1| 7.27 10−12 2.59 10−47 2.03 10−56 1.17 10−153

Bm,l′(yK+1) 1.00 10−10 9.99 10−21 1.00 10−40 1.00 10−80

Table 4. Cluster approximation with Example 1 and m = 4

and take ry as the maximum of r and the last upper bound, so that
conditions (A7) and (A8) are satisfied.

• Compute r̄ and require (A9).
• Use Proposition 3.2 to compute valid values for β̄m and γ̄m and σ̄m, in

order to satisfy (A10), (A11) and (A12).
• Compute λ̄, ρ̄, µ̄, Lē, ē and require (A13).
• Require (A14) and (A15).
• Compute u, v, ū and require (A16).
• Compute C, Gy, C̄, κ, κ̄, χ, Ξ, T1, T2, Tβ, Gz, Ty and require (A17).
• Compute Ly,1, Ly,2, Ly and require (A18).
• Compute Lx and require (A19).

It is straighforward to check that if ζ is an isolated zero of multiplicty m
then, for any l ∈ {0, . . . ,m−1}, l′ ≤ l, this algorithm works with (x0, y0) := ζ
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N 10 20 40 80
‖(x0, y0)‖ 2.52 10−11 2.52 10−11 2.52 10−11 2.52 10−11

ry 1.91 10−8 1.19 10−8 1.19 10−8 1.19 10−8

Gy 2.04 105 2.04 105 2.04 105 2.04 105

Gz 2.69 105 2.69 105 2.69 105 2.69 105

K 0 1 1 2
Fy
m,l,l′ − 1,− 1,+ 1, 1,+

Fz
m,l,l′ 0 0, 0 0, 0 0, 0, 0

‖xK+1‖ 2.95 10−12 7.46 10−25 4.76 10−50 1.93 10−100

|yK+1| 1.45 10−11 3.67 10−24 2.34 10−49 9.52 10−100

Bm,l′(yK+1) 9.59 10−11 9.59 10−21 9.59 10−41 9.59 10−81

Table 5. Cluster approximation with Example 2

and r = 0 (in particular this implies r̄ = rx = ry = rz = 0). By continuity,
we deduce that if (x0, y0) is sufficiently close to ζ and r sufficiently small
then the algorithm also works. By deformation, it follows that the algorithm
actually locates and approximates clusters of embbeding dimension 1.

For clusters with positive diameter, the iteration stops. At the end, The-
orem 5.1 asserts that yK+1 is close to ζy at a distance bounded in terms
of βm,l′(h(0, .); ζy). According to [12, Theorem 2.1], this quantity can be
bounded in terms of the diameter of the cluster of zeroes of h(0, .) (if the
diameter of the cluster is sufficiently small). As for the x coordinates, no
such result actually holds. Nevertheless, one can iterate the Newton oper-
ator x 7→ N(f(., yK+1);x) from xK+1 to improve the x coordinates. The
convergence of this iteration can be quantified by means of Lemma 5.4 and
the iteration can be stopped as soon as it reaches a distance to φ(yK+1)
which is about Bm,l′(h(z′K , .), yK ; yK+1). We leave out details here.

In Tables 3, 4 and 5, we report on numerical experiments: we take
l′ := l := 0 and, for different values of m and N , we compute (x0, y0) as the
vector (exp(ıπ/4), . . . , exp(ıπ/4)) times the largest negative power of 2 that
does not provoke an error in the whole algorithm. We indicate the values of
the main parameters, namely ry, Gy and Gz. Then we give the number K of
iterations, the sequences of flags (Fy

m,l,l′(xk, yk))k and (Fz
m,l,l′(xk, yk))k, the

norms of the last iterate and the value of Bm,l′(h(z′K , .), yK ; yK+1), abbrevi-
ated Bm,l′(yK+1).

In all our examples the diameter of the cluster is about 10−N , as confirmed
by the values of Bm,l′(h(z′K , .), yK ; yK+1). In all cases, the x coordinates are
already close to the cluster without performing the aforementioned post-
treatment. Lastly, it is important to observe that all the eight possible cases
of the algorithm actually occur in practice.
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