
J. Symbolic Computation (2000) 11, 1–000

The Projective Noether Maple Package:
Computing the Dimension of a Projective Variety

MARC GIUSTI†, KLEMENS HÄGELE‡, GRÉGOIRE LECERF†,

JOËL MARCHAND†, BRUNO SALVY∗

†Laboratoire GAGE, École polytechnique, F-91128 Palaiseau, France
‡Matemáticas, Universidad de Cantabria, E-39071 Santander, Spain

∗Projet ALGO, INRIA Rocquencourt, F-78153 Le Chesnay Cedex, France

(Received 21 February 2000)

Recent theoretical advances in elimination theory use straight-line programs as a data-
structure to represent multivariate polynomials. We present here the Projective Noether
Package which is a Maple implementation of one of these new algorithms, yielding
as a byproduct a computation of the dimension of a projective variety. Comparative
results on benchmarks for time and space of several families of multivariate polynomial
equation systems are given and we point out both weaknesses and advantages of different
approaches.

Keywords: Benchmark, Maple, Noether position, polynomial equation system, straight-line

programs.

1. Introduction

Classical methods to study and solve systems of polynomial equations are based on
numerous avatars of Gröbner (standard) basis algorithms or Riquier-Janet type methods
(Ritt-Wu’s algorithm). All these methods use implicitly but deeply the dense or sparse
representation of multivariate polynomials, which is the computer science counterpart of
the expansion of these mathematical objects on the monomial basis of the polynomial
algebra. Also, all these methods can be interpreted as rewriting techniques.

Considerable efforts have been made in order to improve both theoretical and practical
aspects of these techniques and to produce efficient algorithms and implementations.
Restricting to this last aspect, all most commonly available computer algebra systems
offer Gröbner basis implementations.

The knowledge of a standard basis yields as a simple byproduct the dimension of the
algebraic variety defined by such systems. Actually, one can show that focusing on the
simpler problem of computing the dimension of a projective algebraic variety will lead to
a better worst-case complexity than the whole construction of a standard basis (Giusti,
1988). Considering the unit cost measure model, i.e., each arithmetic operation of the
ground field is counted as one, this complexity is polynomial in the size of the intermediate
expressions computed.

0747–7171/90/000000 + 00 $03.00/0 c© 2000 Academic Press Limited

2 M. Giusti, K. Hägele, G. Lecerf, J. Marchand and B. Salvy

Having in mind the problem of determining the dimension, it seemed at that time that
there was no hope to design an algorithm whose complexity is polynomial in the size
of the input, since the intermediate computations are not. But this observation is only
valid if we stay stuck in the dense representation context. A breakthrough was obtained
by Giusti and Heintz (1993), resulting in the existence of an algorithm with polynomial
behaviour w.r.t. the dense measure of the input, provided one uses a mixed representation
for intermediate computations and output.

Actually the algorithm described in loc. cit. computes more, i.e., a change of coordi-
nates putting the new variables in Noether position. Informally speaking, the variables
are then separated into two subsets of different nature: the independent and dependent
ones. The number of independent variables is the dimension. The key point is the intro-
duction of a mixed data structure to represent the polynomials occurring in intermediate
computations. While we use the dense representation w.r.t. the dependent variables, their
coefficients (which are polynomials in the independent ones) are coded by arithmetic cir-
cuits, also called straight-line programs. This means that these latter polynomials are
represented by programs evaluating them at a point (of the ground field) using only ad-
ditions and multiplications (of the ground field). We will conveniently refer to this latter
representation as the evaluation data structure.

Mixing these two data structures was successfully used in a series of theoretical papers
to design a new geometric elimination algorithm (see the joint works by Giusti, Hägele,
Heintz, Montaña, Morais, Morgenstern, Pardo, 1995–97 at http://tera.medicis.poly-
technique.fr). An efficient implementation of the complete elimination algorithm will
require some time to collect more practical experience with the first experimental proto-
types. Some basic but important steps were made already, but there is still a lot of work
left (see the works by Aldaz, Castaño, Hägele, Lecerf, Llovet, Mart́ınez, Matera within
the Tera project loc. cit.).

We present here modestly a Maple program called the Projective Noether Package
derived from the algorithm of (Giusti and Heintz, 1993). (The package and its documen-
tation are available at http://tera.medicis.polytechnique.fr/tera/soft.html). It
turns out that a not so well-known functionality of Maple is the systematic use of the
evaluation data structure. Consequently we can compare the more traditional algorithms
already available within Maple with the new ones, experimenting with several possible
strategies. Comparative results on benchmarks for time and space of several different
families of multivariate polynomial equation systems are given and we point out both
advantages and weaknesses of the different approaches. One of the encouraging results is
provided by an example (see Section 4) where our Maple implementation computes an
upper bound for the dimension more than fifty times as fast as the available version of
Faugère’s Gb system (Faugère 1995,1997). However, Gb computes much more, i.e., a full
Gröbner basis, from which an upper bound on the dimension can be extracted.

The paper is organized as follows. In Section 2, we recall the main definitions and re-
sults concerning straight-line programs and Noether position and we give the theoretical
algorithm from (Giusti and Heintz, 1993). Section 3 shows how straight-line programs
can be handled in practice, first by exploiting the directed acyclic graphs which are
fundamental to Maple, then by appealing to a mechanism called deforestation from the-
oretical computer science. In Section 3.4, we use these techniques to cast the theoretical
algorithm in a different form on which the implementation is based. It turns out that
the theoretical bounds which lead to a polynomial complexity of the algorithm are much

The Projective Noether Package 3

too large to be of practical use. Therefore when we compare our implementation with a
Gröbner basis package, we distinguish two subtasks: computing an upper bound on the
dimension and proving that the bound is reached. Our implementation is very efficient
for the former task, while we can only provide a heuristic answer to the latter one, in so
far as a straight-line program representing a multivariate polynomial has been evaluated
to 0 at a settable number of points but has not been proved to be identically 0.

Acknowledgments. This work was supported in part by the Long Term Research
Project Alcom-IT (#20244) of the European Union, the French and Spanish grants:
GDR CNRS 1026 MEDICIS and PB93–0472–C02–02.

2. Evaluation Data Structures and Deterministic versus Probabilistic
Algorithms

2.1. Directed Acyclic Graphs and Straight-Line Programs

Let k be an infinite effective field; this means that the arithmetic operations (addition,
subtraction, multiplication, division) and basic equality checking (comparison) between
elements of k are realizable by algorithms. Let x1, . . . , xn be indeterminates over k. A
polynomial of k[x1, . . . , xn] is usually coded as an expanded sum of monomials and each
operation on such polynomials is related to operations on the vector of their coefficients.
Instead, we use multivariate polynomials represented by straight-line programs that com-
pute values at points of kn.

All algorithms below will be represented by arithmetic networks over k i.e., directed
acyclic graphs (DAGs) whose internal nodes are labelled by arithmetic operations of k,
by Boolean operations corresponding to propositional logic, and by selectors associated
with equality checking of elements of k. The external nodes of the graph represent the
inputs and the outputs of the network. The inputs are always elements of k and the
outputs may be elements of k, Boolean values, or integers of limited range (represented
by vectors of Boolean values).

Particular arithmetic networks are of special interest: arithmetic circuits or straight-
line programs (SLPs), without division or branching, containing neither selectors nor
(propositional) Boolean operations. Generally speaking the size of the DAG (or the
sequential complexity of the arithmetic network) is nothing but the number of its nodes
(thus for a SLP the number of additions and multiplications involved). For details and
elementary properties of straight-line programs we refer to Strassen (1972), von zur
Gathen (1986), Stoß (1989) or Heintz (1989).

2.2. Zero Testing: Deterministic versus Probabilistic Algorithms

Arithmetic operations on polynomials represented by straight-line programs are im-
mediate. The only non-trivial point when dealing with this data structure is equality
checking (or zero testing). One can perform this task by evaluating the SLP at suffi-
ciently many points. This is formalized in terms of “correct test sequences” of points
with coordinates from k according to a theorem of Heintz and Schnorr (1982), which we
recall for completeness:

Let D and L be two positive integers, and let us define the subset W (D, n, L) of poly-
nomials of k[x1, . . . , xn], of degree at most D, which can be coded by a SLP with at most
L arithmetic operations. Furthermore given a subset Γ of k, a family γ := {γ1, . . . , γm}

4 M. Giusti, K. Hägele, G. Lecerf, J. Marchand and B. Salvy

(with γi ∈ Γ) of m points in kn is called a correct test sequence for W (D,n, L) if every
polynomial in the latter vanishing on the points of γ is actually identically zero.

Theorem 2.1. (Heintz and Schnorr (1982), Theorem 4.4) Let us fix a subset Γ
of k of cardinality #Γ = 2L(D + 1)2, and a cardinality m := 6(L + n)(L + n + 1). The
subset τ(D,n, L, Γ) ∈ Γnm of correct test sequences for W (D, n,L) satisfies:

#τ(D, n,L, Γ) ≥ (#Γ)nm(1− (#Γ)−
m
6).

In other words, the ratio of incorrect test sequences over all sequences of Γnm is at most
the quantity:

1
(2L(D + 1)2)(L+n)(L+n+1)

which is uniformly bounded by ε := 1/262144.

Although the choice of such a correct test sequence could be done by a deterministic
algorithm, the cost of doing so would exceed the main complexity class we want. Therefore
the algorithms we study below will be non-uniform insofar as they depend on the choice
of correct test sequences. On the other hand, the theorem allows us to randomly choose
correct test sequences with a probability of failure which becomes arbitrarily small as the
parameters D, n and L increase. Therefore our algorithms can be uniformly randomized
within the same order of (average) complexity. In doing so we encounter the following
kind of probabilistic procedure which we call a randomized algorithm.

A randomized algorithm has error probability bounded by some 0 ≤ ε < 1/2 when
accepting an input and error probability zero when rejecting it (in our case we may choose
ε = 1/262144). As far as our algorithms compute polynomials or rational functions the
correctness of the output depends only on the correctness of previous and intermediate
decisions made by probabilistic procedures and can be checked randomly. In this sense,
we apply also the term randomized procedure to the computation of polynomials or
rational functions. Thus our results are valid not only in the sense of the non-uniform
complexity model, but also in the sense of probabilistic (randomized) algorithms (see
Balcázar et al. (1995), § 6.6, Giusti and Heintz (1993), § 1.2.3, § 1.3 and § 2.2 and
Fitchas et al. (1995), § 1.3 and § 2.1 for more details).

To sum up we get the weakened following form which allows a probabilistic treatment
of the theorem:

Theorem 2.2. (Fitchas et al. (1995), Theorem 2.1) There exists an arithmetic
network over k of size O(Lm) = O(L(L+n)2), which given any SLP (without divisions)
of size at most L, checks if the n-variate polynomial it represents is identically zero.
Moreover the network can be constructed by a probabilistic algorithm in sequential time
O(L(L + n)2) with a probability of failure uniformly bounded by ε := 1/262144.

In the sequel, we shall consider a special class of polynomials in n variables of total
degree D whose complexity of evaluation L is of the same order as D (compare with

(
D+n

n

)
the number of monomials of such a dense polynomial). In other words, these polynomials
can be evaluated much faster than we should expect from their total degree. For this
class, the above theorem yields a probabilistic zero-test of complexity polynomial in D
(or L).

The Projective Noether Package 5

In practice, we encounter two difficulties when using these ideas for large values of D.
First, the size L induces an important memory cost to store the SLP. Next, although
polynomial, the bound m = 6(L + n)(L + n + 1) from Theorem 2.1 on the length of a
correct test sequence is by far too large to be useful. Thus, our implementation will not
be able to certify that such a multivariate polynomial coded as a SLP is identically zero.

However, we show below (see §3.2) how to evaluate the SLP (without storing it) at a
number of points which can be made arbitrarily large.

2.3. Noether Position of Projective Varieties

Let k be an infinite effective field, and k be an algebraic closure of k. Given a set
of homogeneous polynomials f1, . . . , fs in k[x0, . . . , xn], consider the projective variety
V = V (f1, . . . , fs) generated by the fi in projective n-space IPn(k). We want to calculate
the dimension of the projective variety V .

There are several approaches to this problem. We distinguish two different tasks, first
the computation of an upper bound; and second the certification that an integer known
to be an upper bound is actually the dimension.

Giusti and Heintz (1993) gave an algorithm to compute the dimension, which actually
computes a change of coordinates putting the new variables in Noether position. The vari-
ables x0, . . . , xr are said to be independent with respect to V if (f1, . . . , fs)∩k[x0, . . . , xr]
is the trivial ideal (0). If moreover the canonical homomorphism

k[x0, . . . , xr] → k[x0, . . . , xn]/(f1, . . . , fs)

is an integral ring extension, the variables x0, . . . , xn are said to be in Noether position
with respect to V . The latter condition means that the canonical images of the variables
xr+1, . . . , xn satisfy integral dependence relations (in other words are algebraic integers)
over k[x0, . . . , xr]. As a consequence the dimension of V is nothing but r. In order to
simplify the complexity considerations we shall suppose that the total degree d of the
fi’s is at least n.

Theorem 2.3. (Giusti and Heintz (1993)) Let f1, . . . , fs be homogeneous polynomi-
als in k[x0, . . . , xn] of degree at most d (≥ n), defining a projective variety V in IPn(k).
There exists a randomized algorithm without divisions which computes with sequential
complexity sO(1) dO(n) a linear change of coordinates over k such that the new variables
are in Noether position with respect to V .

Let us recall the main steps of this algorithm. It is organized around a loop, with de-
creasing index m starting from n. The (n − m)th iteration is entered with the condi-
tion: the canonical images of xm+1, . . . , xn are already algebraic integers over R(m) :=
k[x0, . . . , xm].

Let z be a new variable; we denote by f
(m)
i the polynomial

fi(zx0, zx1, . . . , zxm, xm+1, . . . , xn)

considered as a polynomial in R(m)[xm+1, . . . , xn, z]. It is homogeneous of degree
(with respect to the variables xm+1, . . . , xn, z) the total degree of fi.

6 M. Giusti, K. Hägele, G. Lecerf, J. Marchand and B. Salvy

Let W be the projective variety in IPn−m(K) defined by f
(m)
1 , . . . , f

(m)
s , where

K = K(m) is the field of fractions k(x0, . . . , xm) of R(m).
In this situation a criterion for independence is that W is not empty, which can
be checked by computing a Gröbner basis or by applying an effective projective
Nullstellensatz as follows:

– Let N = 1+
∑s

i=1(deg(fi)−1) (the bound of the effective projective Nullstellen-
satz). Create the matrix Q of the linear R(m)-linear application (h1, . . . , hs) 7→
h1f

(m)
1 +· · ·+hsf

(m)
s , hi being an homogeneous polynomial of degree N−deg(fi)

in R(m)[xm+1, . . . , xn, z], on the monomial basis (in xm+1, . . . , xn, z); the coef-
ficients are of course in R(m).

– Use Berkowitz-Mulmuley linear algebra (Berkowitz (1984), Mulmuley (1987))
to construct the DAG corresponding to the determinant of the product matrix
QtQ to check the surjectivity of Q (this determinant lives in R(m)).

– A probabilistic test is then performed to determine whether this DAG rep-
resents zero (W is not empty) or not, in which case a point in IPm(k) with
homogeneous coordinates (a0, . . . , am) (am 6= 0) where it is non zero is found.

If the criterion is satisfied, we are in Noether position and we stop.
Otherwise, there exists a non-zero homogeneous polynomial g in k[x0, . . . , xm] which
vanishes on V and does not vanish at (a0, . . . , am). After the change of coordinates
x0 ← x0 + a0xm, . . . , xm−1 ← xm−1 + am−1xm, xm ← amxm the polynomial g
becomes monic in xm, hence the canonical image of xm is an algebraic integer
over R(m−1) and we can enter the (n + 1−m)th iteration.

For a more complete mathematical description of this algorithm, we refer to (Giusti and
Heintz, 1993, pp. 25–27) and the Userguide of (Lecerf, 1997). After showing in the next
section how SLPs can be dealt with in practice, we discuss the implementation of this
algorithm.

3. Evaluation Data Structure and Maple Implementation

In this section, we show how algorithms based on straight-line programs can be turned
into programs. The fundamental use of directed acyclic graphs made by the computer
algebra system Maple is first used to provide a straightforward implementation exhibiting
the required complexity. The efficiency of this implementation is however hindered by
an important consumption of memory. A method based on evaluation, and reminiscent
of the technique called deforestation (Wadler, 1990) from theoretical computer science,
can then be applied to reduce the memory used in intermediate steps and leads to faster
programs.

3.1. Efficient Evaluation in Maple

The Maple computer algebra system is based on a systematic use of common subex-
pression sharing. Objects which might look like expression trees to the user are actually
stored as directed acyclic graphs, where only one copy of each distinct subtree is kept.
This is accomplished by maintaining a hash table of all the expressions occurring simul-
taneously in a session. The structure thus obtained can be viewed as a single directed
acyclic graph the children of whose root correspond to all the distinct subexpressions

The Projective Noether Package 7

Table 1. Substitution and DAGs

n 30 31 32 33 34

subs 6sec 11sec 15sec 29sec 47sec
46Mb 75Mb 121Mb 195Mb 316Mb

dagsubs 6sec 9sec 12sec 19sec 37sec
25kb 26kb 28kb 28kb 29kb

residing simultaneously in memory. A simple consequence of this representation is that
syntactic equality of expressions is reduced to checking equality of addresses and can
thus be performed in constant time. This provides the basis for the efficiency of Maple’s
option remember which can be used to record the pairs (input, output) of a procedure.
Conversely, this option can be used to write recursive procedures performing DAG traver-
sals of their argument instead of tree traversals without this option. This can lead to an
improved complexity of the algorithm.

For instance, it is unfortunate that up to the current version, Maple’s substitution
command subs, which is commonly used to evaluate an expression at a point, does not
benefit from this nice mechanism and has a complexity related to the size of the tree
instead of the size of the DAG. The use of a DAG traversal to improve the complexity
can be illustrated with a simple alternate procedure:

dagsubs := proc(tosubs::{name = algebraic, list(name = algebraic)}, expr)

local dosubs, i, res;

dosubs := proc(expr)option remember ;

if nops(expr) = 1 then expr elsemap(procname, expr)fiend;

if type(tosubs, name = algebraic) then dosubs(op(1, tosubs)) := op(2, tosubs)

else for i in tosubs do dosubs(op(1, i)) := op(2, i)odfi;

res := dosubs(expr);

dosubs := subsop(4 = NULL, op(dosubs));

res

end

In Table 1, we give examples of the time and memory† required by both subs and this
simple dagsubs. The test suite is the following sequence of polynomials:

P0(x) = 1, P1(x) = x, Pn+2(x) = xPn+1(x) + Pn(x) + 1, n ≥ 0.

Of course the polynomials are not expanded and the substitution consists in replacing
x by another variable y. The time difference is not very large, but subs is a function
of Maple’s compiled kernel, whereas dagsubs is interpreted. However, while dagsubs
needs a very limited amount of memory, subs requires more than one thousand times
this amount, and the ratio increases very fast with the index of the polynomials. This
example clearly demonstrates that working with DAGs when possible can be crucial in
terms of efficiency.

† The tests in this article have been performed on a PC Pentium Pro (200Mhz) with 512Mb of
memory, running Linux 2.0.27 and Maple V.3. This computer forms part of the equipment of GDR
Medicis: http://medicis.polytechnique.fr.

8 M. Giusti, K. Hägele, G. Lecerf, J. Marchand and B. Salvy

When the DAG is large and many evaluations of it at different values are required, for
instance to prove that it is the zero polynomial with a correct test sequence, Maple also
provides tools working at the DAG level (via the option remember) that generate opti-
mized Fortran or C code. For instance, on the polynomial P10 above, Maple’s optimize
yields:

t1 = x2, t3 = x(t1 + 2), t5 = x(t3 + x + 1), t7 = x(t5 + t1 + 3),

t9 = x(t7 + t3 + x + 2), t11 = x(t9 + t5 + t1 + 4), t13 = x(t11 + t7 + t3 + x + 3),

t18 = x(x(t13 + t9 + t5 + t1 + 5) + t11 + t7 + t3 + x + 4) + t13 + t9 + t5 + t1 + 6.

This can then be translated into a Maple procedure (makeproc) or alternatively into
Fortran or C code. Here is for instance the corresponding C code:

t1 = x*x;
t3 = x*(t1+2.0);
t5 = x*(t3+x+1.0);
t7 = x*(t5+t1+3.0);
t9 = x*(t7+t3+x+2.0);
t11 = x*(t9+t5+t1+4.0);
t13 = x*(t11+t7+t3+x+3.0);
t18 = x*(x*(t13+t9+t5+t1+5.0)+t11+t7+t3+x+4.0)+t13+t9+t5+t1+6.0;

All these tools performing conversions between DAGs and SLPs implement the canoni-
cal isomorphism between polynomials and polynomial functions (the ground field being
infinite).

3.2. Deforestation

The algorithm described in Section 2.3 computes SLPs. The only information required
about some of these SLPs is whether they represent the zero polynomial and if not, a
point at which they are different from zero. This is done by evaluating the SLP at one or
several points (see §2.1). The complexity of evaluating the SLP is directly related to its
size, i.e. the memory it uses. The idea of deforestation is to perform the same evaluations
without computing the SLP first, thus saving memory occupied by unnecessary expression
trees (whence the name deforestation).

More generally the deforestation of a program is a transformation consisting in elimi-
nating the building of intermediate structures introduced by composition of functions.

For instance, Lisp code to compute the last element of a list could be implemented by

(defun last (l) (car (reverse l)))

where reverse is written

(defun reverse (l) (reverse2 l nil))
(defun reverse2 (l1 l2) (if l1 (reverse2 (cdr l1) (cons (car l1) l2)) l2))

This implementation has the disadvantage of creating an intermediate list of the same
length as the argument. The deforested version would read

The Projective Noether Package 9

(defun last (l) (last2 l nil))
(defun last2 (l1 l2) (if l1 (last2 (cdr l1) (car l1)) l2))

In some cases this program transformation can be performed automatically, see (Wadler,
1990).

In the case of the algorithm of Section 2.3 this deforestation in Section 3.4 will mainly
consist in a simple exchange of loops. Let pol(x1,...,xn) be any Maple procedure
using only +, -, *, :=, integers and loops with fixed depth. Such a function has the
particularity to run with any kind of entries in a ring: if its arguments are variable names
it returns a DAG in which the arguments are the leaves, if its arguments are integers it
returns an integer. Thus, if x1, . . . , xn are variable names, the code:

p := pol(x1, . . . , xn);

for point in list of points do

if dagsubs([seq(xi = point[i], i = 1, . . . , n)], p) 6= 0 then RETURN(point) fi

od;

. . .

can be written:

for point in list of points do if pol(op(point)) 6= 0 then RETURN(point) fi od;

. . .

The memory required by the DAG p in the first version of the code is not necessary in the
second one and this has an important impact on the speed of the execution (by reducing
the time spent in memory handling). In the application to the algorithm of Section 2.3,
the complexity of the deforested version is that given by Theorem 2.3. Note however
that in a more general context, the DAG p might have smaller number of arithmetic
operations.

After a detailed example illustrating the evaluation strategies presented above, the
rest of this paper describes a “manual” deforestation of the algorithm from Section 2.3.
Besides the reduction of the amount of memory used in intermediate steps, further gains
are possible by substituting faster algorithms operating on constants for those operating
on SLPs. Then the complexity estimates based on SLPs provide an upper bound on the
complexity of the actual computation.

3.3. Example: Determinant of a Matrix of Polynomials

In this section, we illustrate how the systematic exploitation of the DAG structure
leads to improved algorithms computing the determinants of matrices of multivariate
polynomials with integer coefficients. This task is an important building block of the
theoretical algorithm from Section 2.3.

The matrices we take in our examples are square k × k matrices with polynomial
entries having 3 variables, at most 6 terms, a total degree at most 5 and coefficients with
2 decimal digits. The matrices are sparse with 5k entries at random filled by polynomials
provided by Maple’s randpoly function. To obtain regular matrices, the diagonal is first
filled with 1’s. To obtain singular matrices, the columns from 1 to k−1 are summed into
the kth one. Timings for regular and singular matrices turn out to be similar, thus we
give only one table (Table 2) of results.

10 M. Giusti, K. Hägele, G. Lecerf, J. Marchand and B. Salvy

Table 2. Computations on matrices with polynomial entries

dimension 10 20 50 100 200

naive (maple det) ∞ ∞ ∞ ∞ ∞
computation of the DAG (Berkowitz) .08 1.5 400 > 5000

test sequence (#pts) 5.7 107 2.3 1010 8.0 1013

evaluation at one point of the DAG (subs) 53 > 5000
optimization of the DAG (optimize) .02 > 5000
evaluation at one point, deforested version .03 .20 23 47 1050

Naive approach

We first use Maple’s det command, which is based on a mixture of fraction free Gaus-
sian elimination and minor expansion. Since the resulting polynomial is always expanded,
the computation is expensive because of the exponential growth of the number of multi-
variate monomials as the degree increases. This shows in Table 2: on all our examples,
Maple returns an error message “object too large” (abbreviated ∞ in the table).

Straight-line programs and Berkowitz’s algorithm

In order to overcome the exponential complexity of expanding determinants, it is natu-
ral to turn to DAGs or to straight-line programs evaluating them. Recognizing zero with
this data-structure becomes an expensive operation. Thus an approach based on Gaus-
sian elimination does not apply anymore. Several other algorithms can be applied. We
use an algorithm due to Berkowitz (1984) which has the advantage of a simple descrip-
tion. Given an n×n matrix, it computes its characteristic polynomial (and in particular
its determinant) in O(n4) arithmetic operations on the coefficients and requires neither
test nor division.

On a generic square matrix of size n, the number of nodes of the DAG evaluating the
expanded determinant and the one produced by Berkowitz’s algorithm are indicated in
Table 3. In this case, the polynomial complexity of Berkowitz’s algorithm quickly yields
better results than the number n! + 1 of monomials of the generic determinant. This
is naturally reflected by the time required for the computation. For our test matrices,
the results turn out to be very similar: Berkowitz’s algorithm takes almost no time on
matrices for which det cannot compute the result. This appears in the second line of
Table 2.

Table 3. Sizes of different representations of the determinant of an n× n matrix

dimension 2 3 4 5 6 7 8 9

dag size (expanded) 3 7 25 121 721 5041 40321 362881
dag size (Berkowitz) 3 20 64 169 343 664 1104 1817

The Projective Noether Package 11

Evaluation and test sequences

In line 4 of Table 2, we give the time used to evaluate the DAG computed via
Berkowitz’s algorithm at one point. In regular cases, this is usually also the time required
to prove that the matrix is regular. In the singular cases, we also show an estimate of the
number of points m forming the correct test sequences for DAGs of the corresponding
size. The table shows that although this approach makes it possible to deal with objects
which are too large for Maple when expanded, it also rapidly produces objects with which
it is impossible to proceed in a reasonable amount of time. (Part of this might be due to
the limited size of the hash tables used by Maple.) Whatever the speed of evaluation, the
number of points indicated on line 3 leads to the conclusion that the theoretical bound
which leads to polynomial complexity of the deterministic algorithm is much too large to
be of practical use.

Deforestation

The process outlined above consists of two steps. First a DAG is constructed via
Berkowitz’s algorithm, then this DAG is evaluated at one or several points. Inverting
the loops as discussed in §3.2 is then a natural strategy: we first evaluate the matrix at
these points and then compute the determinant. This is clearly an improvement, since
the DAG for the determinant does not need to be stored in memory anymore and the
determinant can be evaluated by faster algorithms. In the singular case, we can still use
the bound on the number of points which follows from considering the DAG produced via
Berkowitz’s algorithm without actually executing this algorithm. The resulting timings
appear in the last line of Table 2 and vindicate this strategy. Preliminary experiments
in C using LEDA’s bignums (Mehlhorn et al., 1997) seem to indicate that we can only
expect an improvement of a factor four to five by performing this evaluation directly
in C.

3.4. Deforestation of the Algorithm

The algorithm described in Section 2.3 relies on the computation of determinants of
matrices of polynomials. As shown in the previous Section 3, this operation benefits from
deforestation. We can go one step further and apply deforestation to the whole algorithm.

The deforested algorithm is organized around nested loops. The outer loop is decreas-
ing of index m and starts from n. Its (n − m)th iteration is entered with the condi-
tion: the canonical images of xm+1, . . . , xn are already algebraic integers over R(m) :=
k[x0, . . . , xm]. The inner loop is indexed by a list of points lm in IPm(k). Each point of
homogeneous coordinates (a0, . . . , am) of lm satisfies am 6= 0.

Algorithm

For m from n to 0 do:

For each point (a0, . . . , am) of lm do:

– Specialize the homogeneous polynomials f
(m)
i of k(x0, . . . , xm)[xm+1, . . . , xn, z]

to homogeneous polynomials fi(a0z, . . . , amz, xm+1, . . . , xn) of k[xm+1, . . . , xn, z];

12 M. Giusti, K. Hägele, G. Lecerf, J. Marchand and B. Salvy

– Apply a Gröbner basis algorithm with total degree ordering to the specialized
f

(m)
i to compute a standard basis; then determine whether the variety W ⊆

IPn−m(k) they define is empty or not.

∗ If it is empty, break this inner loop;
∗ If it is not empty, repeat this process with another point of lm.

We exit from this inner loop in two possible cases:

– A point (a0, . . . , am) of lm has been found such that the corresponding variety
W is not empty. We perform the following change of variables in the input
polynomials fi: x0 ← x0 + a0xm, . . . , xm−1 ← xm−1 + am−1xm, xm ← amxm

(Recall that am is not zero). The variables xm is now an algebraic integer over
R(m−1), we can enter the (n + 1−m)th step of the outer loop.

– All the points of lm are such that the corresponding W is empty. In this case
we return the integer m and the polynomials fi.

That this algorithm is the deforestation of the one of Section 2.3 follows from the
fact that the computation of a Gröbner basis in the projective case is nothing but a
triangulation of the block Toeplitz matrix Q by elementary column operations.

The index m of the outer loop represents an upper bound on the dimension of the
variety. As seen in the previous section, the number of points where the inner loop has to
be performed when the corresponding determinant is actually zero is very large. However,
this will only happen once, at the end of the algorithm, when m reaches the dimension.
In practice, we shall therefore stop the inner loop after a settable number of points. We
thus obtain a proved bound on the dimension and a likely value for it.

The practical complexity of the deforested algorithm inherits the good complexity
behavior of the theoretical one but the non-uniform deterministic aspect is lost. It is
clear that the specializations which do not lead to a correct answer are enclosed in a
strict algebraic subset but we do not know any precise bound on the probability of
failure. One reason is that we do not know bounds on the probability of failure of a
Gröbner basis of a specialized system to be the specialization of the Gröbner basis of the
system.

In the same way as the specialization of the free variables we could specialize the
integers, that is, perform the computations modulo a prime number picked-up at random,
but this is out of the scope of this paper.

Obviously, the computation will be fast when the dimension is large, since it is reduced
to Gröbner basis computations on systems of polynomials in much less variables. Thus
in cases of low dimension, the timings of our method are comparable with a direct
Gröbner basis computation, while our method is best suited for cases of large dimension,
as exemplified in the experimental data below.

Illustration of the Algorithm

Let us consider f1 = x0x1 and f2 = x0x2 in k[x0, x1, x2], we have n = 2. We now detail
what the algorithm does:

First step: set m = 2; f
(2)
1 = x0x1z

2, f
(2)
2 = x0x2z

2 are seen as homogeneous equations
in K[z], where K = k(x0, x1, x2). The corresponding variety W is empty, the specializa-
tion a0 = 1, a1 = 0, a2 = 1 leads to the change of variables: x0 is replaced by x0 +x2, x1

The Projective Noether Package 13

remains x1 and x2 remains x2. The new equations are f1 = x0x1 +x1x2, f2 = x0x2 +x2
2,

the canonical image of the variable x2 is now an algebraic integer over k[x0, x1]. We go
to the second step.

Second step: set m = 1; f
(1)
1 = x0x1z

2 + x1zx2, f
(1)
2 = x2

2 + x0zx2 are seen as ho-
mogeneous equations in K[x2, z], where K = k(x0, x1). For any specialization (a0, a1) of
(x0, x1) the corresponding variety W is not empty since it contains the projective point
x2 = −a0z. So the algorithm returns 1 as the dimension.

4. Examples

4.1. The Behavior at Infinity of the Cyclic n-roots Systems

This system is related to the question of finiteness and structure of the corresponding
set of cyclic n-roots (Björck, 1990). Let x1, . . . , xn be variables and Mi be the monomial
x1 · · ·xi. Let σ be the cycle (1, 2, . . . , n) of the nth permutation group. We define the ith
cyclic equation of the nth system as:

Hi
n =

n−1∑

k=0

σk(Mi) for 1 ≤ i ≤ n− 1, Hn
n = Mn.

Now, infcyclic n defines the system {Hn
n = Hn−1

n = . . . = H1
n = 0}. For example,

when n = 3 the system H∞
3 is {x1x2x3 = x1x2 + x2x3 + x3x1 = x1 + x2 + x3 = 0}.

Proposition 4.1. (in collaboration with E. Schost) The system H∞
n defines in

IPn−1(C) a projective variety of dimension at least:

rinf(n) = n−
⌈ n

b√nc
⌉
− b√nc.

Proof. Let k = b√nc, l =
⌈

n
b√nc

⌉
. The polynomial Hn

n is reduced to a monomial con-

taining x1, which shows that the variety contains a subvariety defined by x1 = Hn−1
n =

· · · = H1
n = 0. Modulo x1 = 0, Hn−1

n is again reduced to a monomial. This monomial con-
tains x1+k. Proceeding in this manner using the equations Hn−1

n = 0, . . . ,H
n−(l−2)k−1
n =

0 shows that the variety contains a subvariety defined by x1 = x1+k = · · · = x1+(l−1)k =
Hk−1

n = · · · = H1
n = 0. Then applying Krull’s Lemma (Eisenbud, 1995, 8.2.2) completes

the proof. 2

The resulting lower bounds for the dimension of the system infcyclic H∞
n are given in

Table 4.
Note that it is possible to decompose by hand the system infcyclic and thus obtain

better time/space results. This is for instance done by Maple’s gsolve function. In our

Table 4. Lower bounds for the dimension of the system infcyclic H∞
n

n 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

rinf(n) -1 -1 -1 0 0 1 1 2 3 3 4 5 5 6 7 8 8

14 M. Giusti, K. Hägele, G. Lecerf, J. Marchand and B. Salvy

Table 5. Bounding the dimension

system / method pnp grobner Gb

UBD Time Space Time space Time space

infcyclic 6
2 0.2 720 0.71 1180
1 2.5 1400 8.48 1500 1.0 1200

infcyclic 7
4 1.7 1400
3 0.2 720 2.5 1500
2 2.5 1440 65 2230 7 2200
1 900 3200 13000 6200 950 3200

infcyclic 8
5 5.8 1500
4 0.3 720 6.18 1500
3 3.0 1500 396 2700 3 2200
2 1400 4130 > 250000 > 18000 54000 27600

infcyclic 9
6 21 1900
5 0.3 720 22 1900
4 5.1 1700 2293 3080 3 3400
3 1600 7000 >200000 > 8000 > 108000 > 180000

tests, we shall not allow this simplification for either our package or Gröbner basis pack-
ages. The reason for us to use the infcyclic system for our tests is the known lower
bounds for the dimension from Table 4.

We present the tables of experimental results obtained for the two tasks of bounding
and computing the dimension on these systems.

The algorithm described in Section 3.4 and denoted pnp is compared with Maple’s
grobner function (grobner) and with Faugère’s Gb applied directly to the systems. The
Gb computation uses the function sugar, with the optional parameter "info", and a total
degree ordering (degree reverse lexicographic). Time is measured in seconds and memory
space in kilobytes. A time t preceded by the symbol > means that the computation has
been manually aborted after t seconds, the corresponding value in the column labelled
space is the memory allocated until then. Empty entries in the tables are due to technical
problems measuring very small quantities and/or their scaling with the rest of the entries
in the same table.

In table 5, UBD stands for “upper bound on the dimension”. For example the first
line of Table 5 reads: the dimension of the system infcyclic 6 has been proved to be at
most 2 in 0.2 seconds with a memory space of 720kb, using our program, whereas using
the Maple grobner function it took 0.71 seconds and 1180kb.

The first task is the determination of upper bounds on the dimension of the variety.
Using the algorithm of §3.4, we know that at step m of the iteration the dimension of the
variety is at most m. It is also possible to compute upper bounds on the variety during
the calculation of the Maple grobner function: the dimension is at most the dimension of
the monomial ideal generated by the leading monomials of the S-polynomials computed
when performing a Buchberger algorithm, see e.g., (Cox et al., 1997).

The Projective Noether Package 15

Table 6. Computing the dimension

pnp (one pt) grobner

System Dim. Time Space Time Space

infcyclic
2 -1 0.00 243 0.05 105
3 -1 0.01 448 0.04 149
4 0 0.07 2165 0.13 481
5 0 6.5 1834 4 1507
6 1 107 2948 114 2424

The computation of upper bounds on the dimension of the projective variety is the
strong point of our method. Where the Gröbner basis algorithms are forced to work
with the complete equation system in many variables, our recursive approach yields the
correct answer a lot faster. First, it can be seen that Maple’s grobner function is the least
efficient approach. We observe then, that even using this same Maple grobner function
for the intermediate calculations in our method, the resulting performance is already
competitive with the stand-alone Gb program. Note that any improvements in the field
of Gröbner bases computations will also yield direct improvements for our method.

The second task is to determine the exact dimension of the given variety. The correct
test sequences are out of reach and thus we can only evaluate a zero-polynomial given as
a SLP at a certain number of points. The dimension computed is indicated in the second
column of Table 6. In the next column, we give the time necessary to evaluate the final
polynomial at one point. As already discussed, this example being of low dimension, the
performance of our method in this case is comparable with that of a mere Gröbner basis
computation.

For the next examples, we did not try to estimate the time taken by the Gröbner basis
package to bound the dimension and we only give the total time of the computation.

4.2. Generic Polynomials

We consider a polynomial system of three homogeneous equations in 11 variables of
degree 2. The coefficients are randomly chosen integers between -99 and 99.

Our package takes 1.33s to prove that the dimension is at most 8. Then the final
putative zero-polynomial is evaluated at random points in 2.22 sec. each in a constant
memory of 1.9Mb. Maple’s grobner computes a Gröbner basis for the total degree order
in 10053 sec. and 5.3Mb. By extrapolation, 4528 points could be tested by our program.

4.3. Incomplete Determinental Ideals

Let M be a 5×3 matrix, filled with linear forms in 11 variables, with random coefficients
between -10 and 10. M has ten 3× 3 submatrices. Their determinants are homogeneous
polynomials of degree 3 in the 11 variables. We drop one of them, in order to obtain of
system with 9 polynomials.

Our package takes 1s to prove that the dimension is less than 8. As before, each
random point with random coordinates between 0 and 100 is tested in 1.16s and 3.8Mb.

16 M. Giusti, K. Hägele, G. Lecerf, J. Marchand and B. Salvy

Maple’s grobner with total degree order computes the basis in 7093s and 8.32Mb. By
extrapolation 6114 points could be tested by our program.

M is now a 7 × 4 matrix filled with random linear forms in eleven variables, with
coefficients between -10 and 10. M has thirty five 4× 4 submatrices. Their determinants
are homogeneous polynomials of degree 4. We have chosen nine of them, corresponding
to the following sets of number lines :

[1, 2, 3, 4], [1, 2, 3, 5], [1, 2, 3, 6], [1, 2, 3, 7], [1, 2, 4, 5],

[1, 2, 4, 6], [1, 2, 4, 7], [1, 2, 5, 6], [1, 2, 5, 7].

We now compare Faugère’s Gb package with a version of our program which calls Gb
externally for the Gröbner bases computations via gblink (Lecerf and Schost, 1997).

Our program takes 0.08s and 0.6Mb to prove that the dimension is less than 8. Each
point tested is, as previously, a random point with coordinates between 0 and 100. Eighty-
eight have been tested in 1056s and 1.2Mb. Gb’s Grobner with its tgrobner function
has not finished in 3 days and 451Mb. By extrapolation at least 21600 points can be
tested with our program.

5. Conclusion

Algorithms using SLPs to store multivariate polynomials suffer two practical problems:
first, the memory management becomes prohibitive when dealing with very big SLPs and
second the use of non-uniform deterministic zero tests requires evaluations of the SLPs
on a very big set of points. A direct implementation of these algorithms does not turn
out to be efficient. Along the example of computing a Noether position of a projective
variety, we have shown how to transform the theoretical algorithm into a practical one
which does not require SLPs anymore in the intermediate computations and which is very
simple to implement. The practical complexity of the new algorithm inherits the one of
the theoretical one. This idea should apply in a wide class of algorithms in elimination
theory. (See (Giusti et al., 1999) for another step in this direction.)

References

Balcázar, J. L., Dı́az, J., Gabarró, J. (1995). Structural complexity. I. Texts in Theoretical Computer
Science. An EATCS Series. Springer-Verlag, Berlin, second edition.

Berkowitz, S. J. (1984). On computing the determinant in small parallel time using a small number of
processors. Information Processing Letters, 18(3):147–150.

Björck, G. (1990). Functions of modulus 1 on Zn whose Fourier transforms have constant modulus,
and “cyclic n-roots”. In Recent advances in Fourier analysis and its applications (Il Ciocco, 1989),
volume 315 of NATO Advance Science Institutes Series C: Mathematical and Physical Sciences,
pages 131–140. Kluwer Academic Publishers, Dordrecht.

Cox, D., Little, J., O’Shea, D. (1997). Ideals, varieties, and algorithms. Undergraduate Texts in Math-
ematics. Springer-Verlag, New York, second edition. An introduction to computational algebraic
geometry and commutative algebra.

Eisenbud, D. (1995). Commutative algebra with a view toward algebraic geometry, volume 150 of Grad-
uate Texts in Mathematics. Springer-Verlag, New York.

Faugère, J.-C. (1995). GB Reference Manual. LITP. http://posso.ibp.fr/GB.html.
Faugère, J.-C. (1997). Gb: State of gb + tutorial. LITP.
Fitchas, N., Giusti, M., Smietanski, F. (1995). Sur la complexité du théorème des zéros. In Approx-

imation and optimization in the Caribbean, II (Havana, 1993), volume 8 of Approximation and
Optimization, pages 274–329. Peter Lang Verlag, Frankfurt am Main. With the collaboration of
Joos Heintz, Luis Miguel Pardo, Juan Sabia and Pablo Solernó.

The Projective Noether Package 17

Giusti, M. (1988). Combinatorial dimension theory of algebraic varieties. Journal of Symbolic Compu-
tation, 6(2-3):249–265. Special issue on computational aspects of commutative algebra.

Giusti, M., Heintz, J. (1993). La détermination des points isolés et de la dimension d’une variété
algébrique peut se faire en temps polynomial. In Eisenbud, D., Robbiano, L., editors, Computa-
tional algebraic geometry and commutative algebra (Cortona, 1991), volume XXXIV of Symposia
Matematica, pages 216–256. Cambridge University Press, Cambridge.

Giusti, M., Lecerf, G., Salvy, B. (1999). A Gröbner free alternative for polynomial system solving.
Preprint. Available at http://www.medicis.polytechnique.fr/gage/notes/1999.html. Note #99-
04.

Heintz, J. (1989). On the computational complexity of polynomials and bilinear mappings. A survey.
In Applied algebra, algebraic algorithms and error-correcting codes (Menorca, 1987), volume 356
of Lecture Notes in Computer Science, pages 269–300. Springer, Berlin.

Heintz, J., Schnorr, C. P. (1982). Testing polynomials which are easy to compute. In Logic and Algorith-
mic (Zürich, 1980), volume 30 of Monographie de l’Enseignement Mathématique, pages 237–254.

Lecerf, G. (1997). The Projective Noether Package, User’s Manual. Laboratoire GAGE, École poly-
technique, Palaiseau, France.

Lecerf, G., Schost, E. (1997). Maple Package: GB link. Laboratoire GAGE, École polytechnique,
Palaiseau, France. http://tera.medicis.polytechnique.fr/tera/soft.html.

Mehlhorn, K., Näher, S., Uhrig, C. (1997). Library for Efficient Datastructures and Algorithms. Max
Planck Institute for Computer Science, Saarbrücken. http://www.mpi-sb.mpg.de/LEDA/leda.html.

Mulmuley, K. (1987). A fast parallel algorithm to compute the rank of a matrix over an arbitrary field.
Combinatorica, 7(1):101–104.

Stoß, H.-J. (1989). On the representation of rational functions of bounded complexity. Theoretical
Computer Science, 64(1):1–13.

Strassen, V. (1972). Berechnung und Programm. I, II. Acta Informatica, 1(4):320–355; ibid. 2(1), 64–79
(1973).

von zur Gathen, J. (1986). Parallel arithmetic computations: a survey. In Mathematical foundations
of computer science, 1986 (Bratislava, 1986), volume 233 of Lecture Notes in Computer Science,
pages 93–112, Berlin. Springer.

Wadler, P. (1990). Deforestation: transforming programs to eliminate trees. Theoretical Computer
Science, 73:231–248. Special issue of selected papers from 2’nd ESOP.

