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Abstract

This paper is devoted to the complexity analysis of certain uniformity
properties owned by all known symbolic methods of parametric poly-
nomial equation solving (geometric elimination). It is shown that any
parametric elimination procedure which is parsimonious with respect
to branchings and divisions must necessarily have a non-polynomial se-
quential time complexity, even if highly efficient data structures (as e.g.
the arithmetic circuit encoding of polynomials) are used.

1 Introduction

Origins, development and interaction of modern algebraic geometry and
commutative algebra may be considered as one of the most illustra-
tive examples of historical dialectics in mathematics. Still today, and
more than ever before, timeless idealism (in form of modern commuta-
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tive algebra) is bravely struggling whith secular materialism (in form of
complexity issues in computational algebraic geometry).

Kronecker was doubtless the creator of this eternal battle field and its
first war lord. In a similar way as Gauss did for computational num-
ber theory, Kronecker laid intuitively the mathematical foundations of
modern computer algebra. He introduced 1882 in [24] his famous ”elim-
ination method” for polynomial equation systems and his ”parametric
representation” of (equidimensional) algebraic varieties. By the way, this
parametric representation was until 10 years ago rediscovered again and
again. It entered in modern computer algebra as ”Shape Lemma” (see
e.g. [36, 7, 10, 22]). Using his elimination method in a highly skillful,
but unfortunately inimitable way, Kronecker was able to state and to
prove a series of fundamental results on arbitrary algebraic varieties. He
was able to define in a precise way the notion of dimension and to prove
a corresponding dimension theorem for arbitrary algebraic varieties over
an algebraically closed field, to estimate the number of equations needed
to define any algebraic variety in affine or projective space and certainly
he knew already the special form of “Hilbert’s Nullstellensatz”.

Not everything that came to Kronecker’s mind was laid down by him
in a explicit and written form. Nevertheless a careful interpretation of
his work suggests his deep understanding of the general structure of
algebraic varieties.

A particular result, proved by Kronecker, says that any algebraic vari-
ety can be defined by finitely many equations. Later Hilbert generalized
this result to his seminal “Basissatz” introducing for its proof a new,
nonconstructive method, far away from the traditional elimination-type
arguments used by Kronecker and other contemporary mathematicians.
It took some time to convince the mathematical world that “mystics”
and “magicians” are able to produce (correct) mathematical results, but
finally the new discipline of commutative algebra became legitimate.

Hilbert’s discovery of the Basissatz was also the starting point for
a long and huge conflict which dominated a considerable part of the
history of modern algebraic geometry and which did not come to an end
until today.

Classical algebraic geometry is motivated by the need — or the wish —
to find tools which allow to “solve” or to “reduce” (whatever this means)
systems of polynomial equations. This leads to the following questions:

e are commutative algebra and its modern derivate, namely todays
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scheme-theoretical algebraic geometry, able to absorb classical alge-
braic geometry?

e is the solution to Hilbert’s “Hauptproblem der Idealtheorie” (the ideal
membership problem) the key to all computational issues in classical
algebraic geometry?

These questions, implicitly raised by the work of Hilbert and Macau-
lay, look very academic. However any attempt to answer them leads to
deep consequences.

Let us here outline just one possible way to answer these questions.

If we consider the “Hauptproblem der Idealtheorie” as a question of
pure theoretical computer science, this problem turns out to be compu-
tationally intractable, at least in worst case. More precisely, the “Haupt-
problem der Idealtheorie” turns out to be complete in exponential (mem-
ory) space (see [33, 43, 8]). On the other hand, almost all of the most
fundamental problems of computational classical algebraic geometry are
proved to be solvable in polynomial space (see e.g. [32, 9, 30, 29, 25]).
Thus computational complexity is able to distinguish between geometry
and algebra and supports the viewpoint of Kronecker (geometry) against
the viewpoint of Hilbert and Macaulay (algebra).

It is well known that Kronecker’s personality was highly conflictive
for his time. It is less known how much posthumous rejection Kro-
necker’s personality was able to produce. Hilbert’s writings are eloquent
in this point (“die Kroneckersche Verbotsdiktatur”, see [21]), whereas
Macaulay’s attack against Kronecker’s work on elimination was a rather
well educated one (see [28], Preface). In this context let us also remind
André Weil’s “elimination of the elimination theory”. Kronecker’s radi-
cal spirit did not recognise limitations. His radicalism was as universal
as his spirit was. Of course he was right requiring that any mathemati-
cal reflection has to end up with finitely many and practically realizable
computations which settle the concrete (e.g. application) problem un-
der consideration. However declaring the natural numbers as the only
mathematical objects created by god for mankind and declaring the
“rest” (real, complex numbers, infinite cardinals and ordinals) as devils
work, tempting humans to play with the infinite, he demonstrated that
he was not able or willing to distinguish between syntaxis and seman-
tics. He was right to require that mathematical expressions (algebra)
have always to move within finitary limits, but he was wrong to exclude
reflections about infinite mathematical objects (geometry) using a fini-
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tarian language. Of course his own work ended up to be godless enough
to guarantee him mathematical recognition by his worst adversaries.

Kronecker’s own formulation of his elimination method in [24] was
imprecise and general enough to allow different interpretations of it,
computationally efficient and inefficient ones. Possibly it was in his
mind to leave open the door for future complexity issues of his method.

Hilbert’s and Macaulay’s attacks against Kronecker’s method were
based on the computationally inefficient interpretation. They noticed
that under this interpretation Kronecker’s elimination method leads to
a hyperexponential swell of intermediate expression size and used this
observation for the promotion of their own, more “simple” and “mathe-
matical” point of view. Hilbert and Macaulay’s position became finally
predominant in the future development of algebraic geometry and com-
mutative algebra (see e.g. [40]). Their ideas led to the modern, computer
implemented tool of Grébner basis algorithms for the symbolic resolu-
tion (simplification) of polynomial equation systems. This tool was in-
troduced in the sixties by B. Buchberger (and his school) and represents
today the core of all current computer algebra software packages.

The discovery of effective (affine) Nullstellensitze and their applica-
tion to the complexity analysis of Grébner basis algorithms for the so-
lution of geometrical problems, represented at the end of the eighties
the turning point for a process which led finally back to Kronecker’s
original ideas. This process was not a conscious motion with clear goals,
but rather a slow emerging of mathematical insight and of algorithmic
design within the scope of Kronecker’s intuitions.

The first step in this direction was even made as part of a mathemat-
ical proof and not of an algorithmic design. In its standard interpre-
tation, Kronecker’s elimination method relies on an iterated use of re-
sultants of suitable univariate polynomials with parametric coefficients.
In fact, a resultant is nothing but the constant term of the characteris-
tic polynomial of a suitable linear map determined by the polynomials
under consideration. Replacing in this version of Kronecker’s elimina-
tion algorithm the occuring resultants just by the constant terms of the
corresponding minimal polynomials, one obtains an enormous reduc-
tion of degree, height and also of arithmetic circuit (straight-line pro-
gram) complexity for the polynomials produced during the procedure
(see e.g. [4, 5, 16]). By the way, let us remark that Kronecker applies
in his method the mentioned simplification, however he omits to draw
these important conclusions from his argument.

Other important ingredients of the emerging new algorithmic method
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were the parametric representation of equidimensional algebraic vari-
eties (a rediscovery of Kronecker’s old idea) and the arithmetic circuit
(straight-line program) representation of polynomials (which was nei-
ther out of the scope of Kronecker’s intuition nor clearly included in the
main stream of his thinking). The combination of these ingredients pro-
duced a considerable effect upon the worst case complexity of symbolic
elimination procedures (see e.g. [12, 23, 14]).

Nevertheless all this progress did not suffice to allow the design of
practically efficient symbolic elimination algorithms and in particular
of algorithms which were able to compete in complexity aspects with
their numerical counterparts. The traditional huge gap between sym-
bolic and numeric polynomial equation solving methods remained open.
Whereas numeric algorithms are very efficient with respect to the num-
ber of arithmetical operations they require, they cannot be efficiently
used in case of parametric, underdetermined, overdetermined or degen-
erate polynomial equation systems. Symbolic algorithms are free from
these restrictions but they are also too inefficient for any reasonable use
in practice. A way out of this dilemma became apparent in [13, 11] by
a new interpretation of Newton’s classical method. Interpreting New-
ton’s approximation algorithm as a global procedure instead as a local
one, allowed its use as a tool for data compression in the Kronecker—like
elimination procedure of [14] ( which relied on the arithmetic circuit rep-
resentation of polynomials). It turns out that Newton’s method is well
adapted to exact symbolic computation if the correct (seminumerical)
data structure is used. In this way a new algorithmic method finally
emerged. This method is based on a combination of Kronecker’s and
Newton’s ideas, and is able to distinguish dichotomically between “well
behaved” and “badly behaved” polynomial equations systems. Moreover
this algorithmic method is optimal for worst case (i.e. generic) systems.

Unlike Grobner basis algorithms this new method avoids any signif-
icant computational overflow during its execution. Roughly speaking,
the new algorithms are always polynomial in the output size and even
polynomial in the input size, if the given polynomial equation system is
“well behaved”.

This view of algorithmic algebraic geometry produced also the follow-
ing new insight:

elimination polynomials are always “smart”(i.e. not easy and not
hard) to evaluate. How many variables they ever may contain, their eval-
uation complexity is always polynomial in their degree (whereas their
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number of monomials may be exponential in the number of their vari-
ables).

Although this insight is beyond of the scope of Kronecker’s way of
thinking, his formulation of the elimination method indicates that he
might have intended to leave the door open for complexity issues.

A further development of this new algorithmic method was able to
demonstrate its practical efficiency (see [27] and [31]). Moreover it
turns out that the parameters which dominate the complexity of the
new symbolic procedures determine also the efficiency of their numerical
counterparts (at least if aspects of diophantine approximation are taken
into account; see [34]). The new symbolic algorithms (and their numeri-
cal counterparts) have still a worst case complexity which is exponential
in the (purely syntactical) input length. One may ask whether this fact
is due to the algorithms and data structures employed or whether this
is due to the intrinsic nature of geometric elimination.

The new results presented in this paper address this question. In
order to discuss this point, let us turn back to our interpretation of
Kronecker’s ideas behind geometric elimination. Kronecker’s elimina-
tion method (and theory) behaves well under specialisation of the input
equations. In fact, at any moment of the procedure one may consider
the (parametric) input equations as given by their coefficients and these
coefficients may be considered as purely algebraic objects, determined
only by their algebraic relations. A given equation system may even be
“generalized”, i.e. the coefficients of the given input equations may be
replaced by indeterminates and the discussion of the solvability of the
generalized systems answers all imaginable questions about the solvabil-
ity of the original system. This concept of specialisation—generalisation
reveals an idea of universality (or uniformity) behind Kronecker’s elimi-
nation theory. This philosophical idea of universality became one of the
corner stones of modern algebraic geometry and commutative algebra.
Since we are (still) unable to think in a different way, we shall consider
the input equations of a parametric elimination problem as functions
which may be called by their values in the variables to be eliminated
(black-box representation) or simply as being given by their coefficients
(formal representation).

Any elimination algorithm we are able to imagine today starts from
this kind of data. In other words, the black box representation consti-
tutes today the most general way we may think the equations of our
input system to be given. Of course each evaluation of the input equa-



Kronecker’s black boxes 7

tions has its costs and these costs may be measured by the size of a
division-free arithmetic circuit which represents the input equations.

In this paper we shall show that any sufficiently uniform elimination
procedure (which avoids superfluous branchings) becomes necessarily
exponential in worst case, if the input equations are given in black-box
representation and if the required output is a canonical elimination poly-
nomial ( a “resolvent” in the terminology of Kronecker and Macaulay).
This is a general and provable fact for any symbolic as well as for any

R

numerical elimination procedure. We shall also show, that even in case
that the input equations are not given by a black box, but by an explicit
arithmetic circuit, the same conclusion holds true for any sufficiently
universal and uniform elimination procedure which is able to compute
efficiently Zariski closures and (generically squarefree) parametric great-
est common divisors for circuit represented algebraic families of polyno-
mials.

Below we shall give a precise definition of the meaning of a “sufficiently
universal and uniform elimination procedure” for the case of a flat family
of elimination problems. Such an elimination procedure will be called
parametric.

If an elimination procedure is used in order to assign “coordinates”
(i-e. in order to parametrise) suitable and easy-to-represent families of
algebraic varieties the same conclusion holds again, without any further
restriction on the input representation (see [6] and [18]). Summing
up, we may say: the vision of elimination theory initiated by Kronecker
hides a concept of universality and uniformity which obstructs its general
efficiency. The question what happens with complexity when we drop
this universality and uniformity requirement, exceeds the horizon of to-
days mathematical thinking and is equivalent to the question whether
P # NP holds over the complex numbers (in the sense of the BSS
complexity model; see [2]).

2 Parametric elimination
2.1 Parametric elimination procedures

The procedures (algorithms) considered in this paper operate with essen-
tially division-free arithmetic circuits (straight-line programs) as basic
data structures for the representation of inputs and outputs. Such a
circuit depends on certain input nodes, labelled by indeterminates over
a given ground field k (in the sequel we shall suppose that k is infinite
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and perfect with algebraic closure k). These indeterminates are thought
to be subdivided into two disjoint sets representing the parameters and
variables of the given circuit. The circuit nodes of indegree zero which
are not inputs are labelled by elements of k, which are called the scalars
of the circuit (here ”indegree” means the number of incoming edges of
the corresponding node). Internal nodes are labelled by arithmetic oper-
ations (addition, subtraction, multiplication and division). The internal
nodes of the circuit represent polynomials in the variables of the circuit.
The coefficients of these polynomials belong to the parameter field K,
generated over the ground field k£ by the parameters of the circuit. This
is achieved by allowing in a essentially division-free circuit only divisions
which involve elements of K. Thus essentially division-free circuits do
not contain divisions involving intermediate results which depend on
variables. A circuit which contains only divisions by nonzero elements
of k is called totally division-free. The output nodes of an essentially
division-free circuit may occur labelled by sign marks of the form “=0”
or “# 07 or may remain unlabelled (by sign marks). Thus the given
circuit represents by means of its labelled output nodes a system of
polynomial equations and inequations which determine in their turn a
locally closed set (i.e. an embedded affine variety) with respect to the
Zariski topology of the affine space of parameter and variable instances.
The unlabelled output nodes of the given circuit represent a polyno-
mial application (in fact a morphism of algebraic varieties) which maps
this locally closed set into a suitable affine space. We shall interprete
the system of polynomial equations and inequations represented by the
circuit as a parametric family of systems in the variables of the circuit.
The corresponding varieties constitute an parametric family of varieties.
The same point of view is applied to the morphism determined by the
unlabelled output nodes of the circuit. We shall consider this morphism
as a parametric family of morphisms.

To a given essentially division-free arithmetic circuit we may asso-
ciate different complexity measures and models. In this paper we shall
be mainly concerned with sequential computing time, measured by the
size of the circuit. Occasionally we will also refer to parallel time, mea-
sured by the depth of the circuit. In our main complexity model is the
total one, where we take into account all arithmetic operations (addi-
tions, subtractions, multiplications and possibly occuring divisions) at
unit costs. For purely technical reasons we shall also consider two non-
scalar complexity models, one over the ground field k& and the other one
over the parameter field K. In the non-scalar complexity model over
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K we count only the essential multiplications (i.e. multiplications be-
tween intermediate results which actually involve variables and not only
parameters). This means that K-linear operations (i.e. additions and
multiplications by arbitrary elements of K) are cost free. Similarly, k-
linear operations are not counted in the non-scalar model over k. For
more details about complexity measures and models we refer to [3].

Given an essentially division-free arithmetic circuit as input, an elimi-
nation problem consists in the task of finding an essentially division-free
output circuit which describes the Zariski closure of the image of the
morphism determined by the input circuit. The output circuit and the
corresponding algebraic variety are also called a solution of the given
elimination problem. We say that a given parameter point fixes an in-
stance of the elimination problem under consideration. In this sense
a problem instance is described by an input and an output (solution)
instance.

In this paper we restrict our attention to input circuits which are
totally division-free and contain only output nodes labelled by “=0" and
unlabelled output nodes. Mostly our output circuits will also be totally
division-free and will contain only one output node, labelled by the mark
“=0”. This output node will always represent a canonical elimination
polynomial associated to the elimination problem under consideration
(see Section 2.2 for more details).

In case that our output circuit contains divisions (depending only on
parameters but not on variables), we require to be able to perform these
divisions for any problem instance. In order to make this requirement
sound, we admit in our algorithmic model certain limit processes in the
spirit of de 'Hopital’s rule (below we shall modelise these limit pro-
cesses algebraically, in terms of places and valuations). The restriction
we impose on the possible divisions in an output circuit represents a
first fundamental geometric uniformity requirement for our algorithmic
model.

An algorithm which solves a given elimination problem may be con-
sidered as a (geometric) elimination procedure. However this simple
minded notion is too restrictive for our purpose of showing lower com-
plexity bounds for elimination problems. It is thinkable that there exists
for every individual elimination problem an efficient ad hoc algorithm,
but that there is no universal way to find and to represent all these ad hoc
procedures. Therefore, a geometric elimination procedure in the sense of
this paper will satisfy certain uniformity and universality requirements
which we are going to explain now.
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We modelise our elimination procedures by families of arithmetic net-
works (also called arithmetic-boolean circuits) which solve entire
classes of elimination problems of arbitrary input size (see [41], [42]).
In this sense we shall require the universality of our geometric elimina-
tion procedures. Moreover, we require that our elimination procedures
should be essentially division-free.

In a universal geometric elimination procedure, branchings and di-
visions by intermediate results (that involve only parameters, but not
variables) cannot be avoided. From our elimination procedures we shall
require to be parsimonious with respect to branchings (and divisions).
In particular we shall require that our elimination procedures do not in-
troduce branchings and divisions for the solution of a given elimination
problem when traditional algorithms do not demand this (an example of
such a situation is given by the flat families of elimination problems we
are going to consider in the sequel). This restriction represents a second
fundamental uniformity requirement for our algorithmic model.

We call a universal elimination procedure parametric if it satisfies our
first and second uniformity requirement, i.e. if the procedure does not
contain branchings which otherwise could be avoided and if all possibly
occurring divisions can be performed on all problem instances, in the
way we have explained before. In this paper we shall only consider
parametric elimination procedures.

We call a parametric elimination procedure geometrically robust if it
produces for any input instance an output circuit which depends only
on the mathematical objects “input equation system” and “input mor-
phism” but not on their circuit representation. We shall apply this
notion only to elimination problems given by (geometrically or scheme-
theoretically) flat families of algebraic varieties. This means informally
that a parametric elimination procedure is geometrically robust if it pro-
duces for flat families of problem instances “continuous” solutions.

Of course, our notion of geometric robustness depends on the (geo-
metric or scheme-theoretical) context, i.e. it is not the same for schemes
or varieties. In Section 2.2 we shall explain our idea of geometric robust-
ness in the typical situation of flat families of algebraic varieties given
by reduced complete intersections.

Traditionally, the size of a system of polynomial equations (and in-
equations) is measured in purely extrinsic, syntactic terms (e.g. number
of parameters and variables, degree of the input polynomials, size and
depth of the input circuit etc). However, there exists a new generation of
symbolic and numeric algorithms which take also into account intrinsic,
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semantic (e.g. geometric or arithmetic) invariants of the input equa-
tion system in order to measure the complexity of elimination procedure
under consideration more accurately (see e.g. [13, 11, 15] and [38, 39]).

In this paper we shall turn back to the traditional point of view. In
Theorem 5 we shall show that, under our universality and uniformity re-
strictions, no parametric elimination procedure which includes efficient
computation of Zariski closures and of gemerically squarefree paramet-
ric greatest common divisors for circuit represented algebraic families of
polynomials, is able to solve an arbitrary elimination problem in polyno-
mial (sequential) time, if time is measured in terms of circuit size and
imput length is measured in syntactical terms only.

Finally let us refer to the books [3], [35] and [37] as a general back-
ground for notions of algebraic complexity theory and algebraic geome-
try we are going to use in this paper.

2.2 Flat families of elimination problems

Let, as before, k be an infinite and perfect field with algebraic closure
kandlet Uy,...,U;, X1,...,Xn, Y be indeterminates over k. In the se-
quel we shall consider Xi,...,X,, and Y as variables and Uy,...,U,
as parameters. Let Gi,...,G, and F be polynomials belonging to
the k-algebra k[Ui,...,U, X1,...,X,]. Suppose that the polynomials
G1,...,Gy form a regular sequence in k[Uy,...,Ur, X1,...,X,] defin-
ing thus an equidimensional subvariety V := {G; = 0,...,G,, = 0}
of the (r 4+ n)-dimensional affine space A” x A" over the field k. The
algebraic variety V' has dimension r. Let § be the (geometric) degree
of V' as defined in [17] (this degree does not take into account mul-
tiplicities or components at infinity). Suppose furthermore that the
morphism of affine varieties 7 : V' — A", induced by the canonical
projection of A" x A™ onto A", is finite and generically unramified (this
implies that 7 is flat and that the ideal generated by Gi,...,G, in
k[Ui,...,Up, X1,...,X,] is radical). Let # : V — A" be the mor-
phism defined by 7(2) := (7(2), F(z)) for any point z of the variety V.
The image of 7 is a hypersurface of A™"! whose minimal equation is
a polynomial of k[Uy,...,U,, Y] which we denote by P. Let us write
deg P for the total degree of the polynomial P and degy P for its par-
tial degree in the variable Y. Observe that P is monic in Y and that
deg P < Jdeg F holds. Furthermore, for a Zariski dense set of points
u of A", we have that deg, P is the cardinality of the image of the re-
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striction of F to the finite set 7=!(u). The polynomial P(U1,...,U,, F)
vanishes on the variety V.

Let us consider an arbitrary point u = (uy,...,u,) of A". For arbi-
trary polynomials A € k[Uy,...,U,, X1,...,Xp] and B € k[Uy,...,U,,Y]
we denote by A(® and B the polynomials A(ui,...,u,, X1,...,X,)
and B(uy,...,urY) which belong to k(ui,...,u,)[X1,...,X,] and
kE(uy,...,us)[Y] respectively. Similarly we denote for an arbitrary poly-
nomial C € k[Uy,...,U,] by C® the value C(uy,...,u,) which belongs
to the field k(us, ..., ur). The polynomials G\*,..., G define a zero
dimensional subvariety V® = {G{* = 0,...,G™ = 0} = 7=1(u) of
the affine space A™. The degree (cardinality) of V(¥ is bounded by 6.
Denote by 7 : V(¥) —; A! the morphisms induced by the polynomial
F® on the variety V(®). Observe that the polynomial P(*) vanishes on
the (finite) image of the morphism 7#(*). Observe also that the polyno-
mial P( is not necessarily the minimal equation of the image of #(%)).

We call the equation system Gy = 0,...,G, = 0 and the polynomial
F a flat family of elimination problems depending on the parameters
Ui,...,U, and we call P the associated elimination polynomial. An
element v € A" is considered as a parameter point which determines
a particular problem instance (see Section 2.1). The equation system
G; =0,...,G, = 0 together with the polynomial F'is called the general
instance of the given flat family of elimination problems and the elimi-
nation polynomial P is called the general solution of this flat family.

The problem instance determined by the parameter point u € A"
is given by the equations GY‘) =0,...,G% = 0 and the polynomial
F®)_ The polynomial P is called a solution of this particular problem
instance. We call two parameter points u,u’ € A" equivalent (in symbols:
u~ ) if G =6, 6 = ¢ and F® = F®) holds.
Observe that v ~ u' implies P = PW) . We call polynomials A €
E[Ui,..., U, X1,...,Xp], B € k[Uy,...,U,,Y] and C € k[Uy,...,U,]
invariant (with respect to ~) if for any two parameter points u,u’ of
A" with u ~ v/ the respective identities A = A®) B = B) and
C® = W) hold.

An arithmetic circuit in k[Us, ..., U, Y] with scalars in k[Un, ..., U]
is a totally division-free arithmetic circuit in k[Uq,...,U,, Y], say £,
modelised in the following way: [ is given by a directed acyclic graph
whose internal nodes are labelled as before by arithmetic operations.
There is only one input node of 3, labelled by the variable Y. The other
nodes of indegree zero the circuit 8 may contain, are labelled by arbitrary
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elements of k[Un,...,U;]. These elements are considered as the scalars
of B. We call such an arithmetic circuit 3 invariant (with respect to
the equivalence relation ~) if all its scalars are invariant polynomials
of k[Uy,...,U,]. Considering instead of ¥ the variables Xi,..., X, as
inputs, one may analogously define the notion of an arithmetic circuit in
k[Uy,...,Up, X1,...,X,] with scalars in k[Uq,...,U,] and the meaning
of its invariance. However, typically we shall limit ourselves to circuits
in k[Uy,...,U,, Y] with scalars in k[U,...,U,].

We are now ready to characterise in the given situation what we mean
by a geometrically robust parametric elimination procedure. Suppose
that the polynomials G1,...,G, and F are given by a totally division-
free arithmetic circuit 8 in k[Uy,...,U,, X1,..., X,]. A geometrically
robust parametric elimination procedure accepts the circuit 8 as input
and produces as output an invariant circuit T in k[U4,...,U,, Y] with
scalars in k[Uq,...,U,], such that I" represents the polynomial P. Ob-
serve that in our definition of geometric robustness we did not require
that [ is an invariant circuit because this would be too restrictive for the
modelling of concrete situations in computational elimination theory.

The invariance property required for the output circuit I' means the
following: let u = (uy,...,u,) be a parameter point of A" and let T'(*)
be the arithmetic circuit in k(ug,...,u,)[Y] obtained from the circuit
I’ evaluating in the point u the elements of k[Uy,...,U,] which occur
as scalars of I'. Then the invariance of I' means that the circuit T'(*)
depends only on the particular problem instance determined by the pa-
rameter point u but not on w itself. Said otherwise, a geometrically
robust elimination procedure produces the solution of a particular prob-
lem instance in a way which is independent of the possibly different
representations of the given problem instance.

By definition, a geometrically robust parametric elimination proce-
dure produces always the general solution of the flat family of elimi-
nation problems under consideration. This means that for flat families,
geometrically robust parametric elimination procedures do not introduce
branchings in the output circuits. In Section 3.1 we shall exhibit a com-
plexity result which may be paraphrased as follows: within the standard
philosophy of commutative algebra, none of the known (exponential time)
parametric elimination procedures can be improved to a polynomial time
algorithm. For this purpose it is important to remark that the known
parametric elimination procedures (which are without exception based
on linear algebra as well as on comprehensive Grobner basis techniques)
are all geometrically robust.
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The invariance property of these procedures is easily verified in the
situation of a flat family of elimination problems. One has only to ob-
serve that all known elimination procedures accept the input polynomi-
als Gy,...,G, and F in their dense or sparse coefficient representation
or as evaluation black box with respect to the variables Xi,..., X,.

Finally we are going to explain what we mean by a (generically square-
free) parametric greatest common divisor of an algebraic family of poly-
nomials and by the problem of the computation of this greatest common
divisor (in case of a circuit represented family).

Suppose that there is given a positive number s of nonzero polynomi-
als, say By,...,Bs € k[Uy,...,U,,Y]. Let V :={By =0,...,B, = 0}.
Suppose that V' is nonempty. We consider now the morphism of affine
varieties 7 : V — A", induced by the canonical projection of A” x A'
onto A". Let S be the Zariski closure of 7(V') and suppose that S is an
irreducible closed subvariety of A". Let us denote by k[S] the coordinate
ring of S. Since S is irreducible we conclude that k[S] is a domain with
a well defined function field which we denote by k(S5).

Let b1,...,bs € k[S][Y] be the polynomials in the variable ¥ with
coefficients in k[S], induced by By, ..., Bs. Suppose thet there exists an
index 1 < k < s with by # 0. Without loss of generality we may suppose
that for some index 1 < m < s the polynomials by, ..., by, are exactly the
non—zero elements of by, ..., bs. Observe that each polynomial by, ..., b
has positive degree (in the variable Y').

We consider by, ...,b, as an algebraic family of polynomials (in the
variable Y) and By, ..., By, as their representatives. The polynomials
b1, ..., by havein k(S5)[Y] a well defined normalised (i.e. monic) greatest
common divisor, which we denote by h. Let D be the degree of h (with
respect to the variable Y').

We are now going to describe certain geometric requirements which
will allow us to consider h as a parametric greatest common divisor of
the algebraic family of polynomials b1, ..., by,.

Our first requirement is D > 1.

Let us fix for the moment an arbitrary point u € S. The evaluation in
u determines a canonical k—algebra homomorphism ¢, : k[S] — k. Let
é : k(S) — kU {00} be any place which extends the homomorphism
¢ (this means that the valuation ring of ¢ contains the local ring of the
point u in the variety S and that the residue class of ¢ is contained in
R).

We require now that the place ¢ takes only finite values (i.e. values of
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k) in the coefficients of the polynomial h (recall that these coefficients
belong to the field k(S)).

Moreover we require that the values of the place ¢ in these coefficients
depend only on the point u and not on the particular choice of the place
¢ extending the homomorphism ¢,,.

In this way the place ¢ maps the polynomial A to a monic polynomial
of degree D in Y with coefficients in k. This polynomial depends only
on the point u € S and we denote it therefore by h(u)(Y). In analogy
with this notation we write b (u)(Y) := Bg(u)(Y) for 1 < k < m.

Finally we require that the polynomials by (u)(Y),...,bn(u)(Y) of
k(Y) are not all zero and that their (normalized) greatest common di-
visor is divisible by h(u)(Y).

We say that a polynomial H of k(Ux,...,U,)[Y] with degy H = D
represents the greatest common divisor h € k(S)[Y] if the coefficients of
H with respect to the variable Y induce well-defined rational functions
of the variety S and if these rational functions are exactly the coefficienst
of h (with respect to the varable Y').

Suppose now that the polynomials By, ..., Bs € k[Uy,...,U,, Y] sat-
isfy all our requirements for any point v € S. Then we call h a para-
metric greatest common divisor of the algebraic family of polynomials
bi,...,bm € k[S][Y]. Any polynomial H € k(Ui,...,U;)[Y] which rep-
resents h is said to represent the parametric greatest common divisor
associated to the polynomials By, ..., Bs.

A monic squarefree polynomial h € k(S)[Y] with the same zeroes
as h in an algebraic closure of k(S), is called a generically squarefree
parametric greatest common divisor of the algebraic family b;,...,b,, €
E[S][Y]

If the characteristic of the ground field k is zero, such a generically
squarefree parametric greatest common divisor h always exists and has
the same properties as h with respect to the places ¢ : k(S) — kU{oo}
considered before.

If the characteristic of k is positive, this general conclusion is not true
anymore. However, in the purely geometric context of the present paper,
we may always arrange the polynomials By, ..., Bs and their arithmetic
circuits in order to assure the existence of a generically squarefree great-
est common divisor. For this purpose we need that k is a perfect field.

In case that a generically squarefree greatest common divisor h exists,
the notion of a representative of h is defined in the same way as for h.

Suppose now that the polynomials By, ..., Bs are given by a totally
division—free arithmetic circuit g, in k[Uy,...,U,, Y]
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We are now going to formulate the algorithmic problem of computing
the (generically square—free) parametric greatest common divisor h (or
h) of the algebraic family of polynomials by, ..., by, € k[S][Y].

We consider Y as variable and Uy, ..., U, as parameters. We are look-
ing for an essentially division—free arithmetic circuit 'y in
k(Uy,...,Un)[Y] which computes a representative of the (generically
square—free) parametric greatest common divisor h (or ﬁ), associated
to the polynomials By, ..., Bs.

We require that the scalars of I, induce well-defined rational functions
of the variety S and that for any point v € S and any place ¢ : k(S) —
k U {0} extending the homomorphism ¢, : k[S] — k the following
condition is satisified:

any scalar of the arithmetic circuit I'y induces a rational function of
the variety S, which is mapped by ¢ into a finite value of k. This value
is uniquely determined by the point u € S.

The problem of computing the (generically square—free) parametric
greatest common divisor of the algebraic family of polynomials
b1,...,bm € E[S][Y] consists now in producing from the input circuit S
a (smallest possible) circuit 'y which satisfies the requirement above.

Observe that the scalars of such a circuit I'y, as well as the coefficients
of h, are rational functions of the variety S which belong to the integral
closure of k[.S] in the function field k£(S). This property of I, is conserved
under specialisations of the k—algebra k[S].

In the proof of Theorem 5 we shall make substantial use of this ob-
servation.

For general background and details about places and valuation rings
we refer to [26].

3 The intrinsic complexity of parametric elimination
procedures

3.1 A particular flat family of elimination problems
Let n be a fixed natural number and let T', Uy, ..., Uy, X1,..., X, and Y
be indeterminates over Q. In the sequel we are going to use the following
notation: for arbitrary natural numbers ¢ and j we shall denote by [j];
the 7th digit of the binary representation of j. Let P be the following
polynomial of Q[T Us,...,Uy,,Y]:

2m—1

P(T,Ur,...,Us,Y) = [] (Y—(j+Tf[U,.“]i)). (3.1)

j=0 i=1
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We observe that the dense representation of P with respect to the
variable Y takes the form

P(T,Uy,...,Up, V) =Y + A4V~ o 4 Apa,

where Ay, ..., Agn are suitably defined polynomials of Q[T, Uy, ..., Uy].

Let 1 < k£ < 2" In order to determine the polynomial Ay, we ob-
serve, by expanding the right hand side of (3.1), that A collects the
contribution of all terms of the form

k

II (- Gu + T T UP)

h=1 i=1

with 0 < j1 < -+ < jr < 2™ — 1. Therefore the polynomial Ay can be
expressed as follows:

Ay

k n
2 [T (= Gn+T[[U)
0<j1<---<Jp<2m—1 h=1 i=1

k n

= 3 D*TT Gn+ T JJUP).

0<j1 <+ <jp<2m—1 h=1 i=1
Observe that for 0 < j; < -+ < j, < 2™ — 1 the expression

k

h=1 i=1
can be rewritten as:
k n )
Skt T(Zﬁ o Jh o Jk H Ui[]"]") + terms of higher degree in T.
h=1 i=1
Therefore, we conclude that Ay has the form:

A = Z JieJk

0<j1 << <2m—1

k n
+T 3 Sticcdna J[JUPT) 32)
i=1

0<j1<-~<jp<27—1 h=1
+ terms of higher degree in 7T

Let us denote by Ly the coefficient of 7' in the representation (3.2),
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namely:

k n
Ly = Z Zjl"'jh"'ijUi[Jh]i-
0<j1< <jp<2"—1 h=1 i=1

For later use we are now going to show the following result, for whose
proof we are indebted to G. Matera.

Lemma 1 The polynomials Ly, ..., Lan are Q-linearly independent in
Q[Us, ..., Uy).

Proof Let us abbreviate N := 2" —1. We observe that for1 <k < N +1
and 0 < j < N the coefficient ¢y ; of the monomial [} ; Ui[J]" occuring
in the polynomial Lj, can be represented as

Uiy = > Jiee Jhot-

0<j1< " <jp_1<N
jr#j for r=1,... k-1
Claim: For fized N and k, the coefficient y ; can be written as a poly-
nomial expression of degree exactly k — 1 in the index j. Moreover, this
polynomial expression for (i ; has integer coefficients.
Proof of the Claim. We proceed by induction on the index parameter k.

For k =1 we have ¢; ; = 1 for any 0 < j < N and therefore {; ; is a
polynomial of degree kK — 1 = 0 in the index j.

Let 1 < k < N+ 1. Assume inductively that £ ; is a polynomial
of degree exactly k¥ — 1 in the index j and that the coefficients of this
polynomial are integers. We are now going to show that {41 ; is a
polynomial of degree exactly k in j and that the coeflicients of this
polynomial are integers too. Observe that

bhy1,j = > Juegn

0<j1<-<jp<N
dn#j for r=1,.k

= Z j1"'jk—j< Z jl"'jk—l)-
0<j1<<jp <N 0<j1<-<ip_1<N
jr#j for r=1,...,k—1
holds. Since the term

> VIRRRN*

0<j1<<jr<N
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does not depend on j and since by induction hypothesis

fk,j = Z jl "‘jk—l

0<i1< - <ip_1<N
JrF#3 for r=1,...,k—1
is a polynomial of degree exactly k — 1 in j, we conclude that £z41,; is
a polynomial of degree exactly k£ in j. Moreover, the coeflicients of this
polynomial are integers. This proves our claim.

It is now easy to finish the proof of Lemma 1. By our claim there
exist for arbitrary 1 < k < N + 1 integers c(()k), - ~,c§£1 with 01(9121 #0
such that for any 0 < j < N the identity ¢ ; = c(()k) + -+ cg‘?lj’“*1
holds. Hence for arbitrary 0 < k < N there exist rational numbers

/\gk), ey )\,(:21 (not depending on j) such for any 0 < j < N the condition

jk = )\gk)fl’j +---+ /\Eﬁlékﬂ,j

is satisfied (here we use the convention 0° := 1). This implies for any
index 0 < k < N the polynomial identity

MIL 4+ A0 Lo = > G UP
0<j<N  i=1

n

Hence for any 0 < k < N the polynomial P; := Z ijUi[j]"

0<j<N =1
belongs to the Q-vector space generated by Li,...,Ln41-

On the other hand, we deduce from the nonsingularity of the
Vandermonde matrix (jk)o <hj<N that the polynomials Py, ..., Py are
Q-linearly independent. Therefore the Q-vector space generated by
Ly,...,Lyy1 in Q[Uy,. .., U,] has dimension N 4+ 1 = 2™. This implies
that Li,..., Lan are Q-linearly independent. ]

With the notations of Section 2.2, put now r :=n+1,T := U, 1 and
let us consider the following polynomials of Q[T, Uy, ..., Up, X1, ..., Xp]:

Gy =X>—X1,...,Gp:=X,>— X, and

F:= i 2071 X; + Tﬁ(l +(U; = 1D)X;). (3.3)

It is clear from their definition that the polynomials Gy,...,G, and
F can be evaluated by a (non-invariant) totally division-free arithmetic
circuit 3 of size O(n) in Q[T,Uy,...,U,, X1, ., Xn]. Observe that the
polynomials G4, ...,G, do not depend on the T,Uy,...,U, and that
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their degree is two. The polynomial F' is of degree 2n + 1. More pre-
cisely, we have degy,  x, F =n, degy, p, F =n, and degp F' = 1.
Although the polynomial F' can be evaluated using O(n) arithmetic op-
erations, the sparse representation of F', as a polynomial in the variables
T,U1,...,Upn, X1,...,X,, contains asymptotically 2™ non-zero mono-
mial terms.

Let us now verify that the polynomials G, ...,G, and F form a flat
family of elimination problems depending on the parameters 7', Uy, . . ., Uj,.

The variety V := {G1 = 0,...,G,, = 0} is nothing but the union
of 2" affine linear subspaces of A" x A", each of them of the form
A" {¢}, where ¢ is any point of the hypercube {0,1}". The canonical
projection A" x A™ — A" induces a morphism 7 : V — A"T!
which glues together the canonical projections A" x {¢} — A™*! for
any £ in {0,1}". Obviously the morphism = is finite and generically
unramified. In particular 7 has constant fibres which are all canonically
isomorphic to the hypercube {0,1}™. Let (j1,...,7n) be an arbitrary
point of {0,1}™ and let j := 3>, ;. 42"~ be the integer 0 < j < 27
whose bit representation is jnjn_1...ji. One verifies immediately the
identity

n
F(T, U, Uny 1,5 dn) = 5+ T [ U
i=1
Therefore for any point (£, u1, ..., Un,j1,...,js) € V with j:= 37 j;2071
we have
L .
F(tvulv‘- Sy Uny J1y - 7.7”) =J +THU’§1
i=1
;From this observation we deduce easily that the polynomial
PeQ[T,Us,...,U,Y]
we are looking for (as the elimination polynomial associated to the flat
family G4, ...,Gy, F) is in fact

2" —1

P=J[w-G +TﬁUi[j]")).
7=0

=1
With the notations of the beginning of this section, this polynomial has
the form

P=Y"+ Y AY"F =Y+ > (a+TL)Y> * moduloT?,
1<k<2n 1<k<2n
(3.4)
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with ap, := Zl§j1<___<jk§2n_1j1 cogefor 1<k <2m,

Suppose now that there is given a geometrically robust parametric
elimination procedure. This procedure produces from the input circuit
(B an invariant arithmetic circuit T" in Q[T, Uy, ...,U,,Y], with scalars
in Q[T, Uy, ..,U,], which evaluates the polynomial P. Recall that the
invariance of I" means that the scalars of I' are invariant polynomials of
Q[T, Ul,., .,Un], say Ql,, ,QN

Let £(T') be the total and L(T") the non-scalar size of the arithmetic
circuit T' over Q[T,Uy,...,U,]. Without loss of generality we have
L(T) < L(T) and N < (L(T) + 3).

Let Zi,...,Zy be new indeterminates. From the graph structure
of the circuit I' we deduce that there exists for each 1 < k < 2" a
polynomial Qy € Q[Zy, ..., Zy] satisfying the condition

Qr(,...,0n) = A4 (3.5)

(see [3] for details). Let us now consider two arbitrary elements
u,u’ € A". Observe that the parameter points (0,4) and (0,u') of
A™! are equivalent (in symbols: (0,u) ~ (0,u')). From the invariance
of Qy,...,0Qn we deduce therefore that Q;(0,u) = €;(0,u') holds for
any 1 < j < N. This means that the polynomials

w1 = Ql(O,Ul,...,Un),...,wN = QN(O,Ul,...,Un)

are independent from the variables Us,...,U, and therefore elements
of Q. From identity (3.4) we conclude that the same is true for oy :=
A1 (0,Ur,y ... Up),y oo yagn == Agn (0,Uy,...,U,). We shall abbreviate
w:=(wi,...,wn) and a = (0q,...,09n).
Let us consider the morphisms of affine spaces p: A" — A" and
¢: AN — A?" given by = (Qu,...,Qn) and ¢ := (Qr)1<h<an.
Observe that

pop=(Qr(Q,...,0N))1<r<on = (Ag)i<r<on
holds. From our previous considerations we deduce the identities
(’(L’ o ,u,)(O,U17 e ,Un)

= (Qr(0(0,U1,...,Upn)s...,ON(0,Us,...,Upn)))1<k<2n
= (Qr(w))1<k<an-

In particular we have ¥ (w) = a.
We analyse now the local behaviour of the morphism ¢ in the point
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w e AN, Let E, and E, be the tangent spaces of the points w € AV
and a € AZ". Let us denote the differential of the map 1) in the point
w by (D¢), : E, — E,. Taking the canonical projections of A" and
A?" as local coordinates in the points w and « respectively, we identify
E, with AN and E, with A>".

For any point 4 € Q" we consider the parametric algebraic curves
Yo Al — AN and 6, : A' — A%" defined as

Yu ‘= (QI(T7 u)a sy QN(T7 u)) and 5“ = (Ak (T’u))1§k§2" .

Observe that ¢ o v, = §, and that v,(0) = w, §,(0) = a holds
(independently of the point u).
Now fix u € Q" and consider

14(0) = (S 0,), -, 22X (0,w) and 5,(0) = (0, w)gecon.

We have ~,,(0) € E, and ¢§'(0) € E4. ;From (3.4) we deduce that for
any 1 < k < 2" the identity %(O,u)) = Ly (u) holds. Therefore we
have 0,,(0) = (Lg(u))1<k<2~. This implies

(D) (1,(0)) = 8, (0) = (Lg(u))1<k<on- (3.6)

holds. From Lemma 1 we deduce that there exist for 1 <[ < 2" rational
points u; € Q" such that the matrix (Lx(u;))1<k,i<2» is regular. From
(3.6) we deduce now that the 2™ x N-matrix built by the row vectors
Yuy (0)5 -+ s Yoy (0) has rank at least 2". This implies the lower bound
N > 2n.

Therefore we have 2" < N < (L(T') + 3)? and hence the estimate
25 —3 < L(T) < L(T'). We have therefore shown that any geometri-
cally robust parametric elimination procedure applied to the flat family
of elimination problems (3.3) produces a solution circuit of size at least
25 —3, i.e. a circuit of exponential size in the length O(n) of the input.

i From the previous example we deduce that the goal of a polyno-
mial time procedure for geometric (or algebraic) elimination can not
be reached just by means of an improvement of known, commutative
algebra-based elimination methods.

On the other hand, our proof method is not very specific for elimina-
tion problems. This can be visualised by the following example:

let A be the Q-subalgebra of Q[T,Uq,...,U,] generated by the co-
efficients of the polynomial F of (3.3) with respect to the variables
Xi,...,X,. In the same manner as above, one may show that in the
non-scalar complexity model with respect to A, any totally division—free

0A
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arithmetic circuit which evaluates the polynomial F' using only scalars
from the Q-algebra A, has necessarily exponential size in n.

On the other hand, the polynomial F' can be evaluated by a totally
division—free arithmetic circuit in Q[T,Uy,...,Up, X1,...,Xy] of size
O(n).

Therefore we see that in the non-scalar model the (sequential time)
complexity of a polynomial depends strongly on the structure of the
algebra of scalars.

It was fundamental for our argumentation above that our notion of a
geometrically robust parametric elimination procedure excludes branch-
ings and divisions in the output program. We resume the conclusions
from the complexity discussion of our example in the following form.

Theorem 2 ([18]) For any n € N there exists a flat family of elimina-
tion problems depending on n+1 parameters and n variables over Q and
having input length O(n), such that the following holds: any geometri-
cally robust parametric elimination procedure which solves this problem
produces an output circuit of size at least 2% —3 (i.e. of exponential size
in the input length).

3.2 Circuit encoding of polynomials

We are now going to explain how we may encode polynomials of a certain
complexity class by their values in suitable test sequences.

Let L and n be given natural numbers which we think fixed for the
moment and let X;,..., X, be indeterminates over k. In this sec-
tion we shall only consider totally division-free arithmetic circuits in
k[X1,...,X,] and we shall only consider the non-scalar sequential com-
plexity model over k.

By H := Hin we denote the complexity class of all polynomials
H € k[Xi,...,X,] which can be evaluated by a totally division-free
arithmetic circuit in k[X1, ..., X,] of size at most L.

For any polynomial H € H we have deg H < 2~. On the other hand we
havee.g. X 12L € H. This implies that 27 is an ezact degree bound for the
elements of . Let D := 2* 4+ 1. Since the elements of H are contained
in the D-dimensional k-linear subspace of k[X1,...,X,] consisting of
the polynomials of degree at most 2% = D — 1, we may consider  as a
subset of A”. Observe that for any H € H and any o € k the element
oH belongs to H. Let W := W, ,, be the Zariski closure of H := H, ,, in
AP Since H is a cone over k, the same is true for W. On the other hand,
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‘H is the image of a k-definable morphism of affine spaces AT
AP Thus, in conclusion, W is an irreducible algebraic variety of AP,
definable by homogeneous polynomials belonging to k[Xy,...,X,] (see
[3], Chapter 9 for details).

In the sequel we shall interprete the points of AP as polynomials of
k[X1,...,X,] having degree at most D — 1 and viceversa. In particular
we shall interprete the points of YV as polynomials.

Definition 1 Let be given a sequence of points y1,...,vm € k™ and let
v:= (Y1y--->Ym). Let us call m the length of .

(i) We call v a correct test sequence for the polynomials of
k[ X1,..., X5

of non-scalar complexity at most L (i.e. for Hy ), if for any
H € Wi, the following implication holds:

Hv)=0,....,H(ym) =0= H =0.
(ii) We call v an identification sequence for the polynomials of
k[X1,...,X,)]

of non-scalar complexity at most L (i.e. for Hr ), if for any two
elements Hy, Hy of Wi, the following implication holds:

Hi(m) = Ho(m), .-, Hi(ym) = Ha(ym) = Hi = H>.

Although the polynomials of the complexity class Hr_, may have ex-
ponential degree 27, there exist short identification sequences for Hr, ,,.
This is the content of the next result.

Lemma 3 ([20, 23]) Let the notation be as before. Let M C k be
a finite set of cardinality at least 4ALD? and let m = 6(2L +n + 1)2.
The there exist points V1, -..,Ym € M™ such that v := (y1,---,7m) 1
an identification sequence for Hr . Suppose that the points of M™ are
equidistributed. The probability of finding by a random choice such an
identification sequence is at least (1 — 4LD*12(2L+"+1)2) >1/2.

Proof From [20, 23] we deduce that there exist in M™ correct test
sequences of length m := 6(2L +n + 1)2 for Hor,n and that such a
correct test sequence can be found with probability of success

(1- 4LD*12(2L+"+1)2) by a random choice in M™.
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Let v := (71,.-.,7m) € k™*™ be a correct test sequence for Har p.
Let Hy, H> € Wi, and suppose that

Hy(m) = Hz(m),- -+, Hi(Ym) = Ha2(vm)

holds. Observe that H := Hs — H; belongs to War ,. Therefore we
have H(v1) =0,...,H(v,) =0, and, since v is a correct test sequence
for Har n, we may conclude H = Hy — H; = 0. O

Let now m := 6(2L +n + 1)*>. Then, by Lemma 3, we may fix an
identification sequence v := (v1,...,7m) € k™*™ for the complexity
class H = Hrn. Let Si,...,S, be new indeterminates denoting the
canonical coordinate functions of A™. We are going to consider the
morphism U(L”:)n : Wi, — A™, defined for H € Wi, by a(LTL(H) =
(H(v1),...,H(ym)). Let S?Zl be the Zariski closure of the image of the

morphism O'g)% and let us abbreviate o := O'EZZL and S := SSZL
Since the variety W and the morphism o : W — § are k-definable,
we conclude that S is k-definable too. Moreover for any polynomial

H €W and any value a € k we have
o(aH) = (@H (), ... aH(3m)) = a0 (H)

and from this homogeneity property of ¢ we conclude that S is a cone
over the field k. Therefore S is definable by homogeneous polynomials
belonging to k[Si1,...,Sm]. Since the variety W is irreducible and S is
the closure of the image of o, we conclude that S is irreducible too.

By assumption v := (y1,...,7m) is an identification sequence for the
complexity class H = Hr . Therefore we conclude that o : W — S is
an injective, dominant morphism. Hence o is birational.

Let 0 = (01,...,0,) where o1,...,0,, are suitable coordinate func-
tions of the affine variety Y. Let us consider W as a closed subvariety
of the affine space AP. We recall that the points of AY correspond to
the polynomials of k[X1, . .., X,] of degree at most D and that the mor-
phism o is defined by means of the evaluation of the polynomials of W
in the points 71,...,7,. This implies that there exist linear forms in
the coordinate ring of AP such that oy, ...,0., are the restrictions of
these linear forms to the variety W. From the injectivity of o we deduce
that W N {0y =0,...,0, = 0} contains only the origin of A”. This
implies that the homogeneous map o induces a finite morphism between
the projective varieties associated to the cones VW and S. In fact, the
standard proof of this classical result implies something more, namely
that also the morphism o : W — S is finite (see [37] 1.5.3, Theorem
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8 and proof of Theorem 7). In particular, o is a surjective, closed map
and hence a homeomorphism with respect to the Zariski topologies of
W and S.

Thus we have shown the following result:

Lemma 4 Let notations be as before and let m := 6(2L + n + 1)>. Sup-
pose that there is given an identification sequence v := (Y1,...,Ym) €
E™>™ for the complexity class Hp ., and let O'(L’Y’Zl :Wrn — Sgyzb be
the morphism of affine varieties associated to the identification sequence

v. Then J(LTZL is a finite, bijective and birational morphism of algebraic

varieties and in particular O'gt)n 18 o homeomorphism with respect to the

Zariski topologies of WL » and S?ZL

Since the varieties Wy, , and 3921 are irreducible, we conclude that

their coordinate rings k[Wr »] and k[SgZL] are domains with function
fields k(Wr,,) and k(ngb) The morphism ‘7221 induces an embedding

of the coordinate ring k[ngL] into k[Wr ] (and the same is true for the
corresponding function fields). Moreover, the finiteness of the morphism
ag& means that k[Wr, ] is an integral ring extension of k[SPL]

Disregarding the complexity aspect, Lemma 4 says that it is possible
to reconstruct the coeflicients of a polynomial H € #H,, from the values
of H in a given identification sequence <, even if the sequence 7 is
short in comparison with the degree of H. Lemma 4 says further that
this reconstruction is rational (i.e. it uses only arithmetical operations)
and that possibly occuring divisions may always be performed by limit
processes in the spirit of de I’'Hopital’s rule. These processes produce
only finite limits, because the coefficients of H are integrally dependent
on the values of H in the given identification sequence . In algebraic
terms, we may modelise these limit processes by places (corresponding to
valuation rings) which map the function field k(sﬁl) of the variety ngb
into the set of values kU{oo} and take only finite values on k[Sg’ZL] The
finiteness of the limits mentioned before is modelised by the requirement
that any extension of such a place to the function field k(Wr ) takes
finite values on k[Wr ). This requirement is satisfied, because k[Wr ]
is integral over k[SgY,)l] (see [26] for details about places and integral
extensions).
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3.3 The complexity of parametric elimination procedures

In this section we suppose that the ground field k is of characteristic zero.
Let n be a fixed natural number, m(n) := 6(3n + 1)%, N(n) := (n + 3)2
and X1,...,Xn,2Z1,...,ZN(@m) and Y, S1, ..., Syy(n) indeterminates over
k.

Let us fix an identification sequence v := (y1,...,Ym(n)) € () xn
for the polynomials of k[Xy,...,X,] having non-scalar complexity at
most n (i.e. for the complexity class H,, p).

iFrom [3], Chapter 9, Theorem 9.9 we deduce that there exists a
polynomial

R, € k[Zl, .. 7ZN(n),X1, e 7Xn]
satisfying the following conditions,

e R, can be evaluated by a totally division-free arithmetic circuit in
k[Z1,...,ZN@), X1, ..., Xy] of non-scalar size N(n)

o for any H € H, , and any totally division-free arithmetic circuit § in
l_c[Xl, ..+, Xp], such that 3 has non-scalar size n, scalars (1, ..., (n(n) €
k and such that 8 evaluates the polynomial H, we have

H=Ru(Cire s Cavinys X1s- - > Xn)-

Let us consider the following existential formula ®,(S1,. .., Smn),Y) in
the free indeterminates (”free variables” in the terminology of mathe-
matical logic) S1,...,Smm),Y,

(3X1),...,(3X)(321), ..., @Znw)( \ X —Xi=0A
1<i<n

N Sk =Ru(Z1,. .., Zny ) AY = Ru(Z1,- -, Znny X1, - X))

1<k<m(n)
Observe that the existential formula (3Y)®,,(S1, ..., Sm(n),Y) describes
the set aﬁﬂ%(%n,n). Thus the formula @,,(S1, . . ., Sp(n), Y) introduces an
implicit semantical dependence between the indeterminates Si, .. ., Sy (n)-
In the sequel we shall consider the inteterminates Si,..., Sy ) as pa-
rameters and Y as variable.

Let us finally remark that the formula ®,(S1,...,Sn(n),Y) may be
represented by a totally division-free circuit in

kX1, ., X0, Z1, o ZN@), Sty -+ - Sman)» Y]

of size O(n?).

Let us now consider an arbitrary (universal) parametric elimination
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procedure IT with associated sequential time complexity measure 7 and
suppose that IT and T satisfy the following conditions:

(i)

(iii)

For any totally division-free arithmetic input network 3 of total
size L£(3) such that @ represents an existential input formula @
in the elementary language of algebraic geometry over the field k&,
the elimination procedure II is able to produce a totally division-
free arithmetic output network I' with £(I') < T(£(8)), such
that I' represents a quantifier-free formula which is semantically
equivalent to .
For any totally division-free arithmetic input network J; repre-
senting a constructible subset X' of an appropriate affine space,
the procedure II is able to produce a totally division-free arith-
metic output circuit I'y with £(T'1) < T(L(1)), such that T’y
represents a suitable polynomial equation system for the Zariski
closure of the constructible set X'.
Let Uy, ...,U, and Y be indeterminates and let be given a positive
number s of nonzero polynomials, say
By,...,Bs € k[Uh,...,U.,Y]. Let V := {By =0,...,Bs = 0}.
Suppose that V is nonempty. Consider the morphism of affine
varieties m : V' — A", induced by the canonical projection of
A" x A onto A". Let S be the Zariski closure of 7(V) and
assume that S is an irreducible closed subvariety of A". Suppose
that the polynomials Bj, ..., Bs are given by a totally division—
free arithmetic circuit By in k[Us,...,U,, Y] and suppose that
they satisfy all our requirements at the end of Section 2.2. Hence
there exists a well-defined parametric greatest common divisor
h € kE(S)[Y] associated to the polynomials By, ..., Bs.

Then the procedure II is able to produce an essentially division-
free arithmetic circuit I's in k(Uy,...,U,)[Y] with
L(T3) < T(L(B=2)) such that 'y computes a representative H €
k(Ui,...,U.)[Y] of the (generically squarefree) parametric great-
est common divisor h € k(S)[Y] and such that I's satisfies the
requirements formulated at the end of Section 2.2 for such a cir-
cuit. Moreover, the same holds true for the generically squarefree
parametric greatest common divisor associated to the polynomi-
als B]_,...,Bs.

In view of conditions (i7) and (ii4) above, we say that the paramet-
ric elimination procedure Il computes efficiently Zariski closures and
(generically squarefree) greatest common divisors.
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The requirement that 'y and 'y are circuits (and not arithmetic net-
works) contains implicitly the meaning that the procedure IT is branching
parsimonious (see Section 2). Similarly, the behaviour of the circuit 'y
under specialisation by places expresses the requirement, that the proce-
dure II is division parsimonious.

Let us finally observe that, after a suitable adaption of the data struc-
tures, all known universal elimination procedures satisfy with respect to
appropriate sequential time complexity measures our conditions (%), (%)
and (ii7) (see Section 3.4 for more details).

We are now ready to state the main result of this paper.

Theorem 5 Assume that the ground field k is of characteristic zero.
Let 1T be an arbitrary parametric elimination procedure with associated
sequential time complexity measure T and suppose that I and T sat-
isfy conditions (1), (¢ii) and (ii7) above. There exists a family of totally
division-free arithmetic input circuits = (/B”)nEN such that each (3,
O() and represents a parametric family of polynomial
equation systems with a well defined, canonical elimination polynomial
P,,. The elimination procedure Il produces for eachn € N from the input
circuit B, an essentially division-free output circuit I';, which represents
the elimination polynomial P,. The total size of the output circuit T,
cannot be polynomial in the parameter n. Therefore T is not a polyno-
mial function.

has total size n

Proof Let be given a parametric elimination procedure II with asso-
ciated sequential time complexity measure 7, as in the statement of
the theorem. Let n € N. We apply first the procedure II to any to-
tally division-free arithmetic circuit 3, of size O(n*) which represents
the formula ®,(S1,...,Syn),Y). In virtue of condition (i) above, we
obtain as output a totally division-free arithmetic network ﬂf") of size
T(O(n*)) representing a quantifier-free formula which is semantically
equivalent to ®,(S1,...,Sm(n),Y). Applying now the procedure IT to
the network ﬁ§"), we obtain in virtue of condition (i7) above a totally
division-free circuit 5™ of size T2(O(n*)) which represents a positive
number s of polynomials, say B, ..., Bs € k[S1,. .., Sm(n), Y], such that
By =0,...,B; =0 forms a polynomial equation system for the Zariski
closure of the constructible subset of the affine space A™™ x A', de-
fined by the formula ®,(S1,...,Smm),Y). This equation system con-
tains polynomials of k[S1, ..., Sy (n)] which determine the Zariski closed
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subset S := S,({yr)b of A™") (recall that the existential formula
(AY)®@n(S1,. .., Smmn), Y)

describes the set 5% (M) and that S is its Zariski closure).

Let b1,...,bs € K[S][Y] be the polynomials in Y with coefficients
in k[S] induced by Bi,...,Bs and observe that not all polynomials
b1,...,bs are zero. We consider now an arbirary point

u = (ug,.. .,um(n)) € aﬁ%(?—tn,")‘
There exists a point ¢ = ((1,---,(n(n)) € AN such that
E = Rn(C,Xl, PN ,Xn) = Rn(é_lv ... 7CN(n)7X17 PN ,Xn)

satisfies the condition u = oSA(E) = (Ru(C,71), - - s Rn(C, Ym(n)))-

(From Lemma 4 we deduce that the polynomial E € k[Xq,...,X,]
depends only on the point u and not on the particular choice of { €
AN™ | Let us therefore write E, := E. Let P, := e, emyeqoay (Y —
E(e1,...,€n))-

Interpreting now the formula ®,(S1,...,Sm(n),Y) semantically, we
see that @y, (u1,...,Un(n),Y) is equivalent to P, (Y) = 0.

For a suitable choice of u € o&%(?—in,n) (e.g. choosing u with H, =
S, 2071X;) we obtain a separable polynomial P,.

There exists therefore a nonempty Zariski open subset U C S, con-
tained in Jﬁ%(?—in,n), such that for u € U the greatest common divisor of
the non—zero elements of by (u,Y) := By (u,Y),...,bs(u,Y) := By(u,Y)
has the same zeroes in k as the polynomial P,(Y) and such that P,(Y)
is separable.

Let h € k(S)[Y] be the (normalised) greatest common divisor of
the non—zero elements between the polynomials b, ...,bs; and let h e
E(S)[Y] be the unique monic sparable polynomial with the same roots
as h in an algebraic closure of k(S). Without loss of generality we may
assume that for any point u € U the specialised polynomial h(u,Y) is a
well-defined element of k[Y] with A(u,Y) = P,(Y).

Let A be the integral closure of the coordinate ring k[S] in its fraction
field k(S). From Lemma 4 we deduce now that & and h belong to the
polynomial ring A[Y] and that the polynomials By, ..., B, satisfy the
requirements of the end of Section 2.2. In other words,the polynomial h
is the parametric greatest common divisor associated to By, ..., Bs; and
h is its generically squarefree counterpart.

Let us now consider Si,..., Sy ) as parameters and Y as variable.
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Applying finally the procedure II to the circuit ﬂén) we obtain by virtue
of condition (i47) above an essentially division-free arithmetic circuit T',*
in k(S1,..-,Smn))[Y] which computes a representative of the generi-
cally squarefree greatest common divisor he A[Y]. The size of T',,* is
T3(0(n*)) and the circuit T',* satisfies the requirements of the end of
Section 2.2. From condition (#i7) above we deduce that all scalars of
['," are rational functions of k(S1,. .., Sm(n)) which represent elements
of the ring A.

We consider now the polynomial F' := 37 | 217V X, + T[] (1+(U;—
1) X;) introduced in Section 3.1. This polynomial can be represented by
a totally division-free circuit of non-scalar size n over k[Uy,...,Up,T].

Let Ay := F(Uy,...,Un, T, m1),... 7Am(n) = F(lh,..., Un7T7')’m(n))-
Then Ay, ..., Ap(y) are invariant polynomials of k[Uy, ..., Uy, T]. Spe-
cialising now the parameters S1,. .., Sp(n) into the polynomials
At, ..., Apn), We obtain a k-algebra homomorphism

k[S] — k[Al, . Am(n)]

We consider this homomorphism as a specialization of the coordinate
ring k[S].

Since the circuit T',,* satisfies the requirements of the end of Section
2.2, the scalars of I',,* become now specialised into elements of the field
k(A1,...,Amm))- These elements belong to the integral closure of the
k-algebra k[Aq,..., Ay ()] in its fraction field k(Ay, ..., Apy(y)). Since
k[A1,..., Apny] is a k—subalgebra of the (integrally closed) polynomial
ring k[Uy,...,U,,T], we conclude that the above specialisation maps
the scalars of the circuit I',," into elements of k[U1, ..., U, T] which are
integral over k[Aj, ..., Ay (p)]. This implies that the scalars of T',,* are
specialised into invariant polynomials of k[Uy,...,U,,T].

Denote now by T';, the totally division—free invariant circuit of
k[Uy,...,U.,T,Y] obtained by specializing in I',* the scalars as ex-
plained before. Let L(I',) be the non—scalar size of the circuit I',, over
k[U1,...,U.,T)]. Then we have L(T',) > L(T,*) > T3(0O(n*)) and T,
computes the image of h under the above specialisation, namely the
elimination polynomial P := H?;EI(Y -(+TII, U;94)) of Section
3.1.

{From the invariance of the circuit I';, and Theorem 2 and its proof
we deduce now the estimate L(I';) > 2% — 3. On the other hand we
have 73(0O(n*)) > L(T',). This implies that 7 cannot be a polynomial
function. O
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3.4 State of the art in circuit-based elimination

Let us now analyse from a general non-uniform point of view how the
seminumerical elimination procedure designed in [13] and [11] works on
a given flat family of zero-dimensional elimination problems.

Let Uy,...,Un,X1,-..,X,,Y be indeterminates over the ground field
k and let G1,...,G,, F be polynomials belonging to the k-algebra

kU1, ..., Up, X1, .., Xl

Let d := max{degG1,...,deg G} and suppose that Gi,...,G, and F'
are given by straight-line programs in k[Us, ..., UnX1, ..., Xp] of length
L and K respectively. Suppose that the polynomials Gy, ...,G, form
a regular sequence in k[Uy,...,Upn, X1, ..., Xp] defining thus an equidi-
mensional subvariety V = {G; = 0,...,Gp = 0} of A™*" of dimension
m.

Assume that the morphism 7 : V — A™, induced by the canonical
projection of A™*™ onto A™ is finite and generically unramified. Let
0 be the degree of the variety V' and let D < § be the degree of the
morphism 7. Furthermore let # : V — A™" be the morphism of
affine varieties defined by 7 (z) := (7 (z), F(z)) for any point z of V. Let
P € k[Uy,...,Up,Y] be the minimal polynomial of the image of 7. The
polynomial P is monic in Y and one sees immediately that deg P <
ddeg F' and degy P < D holds. Let us write 6. := degy,, . P.

Let us consider as Algorithm 1 and Algorithm 2 two non-uniform
variants of the basic elimination method designed in [13] and [11].

e Algorithm 1 is represented by an arithmetic network of size K591 +
L(ndA)°") where A is the degree of the equation system G; =
0,...,G, = 0 (observe that always § < A < degG1 ---deg Gy, holds).
The output is a straight-line program I'y in k[U, ..., Up, Y] of length
(K + L)(n6)°™") which represents the polynomial P.

e Algorithm 2 starts from the geometric description of a unramified
parameter (and lifting) point u = (u1,...,uy,) of k™ which has the
additional property that the image of F' restricted to the set {u} x
7~ 1(u) has cardinality D, = deg, P. The algorithm produces then
an arithmetic circuit 'y in k[U7, ..., Un, Y] of length

O(KD°W logs,) + 621 = K (6 deg F)OM
which represents the polynomial P.

We observe that K69 is a characteristic quantity which appears in
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the length of both circuits I'; and I's. One may ask whether a com-
plexity of type K&6°() is intrinsic for the elimination problem under
consideration.

In view of Bézout’s Theorem and the lower complexity bound of The-
orem 5, one may guess that a quantity of asymptotic order K'§ may be
characteristic for the intrinsic sequential time complexity of universal
parametric elimination procedures.

4 Conclusions

It was fundamental for our argumentation in Section 3 that our notion
of parametric elimination procedure restricts severely the possibility of
branchings in the output circuit or network. This suggests that any
polynomial time elimination algorithm (if there exists one) must have a
huge topological complexity. Thus hypothetical efficiency in geometric
elimination seems to imply complicated casuistics.

Let us also mention that the proof method of Section 3 contributes
absolutely nothing to the elucidation of the fundamental thesis of al-
gebraic complexity theory, which says that geometric elimination pro-
duces elimination polynomials which are intrinsically hard to evaluate
(i-e. these polynomials need asymptotically degree—-much sequential time
for their evaluation). A good example for this thesis is the Pochhammer—
Wilkinson polynomial which can be obtained easily as the solution of a
suitable elimination problem but which is conjecturally hard to evaluate
(see e.g. [19, 1]) Similarly no advance is obtained by our method with
respect to the question whether P # N P holds in the BSS complexity
model, see [2], Chapter7.

In fact our contribution consists only in the discovery of a very lim-
iting uniformity property present in all known elimination procedures.
This uniformity property inhibits the transformation of these elimina-
tion procedures into polynomial time algorithms.

In conclusion, when treating with algorithmic elimination problems,
one should not expect too much from the output: as observed already
by Hilbert, a strong limitation to specific elimination problems (with ad-
ditional a priori information or additional semantical structure) is nec-
essary in order to avoid huge difficulties and one should also renounce to
compute the whole elimination object, if this is not required in advance.
In particular, canonical elimination polynomials contain the complete in-
formation about the elimination problem under consideration, they are
”co—versal”, and this makes necessarily intricate their representation in
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any reasonable data-structure (for more details see [6]). A way out

of this dilemma should be found in analysing which information about

elimination objects is really relevant, avoiding in this way to struggle

with enormous objects which encode a lot of spurious knowledge.
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