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These are the notes for the third lecture (written by Lutz Straßburger).

1 Sequent Calculus for MLL

In a previous lecture you have seen the sequent calculus GS1p for classical logic. In this lecture
we remove the rules for weakening and contraction. The result is called unit-free multiplicative

linear logic. Since this is a different logic, there is also a different notation. Conjunction is
written as ², disjunction as O, and negation as (−)⊥. What we get is the following system

id
⊢ a, a⊥

⊢ A, Γ ⊢ B,∆
²

⊢ A ² B,Γ, ∆

⊢ A, B,Γ
O

⊢ A O B,Γ
(1)

We consider sequents as multisets, i.e., order does not matter. The system in (1) is
called MLL−, where the − indicates the fact that the system is unit-free. For adding the
units ⊥ and 1 of linear logic, which correspond to false and true in classical logic, we need to
add the rules

1
⊢ 1

and
⊢ Γ

⊥
⊢ ⊥, Γ

(2)

The system consisting of the rules in (1) and (2) is denoted by MLL. The logic is called
multiplicative linear logic.

Note that in MLL-formulas negation is only allowed at the atomic level, but we can define
it inductively for all formulas via the deMorgan laws:

a⊥⊥ = a 1⊥ = ⊥ ⊥⊥ = 1 (A ² B)⊥ = A⊥
O B⊥ [A O B]⊥ = A⊥

² B⊥ (3)

This allows us to write the cut rule as

⊢ A, Γ ⊢ A⊥, ∆
cut

⊢ Γ, ∆

As for classical logic, we have that the id-rule can be reduced to atoms, but the cut-rule
cannot.

http://www.cs.bath.ac.uk/pb/
http://www.lix.polytechnique.fr/~lutz/
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1.1 Proposition The the general rule

id
⊢ A, A⊥

is derivable in MLL.

Proof: We proceed by structural induction on A. If A is an atom, then we are done. If A

is a unit, then we replace

id
⊢ ⊥,1

by
1

⊢ 1
⊥

⊢ ⊥,1

If A is a compound formula, say A = B ² C, then we replace

id
⊢ B ² C, B⊥ O C⊥

by

id
⊢ B, B⊥

id
⊢ C, C⊥

²
⊢ B ² C, B⊥, C⊥

O
⊢ B ² C, B⊥ O C⊥

and apply the induction hypothesis. If A = B O C we proceed similarly. ⊓⊔

As before, we have the cut-elimination theorem.

1.2 Theorem If a sequent ⊢ Γ is provable in MLL + cut, then it is provable in MLL

without cut.

The proof of this theorem is for linear logic much simpler than for classical logic. For this
reason we can show it here in full. We define the size of a proof Π, denoted by size(Π) to be
the number of rule applications in Π. Now we begin by showing the following lemma:

1.3 Lemma A proof of the shape

ÄÄ
ÄÄ

ÄÄ
??????

Π1

⊢ A, Γ
ÄÄ

ÄÄ
ÄÄ

Ä???????
Π2

⊢ A⊥, ∆
cut

⊢ Γ, ∆

(4)

where Π1 and Π2 are both cut-free, can be transformed into a cut-free proof

ÄÄ
ÄÄ

ÄÄ
??????

Π3

⊢ Γ, ∆

(5)

such that size(Π3) < size(Π1) + size(Π2) + 1.
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Proof: We do this by induction on the size of the proof in (4), i.e., size(Π1) + size(Π2) + 1.
We now proceed by a case analysis on the bottommost rules appearing in Π1 and Π2. If these
rules do not interfere with the cut, we can permute them down, as in the following cases:

ÄÄ
ÄÄ

ÄÄ
??????

Π′

1

⊢ A, Γ′

⊥
⊢ A,⊥, Γ′

ÄÄ
ÄÄ

ÄÄ
Ä???????

Π2

⊢ A⊥, ∆
cut

⊢ ⊥, Γ′, ∆

→
ÄÄ

ÄÄ
ÄÄ

??????
Π′

1

⊢ A, Γ′
ÄÄ

ÄÄ
ÄÄ

Ä???????
Π2

⊢ A⊥, ∆
cut

⊢ Γ′, ∆
⊥

⊢ ⊥, Γ′, ∆

(6)

ÄÄ
ÄÄ

ÄÄ
ÄÄ

ÄÄ
??????????

Π′

1

⊢ A, C, D,Γ′

O
⊢ A, C O D, Γ′

ÄÄ
ÄÄ

ÄÄ
Ä???????

Π2

⊢ A⊥, ∆
cut

⊢ C O D, Γ′, ∆

→ ÄÄ
ÄÄ

ÄÄ
ÄÄ

ÄÄ
??????????

Π′

1

⊢ A, C, D,Γ′
ÄÄ

ÄÄ
ÄÄ

Ä???????
Π2

⊢ A⊥, ∆
cut

⊢ C, D,Γ′, ∆
O

⊢ C O D, Γ′, ∆

(7)

ÄÄ
ÄÄ

ÄÄ
??????

Π′

1

⊢ C,Γ′
ÄÄ

ÄÄ
ÄÄ

ÄÄ
????????

Π′′

1

⊢ A, D,Γ′′

²
⊢ A, C ² D, Γ′, Γ′′

ÄÄ
ÄÄ

ÄÄ
Ä???????

Π2

⊢ A⊥, ∆
cut

⊢ C ² D, Γ′, Γ′′, ∆

→
ÄÄ

ÄÄ
ÄÄ

??????
Π′

1

⊢ C,Γ′

ÄÄ
ÄÄ

ÄÄ
ÄÄ

????????

Π′′

1

⊢ A, D,Γ′′
ÄÄ

ÄÄ
ÄÄ

Ä???????
Π2

⊢ A⊥, ∆
cut

⊢ D, Γ′′, ∆
²

⊢ C ² D, Γ′, Γ′′, ∆

(8)

And similarly for Π2. In all these cases we can apply the induction hypothesis because the sum
of the sizes of the proofs above the cut has been decreased. Note also that in all three cases
the total size of the proof is not changed. In the literature on cut-elimination, cases like (6),
(7), and (8) are called commutative cases. Let us now look at the cases where the rules above
the cut apply to the formulas introduced by the cut. In the literature on cut-elimination, such
cases are called key cases. For MLL, there are three key cases:

i↓
⊢ a, a⊥

ÄÄ
ÄÄ

ÄÄ
Ä???????

Π

⊢ a⊥, ∆
cut

⊢ a⊥, ∆

→
ÄÄ

ÄÄ
ÄÄ

Ä???????
Π

⊢ a⊥, ∆

(9)

i↓
⊢ 1

ÄÄ
ÄÄ

????Π

⊢ ∆
⊥

⊢ ⊥, ∆
cut

⊢ ∆

→ ÄÄ
ÄÄ

????Π

⊢ ∆

(10)
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ÄÄ
ÄÄ

ÄÄ
??????

Π′

1

⊢ A, Γ′
ÄÄ

ÄÄ
ÄÄ

??????
Π′′

1

⊢ B,Γ′′

²
⊢ A ² B,Γ′, Γ′′

ÄÄ
ÄÄ

ÄÄ
ÄÄ

ÄÄ
??????????

Π′

2

⊢ A⊥, B⊥, ∆
O

⊢ A⊥ O B⊥, ∆
cut

⊢ Γ′, Γ′′, ∆

→

ÄÄ
ÄÄ

ÄÄ
??????

Π′

1

⊢ A, Γ′

ÄÄ
ÄÄ

ÄÄ
??????

Π′′

1

⊢ B,Γ2

ÄÄ
ÄÄ

ÄÄ
ÄÄ

ÄÄ
??????????

Π′

2

⊢ A⊥, B⊥, ∆
cut

⊢ A⊥, Γ′′, ∆
cut

⊢ Γ′, Γ′′, ∆
(11)

Note that in all three cases the total size of the proof is strictly decreased. In the first two
cases the cut disappears. In case (11), the cut is replaced by two cuts, which means we need a
slightly more sophisticated argument: First, note that we can apply the induction hypothesis
to the proof

ÄÄ
ÄÄ

ÄÄ
??????

Π′′

1

⊢ B,Γ2

ÄÄ
ÄÄ

ÄÄ
ÄÄ

ÄÄ
??????????

Π′

2

⊢ A⊥, B⊥, ∆
cut

⊢ A⊥, Γ′′, ∆

because size(Π′′
1) + size(Π′

2) + 1 < size(Π′
1) + size(Π′′

1) + size(Π′
2) + 3. This gives us a proof

ÄÄ
ÄÄ

ÄÄ
ÄÄ

Ä?????????

Π′′

2

⊢ A⊥, Γ′′, ∆

with

size(Π′′
2) < size(Π′′

1) + size(Π′
2) + 1 .

Hence, we also have

size(Π′
1) + size(Π′′

2) + 1 < size(Π′
1) + size(Π′′

1) + size(Π′
2) + 3 .

This means we can apply the induction hypothesis again to

ÄÄ
ÄÄ

ÄÄ
??????

Π′

1

⊢ A, Γ′
ÄÄ

ÄÄ
ÄÄ

ÄÄ
Ä?????????

Π′′

2

⊢ A⊥, Γ′′, ∆
cut

⊢ Γ′, Γ′′, ∆

which gives us a cut-free proof

ÄÄ
ÄÄ

ÄÄ
??????

Π3

⊢ Γ, ∆

(12)
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such that

size(Π3) < size(Π′
1) + size(Π′′

2) + 1

< size(Π′
1) + size(Π′′

1) + size(Π′
2) + 3

= size(Π1) + size(Π2) + 1

This completes the proof of the lemma.

Proof (of Theorem 1.2): The statement of the theorem now follows from Lemma 1.3 by
an induction on the number of cuts in the proof of ⊢ Γ . ⊓⊔

1.4 Remark The system MLL is an exceptionally simple case for cut elimination. In most
other logics, the size of the proof does not decrease during cut elimination. Usually there is an
exponential or even hyper-exponential blow-up of the proof when cut elimination is applied.
This means one has to find more sophisticated induction measures.

2 Calculus of Structures for MLL

In the calculus of structures, multiplicative linear logic is given by the following system:

S{1}
ai↓

S{a O a⊥}

S{[A O B] ² C}
s

S{A O (B ² C)}
(13)

which we will call MLS. As before, we consider formulas equivalent modulo the following
equations:

(A ² (B ² C)) = ((A ² B) ² C) (A ² B) = (B ² A) (A ² 1) = A

[A O [B O C]] = [[A O B] O C] [A O B] = [B O A] [A O ⊥] = A
(14)

A proof in this system is a derivation with premise 1. A formula A is provable if there is a
proof Π with conclusion A. We denote this by

1

MLS
‖
‖ Π

A

or simply by

−
MLS

‖
‖ Π

A

The cut rule is
S{a ² a⊥}

ai↑
S{⊥}

(15)

The the calculus of structures, the cut can be reduced to atomic form, which is not possible
in the sequent calculus. The general form of the rules ai↓ and ai↑ are

S{1}
i↓

S{A O A⊥}
and

S{A ² A⊥}
i↑

S{⊥}
(16)

2.1 Proposition The rule i↓ is derivable in {ai↓, s}, and the rule i↑ is derivable in {ai↑, s}.
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Proof: The proof is very similar to the proof of Proposition 1.1. For i↓, the inductive cases
are

S{1}
i↓

S{⊥ O 1}
→

S{1}
=

S{⊥ O 1}

and

S{1}
i↓

S{(B ² C) O B⊥ O C⊥}
→

S{1}
i↓

S{C O C⊥}
=

S{(1 ² C) O C⊥}
i↓

S{([B O B⊥] ² C) O C⊥}
s

S{(B ² C) O B⊥ O C⊥}

The cases for i↑ are dual. ⊓⊔

The system MLS + ai↑ will be called SMLS. For this system, we have the cut elimination
theorem:

2.2 Theorem If a formula A is provable in SMLS, then it is provable in MLS.

We can prove this theorem either by using the sequent calculus cut elimination, or by giving
a direct proof in the calculus of structures. We show here both proofs. Before that, let us see
some interesting consequences.

2.3 Corollary The rule i↑ is admissible in MLS.

Proof: Suppose we have a proof
−

MLS∪{i↑}
‖
‖ Π

A

By Proposition 2.1, this can be transformed into a proof

−
SMLS

‖
‖ Π′

A

To this we apply Theorem 2.2. ⊓⊔

2.4 Corollary For all formulas A and B, we have

A

SMLS
‖
‖ Π1

B

if and only if

−
MLS

‖
‖ Π2

[A⊥ O B]
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Proof: From
A

SMLS
‖
‖ Π1

B

we can obtain
1

i↓
[A⊥ O A]

SMLS
‖
‖ Π1

[A⊥ O B]

Via Proposition 2.1, we obtain
−

SMLS
‖
‖

[A⊥ O B]

By Theorem 2.2 we get
−

MLS
‖
‖ Π2

[A⊥ O B]

Conversely, from
−

MLS
‖
‖ Π2

[A⊥ O B]

we can construct
A

=
(A ² 1)

MLS
‖
‖ Π2

(A ² [A⊥ O B])
s

[(A ² A⊥) O B]
i↑

[⊥ O B]
=

B

From which we get
A

SMLS
‖
‖ Π1

B

by applying Proposition 2.1. ⊓⊔

Now, let us establish the relation between the systems MLL and MLS.

2.5 Proposition If there is a proof

ÄÄ
ÄÄ

ÄÄ
ÄÄ

ÄÄ
??????????

Π

⊢ A1, . . . , An
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in MLL, then there is a proof
−

MLS
‖
‖ Π′

[A1 O · · · O An]
.

Proof: We proceed by induction on the size of the proof Π, and make a case analysis on
the bottommost rule instance in Π:

id
⊢ a, a⊥

→
1

ai↓
[a O a⊥]

1
⊢ 1

→
1

=
1

ÄÄ
ÄÄ

ÄÄ
ÄÄ

ÄÄ
??????????

Π1

⊢ A2, . . . , An
⊥

⊢ ⊥, A2, . . . , An

→

−
MLS

‖
‖ Π′

1

[A2 O · · · O An]
=

[⊥ O A2 O · · · O An]

ÄÄ
ÄÄ

ÄÄ
ÄÄ

????????

Π1

⊢ A′
1, A

′′
1, A2, . . . , An

O
⊢ [A′

1
O A′′

1], A2, . . . , An

→

−
MLS

‖
‖ Π′

1

[A′
1

O A′′
1

O A2 O · · · O An]

ÄÄ
ÄÄ

ÄÄ
ÄÄ

ÄÄ
ÄÄ

????????????

Π1

⊢ A′
1, A2, . . . , Ak

ÄÄ
ÄÄ

ÄÄ
ÄÄ

ÄÄ
ÄÄ

ÄÄ
??????????????

Π2

⊢ A′′
1, Ak+1, . . . , An

²
⊢ (A′

1
² A′′

1), A2, . . . , Ak, Ak+1, . . . , An

→

−
MLS

‖
‖ Π′

2

[A′′
1

O Ak+1
O · · · O An]

=
[(1 ² A′′

1) O Ak+1
O · · · O An]

MLS
‖
‖ Π′

1

[([A′
1

O A2 O · · · O Ak] ² A′′
1) O Ak+1

O · · · O An]
s

[(A′
1

² A′′
1) O A2 O · · · O Ak O Ak+1

O · · · O An]

In all cases the derivations Π′
1 and Π′

2 are obtained via the induction hypothesis from Π1

and Π2. ⊓⊔

2.6 Proposition If there is a proof

ÄÄ
ÄÄ

ÄÄ
ÄÄ

ÄÄ
??????????

Π

⊢ A1, . . . , An

in MLL + cut, then there is a proof

−
SMLS

‖
‖ Π′

[A1 O · · · O An]
.
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Proof: The proof is the same as the previous one. We only need to add the case for the cut:

ÄÄ
ÄÄ

ÄÄ
ÄÄ

ÄÄ
ÄÄ

????????????

Π1

⊢ B, A1, . . . , Ak

ÄÄ
ÄÄ

ÄÄ
ÄÄ

ÄÄ
ÄÄ

ÄÄ
Ä???????????????

Π2

⊢ B⊥, Ak+1, . . . , An
²

⊢ A1, . . . , Ak, Ak+1, . . . , An

→

−
MLS

‖
‖ Π′

2

[B⊥ O Ak+1
O · · · O An]

=
[(1 ² B⊥) O Ak+1

O · · · O An]

MLS
‖
‖ Π′

1

[([B O A1 O · · · O Ak] ² B⊥) O Ak+1
O · · · O An]

s
[(B ² B⊥) O A1 O · · · O Ak O Ak+1

O · · · O An]
i↑

[A1 O · · · O Ak O Ak+1
O · · · O An]

Finally, we need to apply Proposition 2.1. ⊓⊔

2.7 Proposition If there is a proof

−
SMLS

‖
‖ Π

Q
,

then there is a proof

ÄÄ
ÄÄ

????Π
′

⊢ Q

in MLL + cut.

Proof: Again, we proceed by induction on the size of Π, and consider the bottommost rule
instance in Π:

−
‖
‖ Π1

Q1
ρ

Q

By induction hypothesis, there is a proof

ÄÄ
ÄÄ

Ä?????Π
′

1

⊢ Q1

in MLL + cut. Now we show that there is also a proof

ÄÄ
ÄÄ

ÄÄ
Ä???????

Π′

2

⊢ Q⊥
1 , Q

in MLL + cut, from which we can then construct Π′:

ÄÄ
ÄÄ

Ä?????Π
′

1

⊢ Q1

ÄÄ
ÄÄ

ÄÄ
Ä???????

Π′

2

⊢ Q⊥
1 , Q

cut
⊢ Q
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For constructing Π′
2, we first show for every rule

S{A}
ρ

S{B}

there is a proof

ÄÄ
ÄÄ

ÄÄ
Ä???????

⊢ A⊥, B

For ai↓ and ai↑, we have

id
⊢ a, a⊥

O
⊢ a O a⊥

⊥
⊢ ⊥, a O a⊥

For s, we have

id
⊢ A⊥, A

id
⊢ B⊥, B

id
⊢ C⊥, C

²
⊢ B⊥, C⊥, A, B ² C

²
⊢ A⊥ ² B⊥, C⊥, A, B ² C

O
⊢ A⊥ ² B⊥, C⊥, A O (B ² C)

O
⊢ (A⊥ ² B⊥) O C⊥, A O (B ² C)

Similarly, we have to show for the equations in (14) that whenever A = B, then there is a
proof

ÄÄ
ÄÄ

ÄÄ
Ä???????

⊢ A⊥, B

We leave this as an exercise. Finally, it remains to show that for every positive context S{ },
we have

If
ÄÄ

ÄÄ
ÄÄ

Ä???????

⊢ A⊥, B

then

ÄÄ
ÄÄ

ÄÄ
ÄÄ

ÄÄ
ÄÄ

????????????

⊢ S{A}⊥, S{B}
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For this, we proceed by induction on the structure of S{ }. The inductive case is

id
⊢ C⊥, C

ÄÄ
ÄÄ

ÄÄ
ÄÄ

ÄÄ
ÄÄ

Ä?????????????

Π′′

⊢ S′{A}⊥, S′{B}
²

⊢ C⊥ ² S′{A}⊥, C, S{B}
O

⊢ C⊥ ² S′{A}⊥, C O S{B}

where Π′′ exists by induction hypothesis. ⊓⊔

Now we are ready for the first proof of Theorem 2.2:

Proof (First proof of Theorem 2.2): A given proof in SMLS is first transformed into a
proof in MLL+cut (by Proposition 2.7). To this proof we apply cut-elimination in the sequent
calculus (Theorem 1.2). The result is translated into a proof in MLS (via Proposition 2.5). ⊓⊔

3 Splitting

The key argument for proving cut elimination in the sequent calculus (Theorem 1.2) relies on
the following property: when the principal formulas in a cut are active in both branches, they
determine which rules are applied immediately above the cut. This is a consequence of the
fact that formulas have a root connective, and logical rules only hinge on that, and nowhere
else in the formula.

This property does not necessarily hold in the calculus of structures. Further, since rules
can be applied anywhere deep inside structures, everything can happen above a cut. This
complicates considerably the task of proving cut elimination. On the other hand, a great
simplification is made possible in the calculus of structures by the reduction of cut to its
atomic form, which happens simply and independently of cut elimination. The remaining
difficulty is actually understanding what happens, while going up in a proof, around the
atoms produced by an atomic cut. The two atoms of an atomic cut can be produced inside
any structure, and they do not belong to distinct branches, as in the sequent calculus: complex
interactions with their context are possible. The solution that we show here is called splitting.

It can be best understood by looking again at the sequent calculus. If we have an MLL-proof
of the sequent ⊢ S{A ² B}, Γ , where S{A ² B} is a formula that contains the subformula
(A ² B), we know for sure that somewhere in the proof there is one and only one instance of
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the ² rule, which splits A and B along with their context. This is indicated below:

ÄÄ
ÄÄ

ÄÄ
??????

Π1

⊢ A, Γ1

ÄÄ
ÄÄ

ÄÄ
??????

Π2

⊢ B,Γ2
²

⊢ (A ² B), Γ1, Γ2

oooooooooooooooooOOOOOOOOOOOOOOOOO

Π3

⊢ S{A ² B}, Γ

corresponds to

−
‖
‖ Π1

[A O Γ1]
‖
‖ Π2

([A O Γ1] ² [B O Γ2])
s

[([A O Γ1] ² B) O Γ2]
s

[(A ² B) O Γ1 O Γ2]
‖
‖ Π3

[S{A ² B} O Γ]

(17)

We can consider, as shown at the left, the proof for the given sequent as composed of three
pieces, Π1, Π2 and Π3. In the calculus of structures, many different proofs correspond to the
sequent calculus one: they differ for the possible sequencing of rules, and because rules in
the calculus of structures have smaller granularity and larger applicability. But, among all
these proofs, there must also be one that fits the scheme at the right in (17). This precisely
illustrates the idea behind the splitting technique.

The derivation Π3 above implements a context reduction and a proper splitting. We can
state, in general, these principles separately as follows:

1. Context reduction: The idea of context reduction is to reduce a problem that concerns
an arbitrary (deep) context S{ } to a problem that concerns only a shallow context
[{ } O U ]. In the case of cut elimination, for example, we will then be able to apply
splitting. In the example above, [S{ } O Γ] is reduced to [{ } O Γ′], for some Γ′.

2. Splitting: In the example above Γ′ is reduced to [Γ1 O Γ2]. More generally, if
[(A ² B) O K] is provable, then K can be reduced to [KA O KB], such that [A O KA]
and [B O KB] are provable.

Context reduction is proved by splitting, which is at the core of the matter.

3.1 Lemma (Splitting) Let A, B, K be formulas. If there is a derivation

−
MLS

‖
‖ Π

[(A ² B) O K]

then there are formulas KA and KB such that

[KA O KB]

MLS
‖
‖ ΠK

K

and

−
MLS

‖
‖ ΠA

[A O KA]
and

−
MLS

‖
‖ ΠB

[B O KB]

where size(ΠA) + size(ΠB) < size(Π).
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Proof: We proceed by induction on the size of Π. We consider the bottommost rule instance
ρ in the proof Π. There are three diffent types of cases:

(a) Assume ρ is applied inside A. Then Π is

−
MLS

‖
‖ Π′

[(A′ ² B) O K]
ρ

[(A ² B) O K]

and we can apply the induction hypothesis to Π′ because it has shorter length than Π.
Hence, we get

[KA′ O KB]

MLS
‖
‖ ΠK

K

and

−
MLS

‖
‖ Π

A′

[A′ O KA′ ]
ρ

[A O KA′ ]

and

−
MLS

‖
‖ ΠB

[B O KB]

We have

size(ΠA) + size(ΠB) = size(ΠA′) + 1 + size(ΠB)

< size(Π′) + 1

= size(Π)

If ρ applies inside B or inside K, the situation is similar.

(b) The second type of case appears when the subformula (A ² B) remains untouched by ρ.
This means ρ is s. The most general form of this case is

−
MLS

‖
‖ Π′

[([(A ² B) O K1 O K3] ² K2) O K4]
s

[(A ² B) O (K1 ² K2) O K3 O K4]

Since the length of Π′ is smaller than the length of Π, we can apply the induction hy-
pothesis to Π′. This gives us

[Q1 O Q2]

MLS
‖
‖ Π1

K4

and

−
MLS

‖
‖ Π2

[(A ² B) O K1 O K3 O Q1]
and

−
MLS

‖
‖ Π3

[K2 O Q2]

where size(Π2) + size(Π3) < size(Π′). In particular, we have size(Π2) < size(Π′). Hence
we can apply the induction hypothesis to Π2. From this we get

[KA O KB]

MLS
‖
‖ Π4

[K1 O K3 O Q1]

and

−
MLS

‖
‖ ΠA

[A O KA]
and

−
MLS

‖
‖ ΠB

[B O KB]
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where size(ΠA) + size(ΠB) < size(Π2) < size(Π) and we can build ΠK as follows:

[KA O KB]

MLS
‖
‖ Π4

[K1 O K3 O Q1]
=

[(K1 ² 1) O K3 O Q1]

MLS
‖
‖ Π3

[(K1 ² [K2 O Q2]) O K3 O Q1]
s

[(K1 ² K2) O K3 O Q1 O Q2]

MLS
‖
‖ Π1

[(K1 ² K2) O K3 O K4]

“Morally”, this case is similar to the commutative cases in the sequent calculus.

(c) Finally, we have consider the situations where the subformula (A ² B) is destroyed by ρ.
Again this means ρ is s. The most general form of this case is

−
MLS

‖
‖ Π′

[([(A1 ² B1) O K1] ² A2 ² B2) O K2]
s

[(A1 ² A2 ² B1 ² B2) O K1 O K2]

For the same reasons as before, we can apply the induction hypothesis to Π′:

[Q1 O Q2]

MLS
‖
‖ Π1

K2

and

−
MLS

‖
‖ Π2

[(A1 ² B1) O K1 O Q1]
and

−
MLS

‖
‖ Π3

[(A2 ² B2) O Q2]

where size(Π2) + size(Π3) < size(Π′). In particular, we have size(Π2) < size(Π) and
size(Π3) < size(Π), which allows us to apply the induction hypothesis to Π2 and Π3. We
get:

[KA1
O KB1

]

MLS
‖
‖ Π4

[K1 O Q1]

and

−
MLS

‖
‖ Π5

[A1 O KA1
]

and

−
MLS

‖
‖ Π6

[B1 O KB1
]

where size(Π5) + size(Π6) < size(Π2) and

[KA2
O KB2

]

MLS
‖
‖ Π7

Q2

and

−
MLS

‖
‖ Π8

[A2 O KA2
]

and

−
MLS

‖
‖ Π9

[B2 O KB2
]

where size(Π8) + size(Π9) < size(Π3). We let KA = [KA1
O KA2

] and KB = [KB1
O KB2

],
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and we can put all the bits and pieces together as follows:

[KA1
O KA2

O KB1
O KB2

]
=

[KA1
O KB1

O KA2
O KB2

]

MLS
‖
‖ Π4

[K1 O Q1 O KA2
O KB2

]

MLS
‖
‖ Π7

[K1 O Q1 O Q2]

MLS
‖
‖ Π1

[K1 O K2]

and

−
MLS

‖
‖ Π5

[A1 O KA1
]

=
[(A1 ² 1) O KA1

]

MLS
‖
‖ Π8

[(A1 ² [A2 O KA2
]) O KA1

]
s

[(A1 ² A2) O KA1
O KA2

]

and similarly we get a proof of [(B1 ² B2) O KB1
O KB2

]. This gives us

size(ΠA) = size(Π5) + size(Π8) + 1 and size(ΠB) = size(Π6) + size(Π9) + 1 .

Note that we also have

size(Π5) + size(Π6) + 1 ≤ size(Π2) and size(Π8) + size(Π9) + 1 ≤ size(Π3) .

Hence, we have

size(ΠA) + size(ΠB) = size(Π5) + size(Π8) + size(Π6) + size(Π9) + 2

≤ size(Π2) + size(Π3)

< size(Π)

as desired. ⊓⊔

3.2 Lemma (Atomic “splitting”) Let a be an atom and let K be a formula. If [a O K]
is provable in MLS, then there is a derivation

a⊥

MLS
‖
‖

K

Proof: Exercise. ⊓⊔

3.3 Lemma (Context Reduction) Let A be a formula, and let S{ } be a context. If

S{A} is provable in MLS, then there is a formula KA, such that

[{ } O KA]

MLS
‖
‖ ΠS

S{ }

and

−
MLS

‖
‖ ΠA

[A O KA]
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Proof: We proceed by induction on the size of S{ }. There is only one case to consider,
namely, S{ } is of the shape [(S′{ } ² B) O C] where B 6= 1 (but we allow C = ⊥). Then we
apply splitting (Lemma 3.1) to the proof of [(S′{A} ² B) O C], which gives us

[CS O CB]

MLS
‖
‖ Π1

C

and

−
MLS

‖
‖ Π2

[S′{A} O CS ]
and

−
MLS

‖
‖ Π3

[B O CB]

Because B 6= 1, we can now apply the induction hypothesis to Π2. This gives us

[{ } O KA]

MLS
‖
‖ Π4

[S′{ } O CS ]

and

−
MLS

‖
‖ ΠA

[A O KA]

From this we can get ΠS as follows:

[{ } O KA]

MLS
‖
‖ Π4

[S′{ } O CS ]

MLS
‖
‖ Π3

[(S′{ } ² [B O CB]) O CS ]
s

[(S′{ } ² B) O CS O CB]

MLS
‖
‖ Π1

[(S′{ } ² B) O C]

⊓⊔

Now we can put the pieces together.

Proof (Second proof of Theorem 2.2): Let a proof Π of a formula A in SMLS be given.
We proceed by induction on the number of instances of ai↑ in Π. If this number is zero, then
Π is in MLS, and we are done. So, let us assume there is at least one ai↑ in Π. Let us consider
the topmost instance of ai↑ in Π, i.e., for us Π looks as follows:

−
MLS

‖
‖ Π1

S{a ² a⊥}
ai↑

S{⊥}

SMLS
‖
‖ Π2

A

To Π1, we can apply context reduction (Lemma 3.3). This gives us a K such that

[{ } O K]

MLS
‖
‖ Π3

S{ }

and

−
MLS

‖
‖ Π4

[(a ² a⊥) O K]
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From Π3 we get
K

MLS
‖
‖ Π′

3

S{⊥}

and to Π4 we can apply splitting (Lemma 3.1), which gives us

[K1 O K2]

MLS
‖
‖ Π5

K

and

−
MLS

‖
‖ Π6

[a O K1]
and

−
MLS

‖
‖ Π7

[a⊥ O K2]

To Π6 and Π7, we can apply atomic splitting (Lemma 3.2), which gives us

a⊥

MLS
‖
‖ Π8

K1

and

a

MLS
‖
‖ Π9

K2

Now we simply put all the bits and pieces together to get a proof Π′ of A in which one instance
of ai↑ is removed:

1
ai↓

[a⊥ O a]

MLS
‖
‖ Π8,Π9

[K1 O K2]

MLS
‖
‖ Π5

K

MLS
‖
‖ Π′

3

S{⊥}

SMLS
‖
‖ Π2

A

Hence, we can apply the induction hypothesis. ⊓⊔

4 Exponentials

Now we reintroduce contraction and weakening in a restricted form, by using modalities. These
are unary connectives. In linear logic, they are denoted by ? and !, i.e., if A is a formula, then
so are ?A and !A. They are dual to each other, i.e., for defining negation for all formulas, the
equations in (3) have to be extended by

(!A)⊥ = ?A⊥ (?A)⊥ = !A⊥ (18)

The sequent calculus rules for these modalities are:

⊢ Γ
?w

⊢ ?A, Γ

⊢ ?A, ?A, Γ
?c

⊢ ?A, Γ

⊢ A, Γ
?d

⊢ ?A, Γ

⊢ A, ?B1, . . . , ?Bn
!p

⊢ !A, ?B1, . . . , ?Bn

(19)

where in the !p-rule we have that n ≥ 0. The system consisting of set of rules in (1), (2)
and (19) is called MELL (without the rules in (2) it is denoted by MELL−). The logic is called
multiplicative exponential linear logic. For MELL, we have the cut elimination result:
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4.1 Theorem If a sequent ⊢ Γ is provable in MELL + cut, then it is provable in MELL

without cut.

The proof is much more involved than for MLL, and we do not show it here. The main
problem is finding the right induction measure, since one cut reduction case is as follows:

ÄÄ
ÄÄ

ÄÄ
ÄÄ

Ä?????????

Π1

⊢ Γ, ?A, ?A
?c

⊢ Γ, ?A

ÄÄ
ÄÄ

ÄÄ
ÄÄ

ÄÄ
ÄÄ

Ä?????????????

Π2

⊢ A, ?B1, . . . , ?Bn
!p

⊢ !A, ?B1, . . . , ?Bn
cut

⊢ Γ, ?B1, . . . , ?Bn

is reduced to

ÄÄ
ÄÄ

ÄÄ
ÄÄ

Ä?????????

Π1

⊢ Γ, ?A, ?A

ÄÄ
ÄÄ

ÄÄ
ÄÄ

ÄÄ
ÄÄ

Ä?????????????

Π2

⊢ A, ?B1, . . . , ?Bn
!p

⊢ !A, ?B1, . . . , ?Bn
cut

⊢ Γ, ?A, ?B1, . . . , ?Bn

ÄÄ
ÄÄ

ÄÄ
ÄÄ

ÄÄ
ÄÄ

Ä?????????????

Π2

⊢ A, ?B1, . . . , ?Bn
!p

⊢ !A, ?B1, . . . , ?Bn
cut

⊢ Γ, ?B1, . . . , ?Bn, ?B1, . . . , ?Bn
?c

...
?c

⊢ Γ, ?B1, . . . , ?Bn

where the proof Π2 has been duplicated.
For the equivalent system in the calculus of structures, we add the following rules to MLS:

S{1}
e↓

S{!1}

S{![A O B]}
p↓

S{!A O ?B}

S{⊥}
w↓

S{?A}

S{?A O A}
b↓

S{?A}

S{??A}
g↓

S{?A}
(20)

We use the same equational theory as before, and we write ELS to denote the system MLS

extended by the rules in (20). To get the symmetric version SELS of that system, we need to
add the duals of these rules as well:

S{?⊥}
e↑

S{⊥}

S{?A ² !B}
p↑

S{?(A ² B)}

S{!A}
w↑

S{1}

S{!A}
b↑

S{!A O A}

S{!A}
g↑

S{!!A}
(21)

As before, the general versions of i↓ and i↑ can be reduced to their atomic version:

4.2 Proposition The rule i↓ is derivable in {ai↓, s, e↓, p↓}, and the rule i↑ is derivable in

{ai↑, s, e↑, p↑}.

The proof is similar to the one for Proposition 2.1 where ! and ? where not in the language.
The cut elimination theorem also holds:
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4.3 Theorem If a formula A is provable in SELS, then it is provable in ELS.

As before, we can prove this theorem either by using the sequent calculus cut elimination,
or by giving a direct proof in the calculus of structures. We will not go into further details
here, but note that we have the same corollaries as for MLS, and they can be proved in exactly
the same way:

4.4 Corollary The rule i↑ is admissible in ELS.

4.5 Corollary For all formulas A and B, we have

A

SELS
‖
‖ Π1

B

if and only if

−
ELS

‖
‖ Π2

[A⊥ O B]

The relation between the systems MELL in the sequent calculus and ELS in the calculus of
structures is as expected.

4.6 Proposition If there is a proof

ÄÄ
ÄÄ

ÄÄ
ÄÄ

ÄÄ
??????????

Π

⊢ A1, . . . , An

in MELL, then there is a proof
−

ELS
‖
‖ Π′

[A1 O · · · O An]
.

4.7 Proposition If there is a proof

ÄÄ
ÄÄ

ÄÄ
ÄÄ

ÄÄ
??????????

Π

⊢ A1, . . . , An

in MELL + cut, then there is a proof

−
SELS

‖
‖ Π′

[A1 O · · · O An]
.
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4.8 Proposition If there is a proof

−
SELS

‖
‖ Π

Q
,

then there is a proof

ÄÄ
ÄÄ

????Π
′

⊢ Q

in MELL + cut.

All three propositions are proved in the same way as for MLL and MLS.
Finally, we have for SELS a property, that has no counterpart in the sequent calculus:

4.9 Theorem Every derivation

P

SELS
‖
‖

Q

can be decomposed into

P

e↓
‖
‖

P1

g↑
‖
‖

P2

b↑
‖
‖

P3

ai↓
‖
‖

P4

w↓
‖
‖

P5

s,p↓,p↑
‖
‖

Q5

w↑
‖
‖

Q4

ai↑
‖
‖

Q3

b↓
‖
‖

Q2

g↓
‖
‖

Q1

e↑
‖
‖

Q

P

g↑
‖
‖

U1

b↑
‖
‖

U2

e↓
‖
‖

U3

w↓
‖
‖

U4

ai↓
‖
‖

U5

s,p↓,p↑
‖
‖

V5

ai↑
‖
‖

V4

w↑
‖
‖

V3

e↑
‖
‖

V2

b↓
‖
‖

V1

g↓
‖
‖

Q

P

e↓
‖
‖

W1

g↑
‖
‖

W2

b↑
‖
‖

W3

w↑
‖
‖

W4

ai↓
‖
‖

W5

s,p↓,p↑
‖
‖

Z5

ai↑
‖
‖

Z4

w↓
‖
‖

Z3

b↓
‖
‖

Z2

g↓
‖
‖

Z1

e↑
‖
‖

Q

P

g↑
‖
‖

T1

b↑
‖
‖

T2

w↑
‖
‖

T3

e↓
‖
‖

T4

ai↓
‖
‖

T5

s,p↓,p↑
‖
‖

R5

ai↑
‖
‖

R4

e↑
‖
‖

R3

w↓
‖
‖

R2

b↓
‖
‖

R1

g↓
‖
‖

Q
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P

P ′

creation
¥¯

DL

destruction

Q′

KS
merging

®¶

Q

destruction
¦°

creation

EM

P

empty modality (down) ‖
‖

P ′

noncore (up) ‖
‖

P ′′

interaction (down) ‖
‖

P ′′′

hard core (up and down) ‖
‖

Q′′′

interaction (up) ‖
‖

Q′′

noncore (down) ‖
‖

Q′

empty modality (up) ‖
‖

Q

P

noncore (up) ‖
‖

P ′

core (up and down) ‖
‖

Q′

noncore (down) ‖
‖

Q

Figure 1: Readings of the decompositions

The four statements are called first, second, third, and fourth decomposition (from left to
right).

Apart from a decomposition into eleven subsystems, the first and the second decomposition
can also be read as a decomposition into three subsystems that could be called creation, merg-

ing and destruction. In the creation subsystem, each rule increases the size of the structure;
in the merging system, each rule does some rearranging of substructures, without changing
the size of the structures; and in the destruction system, each rule decreases the size of the
structure. Here, the size of the structure incorporates not only the number of atoms in it, but
also the modality-depth for each atom. In a decomposed derivation, the merging part is in
the middle of the derivation, and (depending on your preferred reading of a derivation) the
creation and destruction are at the top and at the bottom, as shown in the left of Figure 1.
In system SELS the merging part contains the rules s, p↓ and p↑. In the top-down reading of
a derivation, the creation part contains the rules e↓, g↑, b↑, w↓ and ai↓, and the destruction
part consists of e↑, g↓, b↓, w↑ and ai↑. In the bottom-up reading, creation and destruction
are exchanged.

This kind of decomposition (creation, merging, destruction) is quite typical for logical sys-
tems presented in the calculus of structures. It also hold for classical logic, for full propositional
linear logic, and for non-commutative variants of linear logic.

The third decomposition allows a separation between hard core and noncore of the system1,
such that the up fragment and the down fragment of the noncore are not merged, as it is
the case in the first and second decomposition. More precisely, we can separate the seven
subsystems shown in the middle of Figure 1. The fourth decompostion is even stronger in this
respect: it allows a complete separation between core and noncore, as shown on the right of
Figure 1. This decomposition also plays a crucial rule for the cut elimination argument. Recall

1We call core the set of rules needed to reduce the general i↓ and i↑ to their atomic versions, and noncore

all others. The hard core are those core rules that are not e↓, e↑, ai↓, or ai↑.
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that cut elimination means to get rid of the entire up-fragment. Because of the decomposition,
the elimination of the non-core up-fragment is now trivial. Furthermore, recall that for cut
elimination in the sequent calculus, the most problematic cases are usually the ones where
cut interacts with rules like contraction and weakening, and that in our system these rules
appear as the non-core down rules. In the third decomposition these are below the actual cut
rules (i.e., the core up rules, cf. Proposition 4.2) and can therefore no longer interfere with
the cut elimination. This considerably simplifies the cut elimination argument.
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