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These are the notes for the fourth lecture (written by Lutz Straßburger).

1 Unit-free multiplicative linear logic

Today we learn about proof nets. For this, we will consider only multiplicative linear logic
without units. The sequent calculus system MLL− was shown in the previous lecture. In the
calculus of structures, The unit-free system looks as follows:

ai↓
[a O a⊥]

S{B}
ai↓

S{B ² [a O a⊥]}

S{[A O B] ² C}
s

S{A O (B ² C)}
(1)

Because there are no units present, the ai↓ rule looks slightly different from what you have
seen before, and there are two versions of it. We use the name MLS− for the system in (1).
We can drop the equations for the units

(A ² (B ² C)) = ((A ² B) ² C) (A ² B) = (B ² A)

[A O [B O C]] = [[A O B] O C] [A O B] = [B O A]
(2)

The cut rule is

S{B O (a ² a⊥)}
ai↑

S{B}
(3)

For simplicity, we will also use the general versions of the interaction rules:

ai↓
[A O A⊥]

S{B}
ai↓

S{B ² [A O A⊥]}

S{B O (A ² A⊥)}
ai↑

S{B}
(4)
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Figure 1: From sequent calculus to proof nets via coherence graphs

2 From sequent calculus to proof nets

It turns out that for MLL− the “essence” of a proof is captured by the axiom links. More pre-
cisely, the proof net is obtained by drawing the “flow-graph” (or “coherence-graph”) through
the sequent calculus proof. This means that we trace all atom occurrences through the proof.
The idea is quite simple, but the formal definitions tend to be messy. In these lecture notes,
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Figure 2: From sequent calculus to proof nets via coherence graphs
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Figure 3: From sequent calculus to proof nets with cuts via coherence graphs

we show the idea via examples in Figure 1.
In Figure 2 we convert an example with cut into a proof net via the flow-graph method.
For dealing with cuts (without forgetting them!), we can prevent the flow-graph from flowing

through the cut, i.e., by keeping the information that there is a cut. What is meant by this
is shown in Figure 3.
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Figure 4: From calculus of structures to proof nets

3 From the calculus of structures to proof nets

In this section we do the same as in the previous section. But this time, we start from MLS−

instead if MLL−. But the result is exactly the same.
We simply trace the atoms through the derivation. Figures 4–6 show the calculus of struc-

tures version of Figures 1–3.
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Figure 5: From calculus of structures to proof nets
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Figure 6: From calculus of structures to proof nets

4 Correctness criteria

We have seen how we can obtain a proof net out of a formal proof in some deductive system.
But what about the other way around? Suppose we have such a graph that looks like a proof
net. Can we decide whether it really comes from a proof, and if so, can we recover this proof?
Of course the answer is trivially yes because the graph is finite and we just need to check all
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proofs of that size. The interesting question is therefore, whether we can do it efficiently.
The answer is still yes, and it is done via so-called correctness criteria. For introducing the

idea, we take the following graphs as running examples

a a⊥ a a⊥ c c⊥

O O

²

(5)

a b⊥ b b⊥ b a⊥

O O

a b⊥ b a⊥

² ²

(6)

By playing around, you will notice that it is quite easy to find a proof (in sequent calculus or
calculus of structures) that translates into the net in (5), but it seems impossible to find such
proofs for the two examples in (6). We are now going to show that this is indeed impossible.
For doing so, we need some formal definitions.

4.1 Definition A pre-proof net is a sequent forest Γ, possibly with cuts, together with a
perfect matching of the set of leaves (i.e., the set of occurrences of propositional variables and
their duals), such that only dual pairs are matched.

In this context, a cut must be seen as a special kind of formula A ´ A⊥, where ´ is a
special connective which may occur only at the root of a formula tree in which the two direct
subformulas are dual to each other. For example, (5) should be read as

a a⊥ a a⊥ c c⊥

´ O O

²

(5’)

Clearly, the examples in (5) and (6) are all pre-proof nets. In the following, we will think of
an inner node (i.e., a non-leaf node) of the sequent forest labeled not only by the connective
but by the whole subformula rooted by that connective. Our favorite example (5) should then
be read as

a a⊥ a a⊥ c c⊥

a´ a⊥ aO a⊥ c O c⊥

(aO a⊥)²(c O c⊥)

(5”)

Although sometimes we think of pre-proof nets to be written as in (5”), we will keep writing
them as in (5) for better readability.
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4.2 Definition A pre-proof net π is called sequentializable iff there is a proof in the sequent
calculus or in the calculus of structures that translates into π.

Originally, the term “sequentializable” was motivated by the name “sequent calculus”. But
we use it here also if the “sequentialization” is done in the calculus of structures.

4.3 Definition Let π be a pre-proof net. A DR-switching for π is a graph obtained from
π by removing for every O-node one of the two edges connecting it to its children.

Clearly, if a pre-proof net contains n O-nodes, then there are 2n switchings. Here are all 4
switchings for the example in (5):

a a⊥ a a⊥ c c⊥

O O

²

a a⊥ a a⊥ c c⊥

O O

²

a a⊥ a a⊥ c c⊥

O O

²

a a⊥ a a⊥ c c⊥

O O

²

(7)

4.4 Definition A pre-proof net obeys the DR-switching criterion (or, shortly, is correct)
iff all its switchings are connected and acyclic.

As (7) shows, the pre-proof net in (5) is correct. The two pre-proof nets in (6) are not, as
the following switchings show:

a b⊥ b b⊥ b a⊥

O O

a b⊥ b a⊥

² ²

(8)

The first is not connected, and the second is cyclic.
In the following, we use the term proof net for those pre-proof nets which are correct, i.e.,

obey the switching criterion. The following theorem says that the proof nets are exactly those
pre-proof nets that represent an actual proof.

4.5 Theorem A pre-proof net is correct if and only if it is sequentializable.

We will give two proofs of this theorem. The first uses the sequent calculus, and the second
the calculus of structures. For the first proof, we need the following lemma:

4.6 Lemma Let π be a proof net with conclusions A1, . . . , An. If all Ai have a ² or a
cut as root, then one of them is splitting, i.e., by removing that ² (or ´), the net becomes
disconnected.

For proving this lemma, we need some more concepts.
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4.7 Definition Let σ and π be pre-proof nets. We say σ is a subprenet of π, written as
σ ⊆ π if all formulas/cuts appearing in σ are subformulas of the formulas/cuts appearing in
π, and the linking of σ is the restriction of the linking of π to the formulas/cuts in σ. We say
σ is a subnet of π if σ ⊆ π, and σ and π are both correct. A door of σ is any formula that
appears as conclusion of σ.

4.8 Example Consider the following three graphs:

a a⊥ a a⊥

O

a a⊥ a a⊥

O

a a⊥ a a⊥

O

The first two are subprenets of (5), the third one is not (because a link is missing). The
second one is in fact a subnet of (5), but the first one is not (because it is not correct). The
doors of the first example are a, a⊥, and aO a⊥. The doors of the second example are a´ a⊥

and aO a⊥.

4.9 Lemma Let σ and ρ be subnets of some proof net π.

(i) The subprenet σ ∪ ρ is a subnet of π if and only if σ ∩ ρ 6= ∅.

(ii) If σ ∩ ρ 6= ∅ then σ ∩ ρ is a subnet of π.

Proof: Intersection and union in the statement of that lemma have to be understood in the
canonical sense: An edge/node/link appears in in σ ∩ ρ (resp. σ ∪ ρ) if it appears in both, σ
and ρ (resp. in at least one of σ or ρ). For giving the proof, let us first note that because in π
every switching is acyclic, also in every subprenet of π every switching is acyclic, in particular
also in σ ∪ ρ and σ ∩ ρ. Therefore, we need only to consider the connectedness condition.

(i) If σ∩ρ = ∅ then every switching of σ∪ρ must be disconnected. Conversely, if σ∩ρ 6= ∅,
then every switching of σ ∪ ρ must be connected (in every switching of σ ∪ ρ every node
in σ ∩ ρ must be connected to every node in σ and to every node in ρ, because σ and ρ
are both correct).

(ii) Let σ ∩ ρ 6= ∅ and let s be a switching for σ ∪ ρ. Then s is connected and acyclic by (i).
Let sσ, sρ, and sσ∩ρ, be the restrictions of s to σ, ρ, and σ ∩ ρ, respectively. Now let A
and B be two vertices in σ ∩ ρ. Then A and B are connected by a path in sσ because
σ is correct, and by a path in sρ because ρ is correct. Since s is acyclic, the two paths
must be the same and therefore be contained in sσ∩ρ. ⊓⊔

4.10 Lemma Let π be a proof net, and let A be a subformula of some formula/cut ap-
pearing in π. Then there is a subnet σ of π, that has A as a door.
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Proof: For proving this lemma, we need the following notation. Let π be a proof net, let A
be some formula occurrence in π, and let s be a switching for π. Then we write s(π, A) for
the graph obtained as follows:

• If A is an immediate subformula of a formula occurrence B in π, and there is an edge
from B to A in s, then remove that edge and let s(π, A) be the connected component
of (the remainder of) s that contains A.

• Otherwise let s(π, A) be just s.

Now let

σ =
⋂

s

s(π, A)

where s ranges over all possible switchings of π. (Note that it could happen that formally σ
is not a subprenet because some edges in the formula trees might be missing. We graciously
add these missing edges to σ such that it becomes a subprenet.) Clearly, A is in σ. We are
now going to show that A is a door of σ. By way of contradiction, assume it is not. This
means there is ancestor B of A that is in

⋂
s s(π, A). Now choose a switching ŝ such that

whenever there is a O node between A and B, i.e.,

A

C1 C2

C1 O C2

B

or

A

C2 C1

C2 O C1

B

then ŝ chooses C1 (i.e., removes the edge between C2 and its parent). Then there must be a
² between A and B:

A

D1 D2

D1 ²D2

B

or

A

D2 D1

D2 ² D1

B

Otherwise B would not be in σ. Now suppose we have chosen the uppermost such ². Then
the path connecting A and D1 in ŝ(π, A) cannot pass through D2 (by the definition of ŝ(π, A)).
But this means that in ŝ there are two distinct paths connecting A and D1, which contradicts
the acyclicity of ŝ.

Now we have to show that σ is a subnet. Let s be a switching for σ. Since σ is a subprenet
of π, we have that s is acyclic. Now let s̃ be an extension of s to π. Then s is the restriction
of s̃(π, A) to σ, and hence connected. ⊓⊔
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4.11 Definition Let π be a proof net, and let A be a subformula of some formula/cut
appearing in π. The kingdom of A in π, denoted by kA, is the smallest subnet of π, that has
A as a door. Similarly, the empire of A in π, denoted by eA, is the largest subnet of π, that
has A as a door. We define A ≪ B iff A ∈ kB, where A and B can be any (sub)formula/cut
occurrences in π.

An immediate consequence of Lemmas 4.9 and 4.10 is that kingdom and empire always
exist.

4.12 Exercise Why?

4.13 Remark The subnet σ constructed in the proof of Lemma 4.10 is in fact the empire
of A. But we will not need this fact later and will not prove it here.

4.14 Lemma Let π be a proof net, and let A, A′, B, and B′ be subformula occurrences
appearing in π, such that A and B are distinct, A′ is immediate subformula of A, and B′ is
immediate subformula of B. Now suppose that B′ ∈ eA′. Then we have that B /∈ eA′ if and
only if A ∈ kB.

Proof: We have B′ ∈ eA′∩kB. Hence, σ = eA′∩kB and ρ = eA′∪kB are subnets of π. By
way of contradiction, let B /∈ eA′ and A /∈ kB. Then ρ has A′ as door and is larger than eA′

because it contains B. This contradicts the definition of eA′. On the other hand, if B ∈ eA′

and A ∈ kB then σ has B as door and is smaller than kB because it does not contain A. This
contradicts the definition of kB. ⊓⊔

4.15 Lemma Let π be a proof net, and let A and B be subformulas appearing in π. If
A ≪ B and B ≪ A, then either A and B are the same occurrence or they are dual atoms
connected via an identity link.

Proof: If a and a⊥ are two dual atom occurrences connected by a link, then clearly ka = ka⊥.
Now let A and B be two distinct non-atomic formula occurrences in π with A ∈ kB and
B ∈ kA. Then kA ∩ kB is a subnet and hence kA = kA ∩ kB = kB. We have two cases:

• If A = A′
O A′′ then the result of removing A from kB is still a subnet, contradicting

the minimality of kB.

• If A = A′
²A′′ then kA = kA′ ∪ kA′′ ∪ {A′

²A′′}. Hence B ∈ kA′ or B ∈ kA′′. This
contradicts Lemma 4.14, which says that B /∈ eA′ and B /∈ eA′′. ⊓⊔

From Lemma 4.15 it immediately follows that ≪ is a partial order on the non-atomic
subformula occurrences in π. We make crucial use of this fact in the following:

Proof of Lemma 4.6: Choose among the conclusions A1, . . . , An (including the cuts) of π
one which is maximal w.r.t. ≪. Without loss of generality, assume it is Ai = A′

i ²A′′
i . We will

now show that it is splitting, i.e., π = {A′
i ²A′′

i }∪eA′
i∪eA′′

i . By way of contradiction, assume
A′

i ² A′′
i is not splitting. This means we have somewhere in π a formula occurrence B with

immediate subformula B′ such that (without loss of generality) B′ ∈ eA′
i and B /∈ eA′

i. We
also know that B must occur at or above some other conclusion, say Aj = A′

j ²A′′
j . Hence

B ∈ kAj and therefore kB ⊆ kAj . But by Lemma 4.14 we have Ai ∈ kB and therefore
Ai ∈ kAj , which contradicts the maximality of Ai w.r.t. ≪. ⊓⊔
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Finally, we can prove Theorem 4.5.

First Proof of Theorem 4.5: Let us first show that the (in the sequent calculus) sequen-
tializable pre-proof nets are indeed correct. This is done by verifying that the id-rule yields
correct nets (which is obvious) and that all other inference rules preserve correctness. For the
exch-rule this is obvious. Let us now consider the ²-rule. By way of contradiction, assume
that

π1

Γ A
and

π2

∆B

are correct, but

π1 π2

²

Γ ∆

A B

A ² B

is not correct. This means there is a switching that is either disconnected or contains a cycle.
Since a ²-node does not affect switchings, we conclude that the property of being disconnected
or cyclic must hold for the same switching in one of π1 or π2. But this is a contradiction to
the correctness of π1 and π2. For the the O-rule and the cut-rule we proceed similarly.

Conversely, let π be a correct pre-proof net. We proceed by induction on the size of π, i.e.,
the number n of O-, ²-, and cut-nodes in π, to construct a sequent calculus proof Π, that
translates into π. If n is 0, then π must be of the shape

id

A⊥ A

and we can apply the id-rule. Now let n > 0. If one of the conclusion formulas of π has a
O-root, we can apply the O-rule and proceed by induction hypothesis. Now suppose all roots
are ² or cuts. Then we apply Lemma 4.6, which tells us, that there is one of them which
splits the net. Assume, without loss of generality, that it is a ²-root, say Ai = A′

i ² A′′
i . This

means, the net is of the shape

π1 π2

²

Γ ∆

A′

i A′′

i

A′

i ² A′′

i



14 Lutz Straßburger

and we can apply the ²-rule and proceed by induction hypothesis for π1 and π2. If the
splitting root is a cut, we apply the cut-rule instead. ⊓⊔

Let us now see the second proof. For this, we need the following lemma:

4.16 Lemma Let π be a proof net with conclusion

S{(A ² B{a}) O (C{a⊥} ² D)} ,

such that the a and the a⊥ are paired up in the linking. Let π′ and π′′ be pre-proof nets with
conclusions

S{A ² [B{a} O (C{a⊥} ² D)]} and S{[(A ² B{a}) O C{a⊥}] ² D}

respectively, such that the linkings of π′ and π′′ (i.e., the pairing of dual atoms) are the same
as the linking of π. Then at least one of π′ and π′′ is also correct.

Proof: Let us visualize the information we have about π, π′, and π′′ as follows:

π′ : π : π′′ :

⊥

a⊥

a C D

B ²

A O

²

←

a a⊥

A B C D

² ²

O

→

a

A B a⊥

² C

O D

²

We proceed by way of contradiction, and assume that π is correct and that π′ and π′′ are
both incorrect. If there is a switching s for π′ (or π′′) that is disconnected, then the same
switching is also disconnected in π. Hence, we need to consider only the acyclicity condition.
Suppose that there is a switching s′ for π′ that is cyclic. Then, in s′ the O below B must be
switched to the right, and the cycle must pass through A, the root ² and the O as follows:

⊥a⊥

a C D

B ²

A O

²
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Otherwise we could construct a switching with the same cycle in π. If our cycle continues
through D, i.e.,

⊥a⊥

a C D

B ²

A O

²

(9)

then we can use the path from A to D (that does not go through B or C, see Exercise 4.17)
to construct a cyclic switching s in π as follows:

⊥a a⊥

A B C D

² ²

O

Hence, the cycle in s′ goes through C, giving us a path from A to C, not passing through B
(see Exercise 4.17):

⊥a⊥

a C D

B ²

A O

²

(10)
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By the same argumentation we get a switching s′′ in π′′ with a path from B to D, not going
through C. From s′ and s′′, we can now construct a switching s for π with a cycle as follows:

⊥a a⊥

A B C D

² ²

O

which contradicts the correctness of π. ⊓⊔

4.17 Exercise Explain why we can in (9) assume that the cycle does not go through B
or C, and in (10) not through B.

In our second proof of Theorem 4.5 we will also need the following concept:

4.18 Definition Let A be a formula. The relation web of A is the complete graph, whose
vertices are the atom occurrences in A. An edge between two atom occurrences a and b is
colored red, if the first common ancestor of them in the formula tree is a ², and green if it is
a O.

4.19 Example Consider the formula [[a⊥ O (a ² a)] O [a O (a⊥ ² a⊥)]]. Its formula tree is
the following:

a⊥ a a a a⊥ a⊥

² ²

O O

O

The relation web is therefore
a⊥ a

a⊥ a

a⊥ a

where we use regular edges for red and dotted edges for green.

4.20 Definition The degree of freedom of a formula A, is the number of green edges in
its relation web.

Second Proof of Theorem 4.5: Again, we start by showing that all rules preserve
correctness. Here, the only interesting case is the switch rule (all others being trivial), which
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does the following transformation somewhere inside the net:

O → ²

² O

(11)

By way of contradiction, assume the net on the left is correct, and the one on the right is
not. First, suppose there is a switching for the second net that is cyclic. If that cycle does
not contain the ²-node shown on the right in (11), then this cycle is also present in the net
on the left in (11). If our cycle contains the ²-node, then we can make the same cycle be
present in the net on the left by switching the O-node to the left (i.e., removing the edge to
the right). Now assume we have a disconnected switching for the net on the right. Then the
same switching also disconnects the net on the left. Contradiction.

Conversely, assume we have a correct net π with conclusion F . For the time being, assume
that π is cut-free. We proceed by induction on the degree of freedom of F . Pick inside F
any pair of atoms that are linked together, say a and a⊥. Then F = S{S1{a} O S2{a

⊥}}.
Without loss of generality, we can assume that S1{ } and S2{ } are not O-contexts. We have
the following cases:

• If S1{ } = S2{ } = { }, we can apply the rule i↓, and proceed by induction hypothesis.

• If S1{ } 6= { } and S2{ } = { }, then F = S{(A ² B{a}) O a⊥} for some A and B{ }.
We can apply the switch rule to get S{A ² [B{a} O a⊥]}, which is still correct (with
the same linking as for F ), but has smaller degree of freedom than F . The case where
S1{ } = { } and S2{ } 6= { } is similar.

• If S1{ } 6= { } and S2{ } 6= { }, then, without loss of generality, F =
S{(A ² B{a}) O (C{a⊥} ² D)}, for some A, B{ }, C{ }, D. By Lemma 4.16, we can
apply the switch rule, since one of

S{A ² [B{a} O (C{a⊥} ² D)]} and S{[(A ² B{a}) O C{a⊥}] ² D}

is still correct. Since both of them have smaller degree of freedom than F , we can
proceed by induction hypothesis.

If π contains cuts, we can replace inside π all cuts with ², to get a formula F ′ such that there
is a derivation

F ′

i↑
‖
‖

F

Then π becomes a cut-free net with conclusion F ′, and we can proceed as above. ⊓⊔

Note that the two different proofs of Theorem 4.5 yield a stronger version of the equivalence
between MLL− and MLS− that we established in the previous lecture.
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4.21 Theorem For every sequent calculus proof of ⊢ A1, A2, . . . , An in MLS− there is a
proof in the calculus of structures in system MLS− of [A1

O A2
O · · · O An] yielding the same

proof net, and vice versa.

A geometric or graph-theoretic criterion like the one in Definition 4.4 and Theorem 4.5
is called a correctness criterion. The desired properties are soundness and completeness, as
stated in Theorem 4.5. For MLL−, the literature contains quite a lot of such criteria, and it
would go far beyond the scope of this lecture notes to attempt to give a complete survey. But
nonetheless, we will show here two other correctness criteria.

For the next one, we write the pre-proof nets in a different way:

id

a⊥ a
;

O

A B

A O B

;

²

A B

A ² B

;

cut

A A⊥ ;

(12)

We call the resulting graphs RB-graphs. The R and B stand for Regular/Red and Bold/Blue.
The main property of these graphs is that the blue/bold edges (in the following called B-edges)
provide a bipartition of the set of vertices, i.e., every vertex in the RB-graph is connected
to exactly one other vertex via a B-edge. The red/regular edges are in the following called
R-edges.
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Here are the examples from (5) and (6) written as RB-graphs:

(13)

(14)

4.22 Definition Let G be an RB-graph. An Æ-path in G is a path whose edges are
alternating R- and B-edges, and that does not touch any vertex more than once. An Æ-cycle
in G is a Æ-path from a vertex to itself, starting with a B-edge and ending with an R-edge.

The A and E stand for “alternating” and “elementary”. The meaning of “alternating”
should be clear, and the meaning of “elementary” is that the path or cycle must not cross
itself.

4.23 Definition A pre-proof net π obeys the RB-criterion (or shortly, is RB-correct) iff
its RB-graph Gπ contains no Æ-cycle and every pair of vertices in Gπ is connected via an
Æ-path.

4.24 Theorem A pre-proof net is RB-correct if and only if it is a proof net.

Proof: We show that a pre-proof net is RB-correct iff it obeys the switching criterion, which
is easy: If there are two vertices in the RB-graph not connected by an Æ-path, then there is
a switching yielding a disconnected graph, and vice versa. Similarly, the RB-graph contains
an Æ-cycle if and only if we can provide a switching with a cycle. ⊓⊔

4.25 Exercise Work out the details of the previous proof.
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For the third correctness criterion, we write our nets in yet another way:

id

a⊥ a
; • •

O

A B

A O B

;
a•

²

A B

A ² B

; •

cut

A A⊥ ; • •

(15)

Now consider the following two rewriting rules on these graphs:

•

a•

→

•

•

and

•

•

→ • (16)

It is important to note that in the first rule the two edges are between the same pair of vertices
and are connected by an arc at exactly one of the two vertices. The second rule only applies
if the two vertices on the lefthand side are distinct, and the edge is not connected to another
edge by an arc.

4.26 Theorem The reduction relation induced by the rules in (16) is terminating and
confluent.

Proof: Termination is obvious because at each step the size of the graph is reduced. Hence,
it suffices to show local confluence to get confluence. But this is easy since there are no
(proper) critical pairs. ⊓⊔

This means that for each pre-proof net we get a uniquely defined reduced graph, and the
question is now how this graph looks like.
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4.27 Exercise Apply the reduction relation defined in (16) to the nets in (5) and (6).

4.28 Definition A pre-proof net obeys the contraction criterion if its normal form accord-
ing to the reduction relation defined in (16) is

•

i.e., a single vertex without edges.

At this point rather unsurprisingly, we get:

4.29 Theorem A pre-proof net obeys the contraction criterion if and only if it is a proof
net.

Proof: As before, we show this by showing the equivalence of the switching criterion and
the contraction criterion. This is easy to see since both reductions in (16) preserve and reflect
correctness according to the switching criterion. ⊓⊔

Before we leave the topic of correctness criteria, let us make some important observations
on their complexity. The naive implementation of checking the switching criterion needs
exponential time: if there are n par-links in the net, then there are 2n switchings to check.
However, checking the RB-criterion needs only quadratic runtime. To verify this is an easy
graph-theoretic exercise. It is also easy to see that checking the contraction criterion can be
done in quadratic time. But it is rather surprising that it can be done in linear time in the
size of the net. This means that (in the case of MLL−) when we go from a formal proof in
a deductive system like the sequent calculus or the calculus of structures (whose correctness
can trivially be checked in linear lime in the size of the proof) to the proof net, we do not lose
any information. The proof net contains the essence of the proof, including the “deductive
information”. Unfortunately, MLL− is (so far) the only logic (except some variants of it), for
which this ideal of proof nets is reached. We might come back to this in the last lecture.

5 Cut elimination

In the previous lecture you have already seen two different proofs of cut elimination: one
using the sequent calculus, and one using the calculus of structures. In this section, you will
see yet another one, using proof nets.

Consider the following reduction rules on pre-proof nets with cuts:

id

cut

A
A⊥

A ; A (17)
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and

O ²

cut

A O B B⊥
² A⊥

A B B⊥ A⊥

; cut

cut

B B⊥

A A⊥ (18)

5.1 Theorem The cut reduction relation defined by (17) and (18) terminates and is con-
fluent.

Proof: Showing termination is trivial because in every reduction step the size of the net
decreases. For showing confluence, note that the only possibility for making a critical pair is
when two cuts want to reduce with the same identity link. Then the situation must be of the
shape:

id id id

cut cut

A
A⊥ A A⊥ A

A⊥

But no matter in which order and with which identity we reduce the cuts, the final result will
always be

id

A⊥ A

Hence we also have confluence. ⊓⊔

However, it could happen, that we end up in a situation like

id

cut

A⊥A

where we cannot reduce any further. That something like this cannot happen if we start out
with a correct net is ensured by the following theorem, which says that the cut reduction
preserves correctness.

5.2 Theorem Let π and π′ be pre-proof nets such that π reduces to π′ via the reductions
(17) and (18). If π is correct, then so is π′.
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Proof: For proving this, let us use the RB-correctness criterion. Written in terms of RB-
graphs, the two reduction rules look as follows:

; (19)

and

; (20)

That the first rule preserves RB-correctness is obvious because it just shortens an existing
path. For the second rule, we proceed by way of contradiction. First, assume that the graph on
the right contains an Æ-cycle, while the one on the left does not. There are three possibilities:

1. The Æ-cycle does not contain one of the new B-R-B-paths. Then the same cycle is also
present on the left. Contradiction.

2. The Æ-cycle contains exactly one of the new B-R-B-paths. Then, as before, the same
cycle is also present on the left. Contradiction.

3. The Æ-cycle contains both of the new B-R-B-paths. Then we can construct an Æ-cycle
on the left that comes in at the upper left corner, goes down through the ²-link, and
goes out at the lower left corner. Again, we get a contradiction.

That Æ-path connectedness is preserved is shown in a similar way. ⊓⊔

5.3 Exercise Complete the proof of Theorem 5.2, i.e., show that if we apply (20) to an
RB-correct net, then in the result every pair of vertices is connected by an Æ-path. Hint 1:
Note that the two rightmost vertices in (20) must be connected by an Æ-path that does not
touch the new B-R-B-paths (why?). Hint 2: You will need the fact that the first net is also
Æ-cycle free.

The important point of Theorem 5.2 is that it allows us to give a short proof of the cut
elimination theorem for MLL− and for MLS−: Let Π be a proof with cuts in MLL− given in
the sequent calculus or the calculus of structures. We can translate Π into a proof net π, as
described in Sections 2 and 3 and remove the cuts from the proof net as described above. This
gives us a proof net π′, which we can translate back to the sequent calculus or the calculus of
structures. This works because removing the cuts from the proof net preserves the property
of being correct (i.e., being a proof net), and translating back does not introduce any new
cuts.

This raises an important question: Suppose we start out with a proof Π with cuts in MLL−

(given in sequent calculus or the calculus of structures). Now we could first remove the cuts
as shown in the previous lecture for the sequent calculus and for the calculus of structures,
and then translate the resulting cut-free proof Π′ into a proof net π′

1
. Alternatively, we could

first translate Π into a proof net π, and then remove the cuts from π, to obtain the cut-free
proof net π′

2
. Do we get the same result? Is π′

1
= π′

2
?

The answer is of course yes. To see this, note that the cut reduction steps in the se-
quent calculus either preserve the proof net (if the cut is just permuted up via a trivial rule
permutation) or do exactly the same as the cut reduction steps for proof nets.
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The same is true for the calculus of structures. The proof of the splitting lemma is designed
such that it preserves the net. To make this formally precise would go beyond the scope of
these lecture notes, but by comparing Figures 5 and 6 you should get the idea.

We can summarize this by the following commuting diagram:

proof with cuts
(in MLL− or MLS−)

proof net with cuts

cut-free proof
(in MLL− or MLS−)

cut-free proof net

cut elimination
(in SC or CoS)

cut elimination
(in proof nets)

(21)

Our basic introduction into the theory of proof nets for unit-free multiplicative linear logic
is now finished. However, a very important and fundamental question has not yet been
mentioned:

5.4 Big Question Let π and π′ be two proof nets such that π′ is obtained from π by
applying some cut reduction steps. Do π and π′ represent the same proof?

One can safely say that in the simple case of unit-free multiplicative linear logic the answer
is yes. However, when it comes to richer fragments of linear logic, or classical logic, the answer
for this question is far from clear.
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