Coursework for "Introduction to Deep Inference and Proof Nets"

Paola Bruscoli
Department of Computer Science
University of Bath
Bath BA2 7AY
United Kingdom
http://www.cs.bath.ac.uk/pb/
Lutz Straßburger
INRIA Futurs - Parsifal
École Polytechnique - LIX
Rue de Saclay, 91128 Palaiseau
France
http://www.lix.polytechnique.fr/~lutz/

Solution for Exercise 1 (7 points)

Solution for Exercise 2 (10 points) In system KS:

$$
\begin{aligned}
& \mathrm{ai} \downarrow \frac{\mathrm{ai} \downarrow \frac{\mathrm{t}}{\bar{d} \vee d}}{\frac{\mathrm{~s}[\bar{c} \vee c] \wedge \bar{d}) \vee d}{(\bar{c} \wedge \bar{d}) \vee[c \vee d]}} \\
& \operatorname{ai} \downarrow \frac{\mathrm{ai} \downarrow \frac{(\bar{c} \wedge \bar{d}) \vee([b \vee \bar{b}] \wedge[c \vee d])}{(\bar{c} \wedge \bar{d}) \vee([b \vee([a \vee \bar{a}] \wedge \bar{b})] \wedge[c \vee d])}}{\mathrm{s} \frac{(\bar{c} \wedge \bar{d}) \vee([a \vee b \vee(\bar{a} \wedge \bar{b})] \wedge[c \vee d])}{\mathrm{s}}} \mathrm{~m} \frac{(\bar{a} \wedge \bar{b}) \vee(\bar{c} \wedge \bar{d}) \vee([a \vee b] \wedge[c \vee d])}{([\bar{a} \vee \bar{c}] \wedge[\bar{b} \vee \bar{d}]) \vee([a \vee b] \wedge[c \vee d])}
\end{aligned} .
$$

In system KSg:

$$
\begin{gathered}
\mathrm{i} \\
\mathrm{w} \downarrow \frac{\mathrm{t}}{(\bar{a} \wedge \bar{b}) \vee(\bar{c} \wedge \bar{d}) \vee([a \vee b] \wedge[c \vee d])} \\
\mathrm{w} \downarrow \frac{(\bar{a} \wedge \bar{b}) \vee(\bar{c} \wedge[\bar{b} \vee \bar{d}]) \vee([a \vee b] \wedge[c \vee d])}{(\bar{a} \wedge \bar{b}) \vee([\bar{a} \vee \bar{c}] \wedge[\bar{b} \vee \bar{d}]) \vee([a \vee b] \wedge[c \vee d])} \\
\mathrm{w} \downarrow \frac{([\bar{a} \vee \bar{c}] \wedge[\bar{b} \vee \bar{b}]) \vee([\bar{a} \vee \bar{c}] \wedge[\bar{b} \vee \bar{d}]) \vee([a \vee b] \wedge[c \vee d])}{([\bar{a} \vee \bar{c}] \wedge[\bar{b} \vee \bar{d}]) \vee([a \vee b] \wedge[c \vee d])}
\end{gathered} .
$$

Solution for Exercise 3 (8 points) The rule m is derivable in KSg :

This means that there is a (scheme of) derivation Δ_{m}, in KSg , such that

$$
\begin{gathered}
(R \wedge U) \vee(T \wedge V) \\
\Delta_{\mathrm{m}} \| \mathrm{KSg} \\
{[R \vee T] \wedge[U \vee V]}
\end{gathered}
$$

for any formulae R, T, U and V. Hence, we have the following derivation in KSg :

$$
\begin{aligned}
& \mathrm{i} \downarrow \frac{(R \wedge P) \vee(P \wedge Q) \vee(S \wedge Q)}{(R \wedge P) \vee([a \vee \bar{a}] \wedge Q) \vee P) \vee(S \wedge Q)} \\
& \mathrm{s} \frac{(R \wedge P) \vee([a \vee(\bar{a} \wedge Q)] \wedge P) \vee(S \wedge Q)}{(R \wedge P) \vee(R \wedge P) \vee(\bar{a} \wedge Q) \vee(S \wedge Q)} \\
& \quad \Delta_{\mathrm{m}} \| \mathrm{KSg} \\
& \\
& (a \wedge P) \vee(R \wedge P) \vee([\bar{a} \vee S] \wedge[Q \vee Q]) \\
& \mathrm{c} \downarrow \frac{([a \vee R] \wedge[P \vee P]) \vee([\bar{a} \vee S] \wedge[Q \vee Q])}{\Delta_{\mathrm{m}} \| \mathrm{KSg}} \\
& \quad \mathrm{c} \downarrow \frac{([a \vee R] \wedge[P \vee P]) \vee([\bar{a} \vee S] \wedge Q)}{([a \vee R] \wedge P) \vee([\bar{a} \vee S] \wedge Q)} .
\end{aligned}
$$

Solution for Exercise 4 (7 points) Proceed by way of contradiction and assume that there is a formula R such that both R and \bar{R} are provable in S, i.e., there exist proofs
t
$\Pi_{1} \|$
R
and
$\Pi_{2} \|_{\bar{R}} \quad$.

From Π_{2} we obtain the derivation Δ_{2} by 'flipping' it (exploiting the fact that exchanging premise and conclusion of each rule instance, and taking their negations, you still get a valid derivation):

Now composing Π_{1} and Δ_{2}

we would derive f from t, contradicting the hypothesis.
Solution for Exercise 5 (5 points) A possible solution is the following proof:

An alternative solution can be obtained as in Exercise 9.
Solution for Exercise 6 (6 points) Consider the implication formula expressing the cut rule: $(A \wedge \neg A) \rightarrow \mathrm{f}$. This implication is valid, i.e., $\models(A \wedge \neg A) \rightarrow \mathrm{f}$. But in KSg there is no way of building a derivation Δ

$$
\begin{gathered}
(A \wedge \neg A) \\
\Delta \| \mathrm{Ksg} \\
\mathrm{f}
\end{gathered}
$$

provided that A contains at least one atom, because no rule in KSg can, while going up in a derivation, introduce an atom that is not present in the conlusion. (The only rules in SKSg that can do that are $i \uparrow$ and $w \uparrow$, but they are not present in KSg .) $\mathrm{So}, \mathrm{KSg}$ is not implicationally complete.

Solution for Exercise 7 ($\mathbf{7}$ points) In the lecture, we have shown the translation of a Frege system with 17 axioms into SKSg , and we have argued that SKSg polynomially simulates that Frege system. Furthermore, the Robustness theorem says that all Frege system are pequivalent. In particular also the Frege system in the exercise and the Frege system used in the lecture p-simulate each other. Consequently, SKSg also p-simulates the Frege system in the exercise.

Solution for Exercise 8 (5 points)

$$
\otimes \frac{\vdash b, \Gamma}{\vdash \frac{\Pi_{1}}{\vdash b \otimes \perp, \Gamma, a, \Delta} \frac{\vdash a, \Delta}{\vdash \perp, a, \Delta}}
$$

Solution for Exercise 9 (5 points) This exercise is the same as Exercise 5. Hence the solution 5 is also good for this one (if you replace \otimes with \wedge and \gtrdot with \vee). Here is an alternative one

Of course, this solution is also good for Exercise 5.

Solution for Exercise 10 (5 points) We proceed by structural induction on A. If $A=a$ for some atom, we have immediately $a^{\perp \perp}=a$ by definition. If $A=a^{\perp}$, we have $\left(a^{\perp}\right)^{\perp \perp}=$ $\left(a^{\perp \perp}\right)^{\perp}=a^{\perp}$. If $A=1$, we have $1^{\perp \perp}=\perp^{\perp}=1$, and similarly for $A=\perp$. If $A=(B \otimes C)$, then

$$
(B \otimes C)^{\perp \perp}=\left[B^{\perp} \otimes C^{\perp}\right]^{\perp}=\left(B^{\perp \perp} \otimes C^{\perp \perp}\right)=(B \otimes C)
$$

where the last equation holds by induction hypothesis. For $A=[B \& C]$, we proceed similarly.

Solution for Exercise 11 (9 points) Applying splitting to Π^{\prime} gives us
where size $\left(\Pi_{2}\right)+\operatorname{size}\left(\Pi_{3}\right)<\operatorname{size}\left(\Pi^{\prime}\right)$. In particular, we have size $\left(\Pi_{2}\right)<\operatorname{size}\left(\Pi^{\prime}\right)$. Hence we can apply the induction hypothesis to Π_{2}. From this we get

$$
\begin{gathered}
a^{\perp} \\
\mathrm{MLS} \| \Pi_{4} \\
{\left[K_{1} \ngtr K_{3} \ngtr Q_{1}\right]}
\end{gathered}
$$

We can build Π_{a} as follows:

$$
\begin{aligned}
& a^{\perp} \\
& \text { mLS } \|_{\Pi_{4}} \\
& =\frac{\left[K_{1} 8 K_{3} 8 Q_{1}\right]}{\left[\left(K_{1} \otimes 1\right) \& K_{3} 8 Q_{1}\right]} \\
& \text { mLS } \|^{\Pi_{3}} \\
& \mathrm{~s} \frac{\left[\left(K_{1} \otimes\left[K_{2} \otimes Q_{2}\right]\right) \& K_{3} 8 Q_{1}\right]}{\left[\left(K_{1} \otimes K_{2}\right) \curvearrowright K_{3} 8 Q_{1} \curvearrowright Q_{2}\right]} \\
& \text { MLS } \| \Pi_{1} \\
& {\left[\left(K_{1} \otimes K_{2}\right) \& K_{3} \otimes K_{4}\right]}
\end{aligned}
$$

Solution for Exercise 12 (4 points)

Solution for Exercise 13 (12 points) (a) There is a disconnected (and cyclic) DR-switching:

(b)
(c)

$$
\begin{gathered}
\text { ai } \downarrow \frac{\operatorname{ai} \downarrow \frac{}{\left[a \gtrdot a^{\perp}\right]}}{\left[\left(a \otimes\left[b \gtrdot b^{\perp}\right]\right) 8 a^{\perp}\right]} \\
\operatorname{ai} \downarrow \frac{\mathrm{s} \frac{\left[(a \otimes b) 8 b^{\perp} 8 a^{\perp}\right]}{\left[\left(a \otimes b \otimes\left[c 8 c^{\perp}\right]\right) 8 b^{\perp} 8 a^{\perp}\right]}}{\left[(a \otimes b \otimes c) 8 c^{\perp} 8 b^{\perp} 8 a^{\perp}\right]}
\end{gathered}
$$

(d) There is a cyclic switching:

Solution for Exercise 14 (10 points) We proceed by way of contradiction. If the rule was derivable, there would be a derivation

$$
\begin{aligned}
& {[(a \otimes b) \otimes(c \otimes d)]} \\
& \text { SMLS- } \| \\
& ([a \diamond c] \otimes[b>d])
\end{aligned}
$$

which is equivalent to having

$$
\begin{gathered}
\text { MLS }^{-} \llbracket \Pi \\
{\left[\left(\left[d^{\perp} \gtrdot c^{\perp}\right] \otimes\left[b^{\perp} \gtrdot a^{\perp}\right]\right) \diamond([a \gtrdot c] \otimes[b \gtrdot d])\right]}
\end{gathered}
$$

Then, the only way to get proof net corresponding to Π is the following:

But this has a cyclic (and disconnected) linking and is therefore not correct:

