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In this short overview article I will discuss the
problem of proof identity and explain how it is
related to Hilbert’s 24th problem. I will also argue
that not knowing when two proofs are “the same”
has embarrassing consequences not only for proof
theory but also for certain areas of computer science
where formal proofs play a fundamental role, in
particular the formal verification of software. Then I
will formulate a set of 4 objectives that a satisfactory
notion of proof identity should obey. And finally, I
discuss Hughes’ combinatorial proofs and argue that
they can be seen as a first step towards a possible
solution to the problem of proof identity.

1. Introduction

(a) From Hilbert’s 24th problem to
the identity of proofs

When David Hilbert prepared his lecture [Hil00] in 1900
in which he presented his now famous 23 problems, he
also considered a 24th problem [Thi03], as he wrote in his
notebook [Hil]:

As 24th problem in my Paris lecture, I wanted
to ask the question: Find criteria of simplicity
or rather prove the greatest simplicity of given
proofs. More generally develop a theory of proof
methods in mathematics. Under given conditions
there can be only one simplest proof. And if
one has 2 proofs for a given theorem, then one
must not rest before one has reduced one to the
other or discovered which different premises (and
auxiliary means) have been used in the proofs:
When one has two routes then one must not
just go these routes or find new routes, but the
whole area lying between these two routes must
be investigated. . . 1

1Translation by the author.
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Fast forward 118 years: Proof theory1 is now a well-established mathematical discipline.
However, Hilbert’s original problem, as formulated in his notebook, is still a mystery. We have
no criteria for “simplicity” of a proof. We have no methods to compare proofs, in fact, we do not
even know when two proofs are the same.2 In that respect, proof theory is very different from most
other mathematical fields which usually can identify the objects of their interest. For example, in
group theory, two groups are the same if they are isomorphic, and in topology, two spaces are the
same if they are homeomorphic.

This is clearly embarrassing for proof theory as a mathematical field; and only a satisfactory
notion of proof identity can eventually lead to a satisfactory answer to Hilbert’s 24th problem.
Furthermore, the lack of understanding of what actually constitutes a mathematical proof has
consequences for many other areas in which proof theory is applied, in particular, the foundations
of computer science. In fact, the problem of proof identity is no longer some abstract “ivory tower
problem”, but it has serious implications for our daily life, as I will argue below.

(b) The relevance for computer science
Many aspects of our modern life depend on computer systems, and the correct functioning

of the software running on them should be of utmost importance. Yet we do not trust software
and expect it to break, we are used to turning off and back on again our personal computers
if they show unexpected behavior, and we just shrug at news about the latest “software bug”
that has been exploited by criminals or has caused some major damage. A few decades ago
such a “computer bug” might have just been a little annoyance, and even today, a crash of a
word processor or a media player is not a life-threatening problem. But now essentially the same
devices that run our email-client are built into cars, airplanes, hospital equipment, nuclear power
plants, etc. All of the sudden our life depends on software that we do not trust. We connect
computers with faulty software to the Internet and send confidential messages over channels
where the slightest leak will immediately be exploited. And the situation will only get worse. Soon
we connect our heating, our oven, and our fridge to the Internet, to be accessed from distance via
software on our phone that we do not trust. What could possibly go wrong?

Maybe the most embarrassing fact about computer science is that software companies do not
have to take legal liability for the software they ship. This is very different from car manufacturers
who have to take legal liability for the cars they make, or building companies who have to take
legal liability for the buildings and bridges they build. Is it really so much harder to make correctly
functioning software than to make correctly functioning cars? Both are engineering problems,
but in the case of cars, we have a clear understanding of the underlying scientific principles, we
know the laws of classical mechanics and thermodynamics. But in the case of software, we only
have very rudimentary knowledge of the underlying science. A computer program is built from
algorithms, but we understand what an algorithm is as much as we understand what a proof
is. We know one when we see one, but we have no idea of what it means for two algorithms to
be the same. Hilbert’s question can be reformulated in terms of algorithms: What is the simplest
algorithm for a given problem.

At the current state of the art, the only way to guarantee that the software at hand is indeed
without errors is to use verification tools to obtain a formal proof. In fact, according to the ISO/IEC
Common Criteria3, the highest level of assurance (EAL7) for software is achieved by formal
mathematical proofs of the correctness.

These proofs can be obtained using automated or interactive theorem provers (or a
combination of both). Recently there have been some breathtaking successes in the use
of interactive theorem proving. This concerns formalized mathematics, where interactive
theorem proving has been used for large proofs of highly computational nature: the Kepler
1In this article, the term proof theory always refers to the subfield of structural proof theory. The areas of ordinal analysis and
reverse mathematics are not discussed here.
2Proof normalization will be discussed in Section 2.(a) below.
3http://www.commoncriteriaportal.org/cc/

http://www.commoncriteriaportal.org/cc/
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Conjecture [Hal05], the 4-Color Theorem [Gon07], and the Odd-Order Theorem [GAA+13],
and it also concerns computer science, where interactive theorem proving has been used for
formally verifying large components of software, for example, the semantic correctness of a C
compiler [Ler09], the functional correctness of the seL4 micro-kernel [KEH+09], and the security
properties of the Java Card4.

However, in order to trust any of these formal proofs, we have to trust the correctness of the
tool (i.e., the automated or interactive theorem prover) that has been used to produce the proof.
This is because every proof tool comes equipped with a formal proof language that is unique
to this tool and cannot be understood by another tool. Furthermore, not only the language, but
also the internal representation of proofs differs from one proof tool to another. For example the
Abella proof system [BCG+14] uses sequent calculus, and the Coq proof system [BC04,DFH+93]
uses natural deduction.

A possible approach to overcome this problem is to define richer proof languages that can be
used to encode proofs from various different tools, in order to check these proofs independently.
An example is the Dedukti proof checker [Ded13] which has a rich proof language based on the
λΠ-calculus modulo [BCH12,Sai15]. An alternative approach is the use of proof certificates [Mil11]
that are essentially logic programs encoding a focused sequent calculus, and that can be used as a
meta-language to describe proofs produced by tools based on the sequent calculus. However, the
problem of proof identity remains untouched since these approaches only translate one syntactic
representation of a proof into another, and these translations are neither unique nor canonical.

2. Objectives for a universal notion of proof identity
The lack of understanding of the nature of proofs has its cause in the very fundamentals of proof
theory: we study formal proofs as syntactic objects that are represented in some formal proof system,
and we cannot consider the proof independently from that system. In that respect, we can say
that current proof theory is not a theory of proofs, but a theory of proof systems. In fact, most of the
important theorems of proof theory, like soundness, completeness, cut admissibility, focusing,
or proof complexity results are not about proofs but about proof systems. All notions of proof
identity that exist are between proofs within the same proof system, as it is not clear what it
means to compare two formal proofs that are given in two different proof systems.

(a) Existing notions of proof identity
Up to now, there exist only four notions of proof identity, and two of them are trivial: (1) two
proofs are the same if they prove the same theorem, and (2) two proofs are the same if they are
syntactically equal. They have already been ruled out by Hilbert, and there is no need to discuss
them further here. The two non-trivial existing notions of proof identity are based on normalization
and generality, respectively [Doš03].

Normalization can be seen as the standard proof theoretical answer to the problem of
proof identity [Pra65]: Two proofs are the same if they have the same normal form. In some
respect, this certainly makes sense: Under the Curry-Howard-correspondence [How80], a (natural
deduction) proof corresponds to a λ-term, and the normalization of a proof corresponds to
the evaluation of a λ-term, and two λ-terms are equal if they evaluate to the same term.
This is the basis of the functional programming paradigm. But from the viewpoint of proof
search and proof presentation, this notion of equality makes only little sense, since most
formal proofs that are considered in formal verification, automated reasoning, and interactive
theorem proving are already in normal form in the sense above. Another notion of proof
normalization is cut elimination, where the cuts in a (sequent calculus) proof can be seen as
auxiliary lemmas used in that proof. Therefore, these cuts are crucial information and should not
be eliminated. An instructive example is Fürstenberg’s proof of the infinity of primes, which uses

4http://www.gemalto.com/techno/javacard/

http://www.gemalto.com/techno/javacard/
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a topological argument. When we eliminate the cuts from that proof, we obtain Euclid’s original
proof [BHL+08].

Generality [Lam68,Lam69] identifies proofs based on coherence theorems for categories seen as
deductive systems: two proofs are the same, if they constitute the same morphism in the category.
Of course, the problem here is to find the right axiomatisation of the category in question. For
intuitionistic propositional logic the notions of coherence (via Cartesian closed categories) and
normalization (via β-reduction) yield equivalent notions of proof identity [LS86]. Also for linear
logic, the notions of coherence and normalization make the same proof identifications [See89,
Blu93,LS06,HS16]. However, for classical logic, the logic of our every-day-reasoning, neither
notion has a broadly accepted definition [Par92,BHRU06,Hyl02,FP04,McK06,DP04,Str07b,Str11].

But more importantly, neither notion speaks about the feasibility of deciding proof identity.
For practical purposes, however, it is important that it is feasible to check whether two proofs are
the same, even if these proofs are huge objects. This leads to our first objective for a universal
notion of proof identity:

Objective 1: Proof identity must be decidable in polynomial time in the size of the proofs.

(b) The problem of proof size
A formal proof is usually given within some proof system consisting of axioms and inference
rules that allow to construct new proofs from given ones. Here are two examples of such inference
rules:

A A→B
mp−−−−−−−−−−−−−−−−−−−

B

Γ `A Γ `B
∧−−−−−−−−−−−−−−−−−−−−

Γ `A ∧B
(2.1)

The first says that if we have a proof of A and a proof of A→B (read “A implies B”), then we can
obtain a proof of B. The second says that if we have a proof of A from premises Γ and a proof of
B from premises Γ , then we can also prove A ∧B (read “A and B”) from premises Γ .

If we want to automatize the (bottom-up) proof search process, our proof system should have
the subformula property, which says that every formula that is encountered during the proof search
is already present as a subformula in the formula to be proven. For example, the right rule in (2.1)
has this property, but the left rule does not. In order to prove B using the rule mp (called modus
ponens), we have to invent the formula A out of “thin air”.

The subformula property of a proof system is usually obtained through the cut elimination
property (pioneered by Gentzen in his seminal work [Gen35]), which says that the use of auxiliary
lemmas can be eliminated from a proof by plugging the proof of the lemma in the place where the
lemma was used. Most of the ingenuity of research in proof theory in the last eighty years went
into the design of proof systems that do not need a cut-rule (which is always some variant of the
rule mp above) for completeness.

This marvelous property comes at a price: the transformation of a proof with cuts into a
proof without cuts can cause an explosion of the size of the proof. One can construct examples
of proofs with cuts that fit on a page, such that eliminating the cuts makes them bigger than
the size of the universe [Boo84]. Because of this, the cut is also called a mechanism of proof
compression. Other such mechanisms are, for example, extension and substitution [CR79], that allow
us to use abbreviations inside a proof, and co-contraction (the dual of the usual contraction rule)
which allows to share subproofs. Discussing the relation between the various proof compression
mechanisms [CR79,KP89,BG09,Str12,NS15,Jeř09,BGGP10] would go beyond the scope of this
paper. However, the point I want to stress here is that any reasonable notion of proof identity
should take the size of a proof into account:

Objective 2: Proof identity must respect the size of proofs.

In more technical terms this means that whenever two proofs are identified, their size must only
differ by a polynomial factor. For propositional classical logic, this is an important issue because
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axiom −−−−−−−
A ` A

¬L −−−−−−−−−
A,¬A `

axiom −−−−−−−
C ` C

∨L −−−−−−−−−−−−−−−−−−−−−−−−−−−
A,¬A ∨ C ` C

axiom −−−−−−−
A ` A

axiom −−−−−−−
B ` B

→L −−−−−−−−−−−−−−−−−−−−−−−−−
A,A→ B ` B

∧R −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
A,A,A→ B,¬A ∨ C ` C ∧B

con −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
A,A→ B,¬A ∨ C ` C ∧B

axiom −−−−−−−
D ` D

→L −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
A,A→ B,¬A ∨ C,C ∧B → D ` D

∧L(3×) −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
A ∧ (A→ B) ∧ (¬A ∨ C) ∧ (C ∧B → D) ` D

→R −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
` A ∧ (A→ B) ∧ (¬A ∨ C) ∧ (C ∧B → D)→ D

axiom −−−−−−−
A ` A

axiom −−−−−−−
A ` A

¬L −−−−−−−−−
A,¬A `

axiom −−−−−−−
B ` B

axiom −−−−−−−
C ` C

∧R −−−−−−−−−−−−−−−−−−−−−−−−−
B,C ` C ∧B

axiom −−−−−−−
D ` D

→L −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
B,C,C ∧B → D ` D

∨L −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
A,B,¬A ∨ C,C ∧B → D ` D

→L −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
A,A,A→ B,¬A ∨ C,C ∧B → D ` D

con −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
A,A→ B,¬A ∨ C,C ∧B → D ` D

∧L(3×) −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
A ∧ (A→ B) ∧ (¬A ∨ C) ∧ (C ∧B → D) ` D

→R −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
` A ∧ (A→ B) ∧ (¬A ∨ C) ∧ (C ∧B → D)→ D

Figure 1. Two sequent calculus proofs of the formula in (2.2)

the question of whether there is a proof system yielding a polynomial size proof of every Boolean
tautology is equivalent to the question of whether NP = coNP [CR79].

(c) Partial proofs
For many real-world applications it is not enough to run some automated theorem prover to
obtain a proof. Proving a property of a piece of software usually demands interaction of the
user who has some knowledge about the system that says why this property should be true.
This is where interactive proof assistants, like Coq [BC04,DFH+93] or Isabelle/HOL [NPW02], are
employed which can guide the user to a proof of a given obligation. Obtaining such a proof is
often a huge effort, involving many people producing various pieces of the proof. These pieces
are represented in form of proof scripts that tell the proof assistant how to obtain a proof. Such
scripts can in principle also represent incomplete or partial proofs. This can be because there is still
an open proof obligation for which the proof might be found by using a different tool, or because
the missing step is a pure computation step that is redone every time the proof script is checked
by the prover. A reasonable notion of proof identity should be able to abstract away from such
computation steps, since for the proof it is irrelevant how this computation is done [DHK03]. This
leads to:

Objective 3: Proof identity must be able to handle partial proofs.

(d) Proofs versus proof representations
We have seen above that the objects of study in proof theory are not proofs but proof systems,
and that syntactic proofs are intrinsically tied to the proof systems in which they are carried out.
Here I want to argue that the syntactic proofs are just representations of the actual proofs objects.
For this, consider as a very simple example the following formula

(A ∧ (A→B) ∧ (¬A ∨ C) ∧ (C ∧B→D))→D (2.2)

Figure 1 shows two (syntactically) different proofs of that formula in Gentzen’s sequent calculus
LK [Gen35,TS00]. The attentive reader might immediately observe that the two proofs only
differ in the order of the application of inference rules and that one can be transformed into
the other by a series of simple rule permutation steps. In fact, sequent calculus proofs are often
considered equal iff they are equivalent modulo rule permutation. However, recently it has been
shown that equivalence of sequent calculus proofs modulo rule permutation can be PSPACE-
complete [HH14], which violates Objective 1 stated above and renders it unfeasible to base proof
identity on rule permutations (unless P = PSPACE).

To make the situation worse, consider Figure 2, which shows a proof of our formula (2.2) as an
analytic tableau [Smu68] on the left, a natural deduction proof [Gen35,Pra65] on the top right, and
as a proof script in the Coq system [DFH+93] on the bottom right. A priori, there is no obvious
relation between all these proofs, except for the fact that they prove the same formula. However,
the natural deduction proof and the Coq proof script are just two different notations of the same



6

rsta.royalsocietypublishing.org
P

hil.
Trans.

R
.S

oc.
A

0000000
..................................................................

A ∧ (A → B) ∧ (¬A ∨ C) ∧ (C ∧B → D) → D

¬(A ∧ (A → B) ∧ (¬A ∨ C) ∧ (C ∧B → D))

D

¬A

¬(A → B)

¬(¬A ∨ C)

¬(C ∧B → D)

A

closed

¬B

A

closed

¬C

C ∧B

B

closed

C

closed

¬D
closed

[F ]
∧E −−−−−−−−−

¬A ∨ C

[F ]
∧E −−−

A [¬A]
¬E −−−−−−−−−−−

⊥
⊥E −−

C [C]
∨E −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

C

[F ]
∧E −−−

A

[F ]
∧E −−−−−−−−

A → B
→E −−−−−−−−−−−−−−−−−−

B
∧I −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

C ∧B

[F ]
∧E −−−−−−−−−−−−−−

C ∧B → D
→E −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

D
→I −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

A ∧ (A → B) ∧ (¬A ∨ C) ∧ (C ∧B → D) → D

Goal A /\ (A -> B) /\ (~A \/ C) /\ (C /\ B -> D) -> D.

Proof.

intros h1. destruct h1 as [ha h2].

destruct h2 as [hab h3]. destruct h3 as [hac h4].

apply h4. split.

apply hab. exact ha.

destruct hac as [hna|hc]. elim hna. exact ha.

exact hc.

Qed.

Figure 2. A tableau proof, a natural deduction proof, and a Coq proof of the formula in (2.2)

object. But they are not comparable to the tableau proof on the left or the two sequent proofs in
Figure 1 above.5

Nonetheless, even though syntactically all these proofs look very different from each other, in
principle they all do the same thing: they use A twice to justify B (via the subformula A→B)
and C (via the subformula ¬A ∨ C), which in turn are then used to justify D (via the subformula
C ∧B→D).

So, why not extend the equivalence between the natural deduction proof and the Coq proof
script (being just two different notations of the same object) to all proofs in Figures 1 and 2? Why
not consider them all simply as different syntactic representations of the same proof ? The problem
here is that the syntactic peculiarities of the chosen formal proof system or proof language hide
the essence of the proof, and that it is not clear at all how to give a mathematical description of
that proof without relying on the syntax of a proof system. Note that our example only speaks
about propositional logic. The situation only gets worse when variable binding, quantifiers and
fixpoints enter the scene.

Objective 4: Proof identity must be independent from the syntax of proof systems.

3. From Proof theory to a theory of proofs
In the previous two sections I argued that Hilbert’s 24th problem, or the problem of proof identity,
is highly relevant for modern computer science, and I discussed some properties that a reasonable
notion of proof identity should have, in order to be useful for certain applications. But so far, it is
not clear how such a notion could be found and whether it is possible to meet the four objectives
discussed above. One might even be inclined to think that the non-existence of our desired notion
of proof identity is inherently caused by the very nature of proof theory.

In this section I will argue that the problem is a mathematical problem that can be solved
by mathematical means. In fact, there exist already two fundamentally different approaches for
freeing proofs from the syntactic yoke of proof systems, and both have the potential to enable us
eventually to speak of a theory of proofs, instead of a theory of proof systems.

In the first approach we define the properties of proofs and their interactions via axioms, in a
similar way as it is done in abstract algebra. In most cases this leads to some kind of category of
proofs [Lam68,Lam69]. Let us call this first approach the axiomatic approach. The second approach
5Although in propositional logic a tableau proof can be seen as an “upside-down” sequent calculus proof, this is no longer
the case for more expressive logics [Gor99]. It seems that we need more sophisticated versions of sequent calculi and tableau
systems, in order to recover this upside-down correspondence.
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tries to find concrete combinatorial objects (e.g. graphs) that carry the meaning of proofs. Let us
call this second approach the combinatorial approach.

(a) Towards an axiomatic theory of proofs
As observed by Lambek [Lam68], an algebraic treatment of proofs can be provided by category
theory. For this, it is necessary to accept the following postulates about proofs:

• for every proof f of conclusion B from hypothesis A (denoted by f : A→B) and
every proof g of conclusion C from hypothesis B (denoted by g : B→C) there is a
uniquely defined composite proof g ◦ f of conclusion C from hypothesis A (denoted by
g ◦ f : A→C),
• this composition of proofs is associative,
• for each formula A there is an identity proof idA : A→A such that for f : A→B we have
f ◦ idA = f = idB ◦ f .

Under these assumptions the proofs are the arrows in a category whose objects are the formulas
of the logic. What remains is to provide the right axioms for the “category of proofs”.

It seems that finding these axioms is particularly difficult for the case of classical logic. Linear
logic can be axiomatised by various variants of star-autonomous categories [See89,Blu93,LS06,
HS16]. For intuitionistic logic, a reasonable notion of proof identity is given by the axioms of a
Cartesian closed category [LS86]. In fact, one can say that the proofs of intuitionistic logic are the
arrows in the free Cartesian closed category generated by the set of propositional variables.

A naive approach for extending this result to classical logic would be to add an involutive
negation to a Cartesian closed category, i.e., a natural isomorphism between A and the double-
negation of A. But this immediately gives us a collapse into a Boolean algebra, i.e., any two
proofs f, g : A→B are identified [LS86,Str11]. To overcome this problem, we clearly have to drop
some of the equations that one would like to hold between proofs in classical logic. But which
ones should go? There are now several different approaches, and all have their advantages and
disadvantages.

(i) The first says that the axioms of Cartesian closed categories are essential and cannot be
dispensed with. Instead, one sacrifices the duality between ∧ and ∨. The motivation
for this approach is that a proof system for classical logic can now be seen as an
extension of the λ-calculus and the notion of normalization does not change. One has
term calculi for proofs, namely Parigot’s λµ-calculus [Par92] and its many variants (e.g.,
[CH00]), and an important aspect is the computational meaning in terms of continuations
[Thi97,SR98] in functional programming languages. For this approach, the category
theoretical axiomatisation is well understood [Sel01], and there is a well-behaved theory
of proof nets [Lau03]. However, in this setting, proof identity is based on normalization,
which does not solve Hilbert’s problem, as discussed in Section 2.(a) above.

(ii) The second approach considers the perfect symmetry between ∧ and ∨ to be an essential
facet of Boolean logic, that cannot be dispensed with. Consequently, the axioms of
Cartesian closed categories and the close relation to the λ-calculus have to be sacrificed.
More precisely, the conjunction ∧ is no longer a Cartesian product, but merely a
tensor-product. Thus, the Cartesian closed structure is replaced by a star-autonomous
structure, as it is known from linear logic. This approach [FP06,LS05a,McK05,Str07b,
Lam07,Str11] is much less investigated than the first one above, since there is no
immediate correspondence to functional programming constructs. However, it seems to
be better suited for Hilbert’s 24th problem.

(iii) The third approach [DP04,CS09] keeps the perfect symmetry between ∧ and ∨, as well
as the Cartesian product property for ∧. What has to be dropped is the property of being
closed, i.e., there is no longer a bijection between the proofs of A ` B→C and the proofs



8

rsta.royalsocietypublishing.org
P

hil.
Trans.

R
.S

oc.
A

0000000
..................................................................

A^ pAÑ Bq ^ p A_ Cq ^ pC ^B Ñ Dq Ñ D

Figure 3. The matings for the two sequent proofs in Figure 1

‚
‚ ‚ ‚ ‚ ‚ ‚

‚
‚ ‚

A^ pAÑ Bq ^ p A_ Cq ^ pC ^B Ñ Dq Ñ D

Figure 4. A combinatorial proof of the formula in (2.2)

of A ∧B ` C . This means we lose currying and the categorical version of the deduction
theorem.

(iv) Of course, one can also drop even more equations, and choose alternative routes to go, as
for example in [Hyl02,Hyl04,BHRU06].

In any case, the fundamental problem with the axiomatic approach is that it always “comes
second”. We first need a clear understanding of the objects we are investigating before we can find
the correct axiomatisations. So did mathematicians settle on the modern axioms for a group only
after they had been studying permutations in algebra and symmetries in geometry for decades,
and they had for long been investigating various forms of “spaces” before the modern notion of
“topology” emerged. For proofs, we are in a similar situation. Only when we fully understand
what we mean by “proof”, we can start to agree on an axiomatisation.

(b) From syntactic proofs to combinatorial proofs
For this reason, the combinatorial approach seems to be more promising. The first attempt in
that direction was through Andrews’ matings [And76], which kept only the axiom links of a proof.
Figure 3 shows the matings for the two sequent proofs in Figure 1—both sequent proofs have
identical matings. In fact, Andrews considered these matings to be the “essence” of a proof, and
thus provided a proposal for a nontrivial notion of proof identity. The more recent work in [LS05b]
provided a notion of proof composition for matings.

However, checking correctness of matings takes exponential time6. This means that checking
correctness of a proof object for a formula is as expensive as proving the formula from scratch.
What we need are canonical proof objects whose correctness can be checked in polynomial time.

For (multiplicative) linear logic, this goal was achieved by Girard’s proof nets [Gir87], where the
basic idea is essentially the same as for matings—keep the information about which atom pairs
meet in an axiom link. But because of linearity, checking correctness can be done in polynomial
time. In order to obtain this property for classical logic, we have to keep track of the places in
the proof where duplication and erasure of atoms can happen. The first attempt to do this was
through the notion of atomic flow [GG08,GGS10], but unfortunately no polynomial-time checking
algorithm has been found so far, and it is very likely that it cannot exist [Das13].

An alternative approach is to completely separate in a proof the purely linear part and the
duplication/erasure part, as it is done in Hughes’ combinatorial proofs [Hug06a]. In fact, for the
very restrictive case of classical proposition logic, combinatorial proofs meet all four objectives
discussed in Section 2. For this reason I will give here more technical details.7

6The problem is co-NP complete.
7In this article, I will follow the presentation in [Str17b,Str17a], and I refer the reader to these papers for more details.
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The example in Figure 4 shows the combinatorial proof corresponding to the syntactic proofs
in Figures 1 and 2. In other words, all these proofs are identified, as demanded in Section 2.(d).

A combinatorial (pre-)proof π of a formula F consists of three parts:

(i) an undirected graph C = 〈V,R〉with vertices V and edges R
(depicted in black dots (V ) and red/regular thick edges (R) in Figure 4),

(ii) a perfect matching B on the vertices V of the graph C
(depicted by bold/blue edges in Figure 4),8 and

(iii) a mapping f from the vertices V of C to the literal occurrences in F
(depicted by purple arrows in Figure 4).

We say that F is the conclusion of π. Before we can say when such a π is correct, i.e., under which
conditions it represents a proof, we need the notion of the formula graph G(F ) of a formula F . If
F is in negation normal form (nnf)9, we define G(F ) = 〈VF , RF 〉 such that VF is the set of literal
occurrences in F , and there is an edge between two literal occurrences iff their first common
ancestor in the formula tree is an ∧-connective. To give an example, below on the left is the
formula tree of the nnf of the formula in (2.2), and on the right is the formula graph:

∨

∨

∨

∨

¬A ∧

A ¬B

∧

A ¬C

∧

∨

C B

¬D

D

A A B C
 A D

 B  C  D

The formula graph of a formula F that is not in nnf is the formula graph of the nnf of F . We can
neglect the bracketing of the connectives since two formulas have the same formula graph if and
only if they are equivalent modulo associativity and commuativity of ∧ and ∨.10

We say that π is correct, i.e., it represents a proof iff:

(i) The graph C is a cograph, i.e., it does not contain a configuration
‚ ‚

‚ ‚
as induced

subgraph,
(ii) The perfect matching B on the graph C is such that there is no configuration of the

shape:11

‚ ‚
‚ ‚

‚ ‚

‚ ‚

‚ ‚

‚ ‚

‚ ‚
‚¨ ¨ ¨ ‚

(iii) the mapping f from C = 〈V,R〉 to G(F ) = 〈VF , RF 〉 is

(a) a graph homomorphism, i.e., if there is an edge between u, v ∈ V in R, then there is an
edge between f(u) and f(v) in RF ,

(b) axiom preserving, i.e., vertices that are connected by aB-edge in C are mapped to dual
literals in G(F ), and

(c) a skew fibration, i.e., for all v ∈ V and w′ ∈ VF , if there is an edge between f(v) and
w′ in RF , as depicted on the left below, then there is a w ∈ V such that there is no
edge in VF between w′ and f(w), as depicted on the right below (but we can have

8A matching in a graph is a set of pairwise non-adjacent edges. A matching is perfect if it matches all vertices of the graph.
9A formula is in nnf if negation occurs only in front of atoms, and the only binary connectives are ∧ (and) and ∨ (or).
10This can be shown by a simple induction on the number of associativity/commuativity steps.
11Formally, the condition is that there is no chordless æ-cycle. See [Ret03] for details.
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that f(w) =w′):

‚v

‚
fpvq ‚w1

f  

‚v

‚
fpvq

‚ w

‚w1

‚fpwq

f

Condition (i) says that C is the formula graph of some formula FC . Condition (ii) ensures that
the linear part of the proof is correct. More precisely, the B-edges describe a proof net of linear
logic for the formula FC (in the sense of Retoré [Ret03]). Condition (iii) ensures that erasure and
duplication of atomic formulas follows the rules of classical logic. More precisely, there is a skew
fibration from C to G(F ) iff there is derivation fromFC toF using only contraction and weakening,
i.e., duplication and erasure of subformulas (see [Hug06b,Str07a] for details).

The important observation here is that all three conditions are purely combinatorial properties
that do not refer to the syntax of a formal deductive proof system. Furthermore, all these
conditions can be checked in polynomial time [Hug06a]. Hughes also has shown soundness and
completeness: Every Boolean tautology has a combinatorial proof and every combinatorial proof
has a Boolean tautology as conclusion. In [Hug06b,Str17b,Str17a], combinatorial proofs have been
extended to also cover cuts, substitution, and extension, and can therefore handle all known
notions of proof compression in classical propositional logic. This motivates the following thesis:

Two proofs are the same iff they have identical combinatorial proofs.

We consider combinatorial proofs as canonical proof representations, and it has already been
shown in [Hug06b,Str17b] how syntactic proofs in the sequent calculus can be translated into
combinatorial proofs, in such a way that the B-edges in the combinatorial proofs are in one-
to-one correspondence to the instances of the axiom rule in the syntactic proof. Similar results
have been obtained in [AS18] for analytic tableaux, and in [Str17b,Str17a] for deep inference
proofs [GS01,BT01]. This ensures that proof identity via combinatorial proofs respects the size
of proofs as demanded by Objective 2.

4. Conclusion
The results mentioned in the previous section suggest that combinatorial proofs satisfy all four
objectives that have been postulated in Section 2. One can therefore argue that combinatorial
proofs solve the problem of proof identity for the special case of classical propositional logic.
However, the problem remains wide open when we go beyond that:

• The most important question is what happens in the presence of quantifiers. Can we
have combinatorial proofs for first-order logic? What about higher-order logic? And how
should we deal with non-logical axioms?
• Can we also have combinatorial proofs for intuitionistic logic, and if yes, what is the

relation to λ-calculus? And what about intermediate logics?
• We can say that proof nets are for linear logic what combinatorial proofs are for classical

logic. This raises the question of whether we can have a similar notion of “combinatorial
proof” for other substructural logics.
• Another question is whether we can extend the data structure of combinatorial proofs to

modalities. And if this is the case, is there a general scheme, or are there modal logics
which are more “friendly” towards combinatorial proofs, i.e., is the situation similar to
the (cut-free) sequent calculus, which can capture some modal logics very easily (like K
and S4) and has notorious difficulties with others (like KB and S5)?
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Finally, there are two issues that have deliberately been neglected in this article because a
satisfactory treatment would have gone beyond its scope.

The first one comes from our original motivation in computer science: the formal verification
of software and hardware. The most successful method so far is model checking [CGP99], which
essentially consists in the exploration of a mathematical model to check if a certain property is
fulfilled. If a given model checker comes back with a positive answer then this is considered to be
a proof of the given property (modulo the correct implementation of the model checker in use).
However, the output we get is not a formal proof in the sense of traditional proof theory.12 For
proof theory, this is an unsatisfactory situation, in particular, since the structure of the algorithms
searching the model to check the validity of the formula in question is, on an abstract level, similar
to the structure of the algorithms that are employed in proof search [DM08]. From a practical point
of view, it would therefore be desirable to have a notion of proof identity that is able to handle
proofs that are obtained via model checking.

The second issue neglected in this article is of a more philosophical nature: can a combinatorial
proof, or more precisely, a first-order version of a combinatorial proof, capture the mathematical
idea behind a proof, and what does that mean?
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KP89 Jan Krajíček and Pavel Pudlák. Propositional proof systems, the consistency of first
order theories and the complexity of computations. The Journal of Symbolic Logic,
54(3):1063–1079, 1989.

Lam68 Joachim Lambek. Deductive systems and categories. I: Syntactic calculus and
residuated categories. Math. Systems Theory, 2:287–318, 1968.

Lam69 Joachim Lambek. Deductive systems and categories. II. standard constructions and
closed categories. In P. Hilton, editor, Category Theory, Homology Theory and Applications,
volume 86 of Lecture Notes in Mathematics, pages 76–122. Springer, 1969.

Lam07 François Lamarche. Exploring the gap between linear and classical logic. Theory and
Applications of Categories, 18(18):473–535, 2007.

Lau03 Olivier Laurent. Polarized proof-nets and λµ-calculus. Theoretical Computer Science,
290(1):161–188, 2003.

Ler09 Xavier Leroy. Formal verification of a realistic compiler. Commun. ACM, 52(7):107–115,
2009.



14

rsta.royalsocietypublishing.org
P

hil.
Trans.

R
.S

oc.
A

0000000
..................................................................

LS86 Joachim Lambek and Phil J. Scott. Introduction to higher order categorical logic, volume 7
of Cambridge studies in advanced mathematics. Cambridge University Press, 1986.

LS05a François Lamarche and Lutz Straßburger. Constructing free Boolean categories. In
LICS’05, pages 209–218, 2005.

LS05b François Lamarche and Lutz Straßburger. Naming proofs in classical propositional
logic. In Paweł Urzyczyn, editor, TLCA’05, volume 3461 of LNCS, pages 246–261.
Springer, 2005.

LS06 François Lamarche and Lutz Straßburger. From proof nets to the free *-autonomous
category. Logical Methods in Computer Science, 2(4:3):1–44, 2006.

McK05 Richard McKinley. Classical categories and deep inference. In Structures and Deduction
2005 (Satellite Workshop of ICALP’05), 2005.

McK06 Richard McKinley. Categorical Models of First Order Classical Proofs. PhD thesis,
University of Bath, 2006.

Mil11 Dale Miller. A proposal for broad spectrum proof certificates. In J.-P. Jouannaud and
Z. Shao, editors, CPP: First International Conference on Certified Programs and Proofs,
volume 7086 of Lecture Notes in Computer Science, pages 54–69, 2011.

NPW02 Tobias Nipkow, Lawrence C. Paulson, and Markus Wenzel. Isabelle/HOL — A Proof
Assistant for Higher-Order Logic. Number 2283 in Lecture Notes in Computer Science.
Springer, 2002.

NS15 Novak Novakovic and Lutz Straßburger. On the power of substitution in the calculus
of structures. ACM Trans. Comput. Log., 16(3):19, 2015.

Par92 Michel Parigot. λµ-calculus: An algorithmic interpretation of classical natural
deduction. In LPAR 1992, volume 624 of LNAI, pages 190–201. Springer-Verlag, 1992.

Pra65 Dag Prawitz. Natural Deduction, A Proof-Theoretical Study. Almquist and Wiksell, 1965.
Ret03 Christian Retoré. Handsome proof-nets: perfect matchings and cographs. Theoretical

Computer Science, 294(3):473–488, 2003.
Sai15 Ronan Saillard. Rewriting modulo β in the λΠ-calculus modulo. In Iliano Cervesato

and Kaustuv Chaudhuri, editors, Proceedings Tenth International Workshop on Logical
Frameworks and Meta Languages: Theory and Practice, LFMTP 2015, Berlin, Germany, 1
August 2015., volume 185 of EPTCS, pages 87–101, 2015.

See89 R.A.G. Seely. Linear logic, *-autonomous categories and cofree coalgebras.
Contemporary Mathematics, 92, 1989.

Sel01 Peter Selinger. Control categories and duality: on the categorical semantics of the
lambda-mu calculus. Math. Structures in Comp. Science, 11:207–260, 2001.

Smu68 Raymond M. Smullyan. First-Order Logic. Springer-Verlag, Berlin, 1968.
SR98 Thomas Streicher and Bernhard Reus. Classical logic, continuation semantics and

abstract machines. J. of Functional Programming, 8(6):543–572, 1998.
Str07a Lutz Straßburger. A characterisation of medial as rewriting rule. In Franz Baader,

editor, Term Rewriting and Applications, RTA’07, volume 4533 of LNCS, pages 344–358.
Springer, 2007.

Str07b Lutz Straßburger. On the axiomatisation of Boolean categories with and without
medial. Theory and Applications of Categories, 18(18):536–601, 2007.

Str11 Lutz Straßburger. Towards a Theory of Proofs of Classical Logic. Habilitation à diriger des
recherches, Université Paris VII, 2011.

Str12 Lutz Straßburger. Extension without cut. Annals of Pure and Applied Logic, 163(12):1995–
2007, 2012.

Str17a Lutz Straßburger. Combinatorial Flows and Proof Compression. Research Report RR-
9048, Inria Saclay, 2017.

Str17b Lutz Straßburger. Combinatorial flows and their normalisation. In Dale Miller, editor,
2nd International Conference on Formal Structures for Computation and Deduction, FSCD
2017, September 3-9, 2017, Oxford, UK, volume 84 of LIPIcs, pages 31:1–31:17. Schloss
Dagstuhl - Leibniz-Zentrum fuer Informatik, 2017.

Thi97 Hayo Thielecke. Categorical Structure of Continuation Passing Style. PhD thesis,
University of Edinburgh, 1997.

Thi03 Rüdiger Thiele. Hilbert’s twenty-fourth problem. American Mathematical Monthly,
110:1–24, 2003.

TS00 Anne Sjerp Troelstra and Helmut Schwichtenberg. Basic Proof Theory. Cambridge
University Press, second edition, 2000.


	1 Introduction
	(a) From Hilbert's 24th problem to the identity of proofs
	(b) The relevance for computer science

	2 Objectives for a universal notion of proof identity
	(a) Existing notions of proof identity
	(b) The problem of proof size
	(c) Partial proofs
	(d) Proofs versus proof representations

	3 From Proof theory to a theory of proofs
	(a) Towards an axiomatic theory of proofs
	(b) From syntactic proofs to combinatorial proofs

	4 Conclusion
	References

