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Abstract
Recently it has been observed that the set of all sound linear inference rules in propositional
logic is already coNP-complete, i.e. that every boolean tautology can be written as a (left- and
right-) linear rewrite rule. This raises the question of whether there is a rewriting system on
linear terms of propositional logic that is sound and complete for the set of all such rewrite rules.
We show in this paper that, as long as reduction steps are polynomial-time decidable, such a
rewriting system does not exist unless coNP = NP.

We draw tools and concepts from term rewriting, boolean function theory and graph theory, in
order to access the required intermediate results. At the same time we make several connections
between these areas that, to our knowledge, have not yet been presented and constitute a rich
theoretical framework for reasoning about linear TRSs for propositional logic.
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1 Introduction

Linear inferences, as defined in [7] and also known as “balanced” tautologies (e.g. in [17]) or
linear rules (e.g. in deep inference [2], [3]), are sound implications in classical propositional
logic (CPL), each of whose variables occur exactly once in both the premiss and the conclu-
sion. From the point of view of term rewriting they are rewrite rules that are non-erasing,
left- and right-linear, and such that the boolean function computed by the left hand side
logically implies that computed by the right hand side.1

The reason why this is an interesting set of rewrite rules to consider is essentially due
to the observation that all boolean tautologies can be written in this form, by means of a
polynomial-time translation [17]. Consequently, it has been asked (e.g. in [7] [17]) whether
one can derive all of CPL internally to this fragment; i.e. is there a set of linear inferences
(satisfying certain conditions) that is complete, under term rewriting, for the set of all linear
inferences (denoted L henceforth).

It was previously shown that such a set could not be finite [7] [17], via an encoding of
instances of the pigeonhole principle as linear inferences. However in this work we consider
any system whose reduction steps can be checked efficiently, i.e. form a polynomial-time
decidable set. The motivation behind this generality is that such a set would constitute a
sound and complete “proof system” 2 for CPL with no meaningful duplication, creation or

1 For generality and ease of presentation, we later drop the “non-erasing” criterion for linear inferences
in this work.

2 Recall that proof systems are usually required to be efficiently (i.e. polynomial-time) checkable, e.g. as
defined in [13].
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destruction of formulae,3 in stark contrast to the traditional approach of structural proof
theory, based on rules exhibiting precisely such behaviour.

In this work we show that no such linear system exists, unless coNP = NP. In a little
more detail, we show that any such system4 would admit a derivation of each valid linear
inference of polynomial length (and so polynomial-size, by linearity). This would imply that
coNP is contained in NP as follows:
1. There is an NP-algorithm for L: simply guess the correct derivation in some sound and

complete linear system.
2. Since TAUT is polynomial-time reducible to L there is also an NP-algorithm for TAUT .
3. By the Cook-Levin theorem that SAT is NP-complete we have that TAUT is coNP-

complete, and so there is a NP-algorithm for coNP.

Functions computed by linear terms of CPL have been studied in boolean function the-
ory, and more specifically circuit complexity, for decades, where they are called “read-once
functions” (e.g. in [5]).5 They are closely related to positional games (first mentioned in
[11]) and have been used in amplification of approximation circuits, (first in [19], more gen-
erally in [8]) as well amongst other areas. Their equivalence classes under associativity and
commutativity of ∧ and ∨ can also be represented as the set of “cographs”, or “P4-free”
graphs whose nodes are the variables of a formula, which we call “relation webs” in this
work, following [9] [16].

In this paper we work in both these settings, as well as that of term rewriting, and
present novel interplays between them. In particular, the proof of our main result, Thm. 32,
crucially uses concepts from all three settings, which we hope is clear from the exposition.

We develop connections and applications of concepts about read-once functions , e.g.
Prop. 14 and Thm. 20, that seem to be novel, as results on such concepts have appeared
before only in the setting of isolated boolean functions, rather than in a logical setting where
we care futhermore about logical relations between functions, e.g. when one function implies
another.

From the point of view of rewriting theory, logic has always been a motivational domain
of applications. For example, “tautology checking” is used as one of the three motivating
examples in the Terese book, Term Rewriting Systems [18]. In this way we suggest that
our main result, a natural statement in the language of rewriting theory, is of independent
interest to the rewriting community.

The organisation of this paper is as follows. In Sects. 2 and 3 we present the basics on
term rewriting in CPL and their usual boolean interpretations. In Sect. 4 we define relation
webs and give graph-theoretic versions of various logical concepts. In Sect. 5 we present a
“normal form” of linear derivations, which we ultimately use to prove polynomial-time weak
normalisation in Sect. 6.

In Sect. 7 we apply previous results to deduce and conjecture forms of “canonicity” of
certain linear rules prominent in deep inference proof theory and, finally , in Sect. 8 we make
some concluding remarks.

3 The only duplication would occur in the reduction from TAUT to L where its complexity is bounded
by some fixed polynomial.

4 Assumed to contain certain core rules.
5 These have been studied in various forms and under different names. The first appearance we are aware
of is in [4], and also the seminal paper of [10] characterising these functions. The book we reference
presents an excellent and comprehensive introduction to the area.
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2 Preliminaries on rewriting theory

We generally work in the first-order term rewriting setting defined in the Terese textbook,
Term Rewriting Systems [18]. We will, in fact, use the same notation for all symbols except
the connectives, for which we use more standard notation from proof theory. In particular
we will use ⊥ and > for the truth constants, reserving 0 and 1 for the inputs and outputs
of boolean functions, introduced later.

Importantly we point out that two conventions we adopt differ from their usual definitions
in the literature:
1. A TRS is usually defined as an arbitrary set of rewrite rules. Here we insist that the set

of instances of these rules, or reduction steps, is polynomial-time decidable.
2. Rewriting modulo an equivalence relation usually places no restriction on the source

and target of a reduction step. Here we insist that they must be distinct modulo the
equivalence relation.

The motivation for (1) is that we wish to be as general as possible without admitting trivial
results. If we allowed all sets then a complete system could be specified quite easily indeed.
Furthermore, that an inference rule is easily or feasibly checkable is a usual requirement
in proof theory, and in proof complexity this is formalised by the same condition (1) on
inference rules, essentially due to the fact that TAUT is coNP-complete.

The motivation for (2) is that we fundamentally care about weak normalisation, e.g.
Cor. 33, but it will be useful to make statements resembling strong normalisation, under
this notion of rewriting modulo, e.g. Thm. 32. All the equivalence relations we will work
with are polynomial-time decidable, and so this convention is consistent with the previous
one. The same notion of rewriting modulo was also used in previous work [7].

Propositional logic in the term rewriting setting
Our language is built from the connectives >,⊥,¬,∧,∨ and a set Var of propositional
variables, typically denoted x, y, z, . . . . The set Ter of formulae, or terms is built freely from
this signature in the usual way, typically denoted s, t, u, . . . . Term and variable symbols may
occur with superscripts and subscripts if required.

In this setting > and ⊥ are considered the constant symbols of our language. We say
that a term t is constant-free if there are no occurrences of > and ⊥ in t.

We write Var(t) to denote the set of variables occurring in t. We say that a term t is
linear if, for each x ∈ Var(t), there is exactly one occurrence of x in t.

The size of a term t, denoted |t|, is the total number of variable and function symbols
occurring in t.

I Definition 1 (Substitutions). A substitution is a mapping σ : Var → Ter from the set of
variables to the set of terms such that σ(x) 6= x for only finitely many x. The notion of
substitution is extended to all terms, i.e. a map Ter → Ter , in the usual way.

I Definition 2 (Rewrite rules). A rewrite rule is an expression l → r, where l and r are
terms. We write ρ : l →ρ r to express that the rule l → r is called ρ. In this rule we call l
the left hand side (LHS) of ρ, and r the right hand side (RHS).

We say that ρ is left-linear (right-linear) if l (resp. r) is a linear term. We say that ρ is
linear if it is both left- and right-linear.

We write s →ρ t to express that s → t is a reduction step of ρ, i.e. that s = σ(l) and
t = σ(r) for some substitution σ.
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I Definition 3 (Term rewriting systems). A term rewriting system (TRS) is a set of re-
write rules whose reduction steps are decidable in polynomial time. The one-step reduction
relation of a TRS R is →R, where s→R t just if s→ρ t for some ρ ∈ R.

A linear (term rewriting) system is a TRS all of whose rules are linear.

I Definition 4 (Derivations). A derivation under a binary relation→R on Ter is a sequence
π : t0 →R t1 →R · · · →R tl. In this case we say that π has length l.

We also write →∗R to denote the reflexive transitive closure of →R.

I Definition 5 (Rewriting modulo). For an equivalence relation ∼ on Ter and a TRS R, we
define the relation→R/∼ by s→R/∼ t if there are s′, t′ such that s ∼ s′ →R t

′ ∼ t such that
s′ � t′.

An R/ ∼-derivation is also called an R-derivation modulo ∼.

In this work will consider linear equivalence relations, for example associativity and
commutivity of ∧ and ∨, denoted AC .

We also have linear equations for the truth constants, the system U :

x ∨⊥ = x = ⊥ ∨ x , x ∧> = x = > ∧ x , > ∨> = > , ⊥ ∧⊥ = ⊥

We denote by ACU the combined system of AC and U .
For certain reasons it will also be useful to consider the nonlinear system U ′ that extends

U by the following rules:

x ∨> = > = > ∨ x , x ∧⊥ = ⊥ = ⊥ ∧ x

We denote by ACU ′ the combined system of AC and U ′.
It turns out that this equivalence relation relates precisely those linear terms that com-

pute the same boolean function, as we discuss in the next section.

I Remark (On the use of →). To avoid possible confusion, notice that we are using the →
symbol both for a formal expression, e.g. the rewrite rule s → t, and with subscripts to
express a relation between two terms, e.g. the reduction step s →ρ t. This distinction will
become significant in the next section.

3 Preliminaries on boolean functions

In this section we introduce the usual boolean function models for terms of propositional
logic. A boolean function on a set of variables X ⊆ Var is a map {0, 1}X → {0, 1}.6 We
associate {0, 1}X with P(X), the powerset of X, i.e. we specify an argument of a boolean
functions by the subset of its variables assigned to 1.

Formally, a function ν : X → {0, 1} is specified as a set Xν where x ∈ Xν just if ν(x) = 1.
For this reason we may quantify over the arguments of a boolean function by writing Y ⊆ X
rather than ν ∈ {0, 1}X , i.e., we write f(Y ) to denote the value of f if the input is 1 for the
variables in Y and 0 for the variables in X \ Y . Similarly, we write f(Y ) for the value of f
when the variables in Y are 0 and the variables in X \ Y are 1.

6 In this work we will insist that this X is always a finite set.
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3.1 Boolean semantics of terms
A term t computes a boolean function {0, 1}Var(t) → {0, 1} in the usual way.

For boolean functions f, g : {0, 1}X → {0, 1} we write f ≤ g if ∀Y ⊆ X we have that
f(Y ) ≤ g(Y ). Notice that the following can easily be show to be equivalent:
1. f ≤ g.
2. f(Y ) = 1⇒ g(Y ) = 1.
3. g(Y ) = 0⇒ f(Y ) = 0.
We also write f < g if f ≤ g but f(Y ) 6= g(Y ) for some Y ⊆ X.

I Definition 6 (Soundness). We say that a rewrite rule s → t is sound if s, t compute
boolean functions f, g respectively such that f ≤ g. We say that a TRS is sound if all its
rules are. A linear inference is a sound linear rewrite rule. The set of all linear inferences is
denoted L.

I Notation 7. To switch conveniently between the settings of terms and boolean functions,
we freely interchange notations, e.g. writing s ≤ t to denote that s→ t is sound, and saying
f → g is sound when f ≤ g.

I Remark. We point out that, here, our definition of “linear inference” differs slightly from
that occurring in [7]. Namely, we insist only that the LHS and RHS are linear, but not
necessarily that they have the same variable set. We choose this more general definition
since it seems more natural in the setting of term rewriting. Furthermore, since it is indeed
a more general definition, the same result carries over for the previous notion too. In fact,
in later sections, we will restrict our attention to the former notion of linear inference due to
the fact that any erasure or introduction7 of variables in a left- and right- linear rule would
constitute what we call a “triviality” in Section 5 where we also elaborate on and address
this issue.

Finally, we give a known result, essentially from [17], that was one of the key motivations
for this work:

I Proposition 8. L is coNP-complete.

This result is the reason, from the point of proof theory, why one might restrict attention
to only linear inferences at all: every boolean tautology can be written as a linear inference.
As we can see from the proof that follows this translation is not very complicated, however
we point out that it does induce an at most quadratic blowup in size from a tautology to a
linear inference.

Proof of Proposition 8. The proof can essentially be found in [17]. Since the setting there
is slightly different, we repeat it here for the sake of completeness.

That L is in coNP is trivial since checking soundness of the rewrite rule s→ t is checking
validity of the formula ¬s ∨ t. To prove coNP-hardness, we can reduce validity of general
tautologies negation normal form to soundness of linear rewrite rules. For this, let t be a
formula in negation normal form (i.e., negation ¬ occurs only in front of variables). We
let t′ be the formula obtained from t by doing the following replacement for every variable
x occurring in t: Let n be the number of occurrences of x in positive form in t, and let m

7 We point out that in many settings, indeed in [18], a rewrite rule is not allowed to introduce new
variables. I.e. all variables occurring on the RHS must also occur in the LHS. In our setting it seems
more natural and symmetric to allow such behaviour and, again, this yields a more general result.
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be the number of occurrences of ¬x in t. If n ≥ 1 and m ≥ 1, then introduce 2 · n ·m fresh
variables x′i,j , x′′i,j for 1 ≤ i ≤ n and 1 ≤ j ≤ m. Now replace for every 1 ≤ i ≤ n the ith
occurrence of x by x′i,1 ∨ . . . ∨ x′i,m, and replace for every 1 ≤ j ≤ m the jth occurrence of
¬x by x′′1,j ∨ . . . ∨ x′′n,j . If n = 0, then introduce 2m fresh variables x′1, x′′1 , . . . , x′m, x′′m and
replace the jth ¬x by x′j ∧ x′′j . If m = 0, then introduce 2n fresh variables x′1, x′′1 , . . . , x′n, x′′n
and replace the ith x by x′i ∧ x′′i .

Now t′ is a linear term (without negation), and its size is quadratic in the size of t. Now
let s′ be the conjunction of all pairs x′ ∨x′′ of variables introduced in the construction of t′.
Then Var(s′) = Var(t′) and s′ is also a linear term and has the same size as t′. Furthermore,
t is a tautology if and only if s′ → t′ is sound. To see this, let s′′ and t′′ be obtained from
s′ and t′, respectively, by replacing each x′′ by ¬x′. Then s′′ always evaluates to 1, and t′′
is a tautology if and only if t is a tautology. J

3.2 Read-once functions and linear terms
Linear terms compute what are known as “read-once” boolean functions, and we survey
some of their theory in this section.

I Definition 9 (Read-once functions). A boolean function is read-once if it is computed by
some linear term (of propositional logic).

The following result first appeared in [10], and was later generalised to read-once “threshold”
formulae in [12].

I Theorem 10. If constant-free negation-free linear terms compute the same (read-once)
boolean function then they are equivalent modulo AC .

We point out that a proof of this can be easily derived from results in the next section, by the
presentation of equivalence classes modulo AC and graph-theoretic definition of soundness.

The following consequences of the above result appeared first in [7], where detailed proofs
may be found.

I Corollary 11. If negation-free linear terms compute the same (read-once) boolean function
then they are equivalent modulo ACU ′.

Proof idea. The result essentially follows from the observation that every negation-free term
is ACU ′-equivalent to ⊥, > or a unique constant-free term [6]. J

I Corollary 12. Any sound negation-free linear system, modulo ACU ′, is terminating in
exponential-time.

Proof. The result follows by boolean semantics and the preceding corollary: each consequent
term must compute a distinct boolean function that is strictly bigger, under ≤, and the graph
of ≤ has length 2n, where n is the number of variables in the input term. J

3.3 Minterms and maxterms
In this section let us restrict our attention to monotone boolean functions, i.e. those f :
{0, 1}X → {0, 1} such that Y ⊆ Y ′ ⊆ X implies f(Y ) ≤ f(Y ′). We point out the observation
that negation-free terms compute monotone boolean functions.

Minterms and maxterms, also called “prime implicants” and “prime clauses” respectively,
correspond to minimal DNF and CNF representations, respectively, of a monotone boolean
function. We refer the reader to [5] for an introduction to their theory.
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In this work we use them in a somewhat different way to boolean function theory, in
that we devise definitions of logical concepts, such as soundness and, later in Sect. 5, what
we call “triviality”. The reason for this is to take advantage of the purely function-theoretic
results stated in this section (e.g. Gurvich’s Thm. 15 below) to derive our main results.

I Definition 13. Let f be a monotone boolean function on a variable set X. A set Y ⊆ X
is a minterm (maxterm) for f if it is a minimal set such that f(Y ) = 1 (resp. f(Y ) = 0).

The set of all minterms (maxterms) of f is denoted MIN (f) (resp. MAX(f)).

Using these notions, we can now give an alternative definition of soundness.

I Proposition 14 (Soundness via minterms or maxterms). For monotone boolean functions
f, g on the same variable set, the following are equivalent:
1. f ≤ g.
2. ∀S ∈ MIN (f). ∃S′ ∈ MIN (g). S′ ⊆ S.
3. ∀T ∈ MAX(g). ∃T ′ ∈ MAX(f). T ′ ⊆ T .

Proof. First, we show 1 =⇒ 2. Assume f ≤ g, and by way of contradiction, assume there
is an S ∈ MIN (f) such that there is no S′ ∈ MIN (g) with S′ ⊆ S. Then we have f(S) = 1
and g(S) = 0 contradicting f ≤ g.

Next, we show 2 =⇒ 1. For this, let Y be such that f(Y ) = 1. Then there is a minterm
S ∈ MIN (f) with S ⊆ Y . By 2, there is a minterm S′ ∈ MIN (g) with S′ ⊆ S, and therefore
S′ ⊆ Y . Therefore g(Y ) = 1 and so f ≤ g.

For showing 1 =⇒ 3 and 3 =⇒ 1 we proceed analogously. J

The following classical result characterising the read-once functions over ∧ and ∨ is
due to Gurvich in [10], but has appeared in various presentations. In particular, the proof
appearing in [5] uses the notion of co-occurrence graph, to which our “relation webs” in the
next section essentially amounts.8

I Theorem 15 (Gurvich). A monotone boolean function f is read-once if and only if

∀S ∈ MIN (f). ∀T ∈ MAX(f). |S ∩ T | = 1 .

4 Relation webs

In this section let us restrict our attention to negation-free constant-free linear terms.
It will be useful for us to consider not only the boolean semantics of terms but also

their syntactic structure, in the form of relation webs [9] [16]. It turns out that many of the
same concepts that we have seen in the previous sections can be defined in this setting and
the interplay between the two settings is something that we will take advantage of in later
results.

4.1 Preliminary material
We make use of labeled graphs with their standard terminology. For a graph G we denote
its vertex set or set of nodes as V (G), and the set of its labeled edges as E(G).

8 Indeed, by the end of Sect. 4 we will have developed enough technology to give a self-contained proof
of this result, but that is beyond the scope of this work.
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For graphs G,H such that V (G) ⊆ V (H), we say “G in H” to assert that G is an
(induced) subgraph9 of H. In particular we say “ x y

? in G” to express that the edge
{x, y} is labeled ? in the graph G.

We say that a set X ⊆ V (G) is a ?-clique if every pair x, y ∈ X has a ?-labeled edge
between them. A maximal ?-clique is a ?-clique that is not contained in any larger ?-clique.

Analysing the term tree of a negation-free constant-free linear term notice that, for each
pair of variables x, y, there is a unique connective ? ∈ {∧,∨} at the root of the smallest
subtree containing the (unique) occurrences of x and y. Let us call this the first common
connective of x and y in t.

I Definition 16 (Relation webs). The (relation) web W(t) of a constant-free negation-free
linear term t is the complete graph whose vertex set is Var(t), such that the edge between
two variables x and y is labeled by their first common connective in t.

As a convention we will write x y if the edge {x, y} is labelled by ∧, and we write
x y if it is labeled by ∨.

I Example 17. The term ([x ∨ w] ∧ y) ∨ (z ∧ v) has the relation web

x y

z v

w

.

I Remark (Labels). We point out that, instead of using labeled complete graphs, we could
have also used unlabeled arbitrary graphs, since we have only two connectives (∧ and ∨)
and so one could be specified by the lack of an edge. This is indeed done in some settings,
e.g. the cooccurrence graphs of [5].

However, we use the current formulation in order to maintain consistency with the pre-
vious literature, e.g. [9] and [16], and also since it helps write certain arguments, e.g. in
Sect. 7, where we need to draw graphs with incomplete information.

One of the reasons for considering relation webs is the following proposition, which
allows to reason about equivalence classes modulo AC easily. It follows immediately from
the definition and that AC preserves first common connectives.

I Proposition 18. Constant-free negation-free linear terms are equivalent modulo AC iff
they have the same web.

An important property of webs is that they have no minimal paths of length > 2. More
precisely, we have the following proposition:

I Proposition 19. A (complete {∧,∨}-labeled) graph on X is the web of some (negation-
free constant-free) linear term on X iff it it does not have any subgraphs of the following
configuration (called P4):

w x

y z

(1)

A proof of this property can be found, for example, in [14] [15][1][9]. It is called P4-
freeness or Z-freeness or N-freeness, depending on the viewpoint. We will make crucial use
of it when later reasoning with webs.

9 In fact, since we will deal with only complete graphs and complete subgraphs, all subgraphs will
implicitly be induced.
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4.2 Relationships to minterms and maxterms
Essentially one can think of relation webs as a graph-theoretic formulation of minterms and
maxterms, as opposed to the set-theoretic formulation earlier, in light of the following result:

I Theorem 20. A set of variables is a minterm (maxterm) of a negation-free constant-free
linear term t iff it is a maximal ∧-clique (resp. ∨-clique) in W(t).

The proof of this follows easily from the following alternative definition of minterms and
maxterms, based on structural induction on a term.

I Proposition 21 (Inductive definition of minterms and maxterms). Let t be a linear term. A
set S ⊆ Var(t) is a minterm of t just if:

t = x and S = {x}.
t = t1 ∨ t2 and S is a minterm of t1 or t2.
t = t1 ∧ t2 and S = S1 t S2 where each Si is a minterm of ti.

Dually, a set T ⊆ Var(t) is a maxterm of t just if:
t = x and T = {x}.
t = t1 ∨ t2 and T = T1 t T2 where each Ti is a maxterm of ti.
t = t1 ∧ t2 and T is a maxterm of t1 or t2.

5 Dealing with constants, negation, erasure and trivialities

We show in this section that we need not deal with linear rules that contain constants or
negation when looking for a complete linear system, or linear rules that whose variables do
not all occur on both sides. The fundamental concept here is that of “triviality”, which
was first introduced in [7] as “semantic triviality”. This turns out also to be precisely the
concept which allows us to polynomially restrict the length of linear derivations in Sect. 6
for our main result.

Since many of the following notions and results already appeared in [7], we present only
brief arguments in this section.

5.1 Triviality
The idea behind triviality of a variable in some linear inference is that the inference is
“independent” of the behaviour of that variable.

I Definition 22 (Triviality). Let f and g be boolean functions on a set of variables X, and
let x ∈ X. We say f → g is trivial at x if for all Y ⊆ X, we have f(Y ∪ {x}) ≤ g(Y \ {x}).

I Remark (Hereditariness of triviality). Notice that the triviality relation is somehow hered-
itary: if a sound sequence f0 → f1 → . . .→ fl of boolean functions is trivial at some point
fi → fi+1 then f1 → fn is trivial. However the converse does not hold: if the first and
last function of a sound sequence constitutes a trivial pair it may be that there is no local
triviality in the sequence. E.g. the endpoints of the derivation,

(w ∧ x) ∨ (y ∧ z)→ [w ∨ y] ∧ [x ∨ z]→ w ∨ x ∨ (y ∧ z)

form a pair that is trivial at w (or trivial at x), but no local step witnesses this. In these
cases we call the sequence “globally” trivial. This notion is fundamental later in Lemma 35,
on which our main result crucially relies.
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In a similar way as we could express soundness with minterms or maxterms in Prop. 14,
we can also define triviality with minterms or maxterms.

I Proposition 23. The following are equivalent:
1. f → g is trivial at x.
2. ∀S ∈ MIN (f). ∃S′ ∈ MIN (g). S′ ⊆ S \ {x}.
3. ∀T ∈ MAX(g). ∃T ′ ∈ MAX(f). T ′ ⊆ T \ {x}.

Proof. We first show that 1 =⇒ 2. Assume f → g is trivial at x, and let S ∈ MIN (f).
We have f(S) = 1, and hence also f(S ∪ {x}) = 1. By way of contradiction assume there
is no S′ ∈ MIN (g) with S′ ⊆ S \ {x}. Therefore g(S \ {x}) = 0, contradicting triviality at
x. Next, we show 2 =⇒ 1. For this, let Y be such that f(Y ∪ {x}) = 1. Then there is
a minterm S ∈ MIN (f) with S ⊆ Y ∪ {x}. By 2, there is a minterm S′ ∈ MIN (g) with
S′ ⊆ S \ {x}. Hence S′ ⊆ Y \ {x}. Therefore g(Y \ {x}) = 1, and thus f → g is trivial at
x. For showing 1 =⇒ 3 and 3 =⇒ 1 we proceed analogously. J

We now present a series of results illustrating that we need not consider trivial derivations
in any linear system containing certain rules. These results are then used to show that
constants and negation are similarly unimportant.

I Definition 24. We define the following rules:

s : x ∧ [y ∨ z]→ (x ∧ y) ∨ z , m : (w ∧ x) ∨ (y ∧ z)→ [w ∨ y] ∧ [x ∨ z]

We call the former switch and the latter medial [2].

In what follows we implicitly (for presentation reasons) assume that rewriting is conduc-
ted modulo ACU .

I Lemma 25. If s, t are negation-free linear terms on x1, . . . , xn and s ≤ t, then there are
terms s′, t′, u such that:
1. There are derivations s ∗−→

s,m
s′ ∨ u and t′ ∨ u ∗−→

s,m
t of length O(n2).

2. u contains precisely the trivial variables of s→ t.
3. s′ → t′ is sound and nontrivial.

Proof. See [7]. J

I Theorem 26. Let R be a complete linear system. If s ∗→
R
t then there is an R-derivation

from s to t with only O(|s|2)-many steps whose redex and contractum constitute a triviality.

Proof. Apply the lemma above to generate terms s′, t′, u as above. Since R is complete there
must be a derivation of s′ → t′, and this cannot contain any trivialities by the hereditariness
property (cf. Rmk. 5.1) and the fact that s′ → t′ is nontrivial.

Therefore the only steps whose redex and contractum form a trivial pair are those gen-
erated by the lemma, whence we know that the number of such steps is polynomial in the
number of variables. J

5.2 Erasing and introducing rules
A left- and right- linear rewrite rule may still erase or introduce variables, i.e. there may
be variables on one side that do not occur on the other. However, notice that any such
situation must constitute a triviality at such a variable, since the soundness of the step is
not dependent on the value of that variable.

I Proposition 27. Suppose ρ : l → r is linear, and there is some variable x occurring in
only one of l and r. Then ρ is trivial at x.
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5.3 Negation
A variable x occurs either in the same polarity on both sides of a linear inference or positively
on one side and negatively on the other side. In the first case, we can soundly eliminate the
scope of negation on x (and thus every variable) by De Morgan laws, and finally replacing
¬x for a fresh variable x′. In the second case we have a triviality at x.

I Definition 28 (De Morgan laws). By N let us denote the following equational theory:

¬¬a = a , ¬(s ∧ t) = ¬s ∧ ¬t , ¬(s ∨ t) = ¬s ∧ ¬t

I Proposition 29. Suppose R is a linear system complete for negation-free linear inferences.
Then R/N is complete for L.

5.4 Constants
Let us assume in this subsection that terms are negation-free, in light of that above.

Recall that ACU ′ preserves the boolean function computed by a term, and that every
linear term is equivalent to ⊥, > or a unique constant-free linear term.

I Theorem 30. Let R be a complete linear system. Then any constant-free nontrivial linear
inference s→ t has a constant-free R/ACU ′-derivation.

Proof. By completeness there is an R-derivation of s→ t. Now reduce every line by U ′ to
a constant-free term or ⊥ or >. If some line reduces to ⊥ or > and another does not, then
s→ t is trivial, and if every line reduces to ⊥ or every line reduces to > then the derivation
collapses and is no longer constant-free. J

5.5 Putting it together
Combining the various results of this section we obtain the following:

I Theorem 31. The following are equivalent:
1. There is a sound linear system complete for L.
2. There is a sound constant-free negation-free nontrivial linear system, whose rules have

the same variables on both sides, complete for the set of such inferences.

6 Main results

For presentation reasons, throughout this section we assume the following,

Terms are constant-free, negation-free and linear on a set of variables X.

in light of Thm. 31 in the previous section.
The following is our main result.

I Main Theorem 32. For every sequence of terms s = t0 < t1 < · · · < tl = t we have that:
1. l = O(n4); or,
2. s→ t is trivial.
Before giving a proof of this we show how this implies that there is no sound and complete
linear system, modulo hardness assumptions.

I Corollary 33. If there is a sound and complete linear system, then there is one that has
a O(n4)-length derivation for each linear inference on n variables.
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Proof. Follows from the theorem above, Lemma 25 and Thm. 31. J

I Corollary 34. There is no sound linear system complete for L unless coNP = NP.

Proof. Recall that the set L of linear rules in coNP-complete, by Proposition 8. But the
above corollary constitutes an NP-procedure for L: guess the correct sequence of R-steps
to construct a derivation of s→ t, which yields the required result. J

In the next section we give the crucial lemma that allows us to attain a proof of main
theorem. The main argument is then outlined in the section thereafter.

6.1 Critical minterms and maxterms
For this section, let us fix a sequence f = f0 < f1 < · · · < fl = g of strictly increasing
read-once boolean functions on a variable set X.

Here we show that, unless f → g is trivial, for each variable x ∈ X we must be able to
associate a minterm Sx of f such that, for any S ⊆ Sx that is a minterm of some fi, it must
be that S 3 x. We show simultaneously the dual property for maxterms.

I Lemma 35 (Subset and intersection lemma). Suppose f → g is not trivial. For every
variable x ∈ X, there is a minterm Sx of f and a maxterm T x of g such that:
1. ∀Si ∈ MIN (fi).Si ⊆ Sx =⇒ x ∈ Si.
2. ∀Ti ∈ MAX(gi).Ti ⊆ T x =⇒ x ∈ Ti.
3. ∀Si ∈ MIN (fi),∀Ti ∈ MAX(gi).Si ⊆ Sx, Ti ⊆ T x =⇒ Si ∩ Ti = {x}.

Proof. Suppose that, for some variable x no minterm of f has property 1. In other words,
for every minterm Sx of f containing x there is some minterm Si of some fi that is a subset
of Sx yet does not contain x. Since fi → fl is sound for every i we have that, by Prop. 14,
for every minterm Sx of f containing x there is some minterm Sl of fl = g that is a subset
of Sx not containing x. I.e. f → g is trivial, which is a contradiction.

Property 2 is proved analogously.
Finally property 3 is proved by appealing to read-onceness. Any such Si and Ti must

contain x by properties 1 and 2, yet their intersection must be a singleton by Thm. 15 since
all fi are read-once, whence the result follows. J

We notice that, since some Si and Ti must exist for all i, by soundness, we can build
a chain10 of such minterms and maxterms preserving the intersection point. For a given
derivation, let us call a choice of such minterms and maxterms critical.

6.2 Proof of the main theorem
Throughout this section let us fix a sound (negation-free constant-free) linear system R,
which we assume to contain s,m,11 whose reduction relation, modulo AC , is −→

R
.

Recall that s −→
R

t implies that s, t are distinct modulo AC so compute distinct boolean
functions by Thm. 15 and have distinct relation webs.

Let us fix an R-derivation,

π : s = t0 −→
R

t1 −→
R
· · · −→

R
tl = t

10More generally we can actually build lattices of these terms since the properties are universally quan-
tified.

11 If a linear system is sound and complete, then so is its extension by s, m.
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on a variable set X, with s→ t nontrivial.
Now, let us fix choices Sxi (T xi ) of critical minterms (resp. maxterms) of ti, by Lemma 35.

I.e. we have that, for each x ∈ X:
1. Sxi ∩ T xi = {x} for each i ≤ l.
2. Sx0 ⊇ Sx1 ⊇ · · · ⊇ Sxl .
3. T x0 ⊆ T x1 ⊆ · · · ⊆ T xl .

First, we give a definition of the measures we will use to deduce the bound of Thm. 32.

I Definition 36 (Measures). For each term ti in π we define the following measures:
1. r(ti) (resp. g(ti)) is the number of ∧- (resp. ∨-) labeled edges in W(t). 12

2. νx(ti) (resp. µx(ti)) is the size of the citical minterm (resp. maxterm) of x at ti, i.e. |Sxi |
(resp. |T xi |).

3. ν(ti) :=
∑
x∈X ν

x(ti) and µ(ti) :=
∑
x∈X µ

x(ti).

We point out some simple properties of these measures.

I Proposition 37. Let e := 1
2n(n− 1). We have the following:

1. r, g ≤ e, and r + g = e.
2. For each x ∈ X we have that νx, µx ≤ n, so ν, µ ≤ n2.

Proof. (1) follows since there are only e edges in a web, all of which must be labeled ∧ or
∨. (2) follows since each minterm and maxterm has size at most n. J

We show that, whenever an ∧-edge becomes labeled ∨, some minterm strictly decreases
in size.

I Proposition 38. Suppose, for some i < l and some x, y ∈ X, we have that x y in
W(ti) and x y in W(ti+1). Then there is a minterm S of ti, and a minterm S′ of ti+1
such that S′ ( S.

Proof. Take any maximal ∧-clique in W(ti) containing x and y, of which there must be at
least one. This must have a ∧-subclique which is maximal in W(ti+1), by the alternative
definition of soundness, Prop. 14. This subclique cannot contain both x or y, so the inclusion
must be strict. J

We show that, whenever some minterm strictly decreases in size, some critical maxterm
must strictly increase in size.

I Proposition 39. Suppose for j > i there is some minterm Si of ti and some Sj ( Si a
minterm of tj. Then, for some variable x ∈ X, we have that T xi ) T xj .

Proof. We let x be some variable in x ∈ Si \ Sj , which must be nonempty by hypothesis.
By Thm. 15 we have that |T xi ∩ Si| = 1, so it must be that T xi ∩ Si = {x} by construction.

On the other hand we also have that |T xj ∩ Sj | = 1, and so there is some (unique)
y ∈ T xj ∩ Sj . Now, since Si ) Sj we must have y ∈ Si. However we cannot have y ∈ T xi
since that would imply that {x, y} ⊂ T xi ∩ Si, contradicting the above.

Finally, by soundness, we have that T xi ) T xj as required. J

Notice that, since each ti computes a distinct boolean function, we must have that both
r and g change at each step.

12Of course, these measures are more generally defined for any linear term.
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I Lemma 40 (Increasing measure). The lexicographical product µ × r is strictly increasing
at each step of π.

Proof. Notice that, by Lemma 35.2, we have that T x0 ⊆ T x1 ⊆ · · · ⊆ T xl , i.e., µ is non-
decreasing. So let us consider the case that r decreases at some step and show that µ must
strictly increase.

If r(ti) > r(ti+1) then we must have that some edge is labeled ∧ in W(ti) and labeled
∨ in W(ti+1). Hence, by Prop. 38 some minterm has strictly decreased in size and so by
Prop. 39 some critical maxterm must have strictly increased in size. J

From here it is simple to give a proof of our main result:

Proof of Thm. 32. By Prop. 37 we have that µ = O(n2) = r and so, since s → t is
nontrivial, it must be that the length l of π is O(n4), as required. J

We point out that, while the various settings seem to exhibit a symmetry between ∧ and
∨, it is the criterion of soundness that induces the necessary asymmetry required to achieve
our result, as exposited in this section.

7 Canonicity

In this section we show that the medial rule is “canonical”, in the sense that it is the only
linear inference (up to reflexive transitive closure modulo AC ) that, from the point of view
of webs, changes only ∨-edges to ∧-edges.

On the other hand, the switch rule is not canonical, in the sense that it is not the only
rule that changes only ∧-edges to ∨-edges, and we give an example of this from previous
work. However we conjecture a weaker form of canonicity.

7.1 Canonicity of medial
I Definition 41. Let s and t be linear terms on a set X of variables. We write s CI t if:
1. Whenever x y in W(s) we have that x y in W(t).
2. Whenever x y in W(s) and x y in W(t), there are w, z ∈ X such that,

w x

y z

in W(s) and
w x

y z

in W(t).

The following result appeared in [16], where a detailed proof may be found.

I Proposition 42 (Medial criterion). s CI t if and only if s ∗→
m
t.

I Definition 43. If t is a linear term with x, y, z ∈ Var(t), we say that y separates x from
z if x y and y z .

I Theorem 44. Let s and t be linear terms on a variable set X. The following are equivalent:
1. s ≤ t and for all x, y ∈ X we have x y in W(s) implies x y in W(t).
2. s CI t.
3. s

∗→
m
t.
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Proof. We prove 1 =⇒ 2 =⇒ 3 =⇒ 1.
Assume 1 and suppose x y in s and x y in t. Then, by soundness, there must

be some z separating x from y in both s and t, and some w separating y from x in both s
and t. By construction, z and w must be distinct, so we must have the following situation,

s :
x z

w y

, t :
x z

w y

whence 2 follows by P4-freeness.
Finally, we have that 2 =⇒ 3 by Prop. 42 and 3 =⇒ 1 by inspection of medial. J

I Corollary 45. The bound in (1) of Thm. 32 can be improved to O(n3).

Proof. Instead of using r in Lemma 40, we can use the number of ∧s occurring in a term,
which is now linear in the size of the term. If no ∧-edge becomes labeled ∨, the number of
∧s must have strictly decreased by the above result. J

7.2 Towards canonicity of switch
Switch is not canonical in the same sense, due to the following example appearing in [7]:

[x ∨ (y ∧ y′)] ∧ [(z ∧ z′) ∨ (u ∧ u′)] ∧ [(v ∧ v′) ∨ w]
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
([z ∨ v] ∧ [x ∨ (z′ ∧ v′)]) ∨ ([(y ∧ u) ∨ w] ∧ [y′ ∨ u′])

Notice that, for this inference, no ∨-edge becomes a ∧-edge, but it is not derivable by
switch and medial, as pointed out in [7].

However, we conjecture that a weaker form of canonicity applies. Let #∧(t) denote the
number of ∧ symbols occurring in t.

I Conjecture 46. If s→ t is sound and nontrivial, every ∨-edge in W(s) is also labeled ∨
in W(t), s→ t, and #∧(s) = #∧(t), then s ∗→

s
t.

8 Final remarks

The conjecture above is inspired by the observation that the only nontrivial linear inference
we know of that preserves #∧ is s. There are known trivial examples (e.g. “supermix” from
[7] : x ∧ (y1 ∨ · · · ∨ yk) → x ∨ (y1 ∧ · · · ∧ yk)) that increase #∧ but every nontrivial rule we
know of, including the one above, strictly decreases it.

Notice that, the stronger conjecture that s is the only nontrivial rule that preserves #∧

already implies our main result, since #∧ × r would be a strictly decreasing measure.
We point out that this measure is that used for the usual proof of termination of {s,m}

(modulo AC ), e.g. in [7], and also yields a cubic bound on termination. In this work we have
matched this best known bound for all linear derivations in the case of weak normalisation,
and in the case of strong normalisation for derivations (modulo ACU) that are not globally
trivial.

Finally, there is ongoing work that the length-bound for termination {s,m} could be
improved to a quadratic. It would be interesting if there was scope for such improvement in
the case of (nontrivial) linear derivations in general.
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