
A Local System for Linear Logic

Lutz Straßburger

Technische Universität Dresden, Fakultät Informatik, 01062 Dresden, Germany

Abstract. In this paper I will present a deductive system for linear logic,
in which all rules are local. In particular, the contraction rule is reduced
to an atomic version, and there is no global promotion rule. In order
to achieve this, it is necessary to depart from the sequent calculus and
use the calculus of structures, which is a generalization of the one-sided
sequent calculus. In a rule, premise and conclusion are not sequents, but
structures, which are expressions that share properties of formulae and
sequents.

1 Introduction

Since distributed computation moves more and more into the focus of research
in theoretical computer science, it is also of interest to implement proof search
in deductive systems in a distributed way. For this, it is desirable that the appli-
cation of each inference rule consumes only a bounded amount of computational
resources, i.e. time and space. But most deductive systems contain inference
rules that do not have this property. Let me use as an example the well-known
sequent calculus system for linear logic [5] (see Fig. 4). In particular, consider
the following three rules,

,?A, ?A,Φ
?c ,?A,Φ

,
, A,Φ , B,Φ

! , A!B,Φ
and

, A, ?B1, . . . , ?Bn
! , !A, ?B1, . . . , ?Bn

,

which are called contraction, with and promotion, respectively. If the contraction
rule is applied in a proof search, going from bottom to top, the formula ?A has
to be duplicated. Whatever mechanism is used for this duplication, it needs to
inspect all of ?A. In other words, the contraction rule needs a global view on
?A. Further, the computational resources needed for applying contraction are
not bounded, but depend on the size of ?A. A similar situation occurs when the
with rule is applied because the whole context Φ of the formula A ! B has to
be copied. Another rule which involves a global knowledge of the context is the
promotion rule, where for each formula in the context of !A it has to be checked
whether it has the form ?B. In the sequel, inference rules, like contraction,
with and promotion, that require such a global view on formulae or sequents of
unbounded size, will be called non-local. All other rules are called local [2]. For
example, the two rules

, A,Φ , B,Ψ
$, A$B,Φ,Ψ

and
, A,B,Φ

" , A"B,Φ
,

M. Baaz and A. Voronkov (Eds.): LPAR 2002, LNAI 2514, pp. 388−402, 2002.
 Springer-Verlag Berlin Heidelberg 2002

lutz.strassburger@inf.tu-dresden.de

which are called times and par, respectively, are local because they do not need
to look into the formulae A and B or their contexts. They require only a bounded
amount of computational resources because it would suffice to operate on point-
ers to A and B, which depend not on the size of the formulae.

Observe that sharing cannot be used for implementing a non-local rule be-
cause after copying a formula A in an aplication of the contraction or with rule,
both copies of A might be used and modified in a very different way.

In [2] it has been shown that it is possible to design a local system (i.e. a
deductive system in which all rules are local) for classical logic. Since linear logic
plays an increasing role in computer science, it is natural to ask whether there
is also a local system for linear logic. In this paper I will give a positive answer
to this question.

The basic idea for making a system local is replacing each non-local inference
rule by a local version, for instance, by restricting the application to atoms,
which are formulae of bounded size. This idea is not new: the general (non-local)
identity rule in the sequent calculus can be replaced by its atomic counterpart
(which is local) without affecting provability.

To make the general contraction rule admissible for its atomic version, it is
necessary to add new inference rules to the system in order to maintain com-
pleteness. As already observed in [2], these new rules cannot be given in the
sequent calculus [4]. This makes it necessary to use another formalism for speci-
fying deductive systems, namely, the calculus of structures [6, 7], which benefits
from the following two features: First, the representation of sequents and formu-
lae is merged into a single kind of expression, called structure. Second, inferences
can be applied anywhere deep inside structures.

Locality is achieved by copying formulae stepwise, i.e. atom by atom, and by
using the new rules to restore the original formula to be copied. Operationally
this itself is not very interesting. The surprising fact is that this can be done
inside a logical system without losing important properties like cut elimination,
soundness and completeness. Further, the new top-down symmetry, which is
unveiled by the calculus of structures, is kept in the local system.

In the next section, I will introduce the basic notions of the calculus of
structures and present system LS for linear logic in the calculus of structures.
Although this system is not local, it is a crucial step towards locality because
the !-rule is split into two parts: a purely multiplicative rule and an additive
contraction rule. Further, the promotion rule is local, as already conceived in
[7, 10]. In Section 3, I will show that system LS is equivalent to the well-known
system LL for linear logic in the sequent calculus. I will show cut elimination
for system LS in Section 4. Then, in Section 5, system LS will be made local:
first the new additive contraction rule of system LS is reduced to an atomic
version, and then contraction for the exponentials is reduced to the additives.
The result will be system LLS, a local system for propositional linear logic. The
only drawback is that in system LLS the exponentials are not independent from
the additives. But it is possible to consider the multiplicative additive fragment
of system LLS separated from the exponentials.

389A Local System for Linear Logic

2 Linear Logic in the Calculus of Structures

A system in the calculus of structures requires a language of structures, which
are intermediate expressions between formulae and sequents. I will now define
the language for the systems presented in this paper. Intuitively, the structure
[R1, . . . , Rh] corresponds to the sequent , R1, . . . , Rh in linear logic, whose for-
mulae are essentially connected by pars, subject to commutativity and associativ-
ity. The structure (R1, . . . , Rh) corresponds to the associative and commutative
times connection of R1, . . . , Rh. The structures [•R1, . . . , Rh]• and (•R1, . . . , Rh)•,
which are also associative and commutative, correspond to the additive disjunc-
tion and conjunction, respectively, of R1, . . . , Rh.
2.1 Definition There are countably many positive and negative propositional
variables, denoted with a, b, c, There are four constants, called bottom, one,
zero and top, denoted with ⊥, 1, 0 and ', respectively. An atom is either a
propositional variable or a constant. Structures are denoted with P , Q, R, . . . ,
and are generated by

R ::= a | [R, . . . , R
︸ ︷︷ ︸

>0

] | (R, . . . , R
︸ ︷︷ ︸

>0

) | [•R, . . . , R
︸ ︷︷ ︸

>0

]• | (• R, . . . , R
︸ ︷︷ ︸

>0

)• | !R | ?R | R̄ ,

where a stands for any atom (positive or negative propositional variable or con-
stant). A structure [R1, . . . , Rh] is called a par structure, (R1, . . . , Rh) is called
a times structure, [•R1, . . . , Rh]• is called a plus structure, (•R1, . . . , Rh)• is called
a with structure, !R is called an of-course structure, and ?R is called a why-
not structure; R̄ is the negation of the structure R. Structures are considered
to be equivalent modulo the relation =, which is the smallest congruence rela-
tion induced by the equations shown in Fig. 1, where R and T stand for finite,
non-empty sequences of structures.
2.2 Definition In the same setting, we can define structure contexts, which are
structures with a hole. Formally, they are generated by

S ::= { } | [R,S] | (R,S) | [•R,S]• | (•R,S)• | !S | ?S .

Because of the De Morgan laws there is no need to include the negation into
the definition of the context, which means that the structure that is plugged into
the hole of a context will always be positive. Structure contexts will be denoted
with R{ }, S{ }, T{ }, Then, S{R} denotes the structure that is obtained
by replacing the hole { } in the context S{ } by the structure R. The structure
R is a substructure of S{R} and S{ } is its context. For a better readability, I
will omit the context braces if no ambiguity is possible, e.g. I will write S [R, T]
instead of S{[R, T]}.
2.3 Example Let S{ } = [(a, ![{ }, ?a], b̄), b] and R = c and T = (b̄, c̄) then
S [R, T] = [(a, ![c, (b̄, c̄), ?a], b̄), b].
2.4 Definition In the calculus of structures, an inference rule is a scheme of

the kind
T

ρ
R
, where ρ is the name of the rule, T is its premise and R is its

390 L. Straßburger

Associativity

[R, [T]] = [R,T]

(R, (T)) = (R,T)

[•R, [•T]•]• = [•R,T]•

(•R, (•T)•)• = (•R,T)•

Units

[⊥,R] = [R]

(1,R) = (R)

[•0,R]• = [•R]•

(•#,R)• = (•R)•

[•⊥,⊥]• = ⊥ = ?⊥
(•1,1)• = 1 = !1

Commutativity

[R,T] = [T ,R]

(R,T) = (T ,R)

[•R,T]• = [•T ,R]•

(•R,T)• = (•T ,R)•

Singleton

[R] = R = (R)
[•R]• = R = (•R)•

Exponentials

??R = ?R

!!R = !R

Negation

⊥ = 1

1 = ⊥
0 = #
= 0

[R, T] = (R̄, T̄)

(R, T) = [R̄, T̄]

[•R, T]• = (•R̄, T̄)•

(•R, T)• = [•R̄, T̄]•

?R = !R̄

!R = ?R̄
¯̄R = R

Fig. 1. Basic equations for the syntactic congruence =

conclusion. An inference rule is called an axiom if its premise is empty, i.e. the
rule is of the shape ρ

R
.

A typical rule has shape
S{T}

ρ
S{R} and specifies a step of rewriting, by the

implication T ⇒ R, inside a generic context S{ }. Rules with empty contexts
correspond to the case of the sequent calculus.

2.5 Definition A (formal) system S is a set of inference rules. A derivation
∆ in a certain formal system is a finite chain of instances of inference rules in
the system:

R
ρ
R′

ρ′
...

ρ′′ .
R′′

A derivation can consist of just one structure. The topmost structure in a deriva-
tion, if present, is called the premise of the derivation, and the bottommost
structure is called its conclusion. A derivation ∆ whose premise is T , whose

conclusion is R, and whose inference rules are in S will be written as
T

R

S∆ .

A proof Π in the calculus of structures is a finite derivation whose topmost

inference rule is an axiom. It will be denoted by
R

%%
SΠ

.

391A Local System for Linear Logic

S{1}
ai↓

S [a, ā]

S(a, ā)
ai↑

S{⊥}

)
Interaction

S([R,U], T)
s
S [(R, T), U]

)
Multiplicatives

S(• [R,U], [T, V])•
d↓

S [(•R, T)•, [•U, V]•]

S([•R,U]•, (•T, V)•)
d↑

S [•(R, T), (U, V)]•

S{0}
t↓

S{R}
S{R}

t↑
S{#}

9>>>>>>>>>>>>=
>>>>>>>>>>>>;

Additives

S [•R,R]•
c↓

S{R}
S{R}

c↑
S(•R,R)•

S{![R,T]}
p↓

S [!R, ?T]

S(?R, !T)
p↑

S{?(R, T)}

S{⊥}
w↓

S{?R}
S{!R}

w↑
S{1}

9>>>>>>>>>>>>=
>>>>>>>>>>>>;

Exponentials

S [?R,R]
b↓

S{?R}
S{!R}

b↑
S(!R,R)

Fig. 2. System SLS

In the calculus of structures, rules come in pairs, a down-version
S{T}

ρ↓
S{R} and

an up-version
S{R̄}

ρ↑
S{T̄}. This duality derives from the duality between T ⇒ R

and R̄ ⇒ T̄ , where ⇒ is the implication modelled in the system. In our case it
is linear implication.

2.6 Definition System SLS is shown in Fig. 2.

The first S stands for “symmetric” or “self-dual”, meaning that for each rule,
its dual rule is also in the system. The L stands for linear logic and the last S

stands for the calculus of structures.

2.7 Definition The rules of system SLS are called atomic interaction (ai↓),
atomic cut (ai↑), switch (s), additive (d↓), coadditive (d↑), thinning (t↓), cothin-
ning (t↑), contraction (c↓), cocontraction (c↑), promotion (p↓), copromotion (p↑),
weakening (w↓), coweakening (w↑), absorption (b↓) and coabsorption (b↑). The
set {ai↓, s, d↓, t↓, c↓, p↓,w↓, b↓} is called the down fragment and {ai↑, s, d↑, t↑,
c↑, p↑,w↑, b↑} is called the up fragment.

392 L. Straßburger

2.8 Definition The rules

S{1}
i↓
S [R, R̄]

and
S(R, R̄)

i↑
S{⊥}

are called interaction and cut, respectively.
The rules ai↓ and ai↑ are obviously instances of the rules i↓ and i↑ above.

It is well known that in many systems in the sequent calculus, the identity rule
can be reduced to its atomic version. In the calculus of structures we can do the
same. But furthermore, by duality, we can do the same to the cut rule, which is
not possible in the sequent calculus.
2.9 Definition A rule ρ is derivable in a system S if ρ /∈ S and for every

application of
T

ρ
R

there is a derivation
T

R

S∆ .

2.10 Proposition The rule i↓ is derivable in {ai↓, s, d↓, p↓}. Dually, the rule
i↑ is derivable in the system {ai↑, s, d↑, p↑}.
Proof: For a given application of

S{1}
i↓
S [R, R̄]

, by structural induction on R, we

will construct an equivalent derivation that contains only ai↓, s, d↓ and p↓. If R
is an atom, then the given instance of i↓ is an instance of ai↓. Otherwise apply
the induction hypothesis to one of the following derivations:

S{1}
i↓
S [Q, Q̄]

i↓
S([P, P̄], [Q, Q̄])

s
S [Q, ([P, P̄], Q̄)]

s ,
S [P,Q, (P̄ , Q̄)]

S(•1, 1)•
i↓
S(•1, [Q, Q̄])•

i↓
S(• [P, P̄], [Q, Q̄])•

d↓ or
S [[•P,Q]•, (•P̄ , Q̄)•]

S{!1}
i↓
S{![P, P̄]}

p↓ .
S [?P, !P̄]

The second statement is dual to the first. &.
There is another such result involved here, that has already been observed

in [6]. If the rules i↓, i↑ and s are in a system, then any other rule ρ makes its
corule ρ′, i.e. the rule obtained from ρ by exchanging and negating premise and

conclusion, derivable. Let
S{P}

ρ
S{Q} be given. Then any instance of

S{Q̄}
ρ′
S{P̄} can

be replaced by the following derivation:

S{Q̄}
i↓
S(Q̄, [P, P̄])

s
S [(Q̄, P), P̄]

ρ
S [(Q̄,Q), P̄]

i↑ .
S{P̄}

2.11 Proposition Every rule ρ↑ is derivable in {i↓, i↑, s, ρ↓}.

393A Local System for Linear Logic

1↓
1

S{1}
ai↓

S [a, ā]

S([R,U], T)
s
S [(R, T), U]

S(• [R,U], [T, V])•
d↓

S [(•R, T)•, [•U, V]•]

S{0}
t↓
S{R}

S [•R,R]•
c↓

S{R}

S{![R,T]}
p↓

S [!R, ?T]

S{⊥}
w↓

S{?R}
S [?R,R]

b↓
S{?R}

Fig. 3. System LS

Propositions 2.10 and 2.11 together say, that the general cut rule i↑ is as
powerful as the whole up fragment of the system and vice versa.

So far we are only able to describe derivations. In order to describe proofs,
we need an axiom.

2.12 Definition The following rule is called one: 1↓
1

.

In the language of linear logic it simply says that , 1 is provable. I will put
this rule in the down fragment of system SLS and by this break the top-down
symmetry of derivations and observe proofs.

2.13 Definition The system {1↓, ai↓, s, d↓, t↓, c↓, p↓,w↓, b↓}, shown in Fig. 3,
that is obtained from the down fragment of system SLS together with the axiom,
is called linear logic in the calculus of structures, or system LS.

Observe that in every proof in system LS, the rule 1↓ occurs exactly once,
namely as the topmost rule of the proof.

2.14 Definition Two systems S and S ′ are strongly equivalent if for every

derivation
T

R

S∆ there is a derivation
T

R

S ′∆′ , and vice versa.

2.15 Theorem The systems SLS∪ {1↓} and LS∪ {i↑} are strongly equivalent.

Proof: Immediate consequence of Propositions 2.10 and 2.11. &.

3 Equivalence to Linear Logic in the Sequent Calculus

In this section I will first recall the well-known sequent calculus system LL for
linear logic [5], and then show that it is equivalent to the systems defined in the
previous section, and by this, justify their names. More precisely, system SLS

corresponds to LL with cut, and system LS corresponds to LL without cut.

3.1 Definition Formulae (denoted with A,B,C, . . .) are built from proposi-
tional variables (denoted with a, b, c, . . .), their duals (a⊥, b⊥, c⊥, . . .) and the
constants ⊥, 1, 0,' by means of the (binary) connectives ",$,#,! and the

394 L. Straßburger

modalities !, ?. Linear negation (·)⊥ is defined on formulae by De Morgan equa-
tions:

1
⊥ := ⊥ ⊥⊥ := 1

'⊥ := 0 0
⊥ := '

(a)⊥ := a⊥ (a⊥)⊥ := a
(A$B)⊥ := A⊥

"B⊥ (A"B)⊥ := A⊥
$B⊥

(A!B)⊥ := A⊥
#B⊥ (A#B)⊥ := A⊥

!B⊥

(!A)⊥ := ?A⊥ (?A)⊥ := !A⊥

Linear implication −◦ is defined by A−◦B = A⊥ "B.
It follows immediately that A = A⊥⊥ for each formula A.

3.2 Definition A sequent is an expression of the kind , A1, . . . , Ah, where
h > 0 and the comma between the formulae A1, . . . , Ah stands for multiset
union. Multisets of formulae are denoted with Φ and Ψ .
3.3 Definition Derivations, are trees where the nodes are sequents to which a
finite number (possibly zero) of instances of the inference rules shown in Fig. 4
are applied. The sequents in the leaves are called premises, and the sequent in
the root is the conclusion. A derivation with no premises is a proof, denoted with
Π . A sequent , Φ is provable if there is a proof Π with conclusion , Φ.
3.4 Definition The functions ·

S

and ·
L

define the obvious translations between
LL formulae and LS structures:

a
S

= a ,

⊥
S

= ⊥ ,

1
S

= 1 ,

0
S

= 0 ,

'
S

= ' ,

A"B
S

= [A
S

, B
S

] ,

A$B
S

= (A
S

, B
S

) ,

A#B
S

= [•A
S

, B
S

]• ,

A!B
S

= (•A
S

, B
S

)• ,

?A
S

= ?A
S

,

!A
S

= !A
S

,

A⊥
S

= A
S

,

a
L

= a ,

⊥
L

= ⊥ ,

1
L

= 1 ,

0
L

= 0 ,

'
L

= ' ,

[R1, . . . , Rh]
L

= R1
L

" · · · "Rh
L

,

(R1, . . . , Rh)
L

= R1
L

$ · · · $Rh
L

,

[•R1, . . . , Rh]•
L

= R1
L

· · · #Rh
L

,

(•R1, . . . , Rh)•
L

= R1
L

! · · · !Rh
L

,

?R
L

= ?R
L

,

!R
L

= !R
L

,

R̄
L

= (R
L

)⊥ .

The domain of ·
S

is extended to sequents by

,
S

= ⊥ and

, A1, . . . , Ah
S

= [A1
S

, . . . , Ah
S

] , for h > 0 .

3.5 Theorem If a given structure R is provable in system SLS∪ {1↓}, then its
translation , R

L

is provable in LL (with cut).

395A Local System for Linear Logic

id % A,A⊥
% A,Φ % A⊥,Ψ

cut % Φ,Ψ

% A,Φ % B,Ψ
$ % A$B,Φ,Ψ

% A,B,Φ
" % A"B,Φ

% Φ⊥ % ⊥,Φ 1 % 1

% A,Φ % B,Φ
! % A!B,Φ

% A,Φ
#1 % A#B,Φ

% B,Φ
#2 % A#B,Φ

% #,Φ

% A,Φ
?d %?A,Φ

%?A, ?A,Φ
?c %?A,Φ

% Φ
?w %?A,Φ

% A, ?B1, . . . , ?Bn
! % !A, ?B1, . . . , ?Bn

(n > 0)

Fig. 4. System LL in the sequent calculus

Proof: All equations shown in Fig. 1 correspond to logical equivalences in linear

logic. Further, for every rule
S{R}

ρ
S{T} in SLS, the sequent , (R

L

)⊥, T
L

is provable

in LL. Hence, , (S{R}
L

)⊥, S{T}
L

is also provable in LL. Use this and

, S{R}
L

, (S{R}
L

)⊥, S{T}
L

cut , S{T}
L

to proceed inductively over the length of a given proof
S{R}

ρ
S{T}

%%
SLS∪{1↓}

. &.
3.6 Theorem (a) If a given sequent , Φ is provable in LL (with cut), then the
structure , Φ

S

is provable in system SLS ∪ {1↓}. (b) If a given sequent , Φ is
cut-free provable in LL, then the structure , Φ

S

is provable in system LS.
Proof: LetΠ be the proof of , Φ in LL. By structural induction onΠ , construct
a proof Π

S

of , Φ
S

in system SLS ∪ {1↓} (or system LS if Π is cut-free). Here,

I will show only the case where
, A,Φ , B,Φ

! , A!B,Φ
is the last rule applied in Π .

Then let Π
S

be the proof

1↓
1

(• [A
S
,Φ

S
], 1)•

SLS∆1

(• [A
S

,Φ
S

], [B
S

,Φ
S

])•
d↓

[(•A
S

, B
S

)•, [•Φ
S

,Φ
S

]•]
c↓ ,

[(•A
S

, B
S

)•,Φ
S

]

SLS∆2

where ∆1 and ∆2 exist by induction hypothesis. &.

396 L. Straßburger

4 Cut Elimination

By inspecting the rules of system SLS, one can observe that the only infinitary
rules are atomic cut, cothinning and coweakening. This means, that in order to
obtain a finitary system, one could get rid only of the rules ai↑, t↑ and w↑. But
we can get more: the whole up fragment is admissible (except for the switch rule,
which also belongs to the down fragment).
4.1 Definition A rule ρ is admissible for a system S if ρ /∈ S and for every

proof
R

%%
S∪{ρ}Π

there is a proof
R

%%
SΠ′

. Two systems S and S ′ are equivalent

if for every proof
R

%%
SΠ

there is a proof
R

%%
S ′Π′

, and vice versa.

4.2 Theorem (Cut elimination) System LS is equivalent to every subsystem
of SLS ∪ {1↓} containing LS.
Proof: A proof in SLS ∪ {1↓} can be transformed into a proof in LL (by
Theorem 3.5), to which we can apply the cut elimination procedure in the sequent
calculus. The cut-free proof in LL can then be transformed into a proof in system
LS by Theorem 3.6. &.
4.3 Corollary The rule i↑ is admissible for system LS.
Proof: Immediate consequence of Theorems 2.15 and 4.2. &.

The proof of Theorem 4.2 relies on the results of the previous section together
with the well-known cut elimination proof for linear logic in the sequent calculus.
But it should be mentioned here that it is also possible to prove Theorem 4.2
directly inside the calculus of structures, without using the sequent calculus, by
using the technique of splitting [8].

5 Local Linear Logic

In this section, I will start from system SLS and produce a strongly equivalent
system, in which all rules are local.

Before discussing the new system, let us first detect the non-local rules of
system SLS (Fig. 2). Obviously the rules c↓ and b↓ are non-local because they
involve the duplication of a structure of unbounded size. Also their corules c↑
and b↑ are non-local because they involve the comparison and the deletion of
structures of unbounded size (or, again a duplication if one reasons top-down).
Similarly, I consider the rules t↓ and w↓, as well as their corules t↑ and w↑ to
be non-local because they involve the deletion or introduction of structures of
unbounded size. Of course, one could argue that the deletion of a structure of
unbounded size can be considered local because it might suffice to delete just
the pointer to the structure. But then garbage collection becomes a problem.
Further, the symmetry exhibited in system SLS should be carried through to
the local system, and therefore, the locality of a rule should be invariant under
forming the contrapositive, i.e. the corule.

Observe that all other rules of system SLS are already local. In particular, the
two rules ai↓ and ai↑ only involve atoms. The switch rule can be implemented

397A Local System for Linear Logic

by changing the marking of two nodes and exchanging two pointers, as already
observed in [2]:

S []
"""" ####

#

()
!!!! %%$$$

T

R U

!

S()
"""" $$##

#

[]
!!!! %%$$$

U

R T

.

For the rules d↓, d↑, p↓ and p↑, the situation is similar.
Let us now have a first glimpse at the new system, which is called system

SLLS (the new L stands for “local”) and which is shown in Fig. 5. The reader
should not be frightened by the complexity of the system. I will discuss the
purpose of the rules later on. At this point I will draw the attention to the fact
that all rules in system SLLS are local. Either they handle only atoms, or their
implementation can be realized by exchanging pointers in a similar way as for
the switch rule. At this point the reader might observe that the equations shown
in Fig. 1 are not local. However, they can be made local by implementing them
in the in the same way as the inference rules. This means that system SLLS is
indeed a local system. It remains to show that it is linear logic.

In order to do so, I will show that it is strongly equivalent to system SLS.
Further, I will define system LLS by adding the axiom 1↓ to the down fragment
of system SLLS. System LLS will be strongly equivalent to system LS. As a
corollary we get a cut elimination result for the local system.

Consider now the rules ac↓ and ac↑ of system SLLS. They are called atomic
contraction and atomic cocontraction, respectively. They replace their general
non-local counterparts c↓ and c↑. But they are not powerful enough to ensure
completeness. For this reason, the medial rule m together with its variations
m1↓, m1↑, m2↓, m2↑, l1↓, l1↑, l2↓, l2↑ is introduced. These rules have the same
purpose as the medial rule of [2]. There are more medial rules in linear logic
because there are more connectives.
5.1 Proposition The rule c↓ is derivable in {ac↓,m,m1↓,m2↓, l1↓, l2↓}. Dually,
the rule c↑ is derivable in {ac↑,m,m1↑,m2↑, l1↑, l2↑}.
Proof: For a given instance

S [•R,R]•
c↓

S{R} , proceed by structural induction on R.

If R = (P,Q) (where P)= 1)= Q), then apply the induction hypothesis to

S [•(P,Q), (P,Q)]•
m2↓

S([•P, P]•, [•Q,Q]•)
c↓

S([•P, P]•, Q)
c↓ .

S(P,Q)

The other cases are similar. &.
Let us now consider the rules rules at↓, at↑, called atomic thinning and atomic

cothinning, respectively. Again, they are the replacement for the general thinning
and cothinning rules, and in order to keep completeness, we need to add the rules
nm↓, nm↑, nm1↓, nm1↑, nm2↓, nm2↑, nl1↓, nl1↑, nl2↓, nl2↑, which are the nullary

398 L. Straßburger

S{1}
ai↓

S [a, ā]

S(a, ā)
ai↑

S{⊥}

S([R,U], T)
s
S [(R,T), U]

S(• [R,U], [T, V])•
d↓

S [(•R, T)•, [•U, V]•]

S([•R,U]•, (•T, V)•)
d↑

S [•(R, T), (U, V)]•

S{![R, T]}
p↓

S [!R, ?T]

S(?R, !T)
p↑

S{?(R, T)}

S{0}
at↓

S{a}
S [•a, a]•

ac↓
S{a}

S{a}
ac↑

S(•a, a)•

S{a}
at↑

S{#}

S{0}
nm↓

S(•0, 0)•

S [•(•R,U)•, (•T, V)•]•
m

S(• [•R, T]•, [•U, V]•)•

S [•#,#]•
nm↑

S{#}

S{0}
nm1↓

S [0, 0]

S [•[R,U], [T, V]]•
m1↓

S [[•R, T]•, [•U, V]•]

S((•R,U)•, (•T, V)•)
m1↑

S(•(R, T), (U, V))•

S(#,#)
nm1↑

S{#}

S{0}
nm2↓

S(0, 0)

S [•(R,U), (T, V)]•
m2↓

S([•R, T]•, [•U, V]•)

S [(•R,U)•, (•T, V)•]
m2↑

S(• [R, T], [U, V])•

S [#,#]
nm2↑

S{#}

S{0}
nl1↓

S{?0}
S [•?R, ?T]•

l1↓
S{?[•R,T]•}

S{!(•R,T)•}
l1↑

S(•!R, !T)•

S{!#}
nl1↑

S{#}

S{0}
nl2↓

S{!0}
S [•!R, !T]•

l2↓
S{![•R, T]•}

S{?(•R, T)•}
l2↑

S(•?R, ?T)•

S{?#}
nl2↑

S{#}

S{⊥}
nz↓

S{?0}
S [?R, T]

z↓
S{?[•R, T]•}

S{!(•R, T)•}
z↑

S(!R, T)

S{!#}
nz↑

S{1}

Fig. 5. System SLLS

versions of the medial rules. In the local system for classical logic [2] these rules
are hidden in the equational theory for structures. It might be argued about
doing the same for linear logic. In this presentation I chose not to do so because
of the following reasons: First, not all of them are equivalences in linear logic,
e.g. we have 0 −◦ ?0 but not ?0−◦ 0, and second, for obvious reasons I want to
use the same equational theory for both systems, SLS and SLLS. But the new
equations, e.g. 0 = !0, would be redundant for system SLS.

399A Local System for Linear Logic

5.2 Proposition The rule t↓ is derivable in {at↓, nm↓, nm1↓, nm2↓, nl1↓, nl2↓}.
Dually, t↑ is derivable in {at↑, nm↑, nm1↑, nm2↑, nl1↑, nl2↑}.
Proof: Similar to Proposition 5.1. &.

The problem that arises now is that the rulesw↓,w↑, b↓, b↑ cannot be reduced
to their atomic versions in the same way as this has been done for the rules
t↓, t↑, c↓, c↑. This is not really a surprise since the basic idea of the exponentials
is to guard whole subformulas such that no arbitrary weakening and contraction
is possible. For this reason, I will reduce the rules w↓,w↑, b↓, b↑ to the rules
t↓, t↑, c↓, c↑, respectively, by using the well-known equivalence

!(A!B) ≡ !A $!B ,

which is encoded in the rules z↓, z↑ and their nullary versions nz↓, nz↑.
5.3 Proposition The rule w↓ is derivable in {nz↓, t↓}, and the rule b↓ is
derivable in {z↓, c↓}. Dually, the rule w↑ is derivable in {nz↑, t↑}, and the rule
b↑ is derivable in {z↑, c↑}.
Proof: Use the derivations

S{⊥}
nz↓

S{?0}
t↓ and
S{?R}

S [?R,R]
z↓

S{?[•R,R]•}
c↓ ,

S{?R}
for w↓ and b↓, respectively. &.

All new rules, introduced in this section, are sound, i.e. correspond to linear
implications. More precisely, we have:
5.4 Proposition The rules m, m1↓, m2↓, l1↓, l2↓ are derivable in {t↓, c↓},
the rule z↓ is derivable in {t↓, b↓}, the rules nm↓, nm1↓, nm2↓, nl1↓, nl2↓ are
derivable in {t↓}, and the rule nz↓ is derivable in {w↓}. Dually, the rules m,
m1↑, m2↑, l1↑, l2↑ are derivable in {t↑, c↑}, the rule z↑ is derivable in {t↑, b↑},
the rules nm↑, nm1↑, nm2↑, nl1↑, nl2↑ are derivable in {t↑}, and the rule nz↑ is
derivable in {w↑}.
Proof: For the rule m1↓, use the derivation

S [•[R,U], [T, V]]•
t↓
S [•[R,U], [T, [•U, V]•]]•

t↓
S [•[R,U], [[•R, T]•, [•U, V]•]]•

t↓
S [•[R, [•U, V]•], [[•R, T]•, [•U, V]•]]•

t↓
S [•[[•R, T]•, [•U, V]•], [[•R, T]•, [•U, V]•]]•

c↓ .
S [[•R, T]•, [•U, V]•]

The other cases are similar. &.
5.5 Theorem Systems SLLS and SLS are strongly equivalent.
Proof: Immediate consequence of Propositions 5.1–5.4. &.

Observe that Propositions 5.1–5.4 show that there is a certain modularity in-
volved in the equivalence of the two systems. For instance, the user can choose to
have either the rules at↓, nm↓, nm1↓, nm2↓, nl1↓, nl2↓ or the rule t↓ in the system
without affecting the other rules.

400 L. Straßburger

1↓
1

S{1}
ai↓

S [a, ā]

S{0}
nm1↓

S [0, 0]

S [•[R,U], [T, V]]•
m1↓

S [[•R, T]•, [•U, V]•]

S([R,U], T)
s
S [(R, T), U]

S{0}
nm2↓

S(0, 0)

S [•(R,U), (T, V)]•
m2↓

S([•R, T]•, [•U, V]•)

S(• [R,U], [T, V])•
d↓

S [(•R,T)•, [•U, V]•]

S{0}
nm↓

S(•0, 0)•

S [•(•R,U)•, (•T, V)•]•
m

S(• [•R, T]•, [•U, V]•)•

S{![R, T]}
p↓

S [!R, ?T]

S{0}
nl1↓

S{?0}
S [•?R, ?T]•

l1↓
S{?[•R, T]•}

S{0}
at↓

S{a}
S{0}

nl2↓
S{!0}

S [•!R, !T]•
l2↓

S{![•R,T]•}

S [•a, a]•
ac↓

S{a}
S{⊥}

nz↓
S{?0}

S [?R, T]
z↓

S{?[•R, T]•}

Fig. 6. System LLS

5.6 Definition System LLS, shown in Fig. 6, is obtained from the down frag-
ment of system SLLS by adding the axiom 1↓.
5.7 Theorem The systems LLS and LS are strongly equivalent.

Proof: Again, use Propositions 5.1–5.4. &.
5.8 Corollary (Cut elimination) System LLS is equivalent to every subsys-
tem of SLLS ∪ {1↓} containing LLS.

5.9 Corollary The rule i↑ is admissible for system LLS.

6 Conclusions and Future Work

There are two results presented in this paper. First, the work of [7, 10] is extended
by showing that also full linear logic can benefit from its presentation in the
calculus of structures. In particular, the rules for the additives are split into two
parts, namely, a purely multiplicative part (the rules d↓ and d↑) and an explicit
contraction (the rules c↓ and c↑), whereas in the sequent calculus, contraction
is contained implicitly in the rules for the additives. The second achievement of
this paper is to show that in the calculus of structures it is possible to reduce
contraction in linear logic to an atomic version, which is not possible in the
sequent calculus. Apart from their independent interest, those two insights might
also help to extend the work in [3], which captures a process algebra in a purely
logical way.

401A Local System for Linear Logic

Although system SLLS is quite big, one should observe that all rules either
deal directly with atoms or follow a certain common pattern in which two, three,
or four substructures are rearranged. In fact, the discovery of the rules for system
SLLS contributed to the development of a general recipe for designing systems
in the calculus of structures. The deep reasons behind these regularities are not
known and are the topic of current investigation.

A problem of the local system is that proof search becomes very non deter-
ministic. However, since the system is still logical and bears a certain uniformity,
it offers some possibilities for analyses on synchronicity in order to focus proofs
in a similar way as it has been done in the sequent calculus [9, 1]. It should be of
major interest of future investigation to control the non-determinism in system
LLS, because then one is able to use it for proof search in a distributed way.

Another focus of future research lies in the so-called decomposition theo-
rems. There are already preliminary results showing that similar decomposition
theorems as shown in [2] can also be achieved for system SLLS. But in order
to relate decomposition to cut elimination it is necessary to find a decomposi-
tion that separates core from non-core, where the core of the system contains
the rules that are needed to reduce the interaction rules to atoms, i.e. the rules
s, d↓, d↑, p↓, p↑ in system SLLS. Although such a decomposition exists for mul-
tiplicative exponential linear logic [7, 10] and a non-commutative extension of it
[8], it defied any proof for full linear logic so far.

References

1. Jean-Marc Andreoli. Logic programming with focusing proofs in linear logic. Jour-
nal of Logic and Computation, 2(3):297–347, 1992.

2. Kai Brünnler and Alwen Fernanto Tiu. A local system for classical logic. In
R. Nieuwenhuis and A. Voronkov, editors, LPAR 2001, volume 2250 of Lecture
Notes in Artificial Intelligence, pages 347–361. Springer-Verlag, 2001.

3. Paola Bruscoli. A purely logical account of sequentiality in proof search. In Peter J.
Stuckey, editor, Logic Programming, 18th International Conference, volume 2401
of Lecture Notes in Artificial Intelligence, pages 302–316. Springer-Verlag, 2002.

4. Gerhard Gentzen. Untersuchungen über das logische Schließen. I. Mathematische
Zeitschrift, 39:176–210, 1934.

5. Jean-Yves Girard. Linear logic. Theoretical Computer Science, 50:1–102, 1987.
6. Alessio Guglielmi. A Calculus of Order and Interaction. Technical Report WV-

99-04, Technische Universität Dresden, 1999.
7. Alessio Guglielmi and Lutz Straßburger. Non-commutativity and MELL in the

calculus of structures. In Laurent Fribourg, editor, Computer Science Logic, CSL
2001, volume 2142 of Lecture Notes in Computer Science, pages 54–68. Springer-
Verlag, 2001.

8. Alessio Guglielmi and Lutz Straßburger. A non-commutative extension of MELL.
Technical Report WV-02-03, Dresden University of Technology, 2002. Accepted at
LPAR’02, this volume.

9. Dale Miller. Forum: A multiple-conclusion specification logic. Theoretical Com-
puter Science, 165:201–232, 1996.

10. Lutz Straßburger. MELL in the Calculus of Structures. Technical Report WV-01-
03, Technische Universität Dresden, 2001. Submitted.

402 L. Straßburger

	1 Introduction
	2 Linear Logic in the Calculus of Structures
	3 Equivalence to Linear Logic in the Sequent Calculus
	4 Cut Elimination
	5 Local Linear Logic
	6 Conclusions and Future Work
	References

