
Michel Parigot and Lutz Straßburger (eds.)

Proceedings of

Structures and Deduction 2009

ESSLLI’09 Workshop

Bordeaux, July 20–24, 2009

Preface

The topic of this workshop is the application of algebraic, geometric, and
combinatorial methods in proof theory. In recent years many researchers have
proposed approaches to understand and reduce ”syntactic beaucracy” in the
presentation of proofs. Examples are proof nets, atomic flows, new deductive
systems based on deep inference, and new algebraic semantics for proofs.
These efforts have also led to new methods of proof normalisation and new
results in proof complexity.

The workshop is relevant to a wide range of people. The list of topics
includes among others: algebraic semantics of proofs, game semantics, proof
nets, deep inference, tableaux systems, category theory, deduction modulo,
cut elimination, complexity theory, etc.

The goal of the workshop is twofold: first, to bring together researchers
from various fields who share the interest of understanding and dealing with
structural properties of proofs and second, to provide an opportunity for PhD
students and researchers to present and discuss their work with colleagues
who work in the broad subject areas that are represented at ESSLLI.

The workshop is intended to be a sequel of the ICALP-workshop SD05 in
Lisbon 2005.

Bordeaux, Michel Parigot

July 2009 Lutz Straßburger

III

IV

Programme Committee

Lev Beklemishev (Steklov Mathematical Institute Moscow)
Stefano Berardi (University of Torino)
Agata Ciabattoni (TU Vienna)
Alessio Guglielmi (University of Bath and INRIA Nancy)
Martin Hyland (King’s College, Cambridge)
Grigori Mints (Stanford University)
Michel Parigot (PPS, Paris)
Lutz Straburger (LIX and INRIA Saclay)
Kazushige Terui (Research Institute for Mathematical Sciences, Kyoto University)

V

VI

Contents

Invited Lecture

François Lamarche
An interesting link between type theory and topology 1

Contributed Talks

Stepan Kuznetsov
On the Lambek Calculus with One Division and One

Primitive Type . 2

Stefan Hetzl, Alexander Leitsch, Tomer Libal, Daniel Weller, and
Bruno Woltzenlogel Paleo
Resolution Refinements for Cut-Elimination based on

Reductive Methods . 12

Kai Brünnler and Richard McKinley
An Algorithmic Interpretation of a Deep Inference System 23

Vincent Aravantinos, Ricardo Caferra, and Nicolas Peltier
A DPLL Proof Procedure for Propositional Iterated

Schemata . 24

Nicolas Guenot
Concurrency and Permutability in the Sequent Calculus . . . 39

Antoine ElKhoury, Serguei Soloviev, Laurent Mehats, and Mark
Spivakovsky
Categorical Semantics and Non-Free Categories 53

Willem Heijltjes
Investigations into Forest Proofs . 67

Richard McKinley
The alpha-epsilon calculus . 70

Marco Gaboardi, Luca Roversi, and Luca Vercelli
Do Light Logics allow a unified view of Stratification and

Boundedness? . 86

Nelson Martins-Ferreira
On pseudocategories in a category with a 2-cell structure . . 92

François Lamarche and Novak Novaković
Two Denotational Interpretations of Proofs in Classical

Logic . 117

VIII

An interesting link between type theory and topology

François Lamarche

LORIA and INRIA Nancy – Grand Est

Henri Poincaré invented both homology and homotopy theory around 1899. The
spaces he used for homotopy were pieces of R

n glued together; the general con-
cept of topological spaces had not been invented yet. He could not do the same
for homology, so he resorted to simple combinatorial objects to define the nec-
essary spaces, which he called simplicial complexes, and where computations
were easy anyway. It is only in the forties that Eilenberg showed how do define
homology directly on topological spaces, and in the early fifties that combinato-
rial objects were found—that we now call simplicial sets, and that are also due
to Eilenberg and his students—which are sufficiently powerful to enable direct
definitions and quite a few computations in homotopy.

The most fundamental concept of homotopy is the notion of path between two
points in a space. For several years it has been tempting to give a logical meaning
to this notion of path, namely as “a constructive proof that two points are equal”.
One way to formalize this intuitive notion would be to interpret the Martin-Löf
type-theoretical equality predicate in a suitable category of spaces. The first
positive results in this direction have been given by Michael Warren, working
under the supervision of Steve Awodey. They are quite technical and depend
very much on modern abstract homotopy theory à la Quillen.

I will present a very concrete model, which I also think is the simplest that has
been discovered so far. It is based on a well-known specialization of simplicial
set, for which I will define a concrete path object which doubles as an identity
type, along with a suitable notion of dependent type.

I will try keep things as elementary as possible.

(Joint work with Robert Hein)

1

On the Lambek Calculus with One Division and

One Primitive Type

Stepan Kuznetsov

Department of Mathematical Logic and Theory of Algorithms,
Faculty of Mechanics and Mathematics, Moscow State University

skuzn@inbox.ru

Abstract. The following theorem is proved: a formal language without
the empty word is context-free if and only if it is generated by some
L(\; p1)-grammar, where L(\; p1) is the Lambek calculus with one divi-
sion and one primitive type. To do that, we use a substitution of types
which reduces derivability in L(\) to derivability in L(\; p1).

1 Introduction

We consider a fragment of the Lambek calculus introduced in [3]—the calculus
L(\) (the Lambek calculus with one division). The set Pr = {p1, p2, p3, . . .} is
called the set of primitive types. Types of L(\) are built from primitive types
using one binary connective \, called left division; we shall denote the set of all
types by Tp(\). The set of those types that contain only p1, . . . , pN is denoted
by Tp(\; p1, . . . , pN). Capital letters (A,B, . . .) range over types. Capital Greek
letters range over finite (possibly empty) sequences of types; Λ stands for the
empty sequence. Expressions of the form Γ →C are called sequents of L(\).

Axioms: A→A.

Rules:

AΠ→B
Π→A \B

(→\) where Π 6= Λ Π→A ΓB∆→C
ΓΠ(A \B)∆→C

(\→)

The calculus L(\; p1, . . . , pN) is the conservative fragment of L(\) that uses
only types from Tp(\; p1, . . . , pN).

Example 1. L(\) ⊢ (p1 \ p2) ((p3 \ p2) \ p4)→((p3 \ p1) \ p4):

p3→ p3

p1→ p1 p2→ p2

p1 (p1 \ p2)→ p2

(\→)

p3 (p3 \ p1) (p1 \ p2)→ p2

(\→)

(p3 \ p1) (p1 \ p2)→(p3 \ p2)
(→\)

p4→ p4

(p3 \ p1) (p1 \ p2) ((p3 \ p2) \ p4)→ p4

(\→)

(p1 \ p2) ((p3 \ p2) \ p4)→((p3 \ p1) \ p4)
(→\)

2

On the Lambek Calculus with One Division and One Primitive Type 3

We also consider the calculus MCLL′—a variant of the multiplicative frag-
ment of cyclic linear logic without constants (LLNC from [4], CLL∗ from [5]).
Elements of a countable set Var = {p1, p2, p3, . . .} are called variables; At ⇌

Var ∪ {q̄ | q ∈ Var} is the set of atoms (the symbol “⇌” here and further
means “equals by definition”). Formulae of MCLL′ are built from atoms using
two binary connectives: O (multiplicative disjunction, “par”) and ⊗ (multiplica-
tive conjunction, “tensor”). We denote the set of all formulae by Fm and the
set of formulae containing only variables p1, . . . , pN by Fm(p1, . . . , pN). Capital
Latin letters range over formulae. Capital Greek letters denote finite sequences
of formulae; Λ stands for the empty sequence. Sequents of MCLL′ are of the
form →Γ . The linear negation is introduced externally as an inductively de-
fined mapping (·)⊥ : Fm → Fm: p⊥

i
⇌ p̄i, p̄

⊥
i

⇌ pi, (AOB)⊥ ⇌ B⊥⊗A⊥,
(A⊗B)⊥ ⇌ B⊥

OA⊥.
Axioms: → pi p̄i.
Rules:

→ΓAB∆
→Γ (AOB)∆

(→O) where Γ∆ 6= Λ →ΓA →B∆
→Γ (A⊗B)∆

(→⊗) →Γ∆
→∆Γ

(rot)

It is easy to see that if MCLL′ ⊢ →Γ , then Γ consists of at least two formulae.

We define the standard translation from Tp(\) to Fm: p̂i ⇌ pi, Â \B ⇌

Â⊥
O B̂. In terms of this translation L(\) is a conservative fragment of MCLL′:

L(\) ⊢ A1 . . . An→B ⇐⇒ MCLL ⊢ → Â⊥
n . . . Â

⊥
1 B̂ (see [5]).

Example 2. We shall here use the notation Â instead of Â. By definition we

have
(
(p3 \ p1) \ p4

)
̂ = (p̄1⊗ p3) O p4,

(
(p3 \ p2) \ p4

)
̂⊥ = p̄4⊗(p̄3 O p2), and

(
p1 \ p2

)
̂⊥ = p̄2⊗ p1. Hence due to Example 1 and because L(\) is a fragment

of MCLL′ we have MCLL′ ⊢ →(p̄4⊗(p̄3 O p2)) (p̄2⊗ p1) ((p̄1⊗ p3) O p4). The
explicit derivation is as follows:

→ p4 p̄4

→ p2 p̄2 → p1 p̄1

→ p2 (p̄2⊗ p1) p̄1

(→⊗)
→ p3 p̄3

→ p2 (p̄2⊗ p1) (p̄1⊗ p3) p̄3

(→⊗)

→ p̄3 p2 (p̄2⊗ p1) (p̄1⊗ p3)
(rot)

→(p̄3 O p2) (p̄2⊗ p1) (p̄1⊗ p3)
(→O)

→ p4 (p̄4⊗(p̄3 O p2)) (p̄2⊗ p1) (p̄1⊗ p3)
(→⊗)

→(p̄4⊗(p̄3 O p2)) (p̄2⊗ p1) (p̄1⊗ p3) p4

(rot)

→(p̄4⊗(p̄3 O p2)) (p̄2⊗ p1) ((p̄1⊗ p3) O p4)
(→O)

In this paper we shall prove the following theorem (compare with [4], Propo-
sition 2.1):

Theorem 1. There exist types A1, . . . , AN ∈ Tp(\; p1) such that for any sequent
→Γ , where Γ = B1 . . . Bm and B1, . . . , Bm ∈ Fm(p1, . . . , pN), we have

MCLL′ ⊢ →Γ ⇐⇒ MCLL′(p1) ⊢ →Γ [p1 ← Â1, . . . , pN ← ÂN].

4 Stepan Kuznetsov

The notation Γ [p1 ← Â1, . . . , pN ← ÂN] means Γ with Â1, . . . , ÂN substi-

tuted for p1, . . . , pN (and Â⊥
1 , . . . , Â

⊥
N

for p̄1, . . . , p̄N).
It easily follows from this theorem that the same property holds for L(\) (due

to conservativity):

Theorem 2. There exist types A1, . . . , AN ∈ Tp(\; p1) such that for any sequent
Π→C, where Π = B1 . . . Bm and B1, . . . , Bm, C ∈ Tp(p1, . . . , pN), we have

L(\) ⊢ Π→C ⇐⇒ L(\; p1) ⊢ (Π→C)[p1 ← A1, . . . , pN ← AN].

Let us prove Theorem 1. We define p ⇌ p1 and (D1 · . . . · Dm) \C ⇌

Dm \(Dm−1 \ . . . \(D2 \(D1 \C)) . . .). For given N we introduce types A1, . . .,
AN : Ak ⇌

(
pk+1 ·

(
((p · p) \ p) \ p

)
· pN−k+1

)
\ p (where p1

⇌ p, pm+1
⇌ pm · p).

Example 3. Let N = 2. We have

A1 =
(
p · p ·

(
((p · p) \ p) \ p

)
· p · p

)
\ p,

A2 =
(
p · p · p ·

(
((p · p) \ p) \ p

)
· p

)
\ p.

Since L(\) 6⊢ p1 \ p2→ p2 \ p1, by Theorem 2 we have L(\) 6⊢ A1 \A2→A2 \A1.

The “=⇒” implication in Theorem 1 is trivial. We shall prove the other one.
Let Rk ⇌ Âk. It is easy to see that

Rk = p̄O . . .O p̄︸ ︷︷ ︸
N−k+1

O
(
p̄⊗(p̄O p̄O p∗)

)
O p̄O . . .O p̄︸ ︷︷ ︸

k+1

O p+;

R⊥
k = p̄+⊗ p⊗ . . .⊗ p︸ ︷︷ ︸

k+1

⊗
(
(p̄∗⊗ p⊗ p) O p

)
⊗ p⊗ . . .⊗ p︸ ︷︷ ︸

N−k+1

.

(We assume that Os associate to the right and ⊗s associate to the left.) The sub-
scripts ∗ and + here mark concrete occurrences of p and p̄ for further reference.
Let us call Rk a positive formula and R⊥

k
a negative formula.

2 Strong Proof Nets

We introduce the notion of strong proof net—a modification of proof nets from [7]
for MCLL′. First we build a relation structure ΩΓ = 〈ΩΓ , <Γ ,≺Γ 〉. Let Γ =
A1 . . . Am. We put ⋄ signs before A1 and between Ai and Ai+1 (i = 1, . . . ,m−1)
(⋄ is a new formal symbol, ⋄ /∈ Fm): ⋄A1⋄A2⋄ . . .⋄Am. In this string we number
all symbols except brackets (an atom is considered one symbol) and denote the
set of pairs 〈symbol,number〉 by ΩΓ . Elements of ΩΓ are called occurrences of
the corresponding symbols into Γ and denoted by lowercase Greek letters. For
α = 〈s1, k1〉, β = 〈s2, k2〉 ∈ ΩΓ we define α <Γ β ⇐⇒ k1 < k2.

For a subformula of Γ the corresponding subset of ΩΓ is called the occurrence
of this subformula (A1, A2, . . . , Am are also considered subformulae). If X is a
subformula occurrence, then we denote by l(X) the occurrence of the connective

On the Lambek Calculus with One Division and One Primitive Type 5

or ⋄ immediately to the left of X and by r(X) the connective or ⋄ occurrence
immediately to the right of X (if there is no such occurrence, r(X) is defined
cyclically as the leftmost occurrence of ⋄).

The transitive closure of the union of parse trees of the formulae A1, . . . , Am

(where the vertices are occurrences, that is, elements of ΩΓ) is called ≺Γ .
We denote the set of all occurrences of O by ΩO

Γ
, of ⊗ by Ω⊗

Γ
, of ⋄ by Ω⋄

Γ
, of

p1, p2, . . . by ΩAt
+

Γ
, of p̄1, p̄2, . . . by ΩAt

−

Γ
; ΩO⋄

Γ
⇌ ΩO

Γ
∪Ω⋄

Γ
, Ω⊗O⋄

Γ
⇌ Ω⊗

Γ
∪ΩO⋄

Γ
,

ΩAt
Γ

⇌ ΩAt
+

Γ
∪ΩAt

−

Γ
. For X ⊆ ΩΓ we define #(X) ⇌ |X ∩ΩAt

+

Γ
| − |X ∩ΩAt

−

Γ
|.

For α, β ∈ ΩΓ we define In(α, β) ⇌ {γ | α <Γ γ <Γ β or β <Γ γ <Γ α},
Out(α, β) ⇌ ΩΓ − (In(α, β) ∪ {α, β}) (the minus sign here means set-theoretic
difference).

Definition 1. An oriented graph 〈ΩΓ , C〉, where C ⊆ ΩΓ × ΩΓ , is called <Γ -
planar if for any 〈α, β〉 ∈ C and 〈γ, δ〉 ∈ C if {α, β} ∩ {γ, δ} = ∅ then γ ∈
In(α, β) ⇐⇒ δ ∈ In(α, β). Geometrically this means that the graph can be drawn
in the upper semiplane without intersections if its vertices lie on the semiplane’s
border in the <Γ order.

Definition 2. A strong proof net is a triple N = 〈ΩΓ ,A, E〉, where A ⊂ ΩΓ ×
ΩΓ , E ⊂ ΩΓ ×ΩΓ , that satisfies the following axioms:

1. |ΩO⋄

Γ
| − |Ω⊗

Γ
| = 2;

2. A is a total function from Ω⊗

Γ
to ΩO⋄

Γ
;

3. E is a bijective function from ΩAt
+

Γ
to ΩAt

−

Γ
, and if α is an occurrence of pi

then E(α) is an occurrence of p̄i;
4. the graph 〈ΩΓ ,A ∪ E〉 is <Γ -planar;
5. the graph 〈ΩΓ ,A ∪≺Γ 〉 is acyclic;
6. for any subformula occurrence X ⊂ ΩΓ we have Ã(l(X)) 6= Ã(r(X)), where

the mapping Ã : Ω⊗O⋄

Γ
→ ΩO⋄

Γ
is defined as follows:

Ã(α) ⇌

{
α if α ∈ ΩO⋄

Γ
,

A(α) if α ∈ Ω⊗

Γ
.

Strong proof nets give a derivability criterion for MCLL′:

Theorem 3. MCLL′ ⊢ →Γ if and only if there exists a strong proof net for
→Γ .

This result is analogous to Theorem 7.12 from [7]. In fact, removing axiom 6
from the definition of strong proof net leads to the notion of proof net (not
strong), that gives a derivability criterion for MCLL—a conservative fragment
of SPNCL′ from [7]. The calculus MCLL has the same axioms and rules as
MCLL′, but without the restriction Γ∆ 6= Λ in (→O).

Example 4. The following figure shows the strong proof net for the sequent from
Example 2:

⋄ p̄4 ⊗

GF ED

��
p̄3 OYY p2 ⋄ p̄2 ⊗

EDGF��
p1 ⋄ p̄1 ⊗ EE

EDGF

��
p3 O p4

6 Stepan Kuznetsov

Here (and further in the figures illustrating fragments of strong proof nets)
the graphs A and E are drawn in the upper semiplane, and the relation ≺Γ

(restricted to Ω⊗O⋄

Γ
) is drawn in the lower semiplane.

Lemma 1. If there exists a strong proof net N = 〈ΩΓ ,A, E〉, then Γ contains
at least two formulae.

Proof. Suppose the contrary: Γ = A1. Let X be the occurrence of A1 (as a

subformula of Γ). We have l(X) = r(X) = 〈⋄, 0〉, whence Ã(l(X)) = l(X) =

r(X) = Ã(r(X)). Contradiction with axiom 6. ⊓⊔

Proof (of Theorem 3). Here we give only a sketch of the proof. The “only if” part
is proved by constructing the strong proof net inductively from the derivation of
→Γ . To prove the “if” part we proceed by induction on the number of connective
occurrences in ΩΓ .

The induction base is trivial: in the case ΩO

Γ
∪ Ω⊗

Γ
= ∅ our sequent can be

either → pip̄i (axiom) or → p̄ipi (derivable from → pip̄i by one application of
(rot)).

Induction step. We define a new binary relation≪ as the restriction of ≺Γ∪A
to ΩO

Γ
∪Ω⊗

Γ
. Due to the acyclicity of ≺Γ ∪A there exists an element γ ∈ ΩO

Γ
∪Ω⊗

Γ

that is maximal with respect to ≪. If γ ∈ ΩO

Γ
, then we replace it with ⋄ (thus

getting a strong proof net with fewer connective occurrences), use the induction
hypothesis, and apply the rule (→O). The restriction of this rule is satisfied due
to Lemma 1.

Now let γ ∈ Ω⊗

Γ
, β = A(γ). We have β ∈ Ω⋄

Γ
, because γ is maximal with

respect to≪. We can assume that β = 〈⋄, 0〉 (that is, β is the leftmost occurrence
of ⋄): in the other case we apply (rot) and do a cyclic transformation of the net.

We have Γ = Φ (A⊗B)Ψ , and the arc 〈γ, β〉 ∈ A leads from the occurrence
of ⊗ to the leftmost occurrence of ⋄. This arc divides the upper semiplane into
two parts. We take the upper part as the strong proof net for →BΨ and the
lower part for →ΦA. Axioms 2, 3, 4, 5, and 6 are checked trivially. Axiom 1 is
proved in [7], Lemma 7.10.

Now, using the induction hypothesis for →ΦA and →BΨ , we conclude that
these sequents are derivable in MCLL′. Therefore MCLL′ ⊢ →Φ (A⊗B)Ψ by
application of (→⊗). ⊓⊔

We shall consider E a non-oriented graph on ΩΓ ; the edges of E will be
called links. Intuitively, links connect occurrences of atoms that come from one
axiom leaf in the derivation tree. For a link C with vertices α and β we define
In(C) ⇌ In(α, β) and Out(C) ⇌ Out(α, β). The graph 〈ΩΓ , E〉 is <Γ -planar,
whence #(In(C)) = #(Out(C)) = 0. Brackets divide the upper semiplane into
regions. Each link has the inner and the outer region. Evidently, each region
must contain at least one occurrence of O or ⋄ (because A∪E is <Γ -planar). On
the other hand, it is easy to see that |ΩO⋄

Γ
| is equal to the number of regions, so

each region contains only one occurrence of O or ⋄.
Let X and Y be two subformula occurrences such that X ∩Y = ∅. We define

the fragment from X to Y as {α ∈ ΩΓ | X <Γ {α} <Γ Y } if X <Γ Y and as
{α ∈ ΩΓ | {α} <Γ X or Y <Γ {α}} if Y <Γ X (other cases are impossible).

On the Lambek Calculus with One Division and One Primitive Type 7

If C is a link and K is a subset of ΩΓ , we define D(C,K) = In(C), if
K ⊆ In(C) and D(C,K) = Out(C) otherwise (if K is a fragment from one
subformula occurrence to another, and it doesn’t contain vertices of C, then in
this case we have K ⊆ Out(C), thus getting K ⊆ D(C,K) always). It is easy
to see that #(D(C,K)) = 0.

Further we shall sometimes omit the word “occurrence”.

3 Proof of Theorem 1

We have MCLL′(p) ⊢ →Γ [p1 ← R1, . . . , pN ← RN]. This sequent contains for-
mulae from Fm(p) (since Γ contains only variables p1, . . . , pN), thus this state-
ment is equivalent to MCLL′ ⊢ →Γ [p1 ← R1, . . . , pN ← RN]. Hence there exists
a strong proof net N for this sequent. We shall modify N to get a strong proof
net N

′ for →Γ .
First we shall prove some lemmata about N.

Lemma 2. The number of positive formula occurrences is equal to the number
of negative formula occurrences.

Proof. Suppose there are m1 positive formula occurrences and m2 negative for-
mula occurrences. Then we have 0 = #(ΩΓ) = (m2 − m1)(N + 3), whence
m2 = m1. ⊓⊔

Lemma 3. Any occurrence of p∗ from Rk is connected to an occurrence of p̄∗
from some R⊥

k′ (possibly, k 6= k′).

Proof. Suppose the contrary. Let C be a link from some p∗ that leads not to p̄∗.
We consider 3 cases:

Case 1: C leads to an occurrence of p̄ from the same Rk. Since #(In(C)) = 0,
this is the neighbour occurrence of p̄. But then there are two O in the outer region
of C. Contradiction.

Case 2: C leads to an occurrence of p̄ from another Rk′ . There are O con-
nectives on both sides of p∗ and at least on one side of any p̄ from Rk′ , therefore
either in the inner or in the outer region of C there are two O connectives.
Contradiction.

Case 3: C leads to p̄+ (from some R⊥
k′):

p̄O. . .Op̄Op̄⊗p̄Op̄Op∗Op̄O. . .Op̄Op+ K p̄+⊗p⊗. . .⊗p⊗p̄∗⊗p⊗pOp⊗p⊗. . .⊗p

Let K be the fragment from Rk to R⊥
k′ . The fragment K consists of several

occurrences of positive and negative formulae and connectives between them.
Let m1 be the number of positive formulae there and m2 be the number of
the negative ones. Then we get 0 = #(D(C,K)) = 1 − (k + 1) + #(K) =
−k + (m2 − m1)(N + 3), therefore k = (m2 − m1)(N + 3). This is absurd,
because 1 ≤ k ≤ N . ⊓⊔

8 Stepan Kuznetsov

Lemma 4. Any occurrence of p̄∗ from R⊥
k

is connected to an occurrence of p∗
from some Rk′ .

Lemma 5. If an occurrence of p∗ from Rk is connected to an occurrence of p̄∗
from R⊥

k′ , then k = k′.

Proof.

p̄O. . .Op̄Op̄⊗p̄Op̄Op∗Op̄O. . .Op̄Op+ K p̄+⊗p⊗. . .⊗p⊗p̄∗⊗p⊗pOp⊗p⊗. . .⊗p

Let K be the fragment from Rk to R⊥
k′ . Occurrences of positive formulae

inside K are in one-to-one correspondence with occurrences of negative for-
mulae there (by the links connecting p∗ and p̄∗), thus #(K) = 0. Therefore
0 = #(D(C,K)) = k′ − k + #(K). k = k′. ⊓⊔

Lemma 6. Any occurrence of p+ from Rk is connected to an occurrence of p̄+

from some R⊥
k′ (possibly, k 6= k′).

Proof. We consider several cases:
Case 1: the occurrence of p+ is connected to an occurrence of p̄ from the

same Rk by a link C. Since #(In(C)) = 0, it is the rightmost occurrence of p̄:

p̄O . . .O p̄O p̄⊗ p̄O p̄O p∗ O p̄O . . .O MMp̄O p+⊗

EDGF
��

But then immediately to the right of Rk there is an occurrence τ of ⊗ (other-
wise there would be two occurrences of O in one region) connected by an A-arc
with the occurrence π of O on the left side of C (due to <Γ -planarity of A∪E).
On the other hand, π ≺Γ τ . Contradiction with the acyclicity of A ∪≺Γ .

Case 2: p+ is connected by a link C to an occurrence of p̄ from another Rk′ ,
but not the third to the left from p∗. In this case either in the inner (if Rk′ lies
to the left from Rk) or in the outer region of C there are two occurrences of O.
Contradiction.

Case 3: p+ is connected to the third to the left from p∗ occurrence of p̄ in
Rk by a link C:

p̄O. . .Op̄Op̄⊗p̄Op̄Op∗Op̄O. . .Op̄Op+ K p̄O. . .Op̄Op̄⊗p̄Op̄Op∗Op̄O. . .Op̄Op+

Let K be the fragment from Rk to Rk′ . The same argument as in lemma 5
shows that #(K) = 0. But then #(D(C,K)) = −(N − k′ + 1) + #(K) 6= 0.
Contradiction.

Case 4: p+ is connected to p̄∗ from some R⊥
k′ . Contradiction with lemma 4:

p̄∗ is connected to an occurrence of p∗, but not p+.
So the only possible situation is the 5-th case: p+ is connected to an occur-

rence of p̄+ from some R⊥
k′ . ⊓⊔

On the Lambek Calculus with One Division and One Primitive Type 9

Lemma 7. Any occurrence of p̄+ from R⊥
k

is connected to an occurrence of p+

from some Rk′ .

Let us call an occurrence of a connective old if it is not inside an occurrence
of a positive or negative formula (thus this occurrence comes from the original
sequent →Γ).

Lemma 8. If the occurrence τ of ⊗ is old, then A(τ) is also old.

Proof. Suppose the contrary. Let A(τ) be not old and let A(τ) <Γ τ (in the
other case we proceed symmetrically with respect to the arc 〈τ,A(τ)〉). Consider
several cases:

Case 1: A(τ) lies inside some R⊥
k

:

p̄+⊗ p⊗ . . .⊗ p⊗ p̄∗⊗ p⊗ pO p⊗ p⊗ . . .⊗ p K ⊗

EDGF
��

Let D = In(τ,A(τ)) and K be the fragment of ΩΓ between R⊥
k

and τ . We
have #(K) = 0 and #(D) = 0. Contradiction.

Case 2: A(τ) is an occurrence of O inside Rk, but not the second from the
right side. From the two sets In(τ,A(τ)) and Out(τ,A(τ)) we take the one not
containing p∗ from this Rk and call it D . For K we take the subset of ΩΓ

containing all elements of D , except those from Rk. Now we proceed exactly as
in case 1.

Case 3: A(τ) is the second from the right side occurrence of O in Rk:

p̄O . . .O p̄O p̄⊗ p̄O p̄O p∗ O p̄O . . .O p̄O p+ K ⊗

EDGF
��

We define D and K as in case 1. The numbers of p∗ and p̄∗ in K are equal.
Therefore, the number of p+ and p̄+ in K are also equal. On the other hand,
the same is true for D . Contradiction: the number of p̄+ in D is the same as in
K , but the number of p+ is greater by one. ⊓⊔

Now we define a strong proof net N
′ for the original sequent →Γ : N

′
⇌

〈ΩΓ ,A
′, E ′〉. Here A′ contains the arcs of A that start at old ⊗ occurrences, and

edges of E ′ connect those occurrences of pk and p̄k for which the occurrences of
p∗ and p̄∗ from the corresponding Rk and R⊥

k
are connected by edges of E . It

easily follows from the lemmata above that N
′ is a strong proof net for →Γ ,

therefore MCLL ⊢ →Γ . Q. E. D.

4 Grammars

We call an alphabet an arbitrary finite non-empty set. The set of all non-empty
words over the alphabet Σ (i. e., finite sequences of elements of Σ) is denoted
by Σ+. Any subset of Σ+ is called a formal language (without the empty word)
over Σ.

10 Stepan Kuznetsov

Definition 3. An L(\)-grammar is a triple G = 〈Σ,H,⊲〉, where Σ is an al-
phabet, H ∈ Tp(\), and ⊲ is a finite correspondence between Tp(\) and Σ (i. e.,
⊲ ⊂ Tp(\) × Σ). The language generated by G is the set of all words a1 . . . an

over Σ for which there exist types B1, . . . , Bn such that L(\) ⊢ B1 . . . Bn → H
and Bi ⊲ ai for all i ≤ n. We shall denote this language by L(G).

Definition 4. A context-free grammar without ǫ-rules is a quadruple G =
〈N,Σ,P, S〉, where N and Σ are two disjoint alphabets, P ⊂ N × (N ∪ Σ)+,
P is finite, and S ∈ N . We define a binary relation ⇒G as follows: for all
ω, ψ ∈ (N ∪ Σ)∗ we have ω ⇒G ψ if and only if ω = ηAθ, ψ = ηβθ, and
〈A, β〉 ∈ P for some A ∈ N , β, η, θ ∈ (N ∪Σ)∗. The binary relation ⇒∗

G
is the

reflexive transitive closure of ⇒G. The language L(G) ⇌ {w ∈ Σ+ | S ⇒∗
G
w}

is the language generated by G. Such languages are called context-free.

These two notions of formal grammar are equivalent in the following sense:

Theorem 4. A formal language is context-free if and only if it is generated by
some L(\)-grammar.

The “if” part follows from Gaifman’s theorem [1] as shown in [2], Proposi-
tion 1. The “only if” part is a trivial corollary of Pentus’ theorem [6]. (Theorem 2
from [2] is not sufficient, because our definition of L(\)-grammars allows non-
primitive types to be used as H.)

L(\; p1, . . . , pN)-grammars are defined exactly as L(\)-grammars, but with
L(\; p1, . . . , pN) instead of L(\).

Theorem 5. A formal language is context-free if and only if it is generated by
some L(\; p1)-grammar.

Proof. The “if” part follows from Theorem 4 due to conservativity.
Let us prove the “only if” part. For a given context-free language Theorem 4

gives us an L(\)-grammar. Let it be G = 〈Σ,H,⊲〉. Let N be the maximal
subscript of a primitive type used in G. Then G is an L(\; p1, . . . , pN)-grammar.
Let H ′ = H[p1 ← A1, . . . , pN ← AN] and ⊲

′ = {〈B[p1 ← A1, . . . , pN ←
AN], a〉 | B ⊲ a}, where A1, . . . , AN are taken from Theorem 2. Now for the
L(\; p1)-grammar G′ = 〈Σ,H ′,⊲′〉 we have L(G′) = L(G) due to Theorem 2. ⊓⊔

Acknowledgments I would like to thank Prof. M. Pentus for guiding me into
the subject and constant attention to my work. I am grateful to the participants
of the seminar “Logical Problems in Computer Science” at the Department of
Mathematical Logic and Theory of Algorithms, Faculty of Mathematics and
Mechanics, MSU for their help in finding and eliminating mistakes in the proof.

References

1. Bar-Hillel, Y., Gaifman, C., and Shamir, E.: On categorial and phrase-
structure grammars. Bull. Res. Council Israel Sect. F, 9F:1–16 (1960)

On the Lambek Calculus with One Division and One Primitive Type 11

2. Buszkowski, W.: The equivalence of unidirectional Lambek categorial gram-
mars and context-free grammars. Zeitschr. für math. Logik und Grundl. der
Math. 31, 369–384 (1985)

3. Lambek, J.: The mathematics of sentence structure. American Math. Monthly
65(3), 154–170 (1958)

4. Métayer, F.: Polynomial equivalence among systems LLNC, LLNCa and
LLNC0. Theor. Comput. Sci. 227(1), 221–229 (1999)

5. Pentus, M.: Equivalent types in Lambek calculus and linear logic. Preprint
No. 2 of the Department of Math. Logic, Steklov Math. Institute, Series Logic
and Comput. Sci., Moscow (1992)

6. Pentus, M.: Lambek grammars are context free. Proc. of the 8th Annual IEEE
Symposium on Logic in Computer Science, 429–433. IEEE Computer Society
Press, Los Alamitos, California (1993)

7. Pentus, M.: Free monoid completeness of the Lambek calculus allowing empty
premises. Logic Colloquium ’96: proc. of the colloquium held in San Sebastian,
Spain, July 9–15, 1996. Editors J. M. Larrazabal, D. Lascar and G. Mints.
LNL, vol. 12, pp. 171–209. Springer, Berlin etc. (1998)

Resolution Refinements for Cut-Elimination based

on Reductive Methods ⋆

Stefan Hetzl2, Alexander Leitsch1, Tomer Libal1, Daniel Weller1, and
Bruno Woltzenlogel Paleo1

1 {leitsch, shaolin, weller, bruno}@logic.at

Institute of Computer Languages (E185),
Vienna University of Technology,

Favoritenstraße 9, 1040 Vienna, Austria
2 hetzl@lix.polytechnique.fr

INRIA Saclay –Île-de-France
École Polytechnique – LIX

91128 Palaiseau, France

Abstract. Traditional reductive cut-elimination and CERES seem to be
methods of entirely different nature and hence hard to compare. This short
paper describes ongoing research that aims at comparing and possibly
combining them in ways that retain that best features of each method.

1 Introduction

Cut-elimination theorems and algorithms that actually perform the elimina-
tion of cuts from proofs are among the most prominent results and techniques
of proof theory and of logic in general. Originally devised as a way to prove
consistency [8], cut-elimination also plays a major role in: automated theorem
proving, where the sub-formula property corollary allows a bottom-up con-
struction of proofs; analysis of mathematical proofs, where the elimination of
cuts corresponds to the elimination of undesired mathematical lemmas [2]; ex-
traction of interpolants via Maehara’s lemma, which requires cut-free proofs
[11]; semantics and identity of proofs, where confluence of cut-elimination is
important [10].

Therefore, it is important to compare different cut-elimination algorithms
and devise new and hopefully better ones, as such improvements can potentially
have implications for several areas of proof theory.

In this paper, in particular, we compare reductive cut-elimination methods
and cut-elimination by resolution (CERES) (defined in Sections 2 and 3) and we
propose a way to combine them via resolution refinements (Section 4). These
refinements restrict the atomic cut normal forms (ACNFs, which are not cut-free,
but whose cuts are at most atomic) obtainable by CERES essentially to those
that are obtainable by reductive methods. The long range aim is to implement
and use various refinements in the analysis of formalized mathematical proofs.

⋆ Supported by the Austrian Science Fund (project P19875)

12

Resolution Refinements for Cut-Elimination based on Reductive Methods 13

2 Reductive Cut-Elimination Methods

The standard method of cut-elimination is that of Gentzen defined in his fa-
mous “Hauptsatz” [8]. The method is essentially a nondeterministic algorithm
extracted from his (constructive) proof. Its characteristic feature is a rewriting
system that rewrites proofs by shifting cut inferences upwards (rank reduction)
and by reducing the complexity of cut-formulas when these are the main for-
mulas of the inferences immediately above the cut (grade reduction). The result
is a proof containing cuts that occur on top of the proof and whose cut-formulas
are at most atomic. These atomic cuts can be simply eliminated, because their
conclusion sequents are equal to their premise sequents.

3 CERES

The resolution-based method CERES for cut-elimination in classical logic has
been defined in [6] and further developed in [3] and [9].

The method inductively defines a set of pairs (with a clause in the first
component and a projection (to this clause) in the second component) Cν for
every node ν in a skolemized3 proof ϕ:

– If ν is an occurrence of an axiom sequent S(ν), S′ is the subsequent of S(ν)
containing only the ancestors of cut-formula occurrences and S is the whole
axiom, then Cν = {〈S

′,S〉}.
– Let ν′ be the predecessor of ν in a unary inference ρ.

Let Cν′ = {〈c1, ψ1〉, . . . , 〈cn, ψn〉}.
(a) The auxiliary formulas of ν′ are ancestors of cut-formula occurrences.

Then
Cν = Cν′

(b) The auxiliary formulas of ν′ are not ancestors of cut-formula occurrences.
Then

Cν = {〈c1, ρ(ψ1)〉, . . . , 〈cn, ρ(ψn)〉}

where ρ(ψ) denotes the derivation that is obtained from ψ by applying
ρ to its end-sequent.

– Let ν1, ν2 be the predecessors of ν in a binary inference ρ.
(a) The auxiliary formulas of ν1, ν2 are ancestors of cut-formula occurrences.

Then
Cν = Cν1

∪ Cν2
.

(b) The auxiliary formulas of ν1, ν2 are not ancestors of cut-formula occur-
rences. Then

Cν = Cν1
× Cν2

.

3 A skolemized proof is a proof with an end-sequent in skolem normal form. For any
proof ϕ there is a proof ϕ′ such that ϕ′ is skolemized and the end-sequent of ϕ′ is a
structural skolem normal form of the end-sequent of ϕ [5].

14 S. Hetzl, A. Leitsch, T. Libal, D. Weller, B. Woltzenlogel Paleo

where
C ×D = {〈c ◦ d, ρ(ψ, χ)〉 | 〈c, ψ〉 ∈ C, 〈d, χ〉 ∈ D}

where c ◦ d is the merge of clauses and ρ(ψ, χ) denotes the derivation
that is obtained from the derivations ψ and χ by applying the binary
inference ρ.

The characteristic clause set CL(ϕ) of ϕ is defined as Cν0
, where ν0 is the root.

CL(ϕ) is always unsatisfiable [6]. Therefore, there is a resolution refutation
of CL(ϕ), which can be grounded and then used as a skeleton where each leaf
clause receives its corresponding instantiated projection on top. Finally, the
resolution and factoring inferences can be replaced by cuts and contractions,
respectively, yielding a proof of the end-sequent of ϕ in ACNF (possibly with
the addition of contractions in the bottom of the proof).

The main advantage of CERES over reductive cut-elimination methods is
that it is implicitly capable of detecting redundancies in the input proof ϕ and
eliminating them. Therefore, CERES can, in the best cases, produce ACNFs that
are non-elementarily smaller than ACNFs produced by reductive methods [6].
More precisely, there are proofs ϕ such that, for all ACNFs ϕ⊲GT

obtained via
Gentzen’s or Tait’s reductive cut-elimination methods, there exists an ACNF
ϕCERes obtained via CERES such that:

|ϕ⊲GT
|

|ϕCERes|
= O(

|ϕ|

︷︸︸︷

222...

)

where |ψ| denotes the size of the proof ψ.
For this reason, CERES is computationally superior than reductive cut-

elimination methods, especially considering that the converse (i.e. proofs whose
ACNFs via reductive cut-elimination would be non-elementary smaller than
ACNFs via CERES) is not possible [6]. However, the price paid by CERES is its
increased non-confluence (i.e. CERES can usually produce more ACNFs than
reductive cut-elimination methods) and a correspondingly large search space
for refutations. In some cases, such as for Fuerstenberg’s proof of the infinitude
of primes, current theorem provers like Otter and Prover9 were unable to refute
the characteristic clause set [4].

4 Resolution Refinements for Cut-Elimination

In order to tackle the problem of the large search space for refutations, the
chosen approach was the development of resolution refinements that reduce
the number of CERES ACNFs that are not reductive ACNFs4.

4 Strictly speaking, ACNFs produced by CERes are structurally very different from
ACNFs produced by reductive cut-elimination methods. In the former the atomic cuts
occur in the bottom, while in the latter they occur in the top of the ACNF. However,
the ACNFs can be compared with respect to their canonic refutation [7]. In this paper,

Resolution Refinements for Cut-Elimination based on Reductive Methods 15

The following examples show some kinds of proofs whose characteristic
clause sets admit refutations that lead to ACNFs that are not obtainable with
reductive cut-elimination methods. Each example motivates the development
of a different refinement.

4.1 Blocking the Resolution of Literals from Different Cuts

Consider the proof ϕ below:

Pα ⊢ Pα wl
Pα,¬Pα ⊢ Pα

→r
Pα ⊢ ¬Pα→ Pα

∀l
∀xPx ⊢ ¬Pα→ Pα

∀r
∀xPx ⊢ ∀x(¬Px→ Px)

Ps ⊢ Ps ¬r
⊢ ¬Ps,Ps Ps ⊢ Ps

→l
¬Ps→ Ps ⊢ Ps,Ps

cr
¬Ps→ Ps ⊢ Ps

∀l
∀x(¬Px→ Px) ⊢ Ps

Ps ⊢ Ps
∃r

Ps ⊢ ∃yPy
cut

∀x(¬Px→ Px) ⊢ ∃yPy
cut

∀xPx ⊢ ∃yPy

Its characteristic clause set is:

CL(ϕ) ≡ { ⊢ Pα
︸︷︷︸

c1

; Ps ⊢ Ps
︸ ︷︷ ︸

c2

; Ps ⊢ Ps
︸ ︷︷ ︸

c3

; Ps ⊢
︸︷︷︸

c4

}

This characteristic clause admits the following resolution refutation δ:

c1 c4
R⊢

δ is used as a skeleton for an ACNF that will have an atomic cut where the
cut formula occurrences are Ps from c4 and the instance Ps from the occurrence
Pα from c1. But, if reductive cut-elimination methods had been used, this could
not happen, because reductive cut-elimination methods are local. As the cuts
are shifted upwards, grade reduction always keeps cut-formula occurrences of
a cut paired (via the new cuts) with cut-formula occurrences of the same original
cut. But the literals of c1 come from ancestors of the lowermost cut, while the
literals of c4 come from ancestors of the uppermost cut. δ is effectively pairing
cut formula occurrences from different cuts.

In order to prevent this class of refutations exemplified by δ, the ancestors
of cut formula occurrences can be annotated with labels in such a way that two
occurrences have the same label iff they are cut-linked.

Definition 1 (Cut-Linkage). Two (sub)formula occurrences ν1 and ν2 in a proof ϕ
are cut-linked if and only if there is a cut ρ such that ν1 is an ancestor of νi and ν2 is
an ancestor of ν j where νi and ν j are auxiliary occurrences of ρ.

The labels for cut-linkage in ϕ are shown below:

two ACNFs obtained from the same input proof are considered equal if they have the
same canonic refutation.

16 S. Hetzl, A. Leitsch, T. Libal, D. Weller, B. Woltzenlogel Paleo

ϕ1 ϕ2
cut

∀xPx ⊢ ∃yPy

where ϕ1 is:

Pα ⊢ [Pα]1 wl
Pα,¬[Pα]1 ⊢ [Pα]1 →r

Pα ⊢ [¬Pα→ Pα]1
∀l

∀xPx ⊢ [¬Pα→ Pα]1
∀r

∀xPx ⊢ ∀x[(¬Px→ Px)]1

and ϕ2 is:

[Ps]1 ⊢ [Ps]2 ¬r
⊢ ¬[Ps]1, [Ps]2 [Ps]1 ⊢ [Ps]2 →l

[¬Ps→ Ps]1 ⊢ [Ps]2, [Ps]2 cr
[¬Ps→ Ps]1 ⊢ [Ps]2

∀l
∀x[(¬Px→ Px)]1 ⊢ [Ps]2

[Ps]2 ⊢ Ps
∃r

[Ps]2 ⊢ ∃yPy
cut

∀x[(¬Px→ Px)]1 ⊢ ∃yPy

The new characteristic clause set is essentially the same as before, but now
the literals have the labels that indicate the cuts from which they originate:

CL(ϕ) ≡ {⊢ [Pα]1
︸ ︷︷ ︸

c1

; [Ps]1 ⊢ [Ps]2
︸ ︷︷ ︸

c2

; [Ps]1 ⊢ [Ps]2
︸ ︷︷ ︸

c3

; [Ps]2 ⊢
︸ ︷︷ ︸

c4

}

We define Rcl-resolution as resolution restricted in such a way that two literals
can only be resolved if they have the same labels (i.e. if they originated from the
same cut). It is clear that δ is not an Rcl-refutation.

4.2 Blocking the Resolution of Literals from the Same Branch of a Cut

The previously described refinement of Rcl-refutation still can produce refu-
tations whose corresponding ACNFs would not be obtainable by reductive
cut-elimination methods. This can occur, for example, when the proof contains
only one cut but the cut-formula is valid, as shown in the proof ϕ below:

Pα ⊢ [Pα]1 wr
Pα ⊢ [¬Pα]1, [Pα]1

∨r
Pα ⊢ [¬Pα ∨ Pα]1

∀l
∀xPx ⊢ [¬Pα ∨ Pα]1

∀r
∀xPx ⊢ [∀x(¬Px ∨ Px)]1

Pt ⊢ [Pt]1 ¬l
[¬Pt]1,Pt ⊢

¬r
[¬Pt]1 ⊢ ¬Pt [Pt]1 ⊢ Pt

∨l
[¬Pt ∨ Pt]1 ⊢ Pt,¬Pt

∨r
[¬Pt ∨ Pt]1 ⊢ Pt ∨ ¬Pt

∀l
[∀x(¬Px ∨ Px)]1 ⊢ Pt ∨ ¬Pt

cut
∀xPx ⊢ Pt ∨ ¬Pt

Resolution Refinements for Cut-Elimination based on Reductive Methods 17

Its characteristic clause set is:

CL(ϕ) ≡ {⊢ [Pα]1
︸ ︷︷ ︸

c1

; ⊢ [Pt]1
︸ ︷︷ ︸

c2

; [Pt]1 ⊢
︸ ︷︷ ︸

c3

}

Note that all clauses of the set have the same label, because ϕ has only one
cut. This means that, for this case, any unrestricted R-refutation would also be
an Rcl-refutation. Hence Rcl-resolution does not really help in this case.

Let δ be the Rcl-refutation below:

c2 c3 Rcl⊢

Both c2 and c3 contain literals originating from the right branch of the cut. By
executing reductive cut-elimination onϕ, on the other hand, the final atomic cut
will necessarily have an instance of Pα and the Pt from the second branch of the
∨l rule as its cut-formula occurrences. In general, in reductive cut-elimination
methods the atomic cuts of the resulting ACNF must pair occurrences originat-
ing from different branches of the original cuts. This is so, because in the grade
reduction rewrite rules, it is never the case that the new cuts pair occurrences
that are subformulas of the same cut-formula occurrences.

To prevent refutation as δ above, side-labels l and r can be added to the
ancestors of cut formula occurrences, indicating whether they are ancestor from
the left or from the right cut formula occurrence. This is shown below:

Pα ⊢ [Pα]l
1 wr

Pα ⊢ [¬Pα]l
1
, [Pα]1

∨r
Pα ⊢ [(¬Pα ∨ Pα)]l

1
∀l

∀xPx ⊢ [(¬Pα ∨ Pα)]l
1

∀r
∀xPx ⊢ [∀x(¬Px ∨ Px)]l

1

Pt ⊢ [Pt]r
1 ¬l

[¬Pt]r
1
,Pt ⊢

¬r
[¬Pt]r

1
⊢ ¬Pt [Pt]r

1
⊢ Pt

∨l
[(¬Pt ∨ Pt)]r

1
⊢ Pt,¬Pt

∨r
[(¬Pt ∨ Pt)]r

1
⊢ Pt ∨ ¬Pt

∀l
[∀x(¬Px ∨ Px)]r

1
⊢ Pt ∨ ¬Pt

cut
∀xPx ⊢ Pt ∨ ¬Pt

CL(ϕ) ≡ {⊢ [Pα]l
1

︸ ︷︷ ︸

c1

; ⊢ [Pt]r
1

︸ ︷︷ ︸

c2

; [Pt]r
1 ⊢

︸ ︷︷ ︸

c3

}

Rcls-resolution is defined as Rcl-resolution with the additional constraint that
two literals can only be resolved if their side labels are different. From the
side-labelled CL(ϕ) above, one can see that the Rcl-refutation δ is not an Rcls-
refutation, because the literals of c2 and c3 have the same side-label r and hence
cannot be resolved with each other.

18 S. Hetzl, A. Leitsch, T. Libal, D. Weller, B. Woltzenlogel Paleo

4.3 Blocking the Resolution of Literals from Different Positions in Cuts

Still it is possible to have Rcls-refutations whose corresponding ACNFs are not
obtainable via reductive cut-elimination methods. This fact can be exemplified
by the proof ϕ below:

Pα ⊢ [Pα]l
1
∀l

∀zPz ⊢ [Pα]l
1

∀r
∀zPz ⊢ [∀xPx]l

1 wr
∀zPz ⊢ [∀xPx]l

1
, [∀yPy]l

1
∨r

∀zPz ⊢ [(∀xPx ∨ ∀yPy)]l
1

[Pt]r
1
⊢ Pt

∃r
[Pt]r

1
⊢ ∃wPw

∀l
[∀xPx]r

1
⊢ ∃wPw

[Ps]r
1
⊢ Ps

∃r
[Ps]r

1
⊢ ∃wPw

∀l
[∀yPy]r

1
⊢ ∃wPw

∨l
[(∀xPx ∨ ∀yPy)]r

1
⊢ ∃wPw,∃wPw

cr
[(∀xPx ∨ ∀yPy)]r

1
⊢ ∃wPw

cut
∀zPz ⊢ ∃wPw

Its characteristic clause set is:

CL(ϕ) ≡ {⊢ [Pα]l
1

︸ ︷︷ ︸

c1

; [Pt]r
1 ⊢

︸ ︷︷ ︸

c2

; [Ps]r
1 ⊢

︸ ︷︷ ︸

c3

}

And it admits the following Rcls-refutation δ:

c1 c3 Rcls⊢

No ACNF produced by reductive cut-elimination would have an atomic
cut whose cut formula occurrences come from Pα and Ps. Instead, Pα would
be resolved with Pt, because Pα and Pt originate from the left disjunct of the
cut-formula, while Ps originates from the right disjunct, and grade reduction
mantains this structure when it creates new cuts of smaller formula complexity.

To forbid refutations like δ, a more strict labeling, called atomic cut linkage,
of the cut-formula ancestors can be devised.

Definition 2 (Atomic Cut-Linkage). Two atomic (sub)formula occurrences ν1 and
ν2 in a proof ϕ are atomically cut-linked if and only if there is a cut ρ such that ν1 is
an ancestor of ⌊νi⌋π and ν2 is an ancestor of ⌊ν j⌋π where π is the position of an atomic
sub-formula and νi and ν j are auxiliary occurrences of ρ.

In the proof below, atomic subformula occurrences of cut ancestors are given
labels such that if two occurrences have the same label, then they are atomic
cut-linked:

Pα ⊢ [Pα]1
∀l

∀zPz ⊢ [Pα]1
∀r

∀zPz ⊢ ∀x[Px]1 wr
∀zPz ⊢ ∀x[Px]1,∀y[Py]2

∨r
∀zPz ⊢ (∀x[Px]1 ∨ ∀y[Py]2)

[Pt]1 ⊢ Pt
∃r

[Pt]1 ⊢ ∃wPw
∀l

∀x[Px]1 ⊢ ∃wPw

[Ps]2 ⊢ Ps
∃r

[Ps]2 ⊢ ∃wPw
∀l

∀y[Py]2 ⊢ ∃wPw
∨l

(∀x[Px]1 ∨ ∀y[Py]2) ⊢ ∃wPw,∃wPw
cr

(∀x[Px]1 ∨ ∀y[Py]2) ⊢ ∃wPw
cut

∀zPz ⊢ ∃wPw

Resolution Refinements for Cut-Elimination based on Reductive Methods 19

The characteristic clause set with the atomic cut-linkage labels is:

CL(ϕ) ≡ {⊢ [Pα]1
︸ ︷︷ ︸

c1

; [Pt]1 ⊢
︸ ︷︷ ︸

c2

; [Ps]2 ⊢
︸ ︷︷ ︸

c3

}

Racl-resolution is defined as R-resolution with the restriction that two literals
can only be resolved if they have the same atomic cut-linkage label. Clearly, as
desired, δ is not an Racl-refutation.

We can now give a uniform definition of the refined resolution rules

Definition 3 (Refined Resolution and Factoring Rules). The resolution rule R
shown below:

.
Γ1 ⊢ ∆1,A1 A2, Γ2 ⊢ ∆2

R
(Γ1, Γ2 ⊢ ∆1, ∆2)mgu(A1,A2)

where Γ1 ⊢ ∆1,A1 and A2, Γ2 ⊢ ∆2 are variable-disjoint clauses, is a:

– Cut-Linkage Refined Resolution Rule Rcl iff A1 and A2 are cut-linked.
– Cut-Linkage/Sides Refined Resolution Rule Rcls iff A1 and A2 are cut-linked

and from opposite sides (branches) of a cut.
– Atomic Cut-Linkage Refined Resolution Rule Racl iff A1 and A2 are atomically

cut-linked.

Analogously, the restricted rules of factoring should also be restricted so that, if
A1, . . . ,An are the factorized atoms, then the factoring is a:

– Cut-Linkage Factoring Fcl iff A1, . . . ,An are pairwise cut-linked.
– Cut-Linkage/Sides Factoring Fcls iff A1, . . . ,An are pairwise cut-linked and from

the same side (branch) of a cut.
– Atomic Cut-Linkage Refined Resolution Rule Facl iff A1, . . . ,An are pairwise

atomically cut-linked.

5 Refined Refutability

The original proof of the refutability of the characteristic clause set shows that the
characteristic clause set is unsatisfiable by constructing a refutation in sequent
calculus LK [6]. Then it relies on the completeness of the unrestricted resolution
calculus, which guarantees that refutations of unsatisfiable clause sets exist.

However, with the restrictions imposed by the refinements, one cannot rely
on the completeness of resolution anymore. Indeed, for arbitrary clause sets
with arbitrary labels, Rcl-resolution, Rcls-resolution and Racl-resolution are clearly
incomplete. Nevertheless, Theorem 1 shows that for characteristic clause sets
extracted from proofs with the labeling done in the specific ways defined in
Section 4, refined refutations always exist.

Theorem 1 (Refutability of the Characteristic Clause Set). For any proof ϕ,
CL(ϕ) is R-refutable, Rcl-refutable, Rcls-refutable and Racl-refutable.

20 S. Hetzl, A. Leitsch, T. Libal, D. Weller, B. Woltzenlogel Paleo

Proof. The full detailed proof is under development in the unfinished PhD
thesis of Bruno Woltzenlogel Paleo. What follows is a basic informal outline of
the ideas of the proof.

Firstly, it can be noted that every Racl-refutation is an Rcls-refutation, every
Rcls-refutation is an Rcl-refutation, and every Rcl-refutation is an R-refutation.
Hence, it suffices to show that CL(ϕ) is Racl-refutable.

We prove the refutability by constructing an Racl-refutation, as follows:

– Let ϕ′ be an atomic cut normal form of ϕ obtained by reductive methods
(i.e. by applying rank and grade reduction, but no elimination of atomic
cuts).

– Lemma 1 (Subsumption of the Characteristic Clause Sets under cut reduc-
tion):
Show that CL(ϕ′) is subsumed by CL(ϕ) [7].

– Lemma 2 (Invariance of the Atomic Cut Linkage Labeling under cut-reduction):
Show that, when a cut reduction is performed, the labels of the cut-formula
occurrences of the new cuts are the same, so that in ϕ′, the atomic cuts
always resolve two atoms that have the same labels.

– Lemma 3 (Canonic Refutation):
Show that CL(ϕ′) admits a canonic refutation [7], which can be extracted
from ϕ′ roughly by taking the cut-relevant part of ϕ′, which is composed of
atomic cut inferences only, and transforming these atomic cuts into resolu-
tion inferences. Let δ′ be this canonic refutation.

– By Lemma 1, δ′ can be lifted to a R-refutation δ of CL(ϕ), because CL(ϕ)
subsumes CL(ϕ′).

– By Lemma 2, δ is an Racl-refutation of CL(ϕ).

6 Conclusions and Future Work

The refinements defined in this paper correspond, in various degrees, to the
simulation of reductive methods within CERES . This allows a tradeoff between
confluence of cut-elimination and size of the ACNFs, and consequently also
some control on the search space for refutations.

The structural differences between ACNFs produced by CERES and reduc-
tive methods indicate some possible directions for future work in this area. It
is noticeable that an ACNF produced by CERES ends with a series of contrac-
tion inferences. The duplications of formula occurrences (which are eventually
contracted in the end) occur because of three different reasons:

1. Duplications of subproofs are intrinsic to the proccess of (reductive) cut-
elimination in classical logics (due to rank reduction over contraction infer-
ences).

2. Parts of the input proof are duplicated to appear in many projections. This
is necessary to allow projections to be plugged on top of the refutation of
the characteristic clause set. It seems that the contractions that exist due
to this source of duplications could be avoided either by a more careful

Resolution Refinements for Cut-Elimination based on Reductive Methods 21

construction and combination of the projections with the refutation or by a
postprocessing step in which the contractions would be shifted upwards un-
til they meet the weakening inferences that introduce one of their auxiliary
formula occurrences, in which case both the contraction and the weakening
could be eliminated.

3. The construction of the characteristic clause set may be seen as a standard
CNF-transformation of the characteristic clause term [7]. The standard CNF
transformation (which distributes disjunction over conjunction, or in this
case products over sums in the charateristic clause term) can cause an ex-
ponential increase in size. The contractions associated with this source of
duplications are intrinsic to cut-elimination by resolution using standard
CNF-transformation, but it might be fruitful to investigate the possibility
of using structural CNF-transformations, for which these duplications do
not occur [1]. However, this approach would imply a radical change in
the concepts of characteristic clause set and projections, because structural
CNF-transformation adds fresh predicate symbols to the signature of the
input proof.

An improvement of CERES that eliminates the second and third sources of
contractions mentioned above would not only improve the efficiency of the
method but also make it suitable for substructural logics in which contraction
rules are not available. A deeper understanding of the relation between CERES

and reductive methods seems to be crucial to achieve this improvement.

References

1. M. Baaz, U. Egly, and A. Leitsch. Normal form transformations. In A. Voronkov
A. Robinson, editor, Handbook of Automated Reasoning, pages 275–333. Elsevier, 2001.

2. Matthias Baaz, Stefan Hetzl, Alexander Leitsch, Clemens Richter, and Hendrik Spohr.
Cut-Elimination: Experiments with CERES. In Franz Baader and Andrei Voronkov,
editors, Logic for Programming, Artificial Intelligence, and Reasoning (LPAR) 2004, vol-
ume 3452 of Lecture Notes in Computer Science, pages 481–495. Springer, 2005.

3. Matthias Baaz, Stefan Hetzl, Alexander Leitsch, Clemens Richter, and Hendrik Spohr.
Proof Transformation by CERES. In Jonathan M. Borwein and William M. Farmer,
editors, Mathematical Knowledge Management (MKM) 2006, volume 4108 of Lecture
Notes in Artificial Intelligence, pages 82–93. Springer, 2006.

4. Matthias Baaz, Stefan Hetzl, Alexander Leitsch, Clemens Richter, and Hendrik Spohr.
Ceres: An analysis of fürstenberg’s proof of the infinity of primes. Theor. Comput.
Sci., 403(2-3):160–175, 2008.

5. Matthias Baaz and Alexander Leitsch. Cut normal forms and proof complexity.
Annals of Pure and Applied Logic, 97:127–177, 1999.

6. Matthias Baaz and Alexander Leitsch. Cut-elimination and Redundancy-elimination
by Resolution. Journal of Symbolic Computation, 29(2):149–176, 2000.

7. Matthias Baaz and Alexander Leitsch. Towards a clausal analysis of cut-elimination.
Journal of Symbolic Computation, 41:381–410, 2006.

8. G. Gentzen. Untersuchungen über das logische Schließen. Mathematische Zeitschrift,
39:176–210,405–431, 1934–1935.

22 S. Hetzl, A. Leitsch, T. Libal, D. Weller, B. Woltzenlogel Paleo

9. Stefan Hetzl. Characteristic Clause Sets and Proof Transformations. PhD thesis, Vienna
University of Technology, 2007.

10. Lutz Straßburger. What is a logic, and what is a proof? In Jean-Yves Beziau,
editor, Logica Universalis, pages 135–145. Birkhäuser, 2005. Updated version at
http://www.lix.polytechnique.fr/˜lutz/papers/WhatLogicProof.pdf.

11. G. Takeuti. Proof Theory. North-Holland, Amsterdam, 2 edition, 1987.

An Algorithmic Interpretation of a

Deep Inference System

Kai Brünnler and Richard McKinley

Institut für angewandte Mathematik und Informatik
Neubrückstr. 10, CH – 3012 Bern, Switzerland

In our paper [1] we set out to find an algorithmic interpretation of deep infer-
ence [3]. Here we mean an algorithmic interpretation in the same sense as the
lambda-calculus is an algorithmic interpretation of natural deduction. Starting
from natural deduction for the conjunction-implication fragment of intuitionistic
logic we design a corresponding deep inference system together with reduction
rules on proofs that allow a fine-grained simulation of beta-reduction. The prin-
cipal way of composing our proof terms is not function application, as in the
lambda calculus, but is function composition, as in composition of arrows in a
category. So it is a system of categorical combinators and similar to some cate-
gorical combinators that Curien designed in the eighties, in order to serve as a
target for the compilation of functional programming languages [2]. A very ac-
cessible introduction to those combinators and how they led to the development
of explicit substitution calculi, like the λσ-calculus, can be found in Hardin [4].

The difference between our combinators and Curien’s is in the presentation of
the defining adjunctions of a cartesian closed category. In our presentation proof
terms can be thought of graphically: they are built using vertical composition
(the usual composition of morphisms) and horizontal composition (the connec-
tives).

In the talk we will present material from our paper [1] but also speak about
ongoing work towards proving two conjectures that arise from this paper, which
concern confluence and (a kind of) strong normalisation for the reduction system.

References

1. Kai Brünnler and Richard McKinley. An algorithmic interpretation of a deep infer-
ence system. In I. Cervesato, H. Veith, and A. Voronkov, editors, LPAR 2008, vol-
ume 5330 of Lecture Notes in Computer Science, pages 482—496. Springer-Verlag,
2008. http://www.iam.unibe.ch/~kai/Papers/2008aidis.pdf.

2. Pierre-Louis Curien. Categorical Combinators, Sequential Algorithms and Func-

tional Programming. Research Notes in Theoretical Computer Science. Birkhäuser,
2nd edition, 1993.

3. Alessio Guglielmi. A system of interaction and structure. ACM Transactions on

Computational Logic, 8(1):1–64, 2007.
4. Therese Hardin. From categorical combinators to λσ-calculi, a quest for confluence.

Technical report, INRIA Rocquencourt, 1992. Available from http://hal.inria.

fr/inria-00077017/.

23

A DPLL Proof Procedure for Propositional

Iterated Schemata

Vincent Aravantinos, Ricardo Caferra, and Nicolas Peltier

LIG, CNRS/Grenoble INP
Bâtiment IMAG C - 220, rue de la Chimie,

38400 Saint Martin d’Hères, France
Vincent.Aravantinos@imag.fr, Ricardo.Caferra@imag.fr,

Nicolas.Peltier@imag.fr

Abstract. We investigate iterated schemata whose syntax integrates
arithmetic parameters, indexed propositional variables (e.g. Pi), and it-
erated conjunctions/disjunctions (e.g.

V

n

i=1
Pi, where n is a parameter).

Using this formalism gives some extra information about the structure
of the problem, which can be used in order to prove such a schema
for all values of the parameters. The structure of the formula is used
as a guide for the structure of the proof. We start by defining a Davis-
Putnam-Logemann-Loveland based procedure for iterated schemata that
we show to be sound and complete (w.r.t. satisfiability). There cannot
exist a complete calculus for unrestricted schemata but we show, by ex-
tending our procedure, that cycles can be detected in the proof tree, thus
allowing to prove some schemata that are neither provable nor refutable
in the initial calculus. An example shows how this method allows to
tackle non-trivial problems. We give evidence that the proposed calculus
is a useful tool for identifying classes of schemata for which complete
calculus exist.

1 Introduction

Problems formalised in propositional logic are frequently the instances of more
general problems. More expressive languages can convey this generality, but this
often requires a reformulation that loses the structure of the original problem.
Schemata can be used to generalize these statements while preserving the struc-
ture of the problem.

In this paper, we present a proof procedure for schemata of propositional
formulae. We handle schemata containing iterated conjunctions and disjunctions
(e.g.

∨n
i=1 pi) ranging over sets of natural numbers, and depending on integer

parameters. A typical example is the unsatisfiability of the schema corresponding
to the pigeonhole problem:

n
∧

i=1

n−1
∨

j=1

Pi,j

 ∧

n−1
∧

k=1

n
∧

i,j=1
i 6=j

(¬Pi,k ∨ ¬Pj,k)

24

A DPLL Proof Procedure for Propositional Iterated Schemata 25

To the best of our knowledge, there is no similar work neither in logic nor in
automated deduction. Some formalisms have been proposed for denoting term
schemata and performing inference on them [1–3], but the extension to the logical
level has never been considered.

Iteration schemata are ubiquitous in mathematics and in computer science.
They occur frequently for instance in circuit verification where the formulae
modeling the circuits are frequently parameterized by a natural number n (e.g.
denoting the number of bits). The use of iterated schemata is also extremely use-
ful for the formalization of mathematical proofs, because it allows one to express
infinite proof sequences, which avoids explicit use of the induction principle. This
has been used to avoid working with more expressive logical formalisms [4].

For every finite n ∈ IN, these schemata can be expanded into a propositional
formula (in the standard sense) which can be decided by a SAT-solver (at least
theoretically). However, proving that the schema is valid (resp. unsatisfiable)
for every value of n is much more difficult. In general it requires some form
of mathematical induction. Designing proof procedures able to reason directly
which such schemata (without grounding them) would significantly increase the
expressive power and allow for shorter, more meaningful and structured proofs.

In this paper, we restrict ourselves to schemata of propositional formulae
(i.e. the underlying language is classical propositional logic). No sound and refu-
tationally complete proof procedures can exist for propositional schemata (see
Theorem 1). However it is easy to define proof procedures that are complete
w.r.t. satisfiability i.e. that terminate iff the considered formula has a model
(similarly to first-order logic w.r.t. finite models).

In a previous work [5] we have presented a first proof procedure for propo-
sitional schemata in a tableaux-like style (called stab, for schemata tableaux).
New decomposition rules have been designed in order to handle iterations and a
looping rule has been proposed to detect and avoid cycles in the derivation. For
some subclass of formulae, the cycle detection rule is powerful enough to ensure
termination, yielding a decision procedure for this class of schemata.

In this paper, we present another proof procedure for propositional schemata
which is based on different principles. It is more general than stab in the sense
that it terminates more often, but it is also more complex and less intuitive. It can
be seen as an extension of the Davis-Putnam-Logemann-Loveland procedure [6].
This extension is not straightforward because the number of literals is unbounded
(it depends on the value of the integer parameters).

In the context of propositional formulae schemata, it turns out that the use
of a dpll procedure has some important advantages w.r.t. tableaux. In contrast
to the “shallow” rules composing stab, the new calculus may operate at deep
positions in the schema. This feature turns out to be essential for detecting cycles
and proving unsatisfiability when the schema at hand contains nested iterations.
In particular, this has the important consequence that the simultaneous simpli-
fication of an “unbounded” number of subformulae is possible – a useful form of
“meta-inference”. This is shown informally on a simple example.

26 Vincent Aravantinos, Ricardo Caferra, and Nicolas Peltier

2 Schemata of Propositional formulae

In the rest of the paper indexed propositions are written Pi, Pi,j , Pi,j,k, . . . and
integer variables are written i, j, k, . . . or n, p, q, . . . Schemata are denoted by
S, S1, . . . , sets of schemata by S, interpretations by I,J , tableaux by T , T0, . . .
and nodes in a tableau α, β, . . .

2.1 Syntax

Definition 1 (Linear a-terms). Let IV be an infinite set of integer variables.
The set of linear a-terms, written LT is the smallest set containing IV, Z and
s.t. for all k ∈ Z, t1, t2 ∈ LT : t1 + t2 ∈ LT and k.t1 ∈ LT . For all t ∈ LT ,
Var(t) is the set of integer variables that occur in t. A ground term is a term t
s.t. Var(t) = ∅. A linear constraint is a first-order formula whose atoms are of
the form t1 • t2 (t1 and t2 linear a-tems) where • ∈ {=, <,>,≤,≥}.

Definition 2 (Indexed propositions). Let (Pk)k∈IN be a family of symbols.
For all k ∈ IN, P ∈ Pk, and t1, . . . , tk ∈ LT , Pt1,...,tk

is an indexed proposition.
An indexed proposition Pt1,...,tk

s.t. t1, . . . , tk ∈ Z is called a propositional
variable; a propositional variable or its negation is a literal.

Definition 3 (Schemata). The set of formula schemata is the smallest set s.t.

– ⊤, ⊥ are formula schemata.
– Each indexed proposition is a formula schema.
– If S1, S2 are formula schemata then S1 ∨ S2, S1 ∧ S2 and ¬S1 are formula

schemata.
– If S is a formula schema, i ∈ IV, t1, t2 ∈ LT not containing i, and Ci a

linear constraint containing at least t1 ≤ i ≤ t2 then
∧

i|Ci
S and

∨

i|Ci
S are

formula schemata (such schemata are called iterations).

In contrast to our previous work [5] we allow formulae containing disjunctions
and conjunctions specified by finite sets of arithmetic constraints. The condition
t1 ≤ i ≤ t2 guarantees that the set is finite for every interpretation of the
integer variables, which ensures that every ground instance of the schema can be
transformed into an equivalent propositional formula (e.g.

∨∞
i=1 . . . is forbidden).

When Ci is of the form t1 ≤ i ∧ i ≤ t2, we write
∧t2

i=t1
S for

∧

i|Ci
S. We write

S[T] to mean that the schema T occurs in the construction of the schema S. An
iteration

∧

i|C S is said to be empty if C is unsatisfiable.

Example 1.

S = Q1 ∧
n
∧

i=1

Pi ∧
∨

1≤j≤n+1
i 6=j

¬Qj ∨ Qj+1

is a formula schema.

Q1, Pi, Qj and Qj+1 are indexed propositions. The only iterations occurring in

S are
∧n

i=1

(

Pi ∧
∨

1≤j≤n+1
i 6=j

¬Qj ∨ Qj+1

)

and
∨

1≤j≤n+1
i 6=j

¬Qj ∨ Qj+1.

A DPLL Proof Procedure for Propositional Iterated Schemata 27

An occurrence of a variable i is bound in S if S contains an iteration of the form
⊕

i|Ci
Si (

⊕

∈ {
∧

,
∨

}). An occurrence of i is free (or is a parameter of S) if

it occurs in S, but not in the scope of an iteration
⊕

i|Ci
Si. Substitutions on

integer variables are defined as usual. We write {t1/i1, . . . , tk/ik} the substitution
mapping i1, . . . , ik to t1, . . . , tk respectively. From now on we assume that for
every schema S no variable can be simultaneously free and bound in S, and
if

⊕

i|Ci
Si and

⊗

j|Dj
Sj (where

⊕

,
⊗

∈ {
∧

,
∨

}) are two distinct iterations
occurring in S then i and j are distinct. Such a schema is said rectified. Let a
rectified schema S contain iterations

⊕

i1|C1
S1, . . . ,

⊕

ip|Cp
Sp, then C1∧· · ·∧Cp

is called the constraint context of S, written Context(S).

2.2 Semantics

Definition 4 (Semantics). An interpretation of the schemata language is a
function mapping every propositional variable to a truth value T or F and every
integer variable to an integer. Then the semantic JSKI of a propositional schema
in an interpretation I is inductively defined as:

– JPt1,...,tk
KI = I(PI(t1),...,I(tk)) where the interpretation of arithmetic expres-

sions is defined as usual.
– J¬ΦKI = T iff JΦKI = F.
– JΦ ∨ Φ′KI = T iff JΦKI = T or JΦ′KI = T.
– JΦ ∧ Φ′KI = T iff JΦKI = T and JΦ′KI = T.
– J

∨

i|Ci
SKI = T iff there is a k ∈ Z s.t. I(Ci[k/i]) = T (usual first-order

interpretation) and JSKJ = T where J is s.t. J (i) = k and J (j) = I(j) for
j 6= i.

– J
∧

i|Ci
SKI = T iff for every integer k s.t. I(Ci[k/i]) = T: JSKJ = T where

J is defined the same way as for
∨

.

A schema S is satisfiable iff there is an interpretation I s.t. JSKI = T. Then I
is called a model of S.

It is trivially semi-decidable to determine if a schema is satisfiable:

Proposition 1. The set of satisfiable schemata is recursively enumerable.

Proof. The set of instances of a schema is recursively enumerable and it is decid-
able whether each instance is (propositionally) satisfiable. See [5] for details. ⊓⊔

However this is not more than semi-decidable as the following result shows:

Theorem 1. The set of satisfiable schemata is not recursive.

Proof. By reduction to Post’s correspondence problem. See [5] for details. ⊓⊔

Hence schemata calculi cannot be refutationally complete.

28 Vincent Aravantinos, Ricardo Caferra, and Nicolas Peltier

3 A Proof Procedure: dpll*

We provide now a set of (sound) deduction rules (in the spirit of the Davis-
Putnam-Logemann-Loveland procedure for propositional logic) that ensure com-
pleteness w.r.t. satisfiability (we know from Theorem 1 we cannot ensure refu-
tational completeness). Compared to the naive procedure sketched in the proof
of Proposition 1, dpll* is much more efficient and terminates more often.

Definition 5 (Tableau). A tableau is a tree T s.t. each node α occurring in
T is labeled by a triple (ST (α),LT (α), CT (α)) containing respectively a schema,
a set of literals, and a linear constraint involving only parameters.

As usual a tableau is generated from another tableau by applying some extension

rules. Let r :
(S,L, C)
C1 C2

be a rule. Let α be a leaf of a tree T . If the triple labelling

it matches (S,L, C) then we can extend the tableau by adding to α two children
labeled with C1σ and C2σ where σ is the matching substitution. A leaf is closed
iff its schema is ⊥ or its parameter constraints are unsatisfiable (this can be
detected using decision procedures for arithmetic without multiplication [7]).
Let α be a node of a tableau T , we write Context(α), called the constraint
context of α, the constraint CT (α) ∧ Context(ST (α)). We provide the formal
definition of the rules and then explain their underlying intuition.

Definition 6 (Extension rules). α denotes any leaf on which an extension
rule is intended to be applied. The extension rules are:

– Splitting rules:
• Propositional splitting.

(S,L, C)

(S,L ∪ Pe1,...,ek
, C) (S,L ∪ ¬Pe1,...,ek

, C)

If the only variables of e1, . . . , ek are parameters of S and:

∃BV(S) · Context(α) ∧
∨

Pf1,...,fk

occurs in S

(e1 = f1 ∧ · · · ∧ ek = fk)

(i.e. Pe1,...,ek
occurs in S in every interpretation) where BV(S) is the set

of bound variables of S, ordered to form a tuple, and:

C ⇒
∧

Pf1,...,fk
∈L

or ¬Pf1,...,fk
∈L

e1 6= f1 ∨ · · · ∨ ek 6= fk

(i.e. Pe1,...,ek
does not occur in L in any interpretation) are valid.

• Constraint splitting. If the only free variables of C are i and parameters
of S, and C ∧ ∀i · ¬C is satisfiable:

(S[
⊕

i|C S′],L, C)

(S[
⊕

i|C S′],L, C ∧ ∃i · C) (S[e],L, C ∧ ∀i · ¬C)

where (e,
⊕

) ∈ {(⊤,
∧

), (⊥,
∨

)},

A DPLL Proof Procedure for Propositional Iterated Schemata 29

• Splitting into intervals. If the only free variables of C are i and param-
eters of S:

(S[
⊕

i|C∧k×i�t1∧l×i�t2
S′],L, C)

(S[
⊕

i|C∧k×i�t1
S′],L,

C ∧ l × t1 � k × t2)

(S[
⊕

i|C∧l×i�t2
S′],L,

C ∧ l × t1 6�k × t2)

where l, k ∈ IN,
⊕

∈ {
∧

,
∨

}, � ∈ {<,≤,≥, >}.
– Rewriting:

(S,L, C)

(S′,L, C)

where S → S′ by the following rewrite system:
• Unfolding. If Context(α) ⇒ C[I/i] is valid:

⊕

i|C

T → T [I/i]⊕
⊕

i|C∧i 6=I

T where (⊕,
⊕

) ∈
{

(∧,
∧

), (∨,
∨

)
}

• Emptiness detection. If C ′ does not involve any variable distinct from i
and bound in S and if Context(α) ∧ ∀i′ · ¬C ′ is satisfiable:

⊕

i|C

T [
⊗

i′|C′

T ′] →
⊕

i|C∧∃i′·C′

T [
⊗

i′|C′

T ′]⊕
⊕

i|C∧∀i′·¬C′

T [e]

where (⊕,
⊕

) ∈ {(∧;
∧

), (∨;
∨

)} and (
⊗

, e) ∈ {(
∧

;⊤), (
∨

;⊥)}.
• Evaluation. If Pt1,...,tk

∈ L (resp. or ¬Pt1,...,tk
∈ L), in which case

⊕

=
∧

(resp.
⊕

=
∨

), and if Context(α)∧s1 = t1∧· · ·∧sk = tk is satisfiable:

Ps1,...,sk
→

⊕

i|(s1 6=t1∨···∨sk 6=tk)∧i=0

Ps1,...,sk

where i is a fresh variable. It is not used but we assign it 0 to satisfy the
condition that it has to be in an interval in Definition 3.

• Algebraic simplification.

¬⊤ → ⊥ T ∧ ⊤ → T T ∧ ⊥ → ⊥
∧

i|Ci

⊤ → ⊤ T ∧ T → T

¬⊥ → ⊤ T ∨ ⊤ → ⊤ T ∨ ⊥ → T
∨

i|Ci

⊥ → ⊥ T ∨ T → T

if Context(α) ⇒ ∃i · Ci is valid:
∧

i|Ci

⊥ → ⊥
∨

i|Ci

⊤ → ⊤

if Context(α) ∧ ∃i · Ci is unsatisfiable:
∧

i|Ci

T → ⊤
∨

i|Ci

T → ⊥

if Context(α) ⇒ ∃i · Ci is valid and T does not contain i:
∧

i|Ci

T → T
∨

i|Ci

T → T

30 Vincent Aravantinos, Ricardo Caferra, and Nicolas Peltier

Intuition of the Rules. dpll* browses the possible interpretations depending
on the shape of the current schema. As interpretations assign a truth value to
each atom and a number to each parameter, this browsing is achieved through
Propositional splitting and Constraint splitting (indeed a constraint implicitly
defines a set of numbers possibly assigned to parameters).

Schemata represent infinite sets of structurally similar propositional formu-
lae. This similarity enables us to treat simultaneously all those formulae. We
decide to interpret an atom as soon as we know that it occurs in all those formu-
lae, which is specifically the case when this atom occurs explicitly in the schema
(by “explicitly”, we mean e.g. that P1 occurs explicitly in P1 ∧

∧n
i=2 Pi whereas

it occurs implicitly in
∧n

i=1 Pi). But this condition is not sufficient: an atom may
occur explicitly in an empty iteration, in which case it does not actually occur;
hence the first side condition in Propositional splitting to ensure that this is not
the case. This is the role of Unfolding to extract a particular rank of an iteration
in order to make appear some atom explicitly. This rule only applies if we know
that the rank indeed exists for all instances of the schema. (e.g. if we intend
to make P1 occur explicitly in

∧n
i=1 Pi, Unfolding will apply only if n ≥ 1).

Of course most of the time we cannot ensure such a knowledge: it depends on
the fact that the iteration is empty or not. Constraint splitting and Emptiness
detection are there to make the branching accordingly to those two cases (in
the previous example Constraint splitting will apply and branch on two cases:
n < 1 and n ≥ 1). This is generally not sufficient as an iteration may be known
empty without us knowing which rank makes it non-empty e.g. if the constraint
of the variable is k < i < l ∧ p < i < q then how can we know if it is the rank
k or p which indeed exists (k, l, p, q are supposed unrelated) ? In such cases, the
Splitting into intervals rule adds some constraints on the involved expressions so
that this knowledge is ensured (in the example, it will branch on the cases l < q
and l ≥ q, and then on k < p and k ≥ p).

Once an atom (resp. its negation) occurs explicitly and is selected for inser-
tion in L, we can substitute it with ⊤ (resp. ⊥). However though the atom
has an explicit occurrence it may also have implicit occurrences (e.g. P1 in
∧n

i=1 Pi) in which case we cannot just substitute ⊤ to it. Evaluation deals
with this by wrapping with an iteration the indexed propositions for which this
atom may be an instance (Pi in our example). The only aim of this wrap-
ping is to ensure that the indexed proposition differs from the atom (still in
our example, the schema is turned into

∧n
i=1

∧

j|i 6=1∧j=0 Pi). Emptiness detec-
tion and Constraint splitting then distinguish the case where they indeed dif-
fer from the case where they equal (in the example Emptiness detection ap-
plies:

∧

i|1≤i≤n∧∃j·(i 6=1∧j=0)

∧

j|i 6=1∧j=0 Pi ∧
∧

i|1≤i≤n∧∀j·(i=1∨j 6=0) ⊤). Algebraic
simplification finally makes the simplifications allowed by this case distinction
(which gives in the example:

∧

i|1≤i≤n∧∃j·(i 6=1∧j=0)

∧

j|i 6=1∧j=0 Pi ∧ ⊤, and then:
∧

i|1≤i≤n∧∃j·(i 6=1∧j=0)

∧

j|i 6=1∧j=0 Pi). Though this choice of rules may seem in-
tricate, it is a simple and powerful way of propagating constraints about nested
iterations along the schema. The resulting schemata may be simplified to allow
reader-friendly presentation (e.g. the last schema may be simplified as

∧n
i=2 Pi).

A DPLL Proof Procedure for Propositional Iterated Schemata 31

dpll. Eluding the work on iterations, we see that dpll* simulates dpll in
the case where the schema is a propositional formula. The selection of an atom
(Propositional splitting), the traversal of the formula to check for its occurrences
(Evaluation), the substitution with its value when we indeed fall on an occurrence
(Constraint splitting ,Emptiness detection), and the subsequent simplifications
(Algebraic simplification) are a faithful description of the dpll procedure.

4 Soundness and Completeness

Definition 7 (Tableau semantics). A node α of a tableau T is satisfied in
an interpretation I, written I |= α, iff I |= ST (α) (schemata semantics), I |=
CT (α) (linear constraints, i.e. first-order, semantics), and for all L ∈ LT (α),
I(L) = T. A tableau T is satisfied in I iff it contains a leaf α s.t. I |= α.

Lemma 1. If T ′ is a tableau obtained by applying a rule on a leaf α of a tableau
T then I |= α iff there exists a leaf β of T ′ s.t. β is a child of α in T ′ and I |= β.

Proof. (Sketch) By inspection of the extension rules. ⊓⊔

Lemma 2. If a leaf α in T is irreducible and not closed then T is satisfiable.

Proof. By irreducibility of Constraint splitting and Emptiness detection, all it-
erations occurring in ST (α) are non-empty. For a given root iteration S of con-
straint C we know by irreducibility of Splitting into intervals and elimination
of quantifiers in linear arithmetic that we can restrict C to a disjunction of in-
equalities t1 ≤ i ≤ t2. Once this done, for any such t1, C[t1/i] is valid and thus
Unfolding applies which is not possible by irreducibility. Hence there is no root
iteration, and thus no iteration at all. So ST (α) is constructed only on ∧,∨,¬
and atoms. If an atom A occurs then it is in LT (α) by irreducibility of Propo-
sitional splitting . So A occurs in a schema of the form

⊕

i|C A by Evaluation

which is impossible as there is no iteration. Hence no atom occurs in ST (α).
Then ST (α) is either ⊥, impossible as the branch is not closed, or ⊤. ⊤ being
satisfiable, we conclude with Lemma 1 that the initial tableau is satisfiable. ⊓⊔

Theorem 2 (Soundness). Let T be a tableau. If a tableau T ′ is obtained from
T by application of the extension rules, and if T ′ contains an irreducible and
not closed leaf then T is satisfiable.

Proof. This follows immediately from Lemmata 1 and 2. ⊓⊔

We prove dpll* is complete w.r.t. satisfiability. Let I be an interpretation, T
a tableau and α a leaf in T labelled by (S,L, C). We set the following measures:

1. m1
I(S) is defined by induction on the structure of S:

– m1
I(P)

def

= 1 if P is an indexed proposition.

– m1
I(¬S)

def

= m1
I(S) + 1.

– m1
I(S1 � S2)

def

= m1
I(S1) + m1

I(S2) if � ∈ {∨,∧}.

32 Vincent Aravantinos, Ricardo Caferra, and Nicolas Peltier

– m1
I(

⊕

i|Ci
S)

def

= (#E)2 × (Σj∈Em1
Jj

(S) where
⊕

∈ {
∧

,
∨

}, E = {i |

I |= Ci}, #E is the size of E and Jj is an interpretation defined exactly

as I, except that JiKJj

def

= j.

2. m2
I(α)

def

= #(Atoms(F) \ A) where F is the propositional formula obtained
by substituting all the parameters of S by their corresponding value under
I, Atoms(F) is the set of atoms that occur in F , and A is the set of atoms
that occur in L.

3. m3(α) is the number of pairs (Ps1,...,sk
, Pt1,...,tk

) s.t. Ps1,...,sk
occurs in S,

Pt1,...,tk
or ¬Pt1,...,tk

occurs in L, and Context(α)∧
∧n

i=1 ti = si is satisfiable.
4. m4(α) is the number of iterations

⊕

i|C S′ of ST (α) s.t. Context(α)∧∀i ·¬C
is satisfiable.

5. m5(S) is the number of iterations
⊕

i|C∧i�t1∧i�t2
S′ of S (� ∈ {<,≤,≥, >}).

mI(α, T) is defined as (m1
I(S), m2

I(α), m3(α), m4(α), m5(S)) ordered using the
lexicographic extension of the usual ordering on natural numbers.

Lemma 3. Let I be an interpretation. Let T be a tableau. If T ′ is deduced from
T by applying an extension rule on a leaf α s.t. I |= α, then for every child β
of α in T ′ s.t. I |= β, we have mI(β, T ′) < mI(α, T).

Proof. By inspection of the extension rules:
Rule m1

I(S) m2
I(α) m3(α) m4(α) m5(S)

Propositional splitting ≤ <
Constraint splitting ≤ ≤ ≤ <

Splitting into intervals ≤ ≤ ≤ ≤ <
Unfolding <

Emptiness detection ≤ ≤ ≤ <
Evaluation ≤ ≤ <

Algebraic simplification <

≤ (resp. <) means that the corresponding measure does not increase (resp.
strictly decreases) by application of the rule. ⊓⊔

A derivation is a (possibly infinite) sequence of tableaux (Tn)n∈I s.t. I is either
[0..n] or IN and s.t. for all i ∈ I \{0}, Ti is obtained from Ti−1 by applying one of
the extension rules. A derivation is fair if either there is i ∈ I s.t. Ti contains an
irreducible not closed leaf or if for every i ∈ I and α a not closed leaf in Ti there
is j ≥ i s.t. a rule applies on α in Tj (i.e. no leaf can be indefinitely freezed).

Theorem 3 (Model Completeness). Let T0 be a satisfiable tableau and let I
be a model of T0. If (Tn)n∈I is a fair derivation then there are k ∈ I and a leaf
αk in Tk s.t. αk is irreducible and not closed.

Proof. By Lemma 1, for all i ∈ I, Ti contains a leaf αi s.t. I |= αi. Let k ∈ I s.t.
mI(αk, Tk) is minimal (k exists since mI(αi, Ti) defines a well-founded order).
Assume a rule is applied on αk in the derivation, on some tableau Tl. By Lemma
1 there is a child β of αk s.t. I |= β. By Lemma 3 we have mI(β, Tl) < mI(αk, Tk)
which is impossible. Thus no rule is applied on αk. Since the derivation is fair,
αk is irreducible (or there is another leaf that is irreducible). ⊓⊔

A DPLL Proof Procedure for Propositional Iterated Schemata 33

5 Termination

dpll* does not terminate in general (Theorem 1). The reason is that the truth
value of a schema depends on a potentially infinite number of atoms. But it
is often the case that when simplifying a schema according to the value given
to an atom, the newly obtained schema has already been seen (up to some
transformation) i.e. the procedure is looping. This description of what happens
corresponds to a procedural view of mathematical induction which naturally
arises when doing the proof manually. The cycle detection rule (“looping”) is
basically equivalent to the corresponding one in stab, it is included here for the
sake of completeness.

We start by giving a quite general definition of looping, that we know from
Theorem 1 that it has no chance to be decidable. We assume all parameters are
interpreted as positive integers. This can be specified by rewriting a schema S
into

∨

i|n1≥0∧···∧nk≥0∧i=0 S where n1, . . . , nk are the parameters of S.

Definition 8 (Looping). Let α, β be two nodes of a tableau T , and n1, . . . ,nk

be the parameters of ST (α). Then β loops on α if there are p1, . . . , pk ∈ IN s.t.
one at least is positive and for every model I of β, I |= ST (α){n1−p1/n1, . . . , nk

− pk/nk}, I |= CT (α){n1 − p1/n1, . . . , nk − pk/nk}, and for all L ∈ LT (α),
I(L{n1 − p1/n1, . . . , nk − pk/nk}) = T.

When a leaf loops, it is treated as a closed branch (though it is not necessarily
unsatisfiable), we say that it is blocked.

Theorem 2 trivially remains true but the proof of Theorem 3 must be adapted:

Theorem 4 (Model Completeness). Let T0 be a satisfiable tableau and I be
a model of T0. If (Tn)n∈I is a fair derivation then there exist k ∈ I and a leaf
αk in Tk s.t. αk is irreducible and neither closed nor blocked.

Proof. The proof is basically the same as in [5]. ⊓⊔

In order to apply the looping rule in practice one has to compute the natural
numbers p1, . . . , pk and check that the implication holds. This problem is obvi-
ously undecidable. Thus we define a stronger relation between two nodes which
is decidable and allows to check that p1, . . . , pk exist. The underlying idea is the
following: let S =

∨b
i=a Si and S′ =

∨d
j=c Sj . To check that S ⇒ S′, it is suffi-

cient that for all i ∈ [a..b] there exists j ∈ [c..d] s.t. Si ⇒ Sj . If Si, Sj are indexed
propositions then Si ⇒ Sj holds if i = j (thus the above condition is equivalent
to [a..b] ⊆ [c..d]). Formally we inductively construct a linear arithmetic formula
from the structure of both schemata for which we want to check the looping.
This relation can be seen as a form of subsumption between schemata.

Proposition 2. To check that a leaf β loops on a node α in a tableau T , it is
sufficient to check that the arithmetic formula ∃p1, . . . , pk · (p1 > 0 ∨ · · · ∨ pk >
0) ∧ ∀n1, . . . , nk · FST (β)⇒ST (α){n1−p1/n1,...,nk−pk/nk} ∧ CT (β) ⇒ CT (α){n1 −
p1/n1, . . . , nk − pk/nk} is valid, where FS′⇒S is inductively defined as follows:

– FS′⇒S
def

= S′ ⇒ S if S′, S are constraints.

34 Vincent Aravantinos, Ricardo Caferra, and Nicolas Peltier

– FS′
1
∨S′

2
⇒S

def

= FS′⇒S1∧S2

def

= FS′
1
⇒S ∧ FS′

2
⇒S

– FS′
1
∧S′

2
⇒S1

def

= FS′⇒S1∨S2

def

= FS′
1
⇒S′ ∨ FS′

2
⇒S

– FW

i|C S′⇒S
def

= FS′⇒
V

i|C S
def

= ∀i · C ⇒ FS′⇒S

– FV

i|C S′⇒S
def

= FS′⇒
W

i|C S
def

= ∃i · C ∧ FS′⇒S

– F¬S′⇒¬S
def

= FS′⇒S

– FPt1,...,tn⇒Ps1,...,sn

def

= (t1 = s1 ∧ . . . ∧ tn = sn)

– FS′⇒S
def

= ⊥ otherwise.

s.t. rules presented first have higher priority in case of ambiguity.

It follows from Proposition 3, proved by an easy induction on S, S′:

Proposition 3. Every model of both FS⇒S′ and S is a model of S′.

6 Examples

6.1 The n-bit Adder

We express an n-bits adder circuit with propositional schemata. Such a circuit
takes as input two numbers in bitwise representation: A1, . . . , An and B1, . . . , Bn.
Then Si is the ith bit of their sum. We use a classical implementation composed
of n 1-bit adders. Each adder generates a carry that is propagated to the next
adder. We write Ci+1 the carry generated by the ith adder. C1 is always false.

We set the notations Sumi
def

= Si ⇔ (Ai ⊕ Bi) ⊕ Ci and Carryi
def

= Ci+1 ⇔
(Ai ∧ Bi) ∨ (Ci ∧ Ai) ∨ (Ci ∧ Bi) where ⊕ denotes the exclusive or. Then the

schema Adder
def

=
∧n

i=1 Sumi ∧
∧n

i=1 Carryi ∧ ¬C1 where n ≥ 1 expresses this
implementation of the adder circuit.

We want to prove that A + 0 = A. A SAT-solver can easily prove that this
formula is unsatisfiable for a fixed n (say n = 9). We show how to prove it for
all n ∈ IN. This simple example has been chosen for the sake of conciseness,
commutativity or associativity of the n-bits adder could have been proven too.

We express the fact that the second operand is null:
∧n

i=1 ¬Bi, and the fact
that the result equals the first operand:

∧n
i=1 Ai ⇔ Si. Which gives by refutation:

∨n
i=1 Ai ⊕ Si. So we want to refute Adder ∧

∧n
i=1 ¬Bi ∧

∨n
i=1 Ai ⊕ Si.

We sketch the closed tableau obtained by dpll* to enable the comparison
with stab – which can handle this example, see [5]. It happens that the global
structure of both proofs is the same. dpll* decomposes the proof at a finer
grain, thus the resulting proof is longer than for stab.

We use the conventions that closed leaves are marked by ×, and 	(α) ex-
presses the fact that the leaf loops on the node α. “.” denotes “the same value
as previously in this position”. The following figure is only a sketch of the real
tableau: several rules are often applied at once. Furthermore, to stick to dpll*,
⇒, ⇔ and ⊕ have to be rewritten so as to use only ∧, ∨ and ¬.

A DPLL Proof Procedure for Propositional Iterated Schemata 35

(1)

(
Vn

i=1
Sumi ∧

Wn
i=1

Ai ⊕ Si ∧ ¬C1

∧
Vn

i=1
Carryi ∧

Vn
i=1

¬Bi, ∅, n ≥ 1)

...
(
Vn−1

i=1
Sumi ∧ Sumn ∧

Wn−1

i=1
Ai ⊕ Si ∨ (An ⊕ Sn) ∧ ¬C1

Vn−1

i=1
Carryi ∧ Carryn ∧

Vn−1

i=1
¬Bi ∧ ¬Bn, ., .)

(., {An}, .)

(., {An,¬Sn}, .)

(2)

(., {An, Sn}, .)

...
(
Vn−1

i=1
Sumi ∧ Sumn ∧

Wn−1

i=1
Ai ⊕ Si

∨(
V

j|n6=n∧j=0
An ⊕

V

j|n6=n∧j=0
Sn) ∧ ¬C1

Vn−1

i=1
Carryi ∧ Carryn ∧

Vn−1

i=1
¬Bi ∧ ¬Bn, ., .)

...
(
Vn−1

i=1
Sumi ∧ Sumn ∧

Wn−1

i=1
Ai ⊕ Si ∧ ¬C1

Vn−1

i=1
Carryi ∧ Carryn ∧

Vn−1

i=1
¬Bi ∧ ¬Bn, ., .)

(., ., n − 1 ≥ 1)

	 (1)

(
Vn−1

i=1
Sumi ∧ Sumn ∧ ⊥ ∧ ¬C1

Vn−1

i=1
Carryi ∧ Carryn ∧

Vn−1

i=1
¬Bi ∧ ¬Bn, ., n − 1 < 1)

...
×

(., {¬An}, .)

(., {¬An, Sn}, .)

(2′)

(., {¬An,¬Sn}, .)

...
	 (1)

(2)

(
Vn−1

i=1
Sumi ∧ Sumn ∧

Wn−1

i=1
Ai ⊕ Si ∨ (

V

j|n6=n∧j=0
An ⊕

W

j|n6=n∧j=0
Sn) ∧ ¬C1

Vn−1

i=1
Carryi ∧ Carryn ∧

Vn−1

i=1
¬Bi ∧ ¬Bn, ., .)

...
(
Vn−1

i=1
Sumi ∧ Sumn ∧ ¬C1 ∧

Vn−1

i=1
Carryi ∧ Carryn ∧

Vn−1

i=1
¬Bi ∧ ¬Bn, ., .)

(., {An,¬Sn, Bn}, .)

...
⊥
×

(., {An,¬Sn,¬Bn}, .)

(., {An,¬Sn,¬Bn, Cn}, .)

(3) (., ., n − 1 < 1)

...
×

(· · · ∧ Sumn ∧ . . . ,

{An,¬Sn,¬Bn,¬Cn}, .)

...
(· · · ∧ ⊥ ∧ . . . ,

{An,¬Sn,¬Bn,¬Cn}, .)

...
×

36 Vincent Aravantinos, Ricardo Caferra, and Nicolas Peltier

(3)

(
Vn−1

i=1
Sumi ∧ Sumn ∧ ¬C1∧

Vn−1

i=1
Carryi ∧ Carryn ∧

Vn−1

i=1
¬Bi ∧ ¬Bn, ., n − 1 ≥ 1)

(
Vn−1

i=1
Sumi ∧ Sumn ∧ ¬C1∧

Vn−2

i=1
Carryi ∧ Carryn−1 ∧ Carryn ∧

Vn−1

i=1
¬Bi ∧ ¬Bn, ., n − 1 ≥ 1)

...
(· · · ∧ ((An−1 ∧ Bn−1) ∨ (Cn−1 ∧ An−1) ∨ (Cn−1 ∧ Bn−1)) ∧ . . . , ., n − 1 ≥ 1)

(., {. . . ,¬Bn−1}, .)

...
(., {. . . , Cn−1, An−1}, .)

(., {. . . , Sn−1}, .)

...
×

(., {. . . ,¬Sn−1}, .)

(., . . . , n − 2 ≥ 1)

	 (3)

(., . . . , n − 2 < 1)

...
×

(., {. . . , Bn−1}, .)

...
×

And (2′) is very similar to (2).

6.2 An example that terminates on dpll* but not on stab

The main reason for developing dpll* was that stab could not deal with nested
iterations (e.g.

∧n
i=1

∨n
j=1 Pi∨Qj). Indeed stab only works at the root of formu-

lae, in particular it can unfold only the outermost iteration but cannot modify
any inner iteration. On the other side dpll* is designed to select an atom and
give it a value, wherever this atom occurs in the schema which allows to detect
more cycles in the proof tree. We now give an example of a schema that can be
proved with dpll* but not with stab:

n
∧

i=1

n
∨

j=1

Pi ⇒ Qj ∧
n
∧

i=1

¬Qi ∧
n
∨

i=1

Pi

This schema diverges under stab (with a restricted, decidable, looping, similar to
the one found in Proposition 2). The innermost iteration will never be unfolded
by stab thus its bounds will never decrease which is needed for a cycle to occur.
And a cycle is indeed required as, for the schema to be refuted, we have to refute
the case where some PN is true, which is easily done, and the case where

∨

i 6=N Pi

is true, which can only be done through a cycle detection (as it is impossible for
stab to treat simultaneously all Pi’s). We let the details to the reader.

We now sketch a refutation of this schema by dpll*:

A DPLL Proof Procedure for Propositional Iterated Schemata 37

(
Vn

i=1

Wn
j=1

Pi ⇒ Qj ∧
Vn

i=1
¬Qj ∧

Wn
i=1

Pi, ∅,⊤)

(., ., n < 1)

.

.

.
×

(., ., n ≥ 1)

.

.

.

(
Vn−1

i=1
(
Wn−1

j=1
Pi ⇒ Qj) ∨ Pi ⇒ Qn

∧
Wn−1

j=1
Pn ⇒ Qj ∨ Pn ⇒ Qn

∧
Vn−1

i=1
¬Qj ∧ ¬Qn ∧ (

Wn−1

i=1
Pi ∨ Pn), ., .)

(1)

(
Vn−1

i=1
(
Wn−1

j=1
Pi ⇒ Qj) ∨ ¬Pi

∧
Wn−1

j=1
Pn ⇒ Qj ∨ ¬Pn

∧
Vn−1

i=1
¬Qj ∧ (

Wn−1

i=1
Pi ∨ Pn), {¬Qn}, .)

(
Vn−1

i=1
(
Vn−1

j=1
Pi ⇒ Qj) ∧ ¬Pi

∧
Vn−1

i=1
¬Qj ∧

Wn−1

i=1
Pi, {¬Qn,¬Pn}, .)

(., ., n − 1 ≥ 1)

.

.

.

(
Vn−2

i=1
(
Vn−2

j=1
Pi ⇒ Qj) ∧ Pi ⇒ Qn−1 ∧ ¬Pi

∧
Vn−2

j=1
Pn−1 ⇒ Qj ∧ Pn−1 ⇒ Qn−1 ∧ ¬Pn−1

∧
Vn−2

i=1
¬Qj ∧ ¬Qn−1 ∧ (

Wn−2

i=1
Pi ∨ Pn−1),

{¬Qn,¬Pn}, .)

(., {. . . , Qn−1}, .)

.

.

.
×

(
Vn−2

i=1
(
Vn−2

j=1
Pi ⇒ Qj) ∧ ¬Pi ∧ ¬Pi

∧
Vn−2

j=1
Pn−1 ⇒ Qj ∧ ¬Pn−1 ∧ ¬Pn−1

∧
Vn−2

i=1
¬Qj ∧ (

Wn−2

i=1
Pi ∨ Pn−1),

{¬Qn,¬Pn,¬Qn−1}, .)
	 (1)

(., ., n − 1 < 1)

.

.

.
×

(2)

(
Vn−1

i=1
(
Wn−1

j=1
Pi ⇒ Qj) ∨ ¬Pi

∧
Wn−1

j=1
Qj ∧

Vn−1

i=1
¬Qj ,

{¬Qn, Pn}, .)

.

.

.

.

.

.

(
Vn−2

i=1
(
Wn−2

j=1
Pi ⇒ Qj) ∨ ¬Pi

Wn−2

j=1
Pn−1 ⇒ Qj) ∨ ¬Pn−1 ∧

Wn−2

j=1
Qj

∧
Vn−2

i=1
¬Qj , {¬Qn, Pn,¬Qn−1}, n − 1 ≥ 1})

(., {. . . ,¬Pn−1}, .)
	 (2)

(
Vn−2

i=1
(
Wn−2

j=1
Pi ⇒ Qj)

∨¬Pi

Wn−2

j=1
Qj) ∧

Wn−2

j=1
Qj

∧
Vn−2

i=1
¬Qj ,

{. . . , Pn−1}, n − 1 ≥ 1})
	 (2)

(., {Qn}, .)

.

.

.
×

7 Conclusion

We have presented a new calculus, called dpll*, for reasoning on schemata of
propositional formulae and proved that it is sound and complete w.r.t. satisfia-
bility. We extended this calculus to detect cycles in the proof tree, thus allowing
refutation of non-trivial conjectures as shown in the examples. We have shown
evidence that dpll* allows to prove some schemata that were not provable with
a previous calculus proposed by the authors, called stab, based on shallow in-
ference rules. In our opinion, this work is a first step opening several research
ways:

– The main motivation to develop dpll* is that stab is not well-suited to
handle nested iterations, a frequently needed feature. Section 6.2 gives ev-

38 Vincent Aravantinos, Ricardo Caferra, and Nicolas Peltier

idence of this. The next step is now to precisely identify a syntactic class
(containing imbrications of iterations) for which dpll* terminates.

– At the moment both those schemata calculi are just “calculi to handle
schemata of propositional formulae” but one can wonder about “schemata
of calculi to handle propositional formulae”. Formalising this intuition can
shed some light on the relationship between the structure of propositional
formulae and the structure of their proofs.

– A natural continuation of this work is to extend dpll* to first-order logic.
First-order schemata can introduce extensions of first-order logic with hope-
fully attractive features.

– This paradigm of “getting more abstraction while preserving structure” ap-
plies in many symbolic computation procedures, and particularly in type
inference for functional languages. In this context, the so-called “generic
programming” brings a gain of abstraction in types and functions by de-
scribing classes of functions by induction on the type of their input (see e.g.
[8]). We believe that this has close connections with the ideas and techniques
of the present paper and deserves to be studied.

– Similarly, in interactive theorem proving, the user often would like to give
to the proof engine the information that the proof it is carrying out is anal-
ogous to some other proof. A proof schema seems adequate to do that. The
languages and techniques presented here could be of interest for expressing
theses similarities in the proof languages.

References

1. Chen, H., Hsiang, J., Kong, H.: On finite representations of infinite sequences of
terms. In: Conditional and Typed Rewriting Systems, 2nd International Workshop,
Springer, LNCS 516 (1990) 100–114

2. Peltier, N.: A General Method for Using Terms Schematizations in Automated
Deduction. In: Proceedings of the International Joint Conference on Automated
Reasoning (IJCAR’01), Springer LNCS 2083 (2001) 578–593

3. Hermann, M., Galbavý, R.: Unification of Infinite Sets of Terms schematized by
Primal Grammars. Theoretical Computer Science 176(1–2) (1997) 111–158

4. Hetzl, S., Leitsch, A., Weller, D., Woltzenlogel Paleo, B.: Proof analysis with
HLK, CERES and ProofTool: Current status and future directions. In Sutcliffe G.,
Colton S., S.S., ed.: Workshop on Empirically Successful Automated Reasoning for
Mathematics (ESARM). (July 2008) 21–41

5. Aravantinos, V., Caferra, R., Peltier, N.: A Schemata Calculus For Propositional
Logic. In: Proceedings of the 18th International Conference on Automated Rea-
soning with Analytic Tableaux and Related Methods (TABLEAUX’09), Springer-
Verlag (2009) 32–46

6. Davis, M., Logemann, G., Loveland, D.: A Machine Program for Theorem Proving.
Communication of the ACM 5 (1962) 394–397

7. Cooper, D.: Theorem proving in arithmetic without multiplication. In Meltzer, B.,
Michie, D., eds.: Machine Intelligence 7. Edinburgh University Press (1972) 91–99

8. Hinze, R.: A new approach to generic functional programming. In: The 27th Annual
ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages,
ACM Press (2000) 119–132

Concurrency and Permutability
in the Sequent Calculus

May 2009

Nicolas Guenot, LIX — École Polytechnique
nguenot@lix.polytechnique.fr

Abstract. In proof theory, the sequent calculus has been the most widely

used logical formalism since its inception by Gentzen. However, it uses a

syntax involving a lot of bureaucracy, thus detaining similar proofs from

being written as a unique object. Indeed, different rule instances in a proof

can be permuted, if the order of the corresponding inference steps does not

matter. What we present here is a work in progress, aiming at a general

framework for studying permutability properties of inference rule instances.

In order to achieve this, we introduce the notion of permutability graph,

which provides a unified syntax for equivalent proofs up to permutations.

Eventually, it can be used to prove completeness for proof transformations,

especially those based on permutations of inference rule instances such as

focusing, as discussed at the end of this paper.

1 — Introduction

In the sequent calculus, proofs are trees of inference rule instances, structured
by the order in which inference steps are used, and creating branches when two
unrelated paths of the inference process need to be glued together. However, this
order is often arbitrary, thus disallowing a clear reading of the proof by hiding
the natural concurrency that exists between different inference steps. This is
an inconsistent way of dealing with concurrency, since branches are explicitly
separated, while some of the other rule instances within the same branch could
be used in parallel without essentially changing the proof.

We are interested in the permutability properties of inference rule instances,
and the dependencies between steps of the inference process that they induce,
in any given logic — in particular, our analysis is valid for systems of usual
logics, namely LK, LJ and LL. In order to work on permutability within proof
objects, we introduce the notion of permutability graph, providing a unified
presentation of most equivalent proofs modulo permutations. This is obviously
related to proof-nets [Gir96], that allow for a canonical representation of proofs
in linear logic, but the scope and goals of our analysis are quite different.

These graphs can be used to prove completeness for proof transformations
based on rule instances permutations, since they represent an invariant of proofs
through permutations. This was actually the original motivation for introducing
these graphs, and all of this work should be considered as a continuation of the
focalization graphs used in [MS07] to prove completeness for focusing. Indeed,
after the permutability graph of a given proof has been built, any equivalent
proof can be produced from it by a sequentialisation process, which can be
controlled and create a focused proof. This is related to the sequentialisation
theorem for proof-nets, and is close to the creation of tree-like strategies from
ℓ-nets as presented in [CF05].

39

However, we try here to give a more general analysis, and this work, which is
still in progress, aims at exploring with permutability the ideas of concurrency
and sequentiality that can be found in proof objects. This is why this work is
mainly based on the permutability properties of inference rule instances, and
we will only illustrate the use of this approach in the end by discussing a proof
of completeness for focusing in MLL.

2 — Permuting Inference Rules

In the sequent calculus, permuting two inference rule instances is very easy, in
an informal way. However, the analysis of permutability presented here requires
to be precise, so that we need some definitions for basic logical objects.

First, we assume that we are given a language of formulas, which is defined by
binary connectives on a set of atoms {a, b, c, · · ·}. We work with occurrences of
such formulas rather than directly with formulas, in order to distinguish between
copies, and thus handle additive and exponential behaviours. An occurrence An

of a formula A is simply this formula labeled with an integer. Moreover, there
should be no two occurrences of the same formula with the same index within
a sequent, and inference rules should handle duplication as illustrated below by
the additive conjunction rule of linear logic :

⊢ A5, B3 ⊢ A6, C4
N

⊢ A1, (B3 N C4)2

Then, we shall define the objects we are trying to permute : an instance
χ of an inference rule scheme is derived from this rule scheme by instantiating
variable formulas with actual occurrences. Given a rule instance χ, some of the
occurrences in its conclusion are special, since they are the ones on which χ

is applied, that could not be removed while keeping the instance correct with
respect to its scheme — they are called the principal occurrences, and the set
of such occurrences will be denoted by P(χ) in the following.

Finally, we define an equivalence relation over occurrences, so that An ≈ Am

for any n, m ∈ N. This can be immediately extended to sets of occurrences, and
then to inference rule instances, as shown in the definition below.

Definition 1 Two instances χ1 and χ2 of the same inference rule scheme are
said to be twins, which is denoted by χ1 ≈ χ2, if and only if P(χ1) ≈ P(χ2).

Then, the permutation of two rule instances can be defined by exhibition
of the corresponding transformation on the rule instances at the bottom of the
proof, which is trivially extended to instances located anywhere in the proof.

2.1 — Conservative Permutations

We start with a definition that expresses the most simple permutation case,
where no instance is duplicated, keeping the set of rule instances used in the
proof unchanged — in a proof Π, we will denote this set by IΠ in the following.

Definition 2 A proof Π ′ is a conservative permutation of some proof Π if and
only if Π ′ is derived from Π by any variant of the following transformation :

40

��
��

�?????
Π1

⊢ Σ
��

��
�?????

Π2

⊢ Ψ
χ2

⊢ ∆
��

��
�?????

Π3

⊢ Φ
χ1

⊢ Γ

−→
��

��
�?????

Π1

⊢ Σ
��

��
�?????

Π3

⊢ Φ
χ1

⊢ Σ′

��
��

�?????
Π2

⊢ Ψ
χ2

⊢ Γ

Example 1 The two MLL proofs below are equivalent because the right one is
built by permuting the O rule instance below a ⊗ instance in the left one, using a
conservative permutation. In MLL, this is the only possible kind of permutation.

id
⊢ a, a⊥

id
⊢ b, b⊥

⊗
⊢ a, b, a⊥ ⊗ b⊥

O
⊢ a O b, a⊥ ⊗ b⊥

1
⊢ 1

⊗
⊢ a O b, (a⊥ ⊗ b⊥) ⊗ 1

≡

id
⊢ a, a⊥

id
⊢ b, b⊥

⊗
⊢ a, b, a⊥ ⊗ b⊥

1
⊢ 1

⊗
⊢ a, b, (a⊥ ⊗ b⊥) ⊗ 1

O
⊢ a O b, (a⊥ ⊗ b⊥) ⊗ 1

The basic step of conservative permutations can be seen as the permutation
of an inference rule instance χ2 under another rule instance χ1. Then, the
existence of cases where the conservative permutation of two rule instances
fails induces a dependency relation between all instances within a given proof.
This relation, defined below, will be the starting point of our analysis of the
permutability properties of rule instances in proof objects.

Definition 3 Given a proof Π, and χ1, χ2 ∈ IΠ , the conservative dependency
relation ⊏Π is defined so that χ1 ⊏Π χ2 if and only if, for any conservative
permutation Π ′ of Π, χ2 is located above χ1 in the proof tree Π ′.

In the following, when working on a given proof Π, we will use the transitive
reduction of the ⊏Π relation, denoted by <Π , in order to keep the graph of rule
instances dependencies as close as possible to the tree structure of proof objects.
Moreover, it should be noticed that this relation always exists, and is unique,
because ⊏Π is antisymmetric and finite.

Remark 2 Given a proof Π, its conservative dependency relation ⊏Π is an
invariant of all conservative permutations of rule instances, since it is defined
by quantification over these permutations. Thus, all conservative permutations
of a given proof have the same permutability properties.

2.2 — General Permutations

A general definition can be given for permutations, allowing to duplicate rule
instances in the process, and thus to handle the additive and exponential rule
instances, where contraction is involved. This is done by relaxing the condition
on the instances that can be used in the resulting proof — this requires to
extend the twin relation to proofs, which is trivial — and by allowing to copy
the instance moved upward in the tree, as done in the following definition.

Definition 4 A proof Π ′ is a permutation of some proof Π if and only if Π ′ is
derived from Π by any variant of the following transformation, where Π ′

3 and
Π ′′

3 are twins of the original Π3 proof :

41

��
��

�?????
Π1

⊢ Σ
��

��
�?????

Π2

⊢ Ψ
χ2

⊢ ∆
��

��
�?????

Π3

⊢ Φ
χ1

⊢ Γ

−→
��

��
�?????

Π1

⊢ Σ
��

��
�?????

Π′

3

⊢ Φ
χ1

⊢ Σ′

��
��

�?????
Π2

⊢ Ψ
��

��
�?????

Π′′

3

⊢ Φ
χ1

⊢ Φ′

χ2
⊢ Γ

Remark 3 The most general notion of permutation we consider here does not
allow erasures of inference rule instances, so that axiomatic rules can never be
permuted down. This is the reason why it will be impossible here to capture
all possible proofs of the sequent calculus. We will thus restrict our study to
extensive proofs, where axiomatic rules are only applied on sequents that cannot
be handled by any other non-axiomatic inference rule.

Again, the cases of permutation failure induce a dependency relation, but
in order to handle duplications, we need to group some rule instances. This is
done by using the merging relation, which is defined on rule instances of a proof
Π so that χ1 ≍ χ2 when χ1 ≈ χ2 and there exists a permutation of Π in which
only one twin of these instances appear. Then, we will denote by I+

Π the set of
equivalence classes of rule instances generated by the merging relation, applied
on all inference rule instances used in this proof.

Definition 5 Given a proof Π, and X1, X2 ∈ I+

Π , the dependency relation ⊏
+

Π is
defined so that X1 ⊏

+

Π X2 if and only if, for any permutation Π ′ of Π, χ1 ∈ X1

and χ2 ∈ X2, χ2 is located above χ1 in the proof tree Π ′.

As before, when working on a proof Π, we will use the transitive reduction
of the ⊏

+

Π relation, denoted by <+

Π , which always exists and is unique, because
the dependency relation defined here is antisymmetric and finite.

Remark 4 The meaning of the merging relation is to group rule instances that
can move together within a proof and can be duplicated or merged when need,
in order to permuter under or over duplicating rule instances. Then, the general
case of the dependency relation is used to express the fact that the dependencies
are always consistent among instances of the same equivalence class.

3 — Permutability Graphs

In order to find a satisfying representation for proofs of various logics where the
natural concurrency between inference rule applications is exposed, we can use
the dependency relation induced by these objects, as described above. Indeed,
the most basic role of a proof is to describe all of the deductive steps required
to prove a given logic formula, along with at least the necessary part of the
ordering between these inference steps.

We devise here a representation for proofs based on graphs, where nodes
are rule instances of a proof and links are dependencies that exist between
these instances. Because of the strong geometric structure of dependencies, this
gives enough information to build a proof in the sequent calculus, while there
is no useless sequentialisation information. We start in the restricted setting
where no duplication of inference rule instances can happen during any possible
permutation — the case of conservative permutations.

42

3.1 — Conservative Permutability Graphs

Representing equivalent proofs modulo conservative permutations is simple since
any such permutation applied on a proof produces another proof with the same
set of rule instances. This representation is built as a graph 〈N ,L〉, where N is
the set of nodes and L the set of links, described by a relation, as done below.

Definition 6 The (conservative) permutability graph of a proof Π is a directed
graph built on the set of rule instances, and defined as GΠ = 〈IΠ , <Π〉.

Remark 5 Given a proof Π and its graph GΠ , any conservative permutation Π ′

of Π, with a graph GΠ′ , is such that GΠ′ = GΠ . Indeed, the sets IΠ and IΠ′

are the same since permutations are conservative, and we noticed in remark 2
that the dependency relation is also invariant through permutations.

In this representation, the non-permutability induced by dependencies is
viewed as an enabling relation, expliciting the fact that the realisation of an
inference step χ1 requires the previous realisation of another inference step χ2.
As shown below, this relation always induces directed acyclic graphs.

Proposition 1 For any proof Π, the graph GΠ is acyclic.

Proof. Let Π be a proof, with χ1, χ2 ∈ IΠ . If χ2 ⊏Π χ1, then χ1 is above χ2

in the proof Π, by definition this relation. The other way around, if χ1 ⊏Π χ2,
then χ2 is above χ1 in Π. Thus, such paths in both directions between χ1 and
χ2 cannot exist in GΠ , which is therefore acyclic. �

Beyond acyclicity, permutability graphs have stronger geometric properties,
which corresponds to the geometric structure of the represented proofs. Indeed,
the branching structure of inference rule instances in a proof is kept in the graph,
and can be translated in the language of graph theory as done below.

Definition 7 Given a permutability graph G = 〈IG , <G〉, and an instance χ ∈ IG,
a subgraph B of IG is said to be a branch of χ if and only if it is a maximal
weakly connected graph such that for any χ′ ∈ B, χ ⊏G χ′.

This notion of branch, imported from proofs in the setting of permutability
graphs, is interesting because one can count different branches of a node, and
deduce the branching structure of the corresponding rule instance.

Definition 8 Given a permutability graph G = 〈IG , <G〉, and an instance χ ∈ IG,
the multiplicity µG(χ) of χ is the number of branches of χ in G.

The interest of counting branches above a given node is then ensured by
the correspondence between the situation within proof trees, and permutability
graphs used to represent these proofs, as shown below.

Proposition 2 Given a proof Π, its permutability graph GΠ = 〈IΠ , <Π〉, and an
instance χ ∈ IΠ , the multiplicity µG(χ) is equal to the arity of χ in Π.

43

Proof. Let Π be a proof, GΠ = 〈IΠ , <Π〉 its permutability graph, and χ ∈ IΠ

an instance such that µG(χ) = n. First, let χ1, χ2 ∈ IΠ be two rule instances
located above χ in Π and all of its conservative permutations. If they are in
different branches of χ in Π, there is no dependency between them and thus
they cannot belong to the same branch of χ in GΠ . Then, if they belong to
different branches of χ in GΠ , then they cannot be located in the same branch
of χ in Π, by contradiction. Indeed, it would imply the existence of χ3 ∈ IΠ

such that χ ⊏Π χ3, χ3 ⊏Π χ1 and χ3 ⊏Π χ2, which means that χ1 and χ2

would be in the same branch of χ in GΠ . Therefore, there is exactly as many
branches of χ in Π as in its permutability graph GΠ . �

Remark 6 Following the idea of dependencies as enabling relations, it can be
useful to compare permutability graphs with event structures, introduced by
Winskel [Win86] in order to model causality and concurrency. Indeed, a proof
can be considered as an event structure, where rule instances are the events and
the conflict relation is induced by the branches of nodes. Indeed, rule instances
that belong to different branches of a node should never be grouped in the same
branch of this node in any proof extracted from the graph.

Example 7 We provide here an example proof of MLL, with the corresponding
conservative permutability graph, given on the right. Branches are suggested
using dotted lines, which represent the conflict they induce between nodes.

id5

⊢ a, a⊥
id6

⊢ b, b⊥
⊗4

⊢ a, b, a⊥ ⊗ b⊥
O2

⊢ a O b, a⊥ ⊗ b⊥
13

⊢ 1
⊗1

⊢ a O b, a⊥ ⊗ b⊥ ⊗ 1

−→ ⊗4

O2

id5

id6

⊗1

13

3.2 — General Permutability Graphs

In order to extend the notion of permutability graph to the general case of
permutations, we need to consider groups of rule instances, and work with the
general case of the dependency relation we defined. We can follow the scheme
of the conservative case to build a similar structure for this extended case.

Definition 9 The compact permutability graph of a proof Π is a directed graph
built on equivalence classes of rule instances, and defined as C+

Π = 〈I+

Π , <+

Π〉.

Example 8 Here is given an example MALL proof, for which the corresponding
compact permutability graph, given on the right, requires the use of equivalence
classes of inference rule instances. The branches suggested by the dotted line
are common to both the N1 and ⊥2 rule instances.

44

id4

⊢ a, a⊥

⊥2

⊢ a,⊥, a⊥

id5

⊢ a, a⊥

⊥3

⊢ a,⊥, a⊥

N1

⊢ a,⊥, a⊥
N a⊥

−→ id4

N1

⊥2

id5

As can be seen in example 8, the problem with compact permutability graphs
is the sharing of branches among different nodes. Indeed, sequentialising such
nodes might require duplications, and the order between duplicated nodes could
be different in different branches. This would induce cycles in the sequentialised
versions of the graph, so that we need to find a structure that simplifies the way
of managing shared branches and duplications.

Definition 10 Given a compact graph C+

Π = 〈I+

Π , <+

Π〉, and nodes X1, X2 ∈ I+

Π ,
two subsets B1 and B2 of I+

Π are said to be incompatible if and only if both of
them are branches of X1 and also branches of X2.

Now, we can build a graph that avoids compatibility problems, by removing
in each case of branch incompatibility one of the two branches. Such a subset
of the original nodes set, where no branches can be incompatible, is said to be
compatible, and is used in the following definition.

Definition 11 Given a compact graph C+

Π = 〈I+

Π , <+

Π〉, a subgraph of CΠ is said
to be a slice if and only if it is induced by a compatible subset of I+

Π .

Finally, the general version of permutability graphs will be a structure that
yields a simple sequentialisation, is built by gathering slices of the corresponding
compact graph, and behaves like a collection of conservative graphs.

Definition 12 The (general) permutability graph G+

Π of a proof Π is the set of
all valid slices of its compact permutability graph C+

Π .

Remark 9 Once again, a proof Π and a permutation Π ′ of Π have the same
graph G+. This is also valid for their compact graph C+. Indeed, the nodes
sets are the same since they are generated by the merging relation on the same
intial set of inference rule instances, and the dependency relation is invariant
through general permutations because of its definition.

Permutability graphs in the general case can be manipulated through their
slices, which are similar to conservative graphs — we removed incompatible
branches to avoid duplication problems — and have some of their properties.

Proposition 3 For any proof Π, all slices in G+

Π are acyclic.

Proof. We can use the same reasoning as in the conservative case to show that
the compact graph C+

Π of a proof Π is acyclic. Then, all the slices in G+

Π are
subgraphs of the compact graph, so that they are acyclic as well. �

45

Remark 10 In the compact graph of a proof, the multiplicity of a node is no
longer equal to its arity in the corresponding proofs, because of duplications.
However, slices partially solve this problem, so that this property holds, except
in the case of nodes that induce some branch incompatibility — and in this
case, merging different slices will eventually induce the right multiplicity.

3.3 — Building and Using Permutability Graphs

We now have a generic representation for proofs based on graphs, with two
levels of analysis, depending on the kind of permutations we consider as valid.
However, some important points of our methodology have been left unspecified,
so that we need to clarify the way permutability graphs are intended to be built,
and used for proof representation as well as for proving completeness of proof
transformations based on inference rule instances permutations.

Building dependencies. The definition of permutability graphs has been
almost entirely abstracted with respect to the construction of the permutability
relations on which it relies. Indeed, the dependency relation is defined using a
construction process that gives very little information, so that for example, a rule
instance depends on another if and only if we observe that the permutation of
these instances never happens. This implies to build all equivalent proofs when
building the graph of a proof, which seems redundant if we want to eventually
build a permutation of the initial proof.

Despite its very general and heavy definition, the dependency relation can be
build by only looking at the given proof, in most logical systems. Indeed, we can
define dependency in terms of principal occurrences of rule instances at least for
LK, LJ, and LL without exponentials. For example, the most simple dependency
case happens when the principal occurrence of a rule instance is a suboccurrence
of the principal occurrence of another instance, and there are similar definitions
for splitting and duplication dependencies. Using such techniques would allow
for an efficient construction algorithm for permutability graphs.

Conservativity and duplications. The level of analysis required, and thus the
choice of conservative or general permutability graphs, depends on the goals of
such a work on proofs. There are three cases to consider :

• without duplications, both versions collapse (e.g. the case of MLL).
• with duplications, if the size/complexity of proofs matters.
• with duplications, maximal identification of proofs, inducing a more

compact representation, but not respecting complexity.

In order to use permutability graphs as a canonical representation for proof
objects, it is therefore required to choose first the features they need, according
to the properties of the resulting objects — especially regarding the issue of
size and complexity of proofs —, except in weak logics where duplication is
impossible, such as MLL. Indeed, the general version of these graphs induces the
identification of many proofs, up to duplications that can create an exponential
blow-up. However, when using permutability graphs to prove completeness for
proof transformations, the choice depends on the transformation. For example,
focusing requires general graphs, since it can produce equivalent proofs that are
much bigger that the original one.

46

4 — Back to the Sequent Calculus : Sequentialisation

Because the original motivation for introducing permutability graphs was the
study of proof transformations based on permutations, the next step is naturally
to prove that a valid proof tree of the sequent calculus can always be built from
such a graph. This is of course very close to the key result of sequentialisation
in the settings of proof-nets, and we will use here a methodology inspired by
the proof of sequentialisation given in [GF08].

In order to build a valid proof tree of the sequent calculus, we need to add
more sequentiality to permutability graphs, since the ordering of inference steps
is not refined enough. Such partially sequentialised objects can be uniformly
defined based on permutability graphs either in the conservative or general case,
where each slice will be sequentialised, instead of a whole graph.

Definition 13 Given a graph G = 〈IG , <G〉, a sequential relation ⊲G on G is an
irreflexive relation such that µG = µG′ , where G′ = 〈IG , <G ∪ ⊲G〉.

The idea behind the whole sequentialisation process is very simple : we just
pick two nodes for which no order is specified, and check that sequentialise them
will not merge different branches, which would break the structure of the proof.
Then, we add a sequential link between them, in one of the directions allowed
by the condition on multiplicity. The objects created during this operation are
then a straightforward extension of permutability graphs.

Definition 14 Given a graph G, a sequentialisation of G is a graph S = 〈IG , <⊲

G
〉,

where <⊲

G
is the transitive reduction of <G ∪ ⊲G, and ⊲G is a sequential relation.

Usual permutability graphs can then be considered as the most basic case of
sequentialisation, when no sequential link has been added. Beyond this, there is
a whole spectrum of partially refined objects, well defined because the transitive
reduction of new links added to dependencies exists and is unique, since this is
an antisymmetric and finite relation. The objects we are eventually interested
in are maximal sequentialisations, where no more link can be added.

Definition 15 A full sequentialisation of a given graph G is a graph F = 〈IG , <F 〉
for which there is no valid sequential relation <⊲

F
on F such that <F ⊂<⊲

F
.

Full sequentialisations allow us to end the permutability graph refinement
process, by finally providing a modified version of the initial graph which holds
all the sequentialisation information of a proof tree in the sequent calculus. In
order to prove that a valid sequent calculus proof can finally be built, we need
to prove a sequentialisation theorem, starting in the conservative case.

4.1 — Conservative Sequentialisation

The proof of our sequentialisation theorem relies in the conservative case on
the invariance of the multiplicity of nodes. which ensures that the arity of rule
instances is correct in the resulting proof, and also on the transformation of the
directed acyclic graph into a tree, after full sequentialisation. The key lemma
exhibits the fact that a sequent calculus proof is a permutability graph where
sequential links have been maximally added.

47

Lemma 4 A conservative full sequentialisation F is a sequent calculus proof.

Proof. Let F = 〈IF , <F 〉 be a conservative full sequentialisation. First we prove
that it is a tree because any node has at most one incoming link. Indeed, given
three nodes χ1, χ2, χ3 ∈ IF , we suppose χ1 <F χ3 and χ2 <F χ3, so that a link
between χ1 and χ2 would not modify their multiplicity. This link must exist
because F is a full sequentialisation, but then one of the links to χ3 does not
exist, since <F is a transitive reduction, and we have a contradiction. Moreover,
the graph is connected, and thus rooted in one node, so that it is actually a tree.
Finally, F is a valid sequent calculus proof because of proposition 2, which is
preserved by additional sequential links, and ensures that any node, being a rule
instance, has precisely as many outgoing edges in F as it has premises in any
of the proofs corresponding to the initial graph. �

Finally, the main sequentialisation result is achieved by proving that given
a proof Π of the sequent calculus, its conservative permutability graph G can
be sequentialised into a proof Π ′, equivalent modulo conservative permutations
to the initial proof Π, by producing the corresponding full sequentialisation —
using what we know of Π ′ to add sequential links exactly where needed.

Theorem 5 (Sequentialisation) Given a proof Π, its conservative permutability
graph GΠ can be sequentialised into any conservative permutation Π ′ of Π.

Proof. Let Π be a proof and Π ′ a conservative permutation of Π, so that we
have GΠ′ = GΠ . We want to build a full sequentialisation F of GΠ , which is a
proof Π ′′ by lemma 4, such that Π ′′ = Π ′. For this we start with GΠ and use a
sequential relation ⊲Π′ that we deduce from the structure of Π ′. It is defined
as follows : for χ1, χ2 ∈ IΠ′ , χ1 ⊲Π′ χ2 if and only if χ2 is applied on a premise
of χ1, so that it simply mimicks the deductive structure of the proof Π ′ that
we want to reproduce. This is a valid sequential relation, since it cannot merge
branches, by contradiction with the existence of Π ′. Finally, if F is built this
way, it is precisely the proof Π ′, because it is organised using the same ordering
relation <Π′ on inference rule instances. �

Example 11 One of the two possible full sequentialisations of the permutability
graph given in example 7 is shown below. The corresponding proof, given on
the right, is a simple permutation of the original one, where the O2 rule instance
has been moved under the ⊗1 instance.

⊗4

O2

id5

id6

⊗1

13
−→

id5

⊢ a, a⊥
id6

⊢ b, b⊥
⊗4

⊢ a, b, a⊥ ⊗ b⊥
13

⊢ 1
⊗1

⊢ a, b, a⊥ ⊗ b⊥ ⊗ 1
O2

⊢ a O b, a⊥ ⊗ b⊥ ⊗ 1

4.2 — General Sequentialisation

In the general case, the sequentialisation is done on each slice of the general
permutability graph, and the proof tree is finally built by partially merging

48

sequentialised slices. However, there is a condition on the way different slices
can be sequentialised, that is applied on slicing nodes — the nodes that induce
incompatibility between branches.

Definition 16 Two graphs H1 = 〈I1, <1〉 and H2 = 〈I2, <2〉 are consistent with
each other if and only if for any χ, χ′ ∈ I1 ∩ I2, if χ is a slicing node then the
two ordering relations <1 and <2 are equal on the subset {χ, χ′}.

Now, we can define simple and full sequentialisations in the general case,
which are imported from the conservative case by reducing the problem to slices,
while asking for the consistency condition to be respected.

Definition 17 Given a general permutability graph G+ = {H1, · · · ,Hn}, a (full)
sequentialisation of G+ is a set S+ = {S1, · · · ,Sn} such that for all i, j ∈ [1, n],
Si is a (full) sequentialisation of Hi, and Si is consistent with Sj.

The sequentialisation result is again achieved by proving that any general
permutability graph can be sequentialised into a proof tree that is a permutation
of the original proof tree, as done below.

Theorem 6 (Sequentialisation) Given a proof Π, its general permutability graph
G+

Π can be sequentialised into any general permutation Π ′ of Π.

Proof Sketch. Let Π be a proof and Π ′ a general permutation of Π, so that we
have G+

Π′ = G+

Π . The idea is to build a specific full sequentialisation F of GΠ ,
and prove that it is isomorphic to a proof Π ′′, such that Π ′′ = Π ′.

First, building a full sequentialisation on the model of Π ′ is done using the
same scheme as in the conservative case. Indeed, it is sufficient to follow the
deductive structure of Π ′. Moreover, the ordering relation of different branches
should remain isolated in the different slices they are associated to.

Then, we have to build a valid proof tree by merging the sequentialised
slices, which is not trivial since some nodes need to be merged while some other
should not. The idea is that identical slicing nodes should be merged until they
reach to the correct arity, and other nodes should be merged only under slicing
nodes — that can be seen in the example below, and in the second possible
full sequentialisation of the same graph. When all slices have be grouped, the
resulting tree is actually a proof, because problems of cycles and wrong ordering
have been ruled out by the consistency condition and the merging process. �

Example 12 We consider here one of the two possible full sequentialisations of
the permutability graph given in example 8. The corresponding proof, given on
the right, uses twice the ⊥2 rule, as a result of the merging of the two slices.

id4

⊥2

N1

+ id5

⊥2

N1

−→

id4

⊢ a, a⊥

⊥1

2 ⊢ a,⊥, a⊥

id5

⊢ a, a⊥

⊥2

2 ⊢ a,⊥, a⊥

N1

⊢ a,⊥, a⊥
N a⊥

49

The sequentialisation result presented here is very important when studying
permutability graphs, since it ensures that they provide a correct representation
of equivalent proofs. Moreover, it is the key to possible proofs of completeness
for transformations such as focusing, for which it is only necessary to refine the
sequentialisation theorem, by proving that a full sequentialisation of a certain
shape can be built from any permutability graph.

4.3 — Completeness of Focusing for MLL

As an example of the use of permutability graphs in the study of different proof
transformations, we discuss here the proof of completeness for focusing. The
methodology used here allows for a very simple and modular proof, which can
be seen as an extension of the focalization graphs method used in [MS07]. The
basic idea is to prove a sequentialisation theorem which ensures that a focused
full sequentialisation can be produced from a permutability graph — such a
sequentialisation being one which respects the focusing conditions.

Defining focusing. The first step here is to explicitly define what a focused
proof is, in terms of the ordering relation, and depending on the polarity of
the nodes. In the case of MLL, this is fairly easy : basically, any O or ⊥
rule instance, which is negative, should be located under all possible ⊗ and 1

instances, which are positive — this is not the case only when a negative rule
instance actually depends on a positive rule instance. Therefore, when adding
more links to a permutability graph, choosing only links going out of a negative
node is a condition to build full sequentialisation that is a focused proof.

Proving completeness. Most of the work for this proof has been done in
establishing properties of permutability graphs. Indeed, all of the MLL proofs
equivalent up to conservative permutations can be produced by sequentialising
the corresponding permutability graph. Thus, it is sufficient to prove that it is
always possible to build a particular full sequentialisation, that respects all the
focusing conditions. This is easy to prove, because the geometry of MLL proofs
is such that if it is possible to add a link from a positive node to a negative
node, then it also possible to add the link between the same nodes in the other
direction — because they necessarily have a common successor.

5 — Conclusion and Future Work

The study of permutability graphs and related techniques is a work in progress.
We only presented here the basic definitions and theorems, with the purpose of
emphasizing the simplicity and genericity of these graph structures. This should
of course be related to proof-nets, but as noticed before the scope is wider,
since permutability properties can be easily studied in many different logics.
However, more than a technical artifact inspired by proof-nets and focalization
graphs, this work should be seen as an attempt to find new insights on general
proof theory by focusing on the notions of permutability and concurrency in the
geometrical structure of proofs. There are many possible research directions,
and we will now briefly describe the most important ones, considered as natural
next steps in this project.

LL, LK and LJ. Because of the intended genericity of our permutability graph
method, this paper is based on the very general setting of the sequent calculus

50

instead of one particular logical system in this formalism. The systems for linear
logic, and classical and intuitionistic logics should be studied in details, so that
general observations could be made on the permutability properties of their
inference rule, and thus on the geometrical structure of their proofs.

Focusing for LL. The original inspiration for the definition of permutability
graphs came from the focalization graphs used in [MS07] to prove completeness
of a focused system for LL. The difficulties due to the construction of a new
graph for each positive trunk step are solved here by the use of a single graph
which holds all the required information. As already noticed, this proof of
completeness benefits from the simple setting established here. Moreover, this
graph method could be used to abstract the notion of focusing out of its strong
origins in the LL sequent calculus, and transport it to other settings.

Deep inference. The deep inference methodology, introduced by Guglielmi
for the definition of the calculus of structures formalism in [Gug07], induces a
complex and interesting behaviour with respect to permutability. Since inference
rules can be applied deep inside formulas, some of the redex dependencies, that
could be considered useless, disappear in this setting. Moreover, permutability
graphs could allow for a simple and elegant proof of completeness for focusing,
which could be defined in this formalism using this graph abstraction, since
the sequentialisation process is here reduced to the usual notion of topological
sorting of their nodes.

Proof transformations. Beyond focusing, many proof transformations, and
especially those based on inference rule instances permutations, could be studied
using permutability graphs. In the calculus of structures, the splitting lemma,
used to prove cut-elimination, and the decomposition theorems are interesting
examples. By observing the permutability properties of the cut rule, it should
be possible to study its interaction with other inference rules and establish or
refute the commutation of cut-elimination with proof transformations such as
focusing, using a permutability graph rewriting viewpoint on cut-elimination.

Proof-nets. The main research direction suggested by the graph structure
we use and recent results on the canonicity of focused proofs is the improvement
of proof-nets and the search for a better understanding of their behaviour. The
study started here should try to link this geometrical view of proofs with their
permutability properties, thus allowing for a different approach on this topic.

References

[CF05] P-L. Curien and C. Faggian. L-nets, strategies and proof-nets. In
C.-H. L. Ong, editor, CSL’05, volume 3634 of LNCS, pages 167–183,
2005.

[GF08] P. Di Giamberardino and C. Faggian. Proof nets sequentialisation
in multiplicative linear logic. Annals of Pure and Applied Logic,
155(3):173–182, 2008.

[Gir96] J-Y. Girard. Proof-nets : the parallel syntax for proof-theory. In
A. Ursini and P. Agliano, editors, Logic and Algebra. M. Dekker, New
York, 1996.

[Gug07] A. Guglielmi. A system of interaction and structure. ACM Transac-
tions on Computational Logic, 8(1):1–64, January 2007.

51

[MS07] D. Miller and A. Saurin. From proofs to focused proofs : a modular
proof of focalization in linear logic. In J. Duparc and T. A. Henzinger,
editors, CSL’07, volume 4646 of LNCS, pages 405–419, 2007.

[Win86] G. Winskel. Event structures. In Advances in Petri Nets, volume 255
of LNCS, pages 352–392, 1986.

52

Categorical Semantics and Non-Free Categories ∗.

A.El Khoury, S. Soloviev †L. Mehats ‡M. Spivakovsky§

1 Introduction.

Usually when categorical semantics of proofs is considered it is based on the
structure of the free category of a certain type defined on a certain logical
system, for example the structure of free Cartesian Closed Category on the
(∧,→)-fragment of the Intuitionistic Propositional Calculus or the structure of
free Symmetric Monoidal Closed Category on the (⊗, −֒֓)-fragment of the Intu-
itionistic Multiplicative Linear Logic, etc. One may ask why non-free categories
are usually not considered.

A possible answer is that while it seems natural that there may be close
connections between free categories with structure and logical calculi (after all
both are essentially syntactical systems) one does not expect much of the use
of proof-theoretic methods in the study of non-free categories because they
mostly belong to the concrete mathematical domains with their own methods
and problems that are very different from problems typically studied by proof
theory (take, e.g. commutative algebra).

Another possible answer may be that it is expected (again on the intuitive
level, before any serious study) that if there is some interesting non-free category
in a known class of categories (e.g., closed categories) and this category can be
studied by logical methods then eventually one will find some additional axioms
and describe a new interesting subclass such that the category in question will
be free with respect to this subclass. So, again there is no need to consider
non-free categories.

In our presentation we consider several cases relatively little known to the
community (proof-theorists and specialists in categorical logics) that, in our
opinion, show why non-free categories may be interesting to proof-theorists and
also show the efficiency of proof-theoretic methods in the study of non-free
categories.

∗This work was partially supported by PEPS ST2I CNRS “Vérification de la commutativité
des diagrammes catégoriques en calcul formel”.

†IRIT, UMR 5505 CNRS, University of Toulouse, 118 route de Narbonne, 31062 Toulouse,
France {elkhoury, soloviev}@irit.fr

‡LaBRI, University of Bordeaux I, 351 Cours de la Libération 33405 Talence, France,
mehats@labri.fr.

§Institute of Mathematics, UMR 5219 CNRS, University of Toulouse, 118 route de Nar-
bonne, 31062 Toulouse, France, spivakov@math.ups-tlse.fr.

53

Some of the results considered below were published before, some are very
recent and not yet published. The main new results can be found in section 4.

We will consider the following problems:

• Equivalences on derivations generated by interpretations in non-free cat-
egories. Different types of equivalences, critical pairs and a canonical
axiomatization.

• Triple-dual conjecture and the problem of full coherence in closed cate-
gories.

• Varieties of categories with structure.

• Commutativity and dependency of diagrams in non-free categories. Proof-
theoretic methods of verification of commutativity.

• Arbitrary natural transformations and proof-theoretic methods in their
study.

We shall mostly consider Symmetric Monoidal Closed Categories (SMCC)
and the related logical system - Intuionistic Multiplicative Linear Logic (IMLL),
because they were one of the central subjects of our studies. Our interest in
them is explained by the fact that in this case the algebraic and logical aspects
are “in equilibrium”, while in other cases usually one or another side prevails
(for example, logical side in case of Cartesian Closed Categories.) It should be
noticed, though, that many of the definitions and some of the results have larger
domain of application. We shall comment on this when appropriate.

2 Equivalences on derivations.

The calculus L(A) is defined as follows:

Axioms

A → A (1A) → I (unit)

Structural Rules

Γ → A A,∆ → B

Γ,∆ → B
(cut)

∆ → I Σ → A

∆,Σ → A
(wkn)

Γ → A

Γ′ → A
(perm)

Logical rules

Γ → A ∆ → B

Γ,∆ → A ⊗ B
(→⊗)

A, B,Γ → C

A ⊗ B,Γ → C
(⊗→)

A,Γ → B

Γ → A −֒֓ B
(→−֒)֓

Γ → A B,∆ → C

Γ, A −֒֓ B,∆ → C
(−֒֓→)

Here Γ,∆,Σ are lists of formulas. A list of formulas Γ = A1, ..., An may be
viewed as an abbreviation of Γ = (...(A1 ⊗ ...) ⊗ An) ⊗ I.

54

It is well known that on L(A) a structure of a free SMCC over the set of
atoms A can be defined. In this structure the equivalence classes of derivations
of the sequent A → B will play the role of morphisms from A to B. The
equivalence of free SMCC on derivations will be denoted by ≡. (It is defined as
the smallest equivalence relation satisfying certain axioms.)

As for every free category, any valuation v:A → Ob(K) where K is some
SMCC defines a unique structure-preserving functor | − |v:L(A) → K.

Via this functor a new equivalence relation ∼v on derivations can be defined:
d ∼v d′ ⇔ |d|v = |d′|v. The relation ∼v also defines a certain structure of SMCC
on L(A); ≡⊆∼v.

One may notice that ∼v is a congruence with respect to the rules of L(A), but
in general it is not closed with respect to substitution of formulas for variables.

Relations ∼ that define the structure of SMCC on L(A) have many interest-
ing properties (for example, they form a lower semilattice) but we shall mostly
consider two types defined below. Let us fix some SMCC K:

(a) The relation ∼∀ is defined by d ∼∀ d′ ⇔ ∀v:A → Ob(K).(d ∼v d′).

(b) Let NAT (K) be the SMCC category of functors and natural transfor-
mations over K (standard definition). Let v1 denote the interpretation of L(A)
in NAT (K) defined by a 7→ 1:K → K (every a ∈ A has the identity functor
1:K → K as its value). The relation ∼nat is defined by d ∼nat d′ ⇔ .d ∼v1

d′.

The relations ∼nat and ∼∀ are both congruences with respect to the rules
of L(A). Both are closed with respect to substitution of formulas for atoms.

Due to these properties, there are very efficient proof-theoretic methods to
study these two types of relations.

The relation ≡ is defined on the derivations of L(A) by the axioms of SMCC.
Clearly, all the relations ∼ that define some SMCC structure on L(A) are defined
by adding some new axioms (equivalences between derivations) to the axioms
of SMCC. The same relations can be defined via | − |v for some K and v (if
necessary, one may take the factor category of L(A) by ∼ as K).

A non-trivial problem here is to find some canonical axiomatization of these
relations if possible.

Let us mention some general results (see [10]) concerning these categorical
relations on derivations of L(A).

Theorem 2.1 Let K be an SMCC category with biproduct. Then the relations
∼nat and ∼∀ (defined with respect to K) coincide.

Definition 2.2 A sequent S is called balanced if every atom has exactly two
occurrences with opposite signs in S. It is pure if there are no subformulas of
the form I ⊗ A, A ⊗ I, I −֒֓ A.

55

Theorem 2.3 A relation of type ∼nat can always be axiomatized using the ax-
ioms of the form d ∼ d′:Γ → A where Γ → A is balanced and pure.

For the relations of the type ∼nat there exists a nice canonical axiomatiza-
tion.

Let us describe first a very useful equivalence-preserving transformation of
derivations: reduction to 2-sequents (cf. [13, 14, 15, 10].

Definition 2.4 The sequent Γ → A is called a 2-sequent if A contains no more
than one connective and each member of Γ no more than two connectives.

Some formulas may be replaced by isomorphic ones (reducing further the num-
ber of possibilities).

Definition 2.5 Γ → A is called a pure 2-sequent if A has one of the forms
x, a ⊗ b, a −֒֓ x and each member of Γ has one of the forms x, a −֒֓ x, a −֒֓ (b ⊗
c), (a ⊗ b) −֒֓ x, (a −֒֓ x) −֒֓ y. Here x, y stand for I or atoms, a, b are atoms.

Every derivation can be transformed into a derivation of some 2-sequent
using two operations (followed by isomorphisms to obtain a pure 2-sequent):

Γ
d
→ B 7→

Γ
d
→ B p

id
→ p

Γ, B −֒֓ p → p
(p fresh)

and cut with left premises of the form p−֒֓C, A[p] → A[C] or C −֒֓p, A[p] → A[C]
(p fresh) 1. There also exists the inverse transformation using substitutions [C/p]
and cuts with → C −֒֓ C (cut can be eliminated afterwards.)

Theorem 2.6 (Reduction to 2-sequents.) Let an equivalence relation ∼ on
derivations contain ≡ and be a substitutive congruence. Let d1, d2 be two deriva-
tions of the same sequent S. Then there exist two derivations d′1, d

′
2 of the same

pure 2-sequent S′ (balanced if S was balanced) such that d1, d2 are ∼-equivalent
iff d′1, d

′
2 are ∼-equivalent.

Definition 2.7 A pair of derivations of the same balanced pure 2-sequent S is
critical if

(1) d1 ≡
Γ, A′ −֒֓ I

d′
1→ A I → I

Γ, A′ −֒֓ I, A −֒֓ I → I
−֒֓ →, d2 ≡

Γ, A −֒֓ I
d′
2→ A′ I → I

Γ, A′ −֒֓ I, A −֒֓ I → I
−֒֓ →, perm;

(2) a cut-free derivation of S can end only by some application of −֒֓ →;

(3) the derivations d′1, d
′
2 are not ≡-equivalent to derivations ending by −֒֓ →.

The pair is minimal if Γ does not contain members being single atoms.

1Here a single occurrence of C is replaced by p. The form depends on the variance (sign)
of this occurrence of C in A. One takes a standard derivation of these sequents, which always
exists in “symmetric” calculi, i.e., logical systems for CCC, SMCC, SCC categories. The
theorem that follows holds in each of these systems.

56

Let α be some substitution of I for variables. In [15] the “substitutions with
purification” were defined. Let d:Γ → A be a derivation of some 2-sequent.
Then α ∗ d is the derivation obtained from d by α and cuts with isomorphisms
that will make its final sequent pure. The derivation α ∗ d is defined up to ≡,
but its final sequent is defined without ambiguity.

Theorem 2.8 (Cf. [15].) Let d1, d2 be derivations of a balanced sequent Γ → A
and d′1, d

′
2 the corresponding derivations of a balanced pure 2-sequent. Then

d1 ≡ d2 iff there exists a substitution α of I for variables such that α ∗ d′1, α ∗ d′2
is a minimal critical pair2.

The following theorem shows that every relation of the type ∼nat is generated
by minimal critical pairs.

Theorem 2.9 [10] For every relation ∼nat there exists some set M of min-
imal critical pairs such that ∼nat is the smallest equivalence relation that is a
congruence with respect to the rules of L(A), closed with respect to substitution,
contains ≡ and all the pairs (d, d′) ∈ M .

3 The problem of full coherence in closed cate-

gories and the triple-dual conjecture.

Below we shall call diagrams not only pairs f, g:A → B but also pairs of L(A)-
derivations of arbitrary sequent Γ → A.

A sequent S is called proper if it does not contain occurrences of subformulas
of the form A −֒֓B where B is constant (contains only I) and A is not constant.

Theorem 3.1 (The Kelly-Mac Lane coherence theorem reformulated for L(A),
cf. [5].) Let f, g:Γ → A and assume that the sequent Γ → A is proper. If f and
g have the same graph3 then f ≡ g.

Example 3.2 If the sequent is not proper, f may be non-equivalent to g. The
sequent ((a −֒֓ I) −֒֓ I) −֒֓ I, (a −֒֓ I) −֒֓ I → I has two non-equivalent derivations
(with respect to ≡), for example, f with ((a−֒֓I)−֒֓I)−֒֓I and g with (a−֒֓I)−֒֓I

2The conditions on the left premises that require verification of equivalence are applied
to the (finite number of) derivations with smaller final sequent. This theorem may be used
recursively to obtain deciding algorithms for ≡. In [17] an algorithm of low polynomial
complexity was described.

3In particular, if the sequent is balanced.

57

as the main formula of the last rule. The so called “triple-dual” diagram (cf. [5])

(1)

((a −֒֓ I) −֒֓ I) −֒֓ I
1

//

ka−֒֓1
''PPPPPPPPPPPP

((a −֒֓ I) −֒֓ I) −֒֓ I

a −֒֓ I

ka−֒֓I

77nnnnnnnnnnnn

where a is a variable and ka = (1−֒֓eaI)◦da(a−֒֓I):a → (a−֒֓I)−֒֓I is the standard
“embedding of a into its second dual” corresponds to the pair of derivations of
the sequent ((a −֒֓ I) −֒֓ I) −֒֓ I → ((a −֒֓ I) −֒֓ I) −֒֓ I obtained by → −֒֓ from the
previous one4.

Non-commutativity of this diagram may be checked formally (the equiva-
lence relation ≡ is decidable). It is non-commutative also in certain models
such as the SMCC of vector spaces (including infinitely dimensional) or the
SMCC of modules over a commutative ring with unit.

The “Triple-Dual” Conjecture.

Conjecture 3.3 Commutativity of the triple-dual diagram (equivalence of cor-
responding derivations) implies commutativity of all the diagrams of canonical
maps f, g:Γ → B with balanced Γ → B. More precisely: let ∼ be the smallest
equivalence relation that satisfies all axioms of SMCC, is substitutive and the
triple-dual diagram is commutative with respect to ∼. Then for all f, g:Γ → B
with balanced Γ → B in L(A) we have f ∼ g.

An argument in favor of this conjecture is that the following theorem holds.

Theorem 3.4 [14]. If ∼ is the smallest equivalence relation that satisfies all
the axioms of SMCC, is substitutive, the triple-dual diagram is commutative
with respect to ∼, and for all f, g and any atom a

(∗) [a −֒֓ I/a]f ∼ [a −֒֓ I/a]f ⇒ f ∼ g,

then f ∼ g for all f, g:Γ → B with the same graph5.

Antoine El Khoury recently checked that (without the assumption (*)) the
commutativity of the triple-dual diagram implies the commutativity of all dia-
grams f, g:A → B with balanced A → B containing no more than 3 variables.

4 Varieties of SMCC

The main results presented in this section are new.

4Applying the algorithm of reduction to 2-sequents one may obtain another non-
commutative diagram f ′, g′:(a −֒֓ I) −֒֓ I, (b −֒֓ I) −֒֓ I, a ⊗ b −֒֓ I → I. Notice that all these
diagrams are related to critical pairs.

5Equivalently: with balanced A → B.

58

We consider equivalence relations ∼ on derivations of L(A), ≡⊆∼, generated
by the equations of the form f ∼ g; here f, g:Γ → A with Γ → A not necessarily
balanced but f, g have the same graph6.

Obviously, any set of axioms of this form (plus the axioms of SMCC) defines
a variety of SMCC in the sense of universal algebra.

Commutativity of the diagrams considered below does not imply the com-
mutativity of the triple-dual diagram (or the diagrams equivalent to the triple-
dual), so the equivalence relation generated by these identities are strictly be-
tween ≡ (relation of the free SMCC) and the relation generated by commuta-
tivity of the triple-dual.

First non-trivial “intermediate” equation was obtained due to a suggestion
of M. Spivakovsky, developed later by L. Mehats and S. Soloviev [10].

The diagram (3)

f ′, g′:(((a −֒֓ I) ⊗ (b −֒֓ I)) −֒֓ I) −֒֓ I, ((b −֒֓ I) −֒֓ I), ((a −֒֓ I) −֒֓ I)
→
→ I

studied in [10] was obtained from

(2) f, g: (a ⊗ b −֒֓ I), ((b −֒֓ I) −֒֓ I), ((a −֒֓ I) −֒֓ I)
→
→ I

by cut with (unique) h:(((a −֒֓ I) ⊗ (b −֒֓ I)) −֒֓ I) −֒֓ I → (a ⊗ b −֒֓ I).

It was shown in [10] that in a certain category of modules over a ring (3)
is commutative while (2) and (1) are not (lemma 5.8). So, if we add to the
axioms of SMCC the equation corresponding to (3), the diagrams (2) and (1)
will remain non-commutative.

In this paper we describe a sequence D2, ..., Dk, ..., Dm, ... of diagrams and
certain models Kk such that in Kk the diagrams D2, ..., Dk are non-commutative
and there exists m > k such that Dm, ... are commutative (we do not know
whether Dk, ..., Dm−1 are commutative).

Below we shall write A∗ instead of A −֒֓ I. Let An denote the n-th “tensor
power” of an object A, An = (A ⊗ ...) ⊗ A, and fn the n-th “tensor power” of
a morphism f , fn = (f ⊗ ...) ⊗ f .

To obtain the diagrams D2, ..., Dk, ... we notice that there exists a canonical
morphism

hk:(((a −֒֓ I)k −֒֓ I) −֒֓ I) → (ak −֒֓ I).

The diagram
(D0

2) f0
2 , g0

2 :(a2)∗, a∗∗, a∗∗ →
→ I

is obtained from the diagram (2) by substitution of a for b (in other words, by
identification of variables a and b). The diagram D2

(D2) f2, g2:((a
∗)2)∗∗, a∗∗, a∗∗ → I

6For the derivations in L(A) it means that f, g are obtained from some derivations f0, g0

of the same balanced sequent. We know that f ≡ g ⇔ f0 ≡ g0. It is not necessarily true for
∼.

59

is obtained from D0
2 by cut with h2.

We define7 the diagram D0
m, m ≥ 2, as the result of the substitution of am−1

for b into diagram (2). The morphisms (derivations) obtained from f, g by this
substitution are denoted by f0

m, g0
m.

The diagram Dm is obtained from D0
m by cut with hm (fm, gm are the

resulting derivations):

(Dm) fm, gm:((a∗)m)∗∗, a∗∗, (am−1)∗∗
→
→ I.

In order to obtain the models Kk we consider certain SMCCs of commutative
semimodules over commutative semirings.

For all basic definitions concerning semirings and semimodules see [4]. Below
we shall denote the “addition” of the semiring I by + and “multiplication” by
∗. In case of a semimodule M we shall denote by +M its additive operation and
∗M the action of I on M ; the index M will often be omitted.

Proposition 4.1 I-semimodiles over a commutative semiring I and their ho-
momorphisms form a SMCC with tensor product ⊗ and internal hom-functor
−֒֓ defined in usual way.

We consider categories of semimodules over the semiring In = {0, ..., n} with
max as addition and with “bounded multiplication” ∗ as multiplication:

p ∗ q = p · q if p · q < n and p ∗ q = n otherwise.

Obviously In is a commutative semiring.

We consider the semimodules M over I that have some additional properties.

Definition 4.2 (Top) There is a “top” element TM ∈ M,TM 6= 0M such that
for all x ∈ M , x + TM = TM + x = TM , if x ∈ M,x 6= 0M then n ∗ x = TM and
if 0 6= k ∈ I then k ∗ TM = TM

Obviously, I itself does satisfy these consditions if we take TI = n. For Is

to be a semimodule over I, s must be not greater than n.

Definition 4.3 Let us call an I−semimodule r-reducible for some r ∈ I, 1 <
r < n if for every x ∈ M r ∗ x = TM .

Example 4.4 Let M = I2 = {0, 1, 2} considered as a semi-module over the
semi-ring I4 = {0, 1, 2, 3, 4} (with the ordinary multiplication “bounded by 2” as
the action). It satisfies (Top) with TM = 2 and is 2-reducible. Of course M of
this example is also 3- and 4-reducible.

7The index m will correspond to the number of factors in tensor products.

60

We shall consider semimodules M such that

(r-red) M is r−reducible for some r ∈ I, 1 < r < n.

Theorem 4.5 (1) All semi-modules over I satisfying (top) form an SMCC.

(2)Let r be fixed, 1 < r < n. All semi-modules M over I satisfying (top)
and (r-red) form an SMCC.

Due to this theorem one may consider the SMCC generated by ⊗ and −֒֓ from
I and some given semimodule, for example I = {0, 1, 2, 3, 4} and M = {0, 1, 2}
and be sure that all the objects of this category have a top element and are
r-reducible.

Lemma 4.6 Let M be an r-reducible semimodule over I and f :M → I (we
may say also that f ∈ M −֒֓ I). Then for all x ∈ M f(x) ≥ n/k.

Let h−
m denote am ⊗ (a∗)m ξ

→ (a∗ ⊗ a)m em

aI−→ Im
b

m−1

I−→ I. Consider the SMCC
K of semimodules satisfying (top) and (r-red) over I. Now we can easily prove
the following lemma.

Lemma 4.7 Let n, r be as above, m such that (n/r)m ≥ n and v an interpreta-
tion defined by v(a) = M ∈ Ob(K). Then the morphism |h−

m|:(Mm)⊗(M∗)m →
I takes the value 0 if its argument is 0 and TI = n otherwise.

Corollary 4.8 Under the same conditions, the morphism |hm| takes only two
values: 0 when its argument is 0 and T(Mm)∗ otherwise (for every M ∈ Ob(K)).

Lemma 4.9 For all n, r, m as in lemma 4.7 and every interpretation v in the
SMCC K of I-semimodules satisying top and r-red, the diagram |Dm|v is
commutative. So it is commutative with respect to the relation ∼∀ (with respect
to K).

Let 2 ≤ k, n = 3k + 1, l = n/2. Let I = In, M = {0, 1, ..., l}. Notice that
M is n/2-reducible. Consider the SMCC Kk of all semimodules satisfying top
and l-red generated by I and M .

Lemma 4.10 Let the interpretation v be defined by v(a) = M ∈ Ob(Kk). The
diagrams |D2|v, ..., |Dk|v are non-commutative.

Theorem 4.11 There exist infinitely many different varieties of SMCC. Each
of these varieties is defined by taking some (single) diagram Dm of the sequence
above as a new axiom.

To prove this theorem we use the fact that for any k ≥ 2 there exists m (it is
enough to take m ≥ log2(3

k + 1)) such that Dk cannot belong to the smallest
equivalence relation generated by Dm. In other words, the commutativity of
Dm does not imply the commutativity of Dk (by lemmas 4.9, 4.10).

61

5 Commutativity and dependency of diagrams

To verify the commutativity of a diagram in a model can be very difficult.
Instead of verifying commutativity of diagrams case by case one may hope that
if one diagram is commutative then the commutativity of another will follow.

Definition 5.1 We shall say that the diagram f ′, g′: Γ′ → B′ depends on f, g: Γ →
B if for every SMCC K the equivalence f ∼∀ g implies f ′ ∼∀ g′.

Theorem 5.2 Let ∼ be the smallest substitutive equivalence relation on the
derivations of L(A) such that f ∼ g, ∼ contains ≡, and is a congruence with
respect to the rules of L(A). The diagram f ′, g′:Γ′ → B′ depends on f, g:Γ → B
iff f ′ ∼ g′.

This theorem shows that syntactic methods may be used for verification
of dependency of diagrams, since the standard construction for the smallest
equivalence relation ∼ uses certain syntactic calculus with pairs of derivations
as derivable objects.

By theorem 4.11 there exist infinitely many distinct equivalence relations ∼
on derivations of L(A). This fact shows the importance of the study of depen-
dency of diagrams in SMCC and closed categories with weaker structure.

Remark 5.3 The situation is different in the case of Cartesian Closed Cate-
gories because of the maximality theorem [1]: for any non-trivial axiom f ∼
g:Γ → B the smallest equivalence relation defined by this axiom as in the theo-
rem 5.2 above identifies all f ′, g′:Γ′ → B′. This is why the notion of dependency
is useless in the case of CCC.

The study of diagrams D in the previous section was done using model-
theoretic methods.

We believe that the development of syntactical methods of verification of de-
pendency of diagrams (e.g., via some auxilliary calculus with good properties)
is an interesting and important problem. We use the opportunity to attract the
attention of proof-theoretic and category-theoretical community to this inter-
esting direction of research. At the moment we are able to suggest only some
heuristics and partial solutions.

Taking into account the existence of efficient deciding algorithms for the
commutativity of diagrams in free closed categories, the first step would be to
verify whether the diagram f ′, g′:Γ′ → B′ is commutative in the free case. If
it is non-commutative, the study of dependency may follow. In particular, one
may find some “key” diagrams whose commutativity will imply the commuta-
tivity of others (cf. the axiomatization of equivalence relations by critical pairs
mentioned above).

62

Other syntactical methods, for example, reduction to 2-sequents, that permit
to establish that one diagram is commutative iff another diagram is, may be
useful, probably, in combination with substitutions and congruence properties.

Example 5.4 One may check that the diagram

(a −֒֓ b) −֒֓ I, a −֒֓ b ⊗ c, c ⊗ d −֒֓ I, a′ −֒֓ d ⊗ b′, (a′ −֒֓ b′) −֒֓ I → I

is commutative iff the diagram

(a −֒֓ I) −֒֓ I, (b −֒֓ I) −֒֓ I, a ⊗ b −֒֓ I → I

is commutative. (Verification is left to the reader.)

6 Arbitrary natural transformations and proof-

theoretic methods of their study.

In this section we shall consider one more step beyond purely syntactic free
categories.

It turns out that in certain cases arbitrary natural transformations can be
studied by proof-theoretic methods.

The results we discuss in this section were published in [13, 16].

Let us consider a sequent Γ → A, Γ = A1, ..., An. As in section 2, Γ may
be seen as an abbreviation for (...(A1 ⊗ ...) ⊗ An) ⊗ I. Given a SMCC K,
there is standard interpretation L(A) → NAT (K), a 7→ 1:K → K. Let |Γ|, |A|
be functors over K corresponding to Γ, A via this interpretation. So, given
a sequent Γ → A and a category K the class of all natural transformations
|Γ| → |A| can be studied.

The interpretations of derivations of Γ → A form a subset in this class.

Among possible problems one may mention, for example, the description
of arbitrary natural transformations |Γ| → |A| in terms of canonical natural
transformations (interpretations of derivations), or the problem of existence of
non-trivial natural transformations.

Similar problems may be studied not only in the case of closed categories of
various types, but also for other types of categories with structure (it may be
necessary to consider other types of deductive systems to represent canonical
natural transformations).

Before we consider proof-theoretic methods that can be used to study arbi-
trary natural transformation, let us outline main algebraic results, concerning
arbitrary natural transformations.

Main assumption considered in [13, 16] was that the “tensor unit” I must
be a generator in the category K.

63

Main algebraic results. In [13] was obtained a complete description of ar-
bitrary natural transformations |Γ| → |A| in the case when K is compact closed.
The description is very simple: every natural transformation φ:|Γ| → |A| can
be represented in the form φ = θ ∗ φ0 where φ0:|Γ| → |A| is a canonical natural
transformation, θ:I → I in K, and θ ∗ φ0 means the following composition

|Γ|
φ0

→ |A|
b−1

→ I ⊗ |A|
θ⊗1|A|
→ I ⊗ |A|

b
→ |A|.

In [16] similar ideas were applied to the case of symmetric monoidal cat-
egory (without internal hom-functor −֒֓) extended by biproduct and diagonal
functor.(Diagonal functor permits identification of arguments in natural trans-
formations, so the variables are not necessarily distinct, and the general case
cannot be reduced to the case of balanced sequent.) Here again a complete
description of natural transformations was obtained. In general, due to the
presence of biproducts and diagonal functor they are obtained from canonical
natural transformations using matrices of parameters θ:I → I.

Main technical lemma. An important role was played by the following
lemma. (Cf. [13].)

Lemma 6.1 Let K be an SMCC, and I be a generator in K. Let φ:|(A −֒֓ p)⊗
(p −֒֓ B)| → |C| be a natural transformation in K (the variable p has only two
occurrences shown explicitely). Then φ is equal to the following composition:

|(A −֒֓ p) ⊗ (p −֒֓ B)|
|Comp|
→ |A −֒֓ B|

φ0

→ |C|

where Comp:(A −֒֓ p)⊗ (p −֒֓ B) → A −֒֓ B is a standard derivation representing
composition, and φ0 is some natural transformation in K that has one argument
less than φ.

Remark 6.2 Obviously, using this lemma, commutativity of ⊗ and adjunc-
tions in K one may decompose into a canonical part and a simpler natural
transformation φ0 any natural transformation φ:|Γ| → |C| when |Γ| contains
members of the form (A −֒֓ p), (p −֒֓ B) in any position.

Combining proof-theoretic and algebraic methods. How these results
can be used in combination with proof-theoretic methods can be illustrated by
the use of reduction to 2-sequents.

Theorem 2.7 can be applied to arbitrary natural transformations as well
(this version of the theorem can be found in [13]). That is, given any SMCC
K and two natural transformations φ1, φ2:|Γ| → |C| there exist natural trans-
formations φ′

1, φ
′
2:|Γ

′| → |p| where |Γ′| → |p| is a pure 2-sequent such that
φ1 = φ2 ⇔ φ′

1 = φ′
2 Moreover, φ′

1, φ
′
2 can be obtained from φ1, φ2 by com-

position with canonical natural transformations, and φ1, φ2 can be obtained
from φ′

1, φ
′
2 by substitutions (composition with functors) and composition with

canonical natural transformations.

64

Using this fact and lemma 6.1 we will see that the lemma will permit a full
description of natural transformations if Γ → p is a balanced 2-sequent and Γ
contains only members of the form a −֒֓ b or single variables. (All the variables
can be eliminated one by one.) In general the process will be blocked if, for
example, we will apply the lemma to the members like (a −֒֓ b) −֒֓ p, p −֒֓ c ⊗ d.

As we see, transformations of diagrams and the notion of dependency of
diagrams can be useful even in the case of arbitrary natural transformations.

7 Conclusion

In our presentation we tried to explain why non-free categories may be interest-
ing to proof-theorists and also show the efficiency of proof-theoretic methods in
the study of non-free categories.

The examples considered above demonstrate that in general the study of the
structure of a free category is in no way easy (cf. the triple-dual conjecture and
the problem of full coherence).

The existence of infinitely many different varieties of closed categories shows
that to describe each time a free categorical structure may be impractical.

On the other hand, proof-theoretic methods will allow to study interesting
concrete dependencies (dependent diagrams) “locally”.

The description of arbitrary natural transformations considered in the pre-
vious section may be viewed also as a way to represent natural transformations
in a complex category using natural transformations in simpler categories (for
example, using natural transformations of free category and endomorphisms of
I). This permits to obtain new coherence theorems.

We believe that this direction of research will provide new and promising
applications of proof theory to categorical algebra, and also be a source of new
insights and more flexible categorical semantics for proof theory.

We would like to express our thanks to Kosta Dosen and Zoran Petric, who
helped to clarify many points and improve the presentation of our work, and to
Nikolai Vasilyev for fruitful discussions concerning its algebraic aspects.

References

[1] K. Dosen and Z. Petric. The maximality of the typed lambda calcu-
lus and of cartesian closed catgeories. Belgrade, Publications de l’Institut
Mathématique, Nouvelle Série, tome 68(82) (2000),pp.1-19.

[2] S. Eilenberg and G. M. Kelly. A generalization of the functorial calculus.-
J.of Algebra, 1966.

65

[3] G.-Y. Girard, Y. Lafont. Linear logic and lazy computation. In:
Proc.TAPSOFT 87 (Pisa), v.2, p.52-66, LNCS v.250 , 1987.

[4] J. Golan. Semirings and their applications. Kluwer Acad. Publishers, Dor-
drecht, 1999.

[5] G.M. Kelly and S. Mac Lane. Coherence in Closed Categories. Journal of
Pure and Applied Algebra, 1(1):97–140, 1971.

[6] G.M.Kelly. A cut-elimination theorem. Lecture Notes in Mathematics, 281
(1972), pp 196-213.

[7] J. Lambek. Deductive Systems and Categories. I. Math. Systems Theory,
2, 287-318, 1968.

[8] J. Lambek. Deductive Systems and Categories II. Lect. Notes in Math.,
v.86, Springer, 1969, pp. 76-122.

[9] J. Lambek. Deductive Systems and Categories III. Lect. Notes in Math.,
v.274, Springer, 1972, pp. 57-82.

[10] L. Mehats, S. Soloviev. Coherence in SMCCs and equivalences on deriva-
tions in IMLL with unit. Annals of Pure and Applied Logic, v.147, 3, p.
127-179, august 2007.

[11] G.E. Mints. Closed categories and Proof Theory. Journal of Soviet Mathe-
matics, 15, 45–62, 1981.

[12] G. E. Mints. Category theory and proof theory (in Russian), in: Aktualnye
voprosy logiki i metodologii nauki, Naukova Dumka, Kiev, 1980, 252-278.
(English translation, with permuted title, in: G.E. Mints. Selected Papers
in Proof Theory, Bibliopolis, Naples, 1992.)

[13] S. Soloviev. On natural transformations of distinguished functors and their
superpositions in certain closed categories. Journal of Pure and Applied
Algebra, 47:181-204, 1987.

[14] S. Soloviev. On the conditions of full coherence in closed categories. Journal
of Pure and Applied Algebra, 69:301-329, 1990.

[15] S. Soloviev. Proof of a conjecture of S. Mac Lane. Annals of Pure and
Applied Logic, 90 (1997), pp.101-162.

[16] R. Cockett, M. Hyland, S. Soloviev. Natural transformations between ten-
sor powers in the presence of direct sums. Rapport de Recherche, 01-12-R,
IRIT, Jul. 2001.

[17] S. Soloviev, V. Orevkov. On categorical equivalence of Gentzen-style deriva-
tions in IMLL. Theoretical Comp. Science, 303 (2003), pp. 245-260.

[18] R. Voreadou. Coherence and non-commutative diagrams in closed cate-
gories. Memoirs of the AMS, v. 9, issue 1, N 182, Jan. 1977.

66

Investigations into Forest Proofs
An ongoing research project

Willem Heijltjes

LFCS, Edinburgh

A direction in classical logic that has of late received much attention—and
has given rise to many new ideas—is the search for invariants, or semantics, of
classical proofs; be it to reduce dependence on syntax, to characterise a notion of
proof identity or to capture computational content. Approaches include, among
others, proof nets [3, 12, 9], general graphs [8], ‘atomic flows’ [4] and ‘proof pro-
files’ [7].

This note reports on the progress of a programme investigating one such ab-
straction, proof forests [5], for classical proofs of prenex formulae. Such forests
were originally introduced by Miller [11] as a structurally minimal representation
of classical proofs. They can be seen as a graphical presentation of Buss’ ‘Her-
brand expansion proofs’ [1] and are closely related to proof nets. These forests
also provide a natural representation of two-player backtracking games in the
style of Coquand [2].

The minimal structure of forest proofs is characterised by the absence of
syntactic features, such as permutable rules, that force inessential choices to be
made in the design of a proof—informally known as ‘bureaucracy’. A second
distinctive feature of the forests is a form of implicit sharing unavailable in
sequent calculus. Unlike the latter, where each subproof is entirely self-contained,
sub-forests of a proof forest may overlap; in fact, this is the default setting, and
the layout of the forest specifies only where this is not the case.

Because they form a natural, minimal representation of classical proofs, the
possibility of composition of proof forests, by performing cut-elimination, is a
natural direction for investigation. This route has recently been taken, indepen-
dently, by Richard McKinley and the author.

From the game-theoretic perspective, cut-elimination amounts to the com-
position of strategies for asymmetric backtracking games. In contrast with Co-
quand’s games, the strategies represented by proof forests do not describe a
linear sequence of moves. Instead, a strategy gives a range of possible moves at
each position, introducing an element of non-determinism. This in particular is
a defining factor in the design of the reduction steps.

In the graphical representation cut-elimination takes the form of graph-
rewriting steps that make use of the available structure in a natural way and,
superficially, have much in common with their sequent calculus counterparts.
However, there is an interesting interplay between the reduction steps and the
implicit sharing, and reductions in the two formalisms display intriguingly dif-
ferent behaviour. This is most clearly witnessed by the fact that there exist
reductions that take forests from inside to outside the image of sequent calculus
translations—and also in the other direction.

67

68 Willem Heijltjes

The aim of the current project is to understand and characterise classical
proof forests and their dynamics in the context of their minimal structure and
game-theoretic reading. The intention of the author is to present at the workshop
a summary of the programme, from the basic ideas to the state of the art at the
time of presentation. The present situation of the project is as follows:

– The notion of a ‘classical proof forest with cut’ has been rigourously defined
and its semantic soundness and completeness proved. The precise formula-
tion generalises that by Miller in [11], who considered only cut-free forests.
This generalisation is needed to accommodate the intermediate steps in a
reduction. The connections with Herbrand proofs [1] and strategies for back-
tracking games have been established, and translations to and from sequent
proofs are available. This will appear in [6].

– A natural procedure for cut-reduction on proof forests was developed, in-
dependently, by McKinley and the author, in the belief that it would be
strongly normalising. However, an example forest exhibiting an infinite re-
duction trace was discovered by the author and presented in [5]. It remains
an open question whether the reduction relation is weakly normalising.

– A modification of the original reduction procedure has been shown to be
weakly normalising. The modification hinges on a notion of ‘conflict’, moti-
vated by concurrency theory and naturally applicable to the game-theoretic
interpretation of forests, which allows ‘self-conflicting’ nodes to be pruned
from the graph. This will appear in [6].

– It is conjectured that the modified reduction relation is in fact strongly
normalising. Again, this is currently an open question.

– Neither of the reduction relations is confluent. (It is known that confluence
is not easily obtained for classical proof.)

– A generalised notion of ‘strong’ conflict has been introduced, using a con-
trolled form of transitivity, to give rise to stronger versions of the correctness
and validity criteria for forest proofs with cut. It has been shown that forests
translated from sequent proofs obey these stronger criteria. Moreover, this
characterisation seems robust, no matter which particular formulation of
sequent calculus is taken (e.g. additive versus multiplicative).

The project outlined above has proceeded in parallel with similar investiga-
tions by McKinley, who independently discovered a syntactic version of forest
proofs. McKinley has formulated reductions as a process calculus and explored
the possibility of adding axiom links to the forests, much like those found in
proof nets, to obtain a closer correspondence to sequent calculus proofs and
reductions, for a subclass of proof forests.

Work by the author, in contrast, has focused on the combinatorics of proof
reduction in forest proofs themselves, irrespective of sequentializability. This is
motivated by the idea that the reading of normalisation in proof forests as the
composition of non-deterministic strategies for backtracking games is a much
more natural interpretation than the correspondence with sequent calculus can
provide.

Investigations into Forest Proofs An ongoing research project 69

Acknowledgements: many thanks go out to Alex Simpson for encouragement
and guidance on this project, and to Richard McKinley for helpful discussions.

References

1. Buss, S.R.: On Herbrand’s Theorem. LNCS, vol. 960, pp. 195–209. Springer-Verlag
(1995)

2. Coquand, T.: A Semantics of Evidence for Classical Arithmetic. JSL, vol. 60 (1),
pp. 325–337 (1995)

3. Jean-Yves Girard. A New Constructive Logic: Classical Logic. Mathematical Struc-
tures in Computer Science, vol. 1 (3), pp. 255–296 (1991)

4. Guglielmi, A. and Gundersen, T.: Normalisation Control in Deep Inference via
Atomic Flows. Logical Methods in Computer Science, vol 4(1:9), pp. 1–36 (2008)

5. Heijltjes, W.B.: Proof Forests with Cut Based on Herbrand’s
Theorem. Presented at CL&C’08, Reykjavik, and available at
http://homepages.inf.ed.ac.uk/s0792892/research.html (2008)

6. Heijltjes, W.B.: Classical Proof Forests. In preparation, to appear at
http://homepages.inf.ed.ac.uk/s0792892/research.html (2009)

7. Hetzl, S. and Leitsch, A.: Proof Transformations and Structural Invariance. LNCS,
vol. 4460, pp. 201–230. Springer (2007)

8. Hughes, D.J.D.: Proofs without syntax. Annals of Mathematics, vol 164(3), pp.
1065–1076 (2006)

9. Lamarche, F. and Straßburger, L.: Naming Proofs in Classical Propositional Logic.
LNCS, vol. 3461, pp. 246–261. Springer (2005)

10. McKinley, R.: On Herbrand’s Theorem and Cut-Elimination. In preparation (2009)
11. Miller, D.A.: A Compact Representation of Proofs. Studia Logica, vol. 46(4), pp.

347–370 (1987)
12. Robinson, E.P.: Proof Nets for Classical Logic. Journal of Logic and Computation,

vol. 13 (5), pp. 777–797 (2003)

The alpha-epsilon calculus

Richard McKinley⋆

Laboratoire PPS
Université Paris Diderot – Paris 7

75205 PARIS Cedex 31
richard.mckinley@pps.jussieu.fr

Abstract. This paper is a brief introduction to the αε-calculus – a
calculus of communication and duplication inspired by the structure of
the classical quantifiers. We will summarize the results of a paper in
preparation on connections between extensions of the calculus, sequent
systems/proof nets for classical logic, and Herbrand’s theorem.

1 Introduction

A striking feature of the connection between lambda calculus and intuitionistic
logic is that the same binder represents the both binding of assumptions (in
an implication) and the binding of individuals (a free variable in a universal
quantification), and that furthermore, within second-order logic the remaining
connectives and the units can be captured using a combination of of those two
binding mechanisms. This has particular appeal for the connectives (∃, ∨) whose
natural deduction rules are not well behaved. For this reason attention is typ-
ically focused only on the =⇒ ,∀2 fragment of the logic, with the researcher
being justly confident that if everything works out for those two connectives,
the rest will easily follow. This minimality of presentation also means that com-
putational interpretations of intuitionistic logic are parsimonious, requiring just
abstraction and application as primitives. In this paper I will describe some work
towards finding a similar minimal treatment of classical logic.

We start from the observation that presenting classical logic via implica-
tion forces us to model certain highly symmetric features of the logic in an
asymmetric fashion. The propositional connectives of classical logic can be pre-
sented in two (essentially different) ways: positively or negatively (the negative
versions are those with invertible rules on the right-hand side of the turnstile,
with the positive versions being invertible on the left). In the presence of primi-
tives for classical negation lambda calculus is an effectful language, and as such
we must restrict the reduction strategy to maintain confluence; this restriction
typically forces either the positive or the negative interpretation of the proposi-
tional connectives, but not both. Of course, we might instead consider the full

⋆ Work supported by the Swiss National Science Foundation grant “Algebraic and
Logical Aspects of Knowledge Processing.” and the ANR project “INFER: Theory
and Application of Deep Inference

70

The alpha-epsilon calculus 71

(non-confluent) reduction system, but this is rather alien to the spirit of lambda
calculus and the functional paradigm. Instead, we choose to focus on the struc-
ture of the classical quantifiers, whose polarity is fixed (existential is positive,
universal is negative), and on the paradigm of communicating processes.

The intuition of our approach is not new: to interpret proofs in a multiple
succedent calculus not as functions but as processes, with cut being a form of
communication between processes. This appeared first in a series of presentation
by Abramsky’s [1], which proposed to interpret proofs in linear logic as processes
in the π-calculus. Details appear in Bellin and Scott [3]; like many nice ideas
in linear logic, it works well for unit-free multiplicative linear logic, but not so
well for additives; there is a mismatch between the non-deterministic + of the
π-calculus and the corresponding non-determinism in a proof with a conclusion
A&B. Our alternative approach in this paper is to derive a process-like language
from proof theory; at the expense of producing something that perhaps looks
strange to a process theorist, we hope give a calculus which corresponds well to
logic. Communication in this calculus will be closely modelled on cut-elimination
in the sequent calculus (a related game-semantic approach to cut-elimination has
been studied by Coquand [4]) The test of this approach (yet to be performed)
will be the computational expressiveness of the resulting calculus.

The αε calculus arose from studies of Herbrand’s theorem, and in particular a
sequent systems related to Herbrand’s theorem in which contraction is restricted
to formulae whose leading connective is an existential quantifier. Contraction can
be limited to existentials because the rule for the universal rule is invertible. This
system can be seen in Figure 1. The natural calculus of proof nets for this sequent
calculus (which we will see later) can be written as a language involving three
combinators, which we use to decorate the sequent tree.

Taut
⊢ P1, . . . , Pn

⊢ Γ, A[x := a]
∀R

⊢ Γ,∀x.A

⊢ Γ, A[x := M]
∃R

⊢ Γ,∃x.A

⊢ Γ,∃x.A,∃x.A
C∃

⊢ Γ,∃x.A

Fig. 1. A sequent calculus for (prenex) Herbrand’s theorem

The calculus contains one binder

α[x]

whose role is to receive a witness (and bind it to x). This binder represents the
binding of a variable in a universal quantification. The calculus also contains an

72 Richard McKinley

instantiator
ε[M]

which can supply a term M (a piece of data) to an alpha, and represents a
single witness to an existential quantification. These constructors may be used
as prefixes (corresponding to quantifier prefixes) so for example the string

α[x].ε[M]

receives a piece of data into x and then outputs a piece of data [M]. These
prefixes can be thought of as specifying protocols.

So far, this is reminiscent of the x() and x̄〈〉 of Milner’s π-calculus [12], but
there are crucial differences. First, αε is a calculus without mobility: commu-
nication between an α and a ε may only happen across a cut, which we write
as

t ⊲⊳ s.

Second, while a π-calculus process is a tree, with explicit scoping of the x()
binder, an αε-structure is a linked forest, and the scope of a binder α[x] is
implicit. The use of concepts from proof-net theory allow us to recover some
sequential structure, and in particular the notion of kingdom will be very impor-
tant. Finally, we will allow data to be non-deterministic, in the sense that data
may take the form

{ε[M1].t1, . . . ε[Mn].tn}

corresponding to the contraction of existential formulae. Given the polarity of
the quantifiers underlying α and ε, , our slogan will be “Negative is demand,
Positive is non-deterministic data”. In order for a single input (α) to receive these
multiple outputs, there is a reduction which duplicates the input, along with a
substructure containing that input. Thus αε is a calculus of communication and
duplication.

Since we aim, eventually, at a Turing complete computational calculus, we
should look beyond logic, just as we consider untyped lambda terms. In this
setting the equivalent notion is a (proof-)structure; a graph which does not
necessarily satisfy the usual proof-net correctness criterion. Clearly reduction
on such structures is not strongly normalizing: we will give examples of such
pathological structures.

This paper (necessarily) comprises mostly definitions and examples: those
lemmata and theorems that do appear will mostly remain unproved (in most
cases the proofs are standard). This is an area of research where most of the
interesting questions remain open, and this paper serves as an introduction to
that area.

2 The αε calculus

The principal objects of the αε calculus are structures, made up of several ports
and several cuts, which are built up as follows:

The alpha-epsilon calculus 73

Definition 2.1. Let A be a countable set of variables, and let M be a term
language building terms from a set F of function symbols and members of A.
The set of ports P over M is given by

P := α[A].P | {ε[M1].P1, . . . , ε[Mn].Pn}

where {. . . } denotes finite multiset. We require (for now) that these multisets
be nonempty. A cut has the form

P1 ⊲⊳S P2

where S is a finite set of variables from A (The set S allows a cut to depend on
variables bound by an alpha, and are necessary to calculate the scope of an alpha
binder).

We will use letters a, b, c, x, y, z to denote variables, M,N to denote terms in
the language M and t, s to denote ports.

(PS({t1, . . . tn}) →

PS(t1) PS(ti) PS(tn)
.

+

PS(t ⊲⊳ s) :=

PS(t) PS(s)

⊲⊳S@GAFBECD

PS(α[a].t) := α[a]HOINJMKL

PS(t)

PS(ε[M].t) := ε[M]HOINJMKL

PS(t)

Fig. 2. αε ports/cuts as trees

Since α is a binder with non-obvious scope, we will require that each instance
of α binds a unique eigenvariable. A multiset of ports and cuts will be said to
satisfy the eigenvariable condition if this is the case.

Definition 2.2. Given a multiset of ports F satisfying the eigenvariable condi-
tion, consider the underlying forest of F as a directed graph where edges point
towards the root. Now add to that graph two new sets of edges, connecting an
alpha to its direct dependents:

(a) Edges from each ε[M] to each α[a] such that a is a variable contained in M .
(b) Edges from t ⊲⊳S s to each α[a] such that a is a variable in S.

74 Richard McKinley

We call this graph the dependency graph of F . The dependency successors of a
node X are the nodes Y for which there is an edge from Y to X in the dependency
graph of F .

Definition 2.3. A multiset F of ports satisfying the eigenvariable condition is
an αε structure if its dependency is directed acyclic.

Writing a structure F as a forest (Figure 2 gives a function PS from ports
and communications to labelled trees), the connection with proof-nets becomes
evident. These are proof nets of a rather curious kind, however: in particular,
there is no axiom as such. Instead the edges added to form the dependency graph
can be seen as quantifier jumps as first described in Girard [6]. Playing the role
of axioms will be a special class of such jumps:

Definition 2.4. Let F be an αε-structure. An axiom node is a node α[x̂] with
no child and exactly one direct dependent ε[M]. We will denote the variables
bound in an axiom node with a hat, as written above, and refer to the edge
between an axiom node and its dependent as an axiom link.

Continuing the analogy with proof-nets, we can consider correctness for our
structures. We turn to the well-known notion of switching, due to Danos and
Regnier, in the form used by Bellin and van de Wiele for first-order MLL. The
multi-set and α nodes of a structure are switched, and the ε and ⊲⊳ nodes are
unswitched:

Definition 2.5. A switching σ for a structure F is a choice of on dependency-
successor for each α-node and one member of each multiset node. The switching graph
Fσ is an undirected graph obtained from the graph of F by erasing each incom-
ing edge of an α or multiset node except that chosen by the switching, and then
forgetting the direction of arrows.

Remark 2.1. It is here that we see the reason for isolating axiom nodes as a
special case of alpha nodes: an axiom node is not really switched, since there is
only one choice for the switching.

Definition 2.6. A structure F is a net if, for every switching σ, Fσ is connected
and acyclic. It is a mixnet if, for every switching, Fσ is acyclic.

The nets are structures which can be made sequential, in the sense that they
can be built from structures containing no cuts, by applying cuts (we will not
prove this here, but it follows from standard proof-net theory). A mixnet can
similarly be built from cut-free structures using cuts and a mix rule which simply
puts structures side-by-side.

We will use uppercase Greek letters Γ,∆ to denote structures (presaging the
use of structures to annotate sequents). We use the symbol + to denote multiset
union. We will work modulo alpha-equivalence (which here is the renaming of
α-bound variables).

The alpha-epsilon calculus 75

2.1 Reductions

We divide the reductions (computation steps) of αε into three groups. The first,
called “Axiom” reductions, is given in Figure 3. These reductions serve the same
purpose as “cut against (non-atomic) axiom” reductions in sequent calculus,
and concern the axiom nodes. The next two reductions are the communication

Γ, α[x̂] ⊲⊳S t, {ε[x̂]} ⊲⊳S s Γ, t ⊲⊳S s

Γ, α[x̂] ⊲⊳S t, {ε[x̂]} Γ, s

Γ, {ε[x̂]} ⊲⊳S t, α[x̂] Γ, t

Fig. 3. “Axiom” reductions

of a single piece of data, which in sequent calculus is the logical reduction of a
cut involving quantifiers. To define these reductions, we will need to define the
substitution of a term for a variable:

Definition 2.7. Define the operation [a := M] (substitution) on structures in
which the name a is not bound as follows:

(t1, . . . , tn)[a := M] = (t1[a := M], . . . , tn[a := M])

(α[d].t)[a := M] = α[d](t[a := M])

(ε[d]t)[a := M]) =

{

ε[d](t[a := M]) d 6= a

ε[b](t[a := M]) d = a

({t1, tn})[a := M] = {t1[a := M], . . . , tn[a := M]}

(t ⊲⊳S s)[a := b] =

{

(t[a := M] ⊲⊳S s[a := M]) a /∈ S

(t[a := M] ⊲⊳((S\a)∪fv(M)) s[a := M]) a ∈ S

The “Communication” reductions can be found in Figure 4.
The final reduction of αε we will consider is duplication. This reduction is

the most distinctive to the alpha-epsilon calculus. In order to reduce certain
structures, for example

Γ, α[x] ⊲⊳ {ε[M1], ε[M2]}

we need to duplicate x. Analogous to the cut against contraction in sequent
calculus, we will duplicate a substructure containing α[x]. That substructure
must clearly, at the very least, be closed under dependency and under axiom
links. it should also not include the cut itself.

76 Richard McKinley

Γ, α[x] ⊲⊳S {ε[M]} Γ[x := M]

Γ, α[x].t ⊲⊳S {ε[M].s} (Γ, t ⊲⊳(S∪fv(M)) s)[x := M]

Fig. 4. “Communication” reductions

Definition 2.8. A subset G of the nodes of a structure is a substructure if it is
closed under dependency, and if an axiom node is in G if and only if its unique
direct dependent is in G (axiom closed).

Essentially, the duplication rule of the αε-calculus duplicates a substructure,
mimicking the pushing of a cut above a contraction in the sequent calculus.
However, the way structures are built necessitates that only subtrees rooted
with a ε or a ⊲⊳ be duplicated In what follows, fix a particular substructure K of
t. Write Kε for largest dependency-closed subset of K in with no dependency-
maximal alpha or multiset nodes.

In the process of duplication we will need to use the following renaming
functions:

Definition 2.9. We define two renaming functions T0 and T1 which rename
certain bound variables, as follows:

Ti(b) =

{

b α[b] /∈ Kε

bX α[b] ∈ Kε

Define Ti pointwise on sequences and subsets of variables. On terms, Ti is
defined as follows:

Ti(f(ā) = f(Ti(ā))

and on ports and cuts as follows:

Ti(t ⊲⊳S s) = Ti(t) ⊲⊳Ti(S) Ti(s)

Ti(α[a].t) = α[Ti(a)].Ti(t)

Ti({t1, . . . tn} = {Ti(t1), . . . , Ti(tn)}

Ti(ε[M]t) = ε[Ti(M)]Ti(t)

Definition 2.10. Let F = Γ, α[x].t ⊲⊳S (s1 + s2) be a structure, and K a sub-
structure of F not containing the displayed cut. Define a function DK

x on sub-

The alpha-epsilon calculus 77

ports of F as follows:

DK
x (t ⊲⊳S s) =

{

DK
x (t) ⊲⊳S DK

x (s) t ⊲⊳S s /∈ Kε

T0(t ⊲⊳S s), T1(t ⊲⊳S s) t ⊲⊳S s ∈ Kε

DK
x (α[a].t) = α[a].DK

x (t)

DK
x ({t1, . . . tn} = {DK

x (t1), . . . ,∆
K
x (tn)}

DK
x (ε[M].t) =

{

ε[M].DK
x (t) ε[M] /∈ Kε

T0(ε[M].t), T1(ε[m].t) ε[M] ∈ Kε

Let DK
x (Γ) be defined pointwise on its members.

Then F duplication-reduces to

DK
x (Γ), α[x0].T0(t) ⊲⊳S DK

x (s1), α[x1].T1(t) ⊲⊳S DK
x (s2)

2.2 What to duplicate?

The duplication rule introduced above is intentionally very general – this is
because it is not entirely clear how much of a structure one should duplicate. In
a sequential system this would be clear: it is the smeared out, desequentialized
nature of αε that causes this problem.

One could imagine a simple scheme of duplication reduction in which we
simply duplicate the ports above the minimal dependents of α[x]. This was,
indeed, the reduction in an early stage of research, but it falls foul of logic: the
structures we use to annotate sequent proofs are always nets, but this simpler
reduction fails to respect the correctness criterion, in particular it can produce
substructures of the form

α[x] ⊲⊳ {ε[x], ε[y]}.

Logically, this is a cut over which there is communication: any structure includ-
ing this cut clearly does not satisfy the correctness criterion. A parallel line of
research to this one by Heijltjes [7] (in the typed case) takes the alternative
approach of simply removing these “conflicting” branches in the proof, since
anything which can be proved with them can be proved without them: there we
find a reduction of the form:

α[x] ⊲⊳ {ε[x], ε[y]} α[x] ⊲⊳ {ε[y]}.

By contrast, let us examine the reductions of this structure in our system:

α[x] ⊲⊳ {ε[x], ε[y]} α[x0] ⊲⊳ {ε[x0], ε[x1]}, α[x0] ⊲⊳ {ε[y]}

 α[x1] ⊲⊳ {ε[x1], ε[y]}

which, of course, is alpha equivalent to the original structure.

The duplication rule preserves correctness if the substructure duplicated is a
subnet, in the following sense:

78 Richard McKinley

Definition 2.11. A subnet of a net F is a substructure G of F such that, for
every switching σ of F , the switching graph Fσ restricted to the members of G
is connected.

This definition is slightly curious (since a subnet is not a net — it might have
dependency-maximal epsilon nodes) but it is the correct generalization of subnet
to this setting.

As in the usual theory of proof nets, subnets having a a node X as a door
are closed under intersection and union, and for each node there is at least one
subnet having that node as a door (except in the case where that node is the
unique dependent of an axiom node). Because of this, there exists for every node
X two special subnets: the empire (the largest subnet containing X as a maximal
node) and the kingdom (the smallest subnet containing X as a maximal node).
The kingdom will be of particular importance for us here:

Definition 2.12 (Minimal duplication). The minimal duplication system
for αε nets consists of the axiom reductions, the communication reductions, and
the duplication reduction where K is the kingdom of α[x].

At first sight, one might suppose that the computation of the kingdom of
a formula is unacceptably complicated operation: too complex to be primitive.
This is perhaps so, but it is worth noting that, at least complexity-wise, it is no
worse than beta-reduction (the calculation of the kingdom of a node is at worst
quadratic in the size of the structure, and the duplication itself is of course
linear). One could imagine an “explicit duplication” version of αε, but that is of
course some way off.

2.3 Results and Conjectures

We have seen above that reduction in αε is not weakly normalizing. Nor is it
confluent:

Proposition 2.1. Reduction in αε is non-confluent.

This result is due to Heijltjes [8]. Note that this non-confluence cannot be a re-
sult of a contraction/contraction or weakening/weakening style counterexample,
since these are excluded by the calculus. Instead, the critical choice is in the
order in which cuts are reduced.

We will see below a sketch of a proof that reduction in a typed αε is weakly
normalizing. Of course, our goal is a strongly normalizing calculus in the typed
case, and indeed, in the case of nets:

Conjecture 2.1. Minimal reduction of αε nets is strongly normalizing.

We look also for subsystems of αε that are confluent. A possible contender is

Conjecture 2.2 (Call-by-Value αε?). Let F be a structure. A value instantiator
in F is a term ε[M].t where every variable occurring in M is either free in F
or is bound by an α which occurs outside a cut. The restriction of αε where we
may only communication-reduce cuts involving a value instantiator is confluent.

The alpha-epsilon calculus 79

3 Typed αε and Herbrand’s theorem

As an antidote to the speculation in the previous section, I summarize here some
results from [10] on assigning (extensions of) αε nets to sequent derivations.
The sequent system appearing here is polarized : a formula is either positive
or negative, and contraction is only allowed on positive formulae (contraction
on negative formulae is admissible, since the rules for negative formulae are
invertible). This system was the starting point of this project: it concerns a
generalization of Herbrand expansions such that they may be considered proof
theoretically, with proofs composable via cut and with a cut-elimination theorem.

We consider a system assigning ports to the sequent calculus in Figure 1. The
completeness of this system is a statement of Herbrand’s theorem: A formula A
in first-order classical logic is provable if and only if it has a cut-free proof in this
system, if and only if there is a tautology formed by instantiating an expanded
form of A.

The philosophy of the port-assignment system is that each existential gener-
alization rule ∃R creates a witness to its type, and that the contraction rule C∃

collects together such witnesses.
To assign ports to this system, we will need an assignment of ports to the

tautology rules. To do this, we consider an extended calculus of ports in which,
for any set S of natural numbers, the figure [S] is a port. Each natural number
will then represent an instance of the tautology rule. We consider types from
classical predicate logic built over a signature of basic relation symbols R and
a set of basic function symbols F each of which has a given arity. Given a set
X = x, y, z . . . of variables, each predicate symbol r of arity n defines, for every
n-tuple of variables (x1, . . . xn) an atomic predicate r(x1, . . . xn). We will use the
symbol M to denote a term over these variables constructed using the symbols
from F .

We consider formulae in negation normal form, as we will use a one-sided
sequent-calculus. A quantifier free formula (QFF) is an element generated by
the following grammar, where p ranges over the atomic predicates:

P := p | p̄ | (P ∨ P) | (P ∧ P)

Negation on general formulae is a derived operation:

¯̄p := p, (P ∨ Q) := (P̄ ∧ Q̄), P ∧ Q := P̄ ∨ Q̄.

Prenex formulae are defined by the following grammar, where x ranges over
the variables in X:

A := P | ∃x.A | ∀x.A

with the usual definitions for negation:

∀x.A := ∃x.Ā, ∃x.A := ∀x.Ā

Ports and cuts are typed according to Figure 5. The assignment of structures
to sequent proofs in this fragment of classical predicate logic is given in Figure

80 Richard McKinley

6. Without cuts, these typed structures are a presentation of Miller’s expansion-
tree proofs for first-order prenex classical logic [11], and in this sense our system
is an extension of expansion-tree proofs with cut and cut-reduction.

[S] : P

t : A[x := a]

α[a].t : ∀x.A

t : A[x := a]

{ε[a].t} : ∃x.A

t : ∃x.A s : ∃x.A

t + s : ∃x.A

t : A s : Ā
S = fv(A)

(t ⊲⊳S s) : (A | Ā)

Fig. 5. Typing in prenex classical logic

Tauti
⊢ [i] : P1, . . . , [i] : Pn

⊢ Γ, t : A[x := a]
∀R

⊢ Γ, α[a].t : ∀x.A

⊢ Γ, t : A[x := a]
∃R

⊢ Γ, {ε[a].t} : ∃x.A

⊢ Γ, t : ∃x.A, s : ∃x.A
C∃

⊢ Γ, t + s : ∃x.A

⊢ Γ, [S] : P, [T] : P
CP

⊢ Γ, [S ∪ T] : P

⊢ Γ, t : A ∆, s : Ā

⊢ Γ,∆, (t ⊲⊳ s) : (A | Ā)

Fig. 6. A polarized prenex sequent calculus, plus αε assignment

The paper [10] extends the definition of correctness to cover these extended
ports. The graph of a structure F contains, in addition to the nodes of the F ,
a node i for each natural number contained in the tautology nodes [S] of F –
we refer to these extra nodes as tautology links. There are directed edges in the
graph of F from each tautology link to the tautology nodes containing it, and
tautology nodes of the form [i] are considered atomic, with unique dependent i.
To the definition of a switching we add a switching for each tautology node [S],
which is a member of the set S. Once again, a structure F is a net if and only

The alpha-epsilon calculus 81

if the switching graph is acyclic for each switching. It is an Herbrand net if it is
correct, and if for every i appearing in F , we have that

∨

{P | [S] : P a node of F, i ∈ S}

is a tautology.

Example 3.1. The cut-free typed structure

{ε[a]α[b].[1], ε[b]α[c].[1]} : ∃x.∀y(Ā(x) ∨ A(y))

is an Herbrand net: the annotated derivation is given below:

Taut
[1] : (Ā(a) ∨ A(b)) [1] : (Ā(b) ∨ A(c))

∀R
[1] : (Ā(a) ∨ A(b)) α[c].[1] : ∀y(Ā(b) ∨ A(y))

∃R
[1] : (Ā(a) ∨ A(b)) {ε[b]α[c].[1]} : ∃x.∀y(Ā(x) ∨ A(y))

∀R
α[b].[1] : ∀y(Ā(a) ∨ A(y)) {ε[b]α[c].[1]} : ∃x.∀y(Ā(x) ∨ A(y))

∃R
{ε[a]α[b].[1]} : ∃x.∀y(Ā(x) ∨ A(y)) {ε[b]α[c].[1]} : ∃x.∀y(Ā(x) ∨ A(y))

∃C
{ε[a]α[b].[1], ε[b]α[c].[1]} : ∃x.∀y(Ā(x) ∨ A(y))

Let A be a two-place predicate. The typed structure (two ports and one cut)

α[a].[1] : ∀x.(A(x, x)), {ε[b].[2], ε[c].[2]} : ∃z.(Ā(z, z)),

({ε[a].{ε[a].[1]}} ⊲⊳∅ α[b].α[c].[2]) : (∃v∃w.Ā(v, w)|∀v.∀wA(v, w))

is an Herbrand net, and can be formed by “cutting together” the cut-free typed
structures

α[a].[1] : ∀x.(A(x, x)), {ε[a].{ε[a].[1]}} : ∃v∃w.Ā(v, w)

and
{ε[b].[2], ε[c].[2]} : ∃z.(Ā(z, z)), α[b].α[c].[2] : ∀v.∀wA(v, w))

which the reader may easily verify are correct.

By standard means (a “splitting tensor” theorem for cuts), we obtain the
following result:

Theorem 3.1. A structure typed in prenex classical logic is an Herbrand net if
and only if it is the annotation of some sequent proof.

Remark 3.1. The extension of αε to include tautology nodes and links can be
avoided if we add to the set F of function symbols an additional n-ary function
symbol fn for each natural number n. The idea is assign to each [S] node an
eigenvariable x, to then replace [S] by α[x], and to replace the tautology link i
with ε[fn(x1, . . . xn)], where the xi are the eigenvariables of tautology nodes [S]
with i ∈ S. This complicates the port assignment system a little, but gives an
equivalent switching condition for correctness.

82 Richard McKinley

By applying the previous remark, we may deduce that the definition kingdom,
and the reductions of αε, transfer from the untyped case. Making use of the
following result, we can prove weak normalization for Herbrand nets.

Lemma 3.1. The relation X ≪ Y iff X ∈ k(Y) is a strict partial order.

Theorem 3.2. By applying communication and minimal duplication reductions,
any correct structure typed in prenex classical logic reduces to a structure in which
all the cuts are of the form [S] ⊲⊳ [T] (we will call these trivial cuts).

Proof (Sketch). The proof is essentially the same as Gentzen’s original cut-
elimination argument, except that the measure is much simpler. We first prove
that we can remove one nontrivial cut from a structure, arguing by induction on
the complexity of the cut formula, with a sub-induction on the width of a cut,
defined as

w(α[a].t ⊲⊳ {ε[M1].t1, . . . ε[Mn].tn}) = n.

Given a net of the form Γ, α[a].t ⊲⊳ {ε[M1].t1, . . . ε[Mn].tn}), there is at least
one ε[Mi] which is ≪-maximal among the members of the multiset. If we now
duplication-reduce to form

Γ′, α[a0].t ⊲⊳ {ε[M1].t1, . . . , ε[Mi−1].ti−1, ε[Mi+1].ti+1, . . . , ε[Mn].tn}) α[a1].t ⊲⊳ {ε[Mi].ti}

then the second cut is ≪-maximal. We it has width 1, and we may eliminate
it within its own kingdom, a correct substructure which does not contain any
ε[Mj] from the first cut. Thus, the result of that elimination is a net

Γ′′, α[a0].t ⊲⊳ {ε[M1].t
′
1, . . . , ε[Mi−1].t

′
i−1, ε[Mi+1].t

′
i+1, . . . , ε[Mn].t′n})

which also falls under the induction hypothesis and can be eliminated.
Now, since we can eliminate one non-trivial cut from a structure, we can

eliminate any number of cuts by a “topmost” strategy of eliminating ≪-maximal
cuts.

Full cut-elimination now follows from the following, which is clear by semantic
considerations:

Proposition 3.1. If an Herbrand net contains only trivial cuts, deleting all
those cuts and replacing each [S] by [1] yields a cut-free correct net.

4 Further Work

The major open problem is to establish strong normalization of minimal reduc-
tion in the case of untyped nets. There already exists an extension of αε typing
propositional classical logic, in a multiplicative formulation: there are ideas about
representing the additive rules, but as yet no satisfactory correctness criterion.
Crucially, the multiplicative extension of αε can be encoded within αε itself by
allowing pairing and projection of the individuals bound by α and ε. As men-
tioned before, we seek to establish αε as a computational paradigm: to do this,
we need to establish the right form of the duplication rules fro structures not
satisfying the correctness criterion.

The alpha-epsilon calculus 83

References

1. S. Abramsky. Proofs as processes. In J. Theoretical Computer Science, volume
135, pages 5–9, 1994.

2. G. Bellin and J. van de Wiele. Subnets of proof-nets in MLL-. In Proceedings of

the workshop on Advances in linear logic, pages 249–270, New York, NY, USA,
1995. Cambridge University Press.

3. Gianluigi Bellin and Philip J. Scott. On the pi-calculus and linear logic. Theoretical

Computer Science, 135(1):11–65, 1994.
4. Thierry Coquand. A semantics of evidence for classical arithmetic. J. Symb. Logic,

60(1):325–337, 1995.
5. Jean-Yves Girard. A new constructive logic: Classical logic. Mathematical Struc-

tures in Computer Science, 1(3):255–296, 1991.
6. Jean-Yves Girard. Proof-nets: The parallel syntax for proof-theory. In Logic and

Algebra, pages 97–124. Marcel Dekker, 1996.
7. Willem Heijltjes. Classical proof forests. In preparation.
8. Willem Heijltjes. Proof forests with cut-elimination based on Herbrand’s theorem.

Presented at Classical Logic and Computation, ICALP Workshop, 2008.
9. Richard McKinley. Expansion nets: proof nets for classical propositional logic. In

preparation, will appear at http://www.iam.unibe.ch/~mckinley.
10. Richard McKinley. On Herbrand’s theorem and cut-elimination. In preparation,

will appear at http://www.iam.unibe.ch/~mckinley.
11. Dale Miller. A compact representation of proofs. Studia Logica, 46(4):347–370,

1987.
12. Robin Milner. Communicating and Mobile Systems: the Pi-Calculus. Cambridge

University Press, 1999.
13. Edmund Robinson. Proof nets for classical logic. Journal of Logic and Computa-

tion, 13(5):777–797, 2003.

A Expansion nets for multiplicative propositional

classical logic

{εa1
[x1], . . . εan

[xn]} : p α[x] : p̄

∅a : A ∧ B ∅a : p ∅a : p̄

t : A, s : B

[t, s] : A ∨ B

t1 : A, . . . , tn : A s1 : B, . . . , sn : B

{(t1, s1), . . . (tn, sn)} : A ∧ B

t : A s : Ā

t ⊲⊳ s : Cut

Fig. 7. Typing for ports in propositional classical logic

84 Richard McKinley

Ax
⊢ {εa[x]} : p, p̄x

⊢ Γ, p̄x
α

⊢ Γ, α[x] : p̄

⊢ Γ, s : A, t : B
∨

⊢ Γ, [s, t] : A ∨ B

⊢ Γ, s : A ⊢ Γ′, t : B
∧

⊢ Γ, Γ′, {(s, t)} : A ∧ B

⊢ Γ, t : A ⊢ ∆, s : Ā
Cut

⊢ Γ,∆, (t ⊲⊳ s)

⊢ Γ
W

⊢ Γ, ∅a : P

⊢ Γ
W

⊢ Γ, ∅a : p̄
[a ∈ L(Γ)]

⊢ Γ, t : P, s : P
C [t, s 6= ∅]

⊢ Γ, t + s : P

⊢ Γ, p̄x, p̄x
C

⊢ Γ, p̄x

Fig. 8. The annotated sequent calculus LKαε

The paper [9] introduces a new class of proof nets for propositional classical
logic which are inspired by the structure of αε calculus. We briefly summarize
their definition here.

The nets are called expansion nets, in reference to the idea of an Herbrand
expansion. These nets improve on the nets of Robinson [13] by staying closer
to the suggestions of Girard in [5]: in particular unlike contraction, expansion is
n-ary, and an expansion may not be the “premise” of another expansion. We do
not just follow Girard’s recipe: in addition, we restrict the system so expansion
is only applied to positive formulae (in the sense described below).

Definition A.1. Let P be a countable set of positive atom symbols, and let p
stand for a member of P. Let V be a countable set of variables.

(a) Define positive and negative formulae as follows:

P := p | A ∧ B N := p̄ | A ∨ B

A,B := P | N

(b) The negation of an atom p is p̄. The negation of an arbitrary formula A is
defined by de Morgan duality:

¯̄p := p̄ A ∨ B := Ā ∧ B̄ A ∧ B := Ā ∨ B̄

The alpha-epsilon calculus 85

(c) A subatom is a pair consisting of a negative atom p̄ and a variable x ∈ V;
we will write such a subatom as p̄x.

The subatoms are something rather curious: their purpose is to allow us to repre-
sent the flow of information in an axiom using the α and epsilon. Essentially, the
subatom should be thought of as positive subformulae (we will allow contraction
on subatoms) of a negative atom.

To assign ports to propositional classical logic, we must introduce port con-
structors for the propositional connectives, but also for weakening, which will
add a deletion reduction. Weakening in proof nets is somewhat tricky to handle,
and for safety’s sake the approach described here takes the most orthodox ap-
proach, in which each weakening (whose port will be an empty set of witnesses)
is wired to an occurrence of ε (which here will occur only at axioms). This allows
us to keep the usual Danos-Regnier switching condition for correctness, at the
expense that our nets are not canonical – in particular the wiring of a weaken-
ing dictates its kingdom, which for us is crucial. We conjecture that a system
without anchorings and with the MIX rule has a correctness criterion, but there
has not been time to check the details.

The ports we will use to annotate formulae of propositional classical logic
are as follows:

t, s := α[x] | {εa1
[x1], . . . , εan

[xn]} | ∅a | [t, s] | {(t1, s1), . . . , (tn, sn)}|t ⊲⊳ s

Notice that the ε nodes are now named, in order that they may serve as an-
chors for weakenings. Typing of ports is given in Figure 7. Notice that disjunction
behaves like universal quantification (no contraction/multisets) and the conjunc-
tion like existential quantification. This is because we will annotate a variant of
the multiplicative formulation of sequent calculus, which can be seen in Figure
8.

The extension of switching and correctness to these structures is derives from
the usual switching of multiplicative nets: the constructor (,) is unswitched,
and [,] is switched. Just as for the Herbrand system, we have sequentialization
and weak normalization. We have the same hopes for strong normalization here
that we have in the untyped net and Herbrand net cases.

Do Light Logics allow a unified view of

Stratification and Boundedness?

Marco Gaboardi1, Luca Roversi1, and Luca Vercelli2

1 Dip. di Informatica - Univ. di Torino
2 Dip. di Matematica - Univ. di Torino

http://www.di.unito.it/∼{gaboardi | rover | vercelli}

Abstract. This few pages are meant to illustrate an ongoing work whose
goal is to find fine-grained logical principles, in the tradition of structural
proof-theory, on which we can base the definition of a deductive system
that contains both Light Affine Logic and Soft Linear Logic.

1 Introduction

1.1 Bounding the computational cost inside the structural proof theory

One of the key features of Linear Logic (LL) is that the structural rules, which
account for duplication, hence for the complexity of the cut elimination, are only
allowed on “modal” formulæ. The study about the cost of the cut elimination
in Linear Logic may be done using proof nets, a graphical representation of LL
proofs. In the particular version of LL we consider, proof nets introduce modal
formulæ by means of special constructs, called “functorial boxes”, “digging”
and “dereliction”, and only the proof nets inside a boxmay be duplicated during
the cut elimination process.

Some constraints can be imposed on LL in order to achive bounds on the number
of steps nedded to perform the cut elimination. Forbidding the use of digging
and dereliction leads to Elementary Linear Logic (ELL) [Gir98]. ELL enjoys an
elementary bound on the number of duplications that can occur during the
cut elimination of any of its derivations. Through the Curry-Howard corre-
spondence, ELL characterizes the class of elementary functions. Recall that they
are those ones that can be computed by a Turing machine whose run-time is
bounded by a tower of exponentials of fixed height. Further constraints on
functorial boxes allow to characterize the class of deterministic polytime func-
tions, under theCurry-Howard correspondence;weget Light Linear Logic (LLL)
[Gir98], together with its affine version Light Affine Logic (LAL) [AR02].

On the other side, allowing dereliction but forbidding digging, and imposing
some more restrictions on the duplications, leads to Soft Linear Logic (SLL)
[Laf04].

The derivations of LLL/LAL enjoy a structural invariant, called stratification,
while for those ones in SLL the invariant will be called boundedness.

Do Light Logics allow a unified view of Stratification and Boundedness? 87

1.2 Stratification vs. Boundedness, a little bit more technically.

By stratification we summarize a logical property of LLL/LAL, which is struc-
turally obtained by dropping dereliction and digging principles. Stratification
means that the boundary of the functorial boxes, that enclose well formed sub-
derivations, neither can disappear, nor can be created. So, it is natural to say
that a node in a proof net of LLL/LAL, or, equivalently, a rule in a derivation of
LLL/LAL, is at depth d if it is contained into d nested boxes. At the dynamic level
this sums up to have that if a cut elimination step involves nodes at depth d,
then only the complexity of the proof nets at depths strictly deeper than d can
increase. Consequently, the control over the dimension of every single reduct
becomes the control on the overall cut elimination time. By the way, the mecha-
nism is implicit in the structural and combinatorial properties of the proof nets
of LLL/LAL, and is independent from the logical soundness.

Concerning boundedness, recall that, in ordinary Linear Logic, !A is semantically
equivalent to A∗ =

⋃

n∈N (A ⊗ . . . ⊗ A)
︸ ︷︷ ︸

n

. Boundedness refers to various methodolo-

gies that, informally, put !A in correspondence to a finite subset of A∗. Compu-
tationally, this means that given a proof net, the number of copies of each box
coming up during the cut elimination can somehow be statically predicted, i.e.
bounded. Usually, the “deep” reason is that the interpretation of !A cannot be
equal to the interpretation of !A ⊗ A and this rules out the principle underpin-
ning self-copying. For completeness, it is worth concluding by recalling that
also Bounded Linear Logic [GSS92], of which SLL seems to catch the spirit, was
conceived in accordance with the principle of boundedness just illustrated.

1.3 Goal

We are currently looking for a set of logical principles, which both Stratification
and Boundedness become specific subcases of.

The intuition driving us now follows. The structural bound of the polynomial
time soundness of the cut elimination for LAL can be viewed as analogous to
some structural bounds that can be obtained for systems exploiting the bound-
edness principle. In particular, the polynomial time soundness bound of LAL
can be rephrased saying that there is a constant, called rank, that bounds the
number of copies of any sub-derivation of LAL that may be duplicated under
the effect of the cut elimination.

The argument applies to SLL in the reversed direction. Specifically, the polyno-
mial time soundness of SLL can be proved in some sense as if it was a stratified
deductive system. Every level in a derivation of SLL seems to be connected
to suitable sets of occurrences of the multiplexor rule/node that simultaneously
contract many occurrences of a formula, while adding a modality in front of it.

In the coming sections we shall roughly illustrate the ideas and the conjectures
that drive ongoingwork about the two intuitions just illustrated on the polytime
soundness of LAL and SLL.

88 Marco Gaboardi, Luca Roversi, and Luca Vercelli

TΠD(r) =
∑

n node of Π

Wn
D(r)

Wn
D(r) = SD

(

r,TΠ
′

D (RD(r))
)

n root of a !-box with Π′ in it

Wn
D(r) = kn every other n{

Fig. 1. The weight of any proof net Π of a deductive system D, depending on a rank r.
The constants kn and the functions RD,SD are specific for the deductive systemD.

SD(r, t) = r · t + 1

RD(r) = r

Fig. 2. Size measure and the rank-update functions for SLL.

2 LAL as a bounded system

Saying that LAL is a bounded system means looking for a rank, for every proof
net Π of LAL. Given any Π, the rank is a constant that only depends on Π itself.
The intended use of the rank is twofold. On one side it is the constant that fixes
the maximal number of copies of subnets we can produce in the course of the
cut elimination at a given depth d. On the other, (a function of) the rank bounds
the size of the proof nets at depth deeper than d.

Formally, the idea of rank is given in Figure 1.D is a generic deductive system,
as SLL or LAL.

By lettingD beSLL, and defining both the sizemeasure SD and the rank-update
function RD as in Figure 2, we get the cut elimination bound of any proof net Π
of SLL described in [Laf04].

Nowwe try lettingDmore general. ThenTΠ
D
(r) is a bound on the cut elimination

cost that depends on the rank r that can intuitively be bounded by the initial
dimension SΠ of Π, namely by the number of nodes in Π. TΠ

D
(r) is the sum of

the weights Wn
D
of the nodes of Π. The weight is a suitable, in fact, essentially

irrelevant, constant kn, if n is not the root of a box in LAL. Otherwise, if n is the
root of a box that contains the proof net Π′, the weight is a bound on a size
measure SD that depends on the rank, and on the bound on the cut elimination
that can operate on Π′, namely on TΠ

′

D
(v), for a suitable value v. In its turn, the

value v must be a function RD(r) that updates the rank for Π′ which is at a
deeper depth than Π.

In our case, withD being LAL, a possible choice for the size measure SD and the
rank-update function RD is in Figure 3. All this should convince that LAL has
a notion of rank which cannot be fixed once for all by looking at specific nodes

Do Light Logics allow a unified view of Stratification and Boundedness? 89

SD(r, t) = r · t

RD(r) = r2

Fig. 3. A possible choice for the size measure and the rank-update functions for LAL.

⌣ ⌣ ⌣ ⌣

(m)

` ⊗ ⊗

(m)

⌢

A⊗?A⊥ ?A

A⊥

?A⊥

?A⊥`A

A

A

!A⊗A⊥

A⊥ ?A⊥ !A

A

A⊥

Fig. 4. The proof net Σ of SLL where we shall discover boxes.

of a given proof net, like in SLL, but which must be updated in relation to the
depth we are normalizing at.

Once defined the weight, one would use it in order to give a proof of LAL
polytime soundness in analogy to the proof given by Lafont in [Laf04] for SLL.
In fact, the weight as defined in Figure 1 cannot be used in that way. The reason
is that it does not decrease during the cut elimination. To fix this problem very
likely it is necessary to extend the definition in Figure 1with another parameter.

3 SLL as a stratified system

Wegive an idea aboutwhywe conjecture that the proof nets ofSLL are stratified,
and what we mean by stratification. SLL should be stratified in a sense weaker
than LLL/LAL. We use a reasonably simple, but relevant example. Let us look at
Figure 4 that contains a proof net Σ of SLL. Our idea is that every multiplexor
node (m) of Σ actually corresponds to a generalized paragraph box, that in some
way generalizes the ones we know from LLL/LAL. We call SLL4 the hypothetical
new system obtained by SLL after adding these new paragraph boxes.

SLL4 should allow to map Σ into the proof net Σ̄ in Figure 5. The leftmost
multiplexor and paragraph nodes should delineate a paragraph box of which
the multiplexor represents the inputs and the paragraph node is the output.

However, the rightmost multiplexor node is not so evidently connected to the
remaining two paragraph nodes to form a paragraph box. Asking SLL4 to have
a more general introduction of paragraph boxes than LLL/LAL, comes in help
exactly now. The introduction of paragraph boxes in SLL4 must be so general
that we must be able to prove the isomorphisms among logical operators in

90 Marco Gaboardi, Luca Roversi, and Luca Vercelli

⌣ ⌣ ⌣ ⌣

§ § §

(m)

` ⊗ ⊗

(m)

⌢

1

0

0

1

0

1

0

1

0

0 0

1
0

1

Fig. 5. The proof net Σ̄ in SLL4, image of Σ of SLL.

§(A ⊗ B) ≃ §A ⊗ §B

§(A` B) ≃ §A` §B

§!A ≃ !§A

§∀α.A ≃ ∀α.§A

Fig. 6. Isomorphims among the logical operators of SLL4.

Figure 6. Moreover, assuming that on SLL4 the η-expansion on axioms holds,
we can transform the rightmostmultiplexor in Figure 5 as a node that introduces
the assumptions of a paragraph box, using the two following steps:

– we η-expand the third axiom, counting from left, and
– we use the isomorphisms in Figure 6 to shift downward all the paragraphs
to the right until one paragraph occurs below one of the two ⊗ nodes, and
another paragraph node occurs below the other ⊗ node.

4 SLL, LLL and ML3

The candidate system where to look for SLL4 is ML3 [BM08] since it enjoys
η-expansion on axioms and it can prove the isomorphisms in Figure 6.

ML3 is a proof nets system defined as the subset of LL proof nets enjoying a
certain structural property called indexing. In [BM08], the authors show that:
(i) ML3 extends ELL, (ii) ML3 is weakly elementary time sound, in the sense that
every proof net may be reduced in elementary time, just following a particular
reduction strategy, (iii) there exists a subsystem ML4 of ML3 strictly larger than
LLL, and ML4 is weakly polynomial time sound. One of our targets is to find an
analogous system SLL4 of ML3 strictly containing SLL, and that will be (at least
weakly) polynomial time sound too.

While searching for such a subsystem, we run into the following property.

Do Light Logics allow a unified view of Stratification and Boundedness? 91

Theorem 1 ([GRV09]). There exists a (reasonably simple) translation @ from ev-
ery proof net of the propositional fragment of LL into ML3, that respects the cut
elimination procedure.

In particular, the restriction of @ to propositional SLL identifies a subsystem
SLL4

P
of ML3 that partially solves our research. But of course the propositional

fragment of SLL is quite less complex than the full SLL.

5 Conclusions

Suppose for a while we shall be able to bring the definition of the embedding of
SLL into a suitable SLL4 to its end. This will not mean we shall have a system
where both LAL and SLL embed, but just a system, where stratification and
boundedness, used to characterize polynomial sound computations, under the
Curry-Howard correspondence, actually coexist.

We conjecture it is also possible to obtain a system where both LAL and SLL
embed by generalizing SLL4, namely, by generalizing the system where we can
embed SLL by means of a suitable set of modalities whose goal is to locally
distinguish the origins of contracted formulæ. To this aimwe plan to exploit the
experience developed on Multimodal Stratified framework (MS) [RV09]. MS
allows to characterize polynomial time sound systems of proof nets, with, at
least in principle, an unlimited set of modal operators. So, its principles should
be exploitable to add to SLL4 the modal operators we need.

References

[AR02] A. Asperti and L. Roversi. Intuitionistic light affine logic. ACM Transaction on
Computational Logic, 3(1):137–175, 2002.

[BM08] P. Baillot and D. Mazza. Linear logic by levels and bounded time complexity.
Technical report, http://arxiv.org/abs/0801.1253v1, January 2008.

[Gir98] J.-Y. Girard. Light linear logic. Information and Computation, 143(2):175–204,
1998.

[GRV09] M. Gaboardi, L. Roversi, and L. Vercelli. Multiplicative Exponential Lin-
ear Logic can be levelled. http://www.di.unito.it/˜vercelli/works/soli-part-I.pdf,
Submitted, 2009.

[GSS92] J.-Y. Girard, A. Scedrov, and P. Scott. Bounded linear logic: Amodular approach
to polynomial time computability. Theoretical Computer Science, 97:1–66, 1992.

[Laf04] Y. Lafont. Soft linear logic and polynomial time. Theoretical Computer Science,
318:163–180, 2004.

[RV09] L. Roversi and L. Vercelli. Some Complexity and Expressiveness
results on Multimodal and Stratified Proof-nets. In TYPES, 2009.
http://www.di.unito.it/˜vercelli/works/ms-part-I.pdf.

On pseudocategories in a category with a 2-cell structure

N. Martins-Ferreira

Abstract. For a given (fixed) category, we consider the category of all 2-cell
structures (over it) and study some naturality properties. A category with a
2-cell structure is a sesquicategory; we use additive notation for the vertical
composition of 2-cells; instead of a law for horizontal composition we consider a
relation saying which pairs of 2-cells can be horizontally composed; for a 2-cell
structure with every 2-cell invertible, we also consider a notion of commutator,
measuring the obstruction for horizontal composition. We compare the con-

cept of naturality in an abstract 2-cell structure with the example of internal

natural transformations in a category of the form Cat(B), of internal cate-
gories in some category B, and show that they coincide. We provide a general
construction of 2-cell structures over an arbitrary category, under some mild

assumptions. In particular, the canonical 2-cell structures over groups and
crossed-modules, respectively “conjugations” and “derivations”, are instances
of these general constructions. We define cartesian 2-cell structure and extend
the notion of pseudocategory from the context of a 2-category (as in [6]) to
the more general context of a sesquicategory. As an example of application we
consider pseudocategories in the sesquicategory of abelian chain complexes.

1. Introduction

In this article we use a different notation for the vertical composition of 2-cells:
instead of the usual dot ‘·’ we use plus ‘+’. To support this we present the following
analogy between geometrical vectors in the plane and 2-cells between morphisms

2000 Mathematics Subject Classification. Primary 18D05, 18D35; Secondary 18E05.
Key words and phrases. sesquicategory, 2-cell structure, cartesian 2-cell structure, natural

2-cell structure, pseudocategory.
This is the result of several talks given by the author in Milan (Oct2006), Coimbra (May2007)

and Haute-Bodeux (Jun2007). The author thanks to Professor G. Janelidze for much appreciated
help of various kinds.

92

ON PSEUDOCATEGORIES IN A CATEGORY WITH A 2-CELL STRUCTURE 93

in a category.

λu //

u //

v+u ,,YYYYYYYYYYYYYYYYYY
v

**UUUUUUUUUUUU

x
//

dddddddddddddddddddddddd

r
r

r
r

r
r

r
r

r
r

r
r

r
r

r
r

r
r

r
r

r

�
�

�
�

�
�

�
�

�
�

�
�

�
�

−u
oo

y OO

Two geometrical vectors in the plane can be added only if the end point of the
second (u as in the picture above) is the starting point of the first one (v as in
the picture) and in that case the resulting vector (the sum) goes from the starting
point of the second to the end point of the first: exactly the same as with 2-cells

·

dom u

��//

cod v

II·

u

��

v
��

7−→ ·

dom u

��

cod v

@@ ·v+u

��
;

In some sense the analogy still holds for scalar multiplication

·
λ // ·

dom u

��

cod u

@@ ·
ρ // ·u

��
7−→ ·

ρ dom(u)λ

��

ρ cod(u)λ

@@ ·ρuλ

��
,

and for inverses (in the case they exist)

·

dom u

��

cod u

@@ ·u

��
7−→ ·

cod u

��

dom u

@@ ·−u

��
.

Concerning horizontal composition, there is still an analogy with some relevance:
it is, in some sense, analogous to the cross product of vectors − in the sense that
it raises in dimension (see the introduction of [1] and its references for further
discussion on this). Given 2-cells, u and v

·

dom u

��

cod u

@@ ·

dom v

��

cod v

@@ ·u

��
v

��

the horizontal composition v ◦ u should be a 3-cell, from the 2-cell

(1.1) cod (v) u + v dom (u)

94 N. MARTINS-FERREIRA

to the 2-cell

(1.2) v cod (u) + dom (v) u.

In some cases (1.1) and (1.2) coincide (as it happens in a 2-category) and this is
the reason why one may think of a horizontal composition, but it is an illusion; to
overcome this we better consider a relation v ◦ u saying that the 2-cell v is natural
with respect to u, defined as

v ◦ u⇐⇒ (1.1) = (1.2) ,

in this sense, the horizontal composition is only defined for those pairs (v, u) that
are in relation v ◦ u, with the composite being then given by either (1.1) or (1.2) .

This is a geometrical intuition. An algebraic intuition is also provided in Propo-
sition 1.

This article is organized as follows.
For a fixed category, C, we define a 2-cell structure (over C, as to make it

a sesquicategory) and give a characterization of such a structure as a family of
sets, together with maps and actions, satisfying some conditions. It generalizes
the characterization of 2-Ab-categories as a family of abelian groups, together with
group homomorphisms and laws of composition as given in [5] and [7] where the
(strong) condition

D (x) y = xD (y)

is no longer required. A useful consequence is that the example of chain complexes,
say of order 2, can be considered in this more general setting. Of course, this
condition is equivalent to the naturality condition, and the results obtained in [5]
and [7] heavily rest on this assumption, so one must be careful in removing it. For
this we introduce and study the concept of a 2-cell being natural with respect to
another 2-cell, and the concept of natural 2-cell, as one being natural with respect
to all. Next we compare this notions when C is a category of the form Cat(B) , of
internal categories in some category B, and conclude that if the 2-cell structure is
the canonical one (internal transformations, not necessarily natural) then a natural
2-cell corresponds to a natural transformation, and furthermore, it is sufficient to
check if a given transformation is natural with respect to a particular 2-cell (from
the “category of arrows”), to determine if it is natural.

We give a general process for constructing 2-cell structures in arbitrary cate-
gories, and for the purposes of latter discussions we will restrict our study to the
2-cell structures obtained this way. In order to argue that we are not restricting
too much, we show that the canonical 2-cell structures over groups and crossed-
modules, that are respectively “conjugations” and “derivations”, are captured by
this construction.

We introduce the notion of cartesian 2-cell structure, in order to consider 2-
cells of the form u ×w v that are used in the coherence conditions involved in a
pseudocategory.

At the end we extend the notion of pseudocategory from the context of a 2-
category to the more general context of a category with a 2-cell structure (sesquicat-
egory). As an example of application we consider the sesquicategory of abelian chain
complexes with homotopies as 2-cells and study pseudocategories in there.

All the notions defined in [6]: pseudofunctor, natural and pseudo-natural trans-
formation, modification, may also be extended in this way. However some careful
is needed when dealing with coherence issues. For example MacLane’s Coherence

ON PSEUDOCATEGORIES IN A CATEGORY WITH A 2-CELL STRUCTURE 95

Theorem, saying that it suffices to consider the coherence for the pentagon and
middle triangle is no longer true in general, since it uses the fact that α, λ, ρ are
natural. One way to overcome this difficulty is to impose the naturality for α, λ, ρ
in the definition, so that in [6] (introduction, definition of pseudocategory in a
2-category) instead of saying

”...α, λ, ρ are 2-cells (which are isomorphisms)...”

we have to say

”...α, λ, ρ are natural and invertible 2-cells ...”

We will not study deeply all the consequences of this. Instead we will restrict
ourselves to the study of 2-cell structures such that all 2-cells are invertible (since the
main examples are groups, abelian groups, 1-chain complexes and crossed modules)
and hence the question of α, λ, ρ being invertible becomes intrinsic to the 2-cell
structure. The issue of naturality is more delicate. To prove the results in [5], [7]
and [9], we will only need λ and ρ to be natural with respect to each other, that is

λ ◦ λ, λ ◦ ρ, ρ ◦ λ, ρ ◦ ρ.

If interested in the Coherence Theorem, we can always use the reflection

2-cellstruct(C)
I
−→ nat-2-cellstruct(C)

of the category of 2-cell structures over C (sesquicategories “with base C”), into
the subcategory of natural 2-cell structures over C (2-categories “with base C”),
sending each 2-cell structure to its “naturalization”; which, if C = 1, becomes the
familiar reflection of monoids into commutative monoids

Mon
I
−→ CommMon

and if restricting further to invertible 2-cells gives the reflection

Grp
I
−→ Ab

of groups into abelian groups.
All these considerations are to be developed in some future work. This paper

is the starting point for a systematic study of internal categorical structures in a
category with a given 2-cell structure, and also to investigate how these categorical
structures are changed when the given 2-cell structure over the (fixed) base category
also changes. For example, a pseudo category, in a category with the discrete 2-cell
structure is an internal category, while if the 2-cell structure is the codiscrete one,
it becomes simply a precategory.

2. 2-cell structures and sesquicategories

Let C be a fixed category.

Definition 1 (2-cell structure). A 2-cell structure over C is a system

H = (H,dom, cod, 0,+)

where

H : Cop ×C −→ Set

96 N. MARTINS-FERREIRA

is a functor and

H ×hom H
+
−→ H

dom−−→
0
←−
−→
cod

homC

are natural transformations, such that

(homC, H, dom, cod, 0,+)

is a category object in the functor category SetC
op×C or, in other words, an object

in Cat
(

SetC
op×C

)

.

Proposition 1. Giving a 2-cell structure over a category C, is to give, for
every pair (A, B) of objects in C, a set H (A, B), together with maps

H (A, B)×hom(A,b) H (A, B)
+
−→ H (A, B)

dom−−→
0
←−
−→
cod

hom (A, B) ,

and actions

H (B, C)× hom (A, B) −→ H (A, C)
(x, f) 7−→ xf

hom (B, C)×H (A, B) −→ H (A, C)
(g, y) 7−→ gy

satisfying the following conditions

dom (gy) = g dom (y) , dom (xf) = dom (x) f(2.1)

cod (gy) = g cod (y) , cod (xf) = cod (x) f

g0f = 0gf = 0gf

(x + x′) f = xf + x′f , g (y + y′) = gy + gy′

g′ (gy) = (g′g) y , (xf) f ′ = x (ff ′)(2.2)

g′ (xf) = (g′x) f

1Cx = x = x1B

dom (0f) = f = cod (0f)(2.3)

dom (x + x′) = x′ , cod (x + x′) = x

0cod x + x = x = x + 0dom x

x + (x′ + x′′) = (x + x′) + x′′.

Proof. For every f : A′ −→ A, g : B −→ B′ and x ∈ H (A, B), write

H (f, g) (x) = gxf

and it is clear that the set of conditions (2.1) asserts the naturality of dom, cod, 0,+;
the set of conditions (2.2) asserts the functoriality of H and the set of conditions
(2.3) asserts the axioms for a category. �

Definition 2 (sesquicategory). A sesquicategory is a pair (C,H) where C is
a category and H a 2-cell structure over it.

ON PSEUDOCATEGORIES IN A CATEGORY WITH A 2-CELL STRUCTURE 97

Observation: A sesquicategory, as defined, is the same as a sesquicategory in
the sense of Ross Street ([10],[11],[12]), that is, a category C together with a
functor H into Cat, such that the restriction to Set gives homC, as displayed in the
following picture

Cat

��
Cop ×C

H

99ttttttttt

hom
// Set

.

Proposition 2. A category C with a 2-cell structure

H = (H,dom, cod, 0,+) ,

is a 2-category if and only if the naturality condition

(naturality condition) cod (x) y + xdom (y) = x cod (y) + dom (x) y

holds for every x ∈ H (B, C) , y ∈ H (A, B) , and every triple of objects (A, B,C)
in C, as displayed in the diagram below

A

dom y

!!

cod y

==B

dom x

!!

cod x

== C
y

��
x

��
.

Proof. If C is a 2-category, the naturality condition follows from the horizon-
tal composition of 2-cells and, conversely, given a 2-cell structure over C, in order
to make it a 2-category one has to define a horizontal composition and it is defined
as

x ◦ y = cod (x) y + xdom (y)

or
x ◦ y = x cod (y) + dom (x) y

provided the naturality condition is satisfied for every appropriate x, y. The middle
interchange law also follows from the naturality condition. �

It may happen that the naturality condition does not hold for all possiblex and
y, but only for a few; thus the following definitions.

Let C be a category and (H,dom, cod, 0,+) a 2-cell structure over it.

Definition 3. A 2-cell δ ∈ H (A, B) is natural with respect to a 2-cell z ∈
H (X, A), when

cod (δ) z + δ dom (z) = δ cod (z) + dom (δ) z;

in that case one writes δ ◦ z.

Definition 4. A 2-cell δ ∈ H (A, B) is natural when it is natural with respect
to all possible z ∈ H (X, A) for all X ∈ C, i.e., δ is a natural 2-cell if and only if
δ ◦ z for all possible z.

3. Examples of application

We shall now see how the above notions of naturality are related, in the case
where C = Cat (B) for some category B, with the 2-cell structure given by the
internal (natural) transformations.

98 N. MARTINS-FERREIRA

3.1. The canonical 2-cell structure of Cat(B). Consider C = Cat (B)
the category of internal categories in some category B. The objects are1 (see also
[4], p.267)

A = (A0, A1, d, c, e, m) , B = (B0, B1, d, c, e, m) , ...

and morphisms
f = (f1, f0) : A −→ B, ...

In this case, we have a canonical 2-cell structure, given by the internal transforma-
tions (not necessarily natural) and it is as follows:

H (A, B) = {(k, t, h) | t : A0 −→ B1; h, k ∈ homC (A, B) ; dt = h0, ct = k0}

H (f, g) (k, t, h) = (gkf, g1tf0, ghf)

dom (k, t, h) = h

cod (k, t, h) = k

0h = (h, eh0, h)

(k, t, h) + (h, s, l) = (k, m 〈t, s〉 , l)

where f : A′ −→ A, g : B −→ B′, h, k, l : A −→ B are morphisms in Cat (B) and
t, s : A0 −→ B1 are morphisms in B.
Observe that, in particular, for every A = (A0, A1, d, c, e, m) there is A→ = (A1, A1, 1, 1, 1, 1)
and the two morphisms

d→ = (ed, d) : A→ −→ A

and
c→ = (ec, c) : A→ −→ A.

Proposition 3. In the context of the above setting, a 2-cell t = (k, t, h) ∈
H (A, B) is an internal natural transformation t : h −→ k if and only if it is
natural with respect to the 2-cell

(c→, 1A1
, d→) ∈ H (A→, A) .

Proof. Consider t = (k, t, h) ∈ H (A, B) and z = (g, z, f) ∈ H (X,A) ,

... X1
// //

g1

��
f1

��

X0

g0

��
f0

��

z

}}||
||

||
||

oo

... A1
////

k1

��
h1

��

A0

k0

��
h0

��

t

}}||
||

||
||

oo

... B1
//// B0

oo

by definition

t ◦ z ⇔ (kg, k1z, kf) + (kf, tf0, hf) = (kg, tg0, hg) + (hg, h1z, hf)

⇔ (kg, m 〈k1z, tf0〉 , hf) = (kg, m 〈tg0, h1z〉 , hf)

⇔ m 〈k1z, tf0〉 = m 〈tg0, h1z〉(3.1)

and also by definition t is an internal natural transformation when

(3.2) m 〈k1, td〉 = m 〈tc, h1〉

1An internal category is a system (C0, C1, d, c, e, m) where d, c : C1 −→ C0, e : C0 −→

C1, m : C1 ×C0
C1 −→ C1 satisfying de = 1C0

= ec, plus the usual axioms for preservation of

domain, d, codomain, c, identity (e) for composition (m) and associativity.

ON PSEUDOCATEGORIES IN A CATEGORY WITH A 2-CELL STRUCTURE 99

which is equivalent to saying that (k, t, h) is natural relative to (c→, 1A1
, d→) , as

displayed below

... A1

ec

��
ed

��

A1

c

��
d

��

1

~~||
||

||
||

... A1
// // A0

oo

.

�

Corollary 1. Every internal natural transformation is a natural 2-cell.

Proof. Simply observe that

(3.2) =⇒ (3.1)

since

m 〈k1, td〉 z = m 〈tc, h1〉 z

m 〈k1z, tdz〉 = m 〈tcz, h1z〉

m 〈k1z, tf0〉 = m 〈tg0, h1z〉 .

�

The notion of a category with a 2-cell structure, besides giving a simple char-
acterization of a 2-category as

“2-category”=“sesquicategory”+“naturality condition”;

it also provides a powerful tool to construct examples in arbitrary situations.

3.2. Abstract 2-cells, and conjugations. Consider C a category and

H : Cop ×C −→Mon

a functor into Mon, the category of monoids, together with a natural transformation

D : UH × homC −→ homC

(where U : Mon −→ Set denotes the forgetful functor) satisfying

D (0, f) = f

D (x′ + x, f) = D (x′, D (x, f))

for all f : A −→ B in C and x′, x ∈ H (A, B), with 0 the zero of the monoid
H (A, B) considered in additive notation.
A 2-cell structure in C is now given as

A

f

!!

D(x,f)

==B(x,f)

��

100 N. MARTINS-FERREIRA

with vertical composition

A

f

��
D(x,f) //

D(x′,D(x,f))

GGB

(x,f)

��

(x′,D(x,f))

��

(x′, D (x, f)) + (x, f) = (x′ + x, f)

(well defined because D (x′ + x, f) = D (x′, D (x, f))), with identity 2-cells

A

f

!!

f

==B(0,f)

��

well defined because D (0, f) = f , and the left and right actions of morphisms in
2-cells,

A′ h // A

f

!!

D(x,f)

==B
g // B′(x,f)

��

g (x, f) h = (gxf, gfh) = (H (h, g) (x) , gfh) .

If in addition,

(3.3) D (y, g) x + yf = yD (x, f) + gx

for all x, y, f, g pictured as

A

f

!!

D(x,f)

==B

g

!!

D(y,g)

== C(x,f)

��
(y,g)

��
,

then the result is a 2-category.
3.2.1. The case of Groups. In the case of C = Grp the category of groups

and group homomorphisms, the construction above is so general that it includes
the canonical 2-cells that are obtained if considering each group as a one object
groupoid and each group homomorphism as a functor. In that case, as it is well
known, a 2-cell

t : f −→ g

from the homomorphism f to the homomorphism g, both from the group A to the
group B, is an element t ∈ B such that

tf (x) = g (x) t , for all x ∈ A.

ON PSEUDOCATEGORIES IN A CATEGORY WITH A 2-CELL STRUCTURE 101

Now, given t and f , the homomorphism g is uniquely determined as

g (x) = tf (x) t−1 = tf (x) ,

and hence, this particular 2-cell structure over Grp is an instance of Example 3.2
with Grp instead of Mon.

To see this just consider H the functor that projects the second argument

H : Grpop ×Grp −→ Grp

(A, B) 7−→ B

and

D : B × hom (A, B) −→ hom (A, B)

(t, f) 7−→ tf

and it is a straightforward calculation to check that

D (0, f) = f

D (t + t′, f) = D (t, D (t′, f))

and also, since condition (3.3) is satisfied, the 2-cell structure is natural.

In some cases, the above construction may even be pushed further.

3.3. Abstract 2-cells, and derivations. Suppose the functor

homC : Cop ×C −→ Set

may be extended to Mon, that is, there is a functor (denote it by map, and think
of the underlying map of a homomorphism)

map : Cop ×C −→Mon
U
−→ Set

with hom ⊆ Umap, in the sense that hom (A, B) ⊆ Umap (A, B) naturally for every
A, B ∈ C;
Now, given any functor

K : Cop ×C −→Mon

and any natural transformation

D : K −→ map,

define

H (A, B) = {(x, f) ∈ UK (A, B)× hom (A, B) | D (x) + f ∈ hom (A, B)}

H (h, g) (x, f) = (gxh, gfh)

and obtain a functor H : Cop × C −→ Set. With obvious dom, cod, 0,+, a 2-cell
structure in C is obtained as follows

A

f

��

D(x)+f

BBB(x,f)

��

where (x, f) ∈ H (A, B) ,
vertical composition: (x′, D (x) + f) + (x, f) = (x′ + x, f)

102 N. MARTINS-FERREIRA

identity: (0, f)
left and right actions: g (x, f) h = (gxh, gfh).
If in addition the property

(3.4) D (y)x + gx + yf = yD (x) + yf + gx

is satisfied for all (x, f) ∈ H1 (A, B) and (y, g) ∈ H1 (A, C), then the resulting
structure is a 2-category.

3.3.1. The case of crossed modules. In the case C=X-Mod, the category of
crossed modules, we have the canonical 2-cell structure given by derivations, and
it is an instance of the above construction with Grp instead of Mon:

The objects in X-Mod are of the form

A =
(

X
d
−→ B, ϕ : B −→ Aut (X)

)

where d : X −→ B is a group homomorphism, together with a group action of B
in X denoted by b · x satisfying

d (b · x) = bd (x) b−1

d (x) · x′ = x + x′ − x;

a morphism f : A −→ A′ in X-Mod is of the form

f = (f1, f0)

where f1 : X −→ X ′ and f0 : B −→ B′ are group homomorphisms such that

f0d = d′f1

and

f1 (b · x) = f0 (b) · f1 (x) .

Clearly there are functors

map : Cop ×C −→ Grp

sending (A, A′) to the group of pairs (f1, f0) of maps (not necessarily homomor-
phisms) f1 : UX −→ UX ′ and f0 : UB −→ UB′ such that

f0d = d′f1,

with the group operation defined componentwise

(f1, f0) + (g1, g0) = (f1 + g1, f0 + g0) .

Also there is a functor

M : Cop ×C −→ Grp

sending (A, A′) to the group M (A, A′) = {t | t : UB −→ UX ′ is a map}, and a
natural transformation

D : M −→ map

defined by

D (A, A′) (t) = (td, dt) .

Now, define H (A, A′) as

{(t, f) | t ∈M (A, A′) , f = (f1, f0) : A −→ A′ , (td + f1, dt + f0) ∈ hom (A, A′)} .

It is well known that the map t : B −→ X ′ is such that

t (bb′) = t (b) + f0 (b) · t (b′) , for all b, b′ ∈ B,

ON PSEUDOCATEGORIES IN A CATEGORY WITH A 2-CELL STRUCTURE 103

while (td + f1, dt + f0) ∈ hom (A, A′) asserts that the pair (td + f1, dt + f0) is a
morphism of crossed modules

(3.5) X
d //

td+f1

��

B

dt+f0

��
X ′ d // B′

and it is equivalent to

• dt + f0 is a homomorphism of groups

dt (bb′) = d (t (b) + f0 (b) · t (b′))

• td + f1 is a homomorphism of groups

t (d (x) d (x′)) = t (dx) + f0d (x) · td (x′)

• the square (3.5) commutes, which is trivial because (f1, f0) ∈ hom (A, A′)
• (td + f1) preserves the action of (dt + f0)

t
(

bd (x) b−1
)

= t (b) + f0 (b) · t (d (x)) + f0

(

bd (x) b−1
)

· (−t (b)) .

3.4. Abstract 2-cells and homotopies. In particular, if C is an Ab-category,
a 2-Ab-category as defined in [5] and [7] is obtained in this way; in that case the
functor hom is in fact a functor

hom : Cop ×C −→ Ab.

Giving a 2-cell structure is then to give a functor (usually required to be an Ab-
functor) H : Cop ×C −→ Ab, and a natural transformation D : H −→ hom. This
2-cell structure makes C a 2-category (in fact a 2-Ab-category) if in addition the
condition (3.4) is satisfied, which in the abelian context simplifies to D (y)x =
yD (x). Furthermore, as proved in [5], every 2-cell structure (if enriched in Ab) is
obtained in this way.

Of course, these considerations are also valid for any monoidal category V,
except that in general not all 2-cell structures are obtained in this way.

3.4.1. The case of Abelian Chain Complexes. The example of abelian chain
complexes (say of order 2 to simplify notation) is self explanatory (see also [13],[14]
and references there). We have objects, morphisms and 2-cells (homotopies) as
displayed

(3.6) A2
d //

g2

��
f2

��

A1
d //

g1

��
f1

��

t2

~~}}
}}

}}
}}

A0

g0

��
f0

��

t1

~~}}
}}

}}
}}

A′
2

d // A′
1

d // A′
0

with

dt1 = g0 − f0

t1d + dt2 = g1 − f1

t2d = g2 − f2

104 N. MARTINS-FERREIRA

or equivalently

g0 = dt1 + f0

g1 = t1d + dt2 + f1

g2 = t2d + f2

and hence we have, for C =2-Ch(Ab), the functor

H : Cop ×C −→ Ab

sending the pair of objects (A, A′) to the abelian group of pairs (t2, t1); and the
natural transformation

D : H −→ hom

sending a pair (t2, t1) as above to the triple (t2d, t1d + dt2, dt1) displayed as follows

A2
d //

t2d

��

A1
d //

t1d+dt2

��

A2

dt1

��
A′

2
d // A′

1
d // A′

0

.

This is in fact an instance of the above construction, however, condition

D(x)y = xD(y)

is not satisfied in general, and it becomes, for x = (t2, t1), y = (s2, s1)

(t2ds2, dt2s1 + t1ds1) = (t2ds2 + t2s1d, t1ds1)

which holds if t2s1 = 0, but not in general.
The commutator (see below) in this case is

[x, y] = (−t2s1d, dt2s1) .

3.5. Abstract 2-cells and commutators. Previous examples apply to ar-
bitrary (even large) categories, provided they admit the functors and the natural
transformations as specified. Interesting examples also appear if one tries to partic-
ularize the category C. For example if C has only one object, or if it is a preorder;
the first case gives something that particularizes to a (strict) monoidal category
(with fixed set of objects) in the presence of the naturality condition; while the sec-
ond case gives something that particularizes to an enriched category over monoids.
The simplest case, when C=1, gives Monoids and Commutative Monoids under the
naturality condition; so in particular, if considering only invertible 2-cell structures
the result is Groups and Abelian Groups, respectively.

The well known reflection

Gr
I
−→ Ab,

accordingly to G. Janelidze, generalizes to a reflection

2-cellstruct(C)
I
−→ nat-2-cellstruct(C)

from the category of 2-cell structures over C, into the subcategory of natural 2-cell
structures over C, sending each 2-cell structure to its “naturalization”; and, under

ON PSEUDOCATEGORIES IN A CATEGORY WITH A 2-CELL STRUCTURE 105

the assumption that all the 2-cells are invertible, one may consider for each

A
��
BBB

��
BBC

y

��

x

��

the commutator

[x, y] = (c1 + d2 − d1 − c2) (x, y)

= c1 (x, y) + d2 (x, y)− d1 (x, y)− c2 (x, y)

where

c1 (x, y) = cod (x) y , c2 (x, y) = x cod (y)

d1 (x, y) = dom (x) y , d2 (x, y) = xdom (y) ,

and the comparison with 0cod(x) cod(y) tell us the obstruction that x and y offer to
be horizontally composed.

We will not developed this concept further, at the moment we are only observing
that in the case of C being an Ab-category (see [5],[7] and Section 3.4 above) the
notion of commutator reduces to

[x, y] = D (x) y − xD (y) .

In fact the notion of 2-Ab-category (as introduced in [5]) may be pushed further
in the direction of a sesquicategory enriched in any category A with a “forgetful”
functor into Sets.

It is a simple generalization of Section 3.3 above and it is as follows.
For a category A with a “forgetful” functor into Sets, U : A −→Sets, assume

the existence of a functor
map : Cop ×C −→ A

such that
homC (A, B) ⊆ Umap (A, B)

(as in Section 3.3).
If A were monoidal and C a category enriched in A then we would always be

in the above conditions, simply by choosing map = hom. It is then reasonably to
say that, in this more general context, the category C is weakly enriched in A (for
example, in this sense, Groups are weakly enriched in Groups, and every algebraic
structure is weakly enriched in itself). In this conditions, we may be interested in
considering only 2-cell structures over C that are “weakly enriched” in A in the
same way as C is. This concept is obtained if considering only the 2-cell structures
that are given by

H (A, B) = {x ∈ UM (A, B) | U dom x, U cod x ∈ hom (A, B)}

for some M,dom, cod being part of an internal category object in AC
op

×C, of the
form

M ×map M
+
−→M

dom−−→
0
←−
−→
cod

map,

with the obvious restrictions after applying U .

106 N. MARTINS-FERREIRA

It is interesting now to observe that in the case of A = Grp the result of this
is precisely the construction of Section 3.3. If A =Ab and also requiring M to be
an Ab-functor, then the result is a 2-Ab-category if also adding the condition

D (x) y = xD (y)

for all appropriate x and y.
3.5.1. The one-object case. In the case of a one object category, we may identify

it with a monoid, say M and hence giving a 2-cell structure (let us say in the context
of Section 3.2 with Ab instead of Mon, for simplicity) over it is to give (see also
Proposition 1) an abelian group H (where M acts on the left and on the right) and
a map

D : H ×M −→M

satisfying

D (0, f) = f

D (x́ + x, f) = D (x′, D (x, f))

which is simply an action of the group H on the monoid M . Note that by naturality
of D we also have gD (x, f)h = D (gxf, gfh). The commutator in this case is given
by

[x, y] = D (y, g) x + yf − yD (x, f)− gx.

In the case D is the trivial action we obtain the familiar notion of M semimod-
ule.

4. Morphisms between 2-cell structures and cartesian 2-cell structures

For a fixed category C, there is the category 2-cellstruct(C) of all possible 2-cell
structures over C, as well as the subcategory nat-2-cellstruct(C) of natural 2-cell
structures over C and inv-2-cellstruct(C) of all the invertible 2-cell structures over C.
The category 2-cellstruct(C) has a initial object (the discrete 2-cell structure) and a
terminal object (the codiscrete 2-cell structure). If C is of the form Cat(B) for some
category B, it also has the canonical 2-cell structure of internal transformations and
the canonical natural 2-cell structure of internal natural transformations.

4.1. The category of 2-cell structures over a fixed category C. The
objects of 2-cellstruct(C) are of the form

H = (H,dom, cod, 0,+)

where

H : Cop ×C −→ Set

is a functor and

H ×hom H
+
−→ H

dom−−→
0
←−
−→
cod

homC

are natural transformations, such that

(homC, H, dom, cod, 0,+)

ON PSEUDOCATEGORIES IN A CATEGORY WITH A 2-CELL STRUCTURE 107

is a category object in the functor category SetCop×C ,or , in other words, is an
object in Cat

(

SetC
op×C

)

.
A morphism ϕ : H −→ H′ is a natural transformation

ϕ : H −→ H ′

such that

dom′ ϕ = dom

cod′ ϕ = cod

ϕ0 = 0′

ϕ+ = +′ (ϕ× ϕ) .

We will often write simply H to refer to a 2-cell structure, whenever confusion is
unlikely to appear.

The purpose of describing 2-cellstruct(C), the category of all 2-cell structures
over a given category C, is the study of pseudocategories in C. The notion of pseu-
docategory in a category C depends of the 2-cell structure considered over C. For
example, a pseudocategory in C with the codiscrete 2-cell structure is a precate-
gory, while, if considering the discrete 2-cell structure, it is an internal category. It
seems to be interesting to study, for a given category C, how the notion of pseudo-
category changes from a precategory to an internal category by changing the 2-cell
structure considered over C. This topic was studied in [9] for the case of weakly
Mal’cev sesquicategories.

Also, every morphism

(4.1) ϕ : H −→ H ′

in 2-cellstruct(C) induces a functor

(4.2) PsCat (C, H) −→ PsCat (C, H ′)

from pseudocategories in C relative to the 2-cell structure H to pseudocategories
in C relative to the 2-cell structure H ′.

In some future work we plan to investigate the notion of equivalent 2-cell struc-
tures, saying that (4.1) is an equivalence whenever (4.2) is, and relate it with
homotopy theory.

The notion of a pseudocategory ([6],[5]) rests in the construction of the induced
2-cells between pullback objects, thus the following definition.

4.2. Cartesian 2-cell structure. It will be useful to consider 2-cell struc-
tures such that the functor H (D,) : C −→ Set preserves pullbacks for every object
D in C, that is: the functor

H : Cop ×C −→ Set,

giving a 2-cell structure to a category C, has the following property

H
(

D,A×{f,g} B
)

ϕ
∼= {(x, y) ∈ H (D,A)×H (D,B) | fx = gy}

for every object D in C and pullback diagram

A×C B
π2 //

π1

��

B

f

��
A

g // C

,

108 N. MARTINS-FERREIRA

where ϕ is required to be a natural isomorphism, that is, for every h : D −→ D′,
the following square commutes

H(D,A×C B)
∼=ϕ //

H(h,1)

��

{(x, y) | fx = gy}

��
H(D′, A×C B)

∼=ϕ // {(x′, y′) | fx′ = gy′}

or in other words, that

〈x, y〉h = 〈xh, yh〉

as displayed in the diagram below

D′ h // D
y

!)

<x,y>
G

G
G

G

�'G
G

G
G

x

�$

A×C B //

��

B

g

��
A

f
// C

.

In particular, for D = A′ ×C′ B′, and appropriate x, y, z as in

A′

x

��

A′ ×′
C B′

π′

1oo π′

2 //

x×zy

��

B′

y

��

, C ′

z

��
A A×C B

π1oo π2 // B , C

,

it follows that x ×z y is the unique element (2-cell) in H (A′ ×C′ B′, A×C B) sat-
isfying

π2 (x×z y) = yπ′
2

π1 (x×z y) = yπ′
1.

Let C be a category.

Definition 5 (cartesian 2-cell structure). A 2-cell structure (H,dom, cod, 0,+)
over the category C is said to be Cartesian if the functor H (D,) : C −→ Set
preserves pullbacks for every object D in C.

5. Pseudocategories

The notion of pseudocategory (as introduced in [6]) is only defined internally
to a 2-category. Here we extend it to the more general context of a category with
a 2-cell structure (or sesquicategory).

First consider three leading examples.
In any category C, it is always possible to consider two different 2-cell struc-

tures, namely the discrete one, obtained when H = hom and dom, cod, 0,+ are all
identities, and the codiscrete one, obtained when H = hom×hom, dom is second
projection, cod is first projection, 0 is diagonal and + is uniquely determined. A
pseudocategory in the first case is an internal category in C, while in the second
case is simply a precategory in C.

ON PSEUDOCATEGORIES IN A CATEGORY WITH A 2-CELL STRUCTURE 109

In the case of C = Cat, and choosing the natural transformations to be the
2-cell structure, a pseudocategory becomes a pseudo-double-category (see [6] and
references there), which is at the same time a generalization of a double-category
and a bicategory.

At this level of generality, it becomes clear that there is no particular reason
why to prefer a specific 2-cell structure in a category instead of another.

For instance, in Top it is usually considered the 2-cell structure obtained from
the homotopy classes of homotopies, but others may be consider as well.

Let C be a category with pullbacks and a cartesian 2-cell structure (H,dom, cod, 0,+)
defined over it.

Definition 6. A pseudocategory in C, with respect to the 2-cell structure
(H,dom, cod, 0,+), is a system

(C0, C1, d, c, e, m, α, λ, ρ)

where C0, C1 are objects, d, c, e, m are morphisms, displayed as

C2
m // C1

d //

d
// C0eoo , de = 1 = ce, dm = dπ2, cm = cπ1

and α, λ, ρ are natural and invertible 2-cells, in the sense that

α ∈ H (C3, C1) and λ, ρ ∈ H (C1, C1)

with

dom (α) = mm1 , cod (α) = mm2

dom (λ) = me2 , dom (ρ) = me1 , cod (λ) = 1C1
= cod (ρ)

satisfying the following conditions

dλ = 0d = dρ

cλ = 0c = cρ

dα = 0dπ2p2
, cα = 0cπ1p1

λe = ρe

m (α× 01) + α (1×m× 1) + m (01 × α) = α (m× 1× 1) + α (1× 1×m)

(5.1)

m (ρ× 01) + αi0 = m (01 × λ) ,(5.2)

with C2, C3, π1, π2, p1, p2 obtained by the pullback squares

C2
π2 //

π1

��

C1

c

��
C1

d // C0

C3
p2 //

p1

��

C2

π1

��
C2

π2 // C1

110 N. MARTINS-FERREIRA

and e1, e2, m1, m2, i0 the following induced morphisms

e1 = 〈1, ed〉 : C1 −→ C2

e2 = 〈ec, 1〉 : C1 −→ C2

m1 = 1×m : C3 −→ C2

m2 = m× 1 : C3 −→ C2

i0 = 〈e1, e2〉 : C2 −→ C3.

Some remarks:
A 2-cell x ∈ H (A, B) is invertible when there is a (necessarily unique) element

−x ∈ H (A, B)

such that dom (x) = cod (−x) , cod (x) = dom (−x) and

x + (−x) = 0cod(x) , (−x) + x = 0dom(x);

A 2-cell x ∈ H (A, B) is natural when

(5.3) cod (x) y + xdom (y) = x cod (y) + dom (x) y

for every element y ∈ H (X, A) for every object X in C.
The 2-cells α, λ, ρ may also be presented as

C3

mm1

##

mm2

;;C1α

��
, C1

me2

##

1

;;C1λ

��
, C1

me1

##

1

;;C1ρ

��
.

Equations (5.1) and (5.2) correspond to the internal versions of the famous MacLane’s
coherence pentagon and triangle, presented diagrammatically as follows

(5.4) •
m(0C1

×C0
α)

//

α(1C1
×C0

1C1
×C0

m)

����
��
��
��
��
��
�

•

α(1C1
×C0

m×C0
1C1

)

��0
00

00
00

00
00

00

•

α(m×C0
1C1

×C0
1C1

)

 B
BB

BB
BB

BB
BB

BB
BB

B •

m(α×C0
0C1

)

~~||
||

||
||

||
||

||
||

•

(5.5) •
αi0 //

m(0C1
×C0

λ) ��@
@@

@@
@@

•

m(ρ×C0
0C1

)����
��

��
�

•

ON PSEUDOCATEGORIES IN A CATEGORY WITH A 2-CELL STRUCTURE 111

and restated in terms of generalized elements as

(pentagon) f(g(hk))
fαg,h,k //

αf,g,hk

zzuuu
uu

uu
f((gh)k)

αf,gh,k

$$I
II

II
II

(fg)(hk)

αfg,h,k **TTTTTTTTTTTT
(f(gh))k

αf,g,hkttjjjjjjjjjjjj

((fg)h)k

(midle triangle) f(1g)
αf,1,g //

fλg ""D
DD

DD
DD

D
(f1)g

ρf g
||zz

zz
zz

zz

fg

where m 〈f, g〉 = fg.
To check that a given 2-cell x ∈ H (A, B) is natural is, in general, a complicated

task: we have to analyze equation (5.3) for every possible y. On the other hand,
removing naturality conditions for α, λ, ρ, we loose the Coherence Theorem [4]
and there is no longer guaranteed that for example the following diagrams are
commutative

(5.6) 1(fg)
α1,f,g //

λfg ""D
DD

DD
DD

D
(1f)g

λf g||zz
zz

zz
zz

fg

(5.7) f(g1)
αf,g,1 //

fρg ""D
DD

DD
DD

D
(fg)1

ρfg||zz
zz

zz
zz

fg

.

This diagrams, when internalized, correspond, respectively, to the following equa-
tions

m (λ× 0C1
) + αi2 = λm,

ρm + αi1 = m (0C1
× ρ)

and since the 2-cells are invertible, the above set of equations may be presented as

αi2 = −m (λ× 0C1
) + λm,

αi1 = −ρm + m (0C1
× ρ) .

Now, in the context of a weakly Mal’cev sesquicategory, as it is proved in [9],
the 2-cell α is uniquely determined by αi2 and αi1 and hence it only depends on
λ, ρ and m.

This suggests to consider a (non natural) version of a pseudocategory in a
sesquicategory.

Let C be a category with pullbacks and a cartesian 2-cell structure (H,dom, cod, 0,+)
defined over it.

112 N. MARTINS-FERREIRA

A (non natural) pseudo category internal to C and relative to the 2-cell struc-
ture (H,dom, cod, 0,+) is a system

(C0, C1, d, c, e, m, α, λ, ρ)

where C0, C1 are objects, d, c, e, m are morphisms as in the definition above, and, α, λ, ρ
are invertible 2-cells α ∈ H (C3, C1) and λ, ρ ∈ H (C1, C1) satisfying the following
conditions (with C2, C3, π1, π2, p1, p2, e1, e2, m1, m2, i0 defined as above)

dom (α) = mm1 , cod (α) = mm2

dom (λ) = me2 , dom (ρ) = me1 , cod (λ) = 1C1
= cod (ρ)

dλ = 0d = dρ

cλ = 0c = cρ

dα = 0dπ2p2
, cα = 0cπ1p1

λe = ρe

m (α× 01) + α (1×m× 1) + m (01 × α) = α (m× 1× 1) + α (1× 1×m)

(5.8)

αi0 = −m (ρ× 01) + m (01 × λ)(5.9)

αi2 = −m (λ× 0C1
) + λm(5.10)

αi1 = −ρm + m (0C1
× ρ) ,(5.11)

(5.12) λ ◦ λ, λ ◦ ρ, ρ ◦ ρ, ρ ◦ λ.

Of course that in the case α, λ, ρ are natural 2-cells then the last three conditions
are redundant and we obtain Definition 6 above.

6. Conclusion

We conclude this note by giving three results of application.
The first example is an instance of section 3.1, the second example is an appli-

cation of section 3.2, while the third one is from 3.4.
In the setting of section 3.1, let B be a weakly Mal’cev category (see [8],

or simply assume that B is a Mal’cev category) and consider C =Cat(B) and
(H,dom, cod, 0,+) as in section 3.1.

In particular, C as above with internal transformations (not necessarily natu-
ral), is a weakly Mal’cev sesquicategory and the following result is proved in [9].

Theorem 1. A (non natural) pseudo category internal to C and relative to the
specific 2-cell structure as above, satisfying the additional condition

λe = 0e = ρe

is completely determined by a reflexive graph in C

C1

d //

c
// C0eoo , de = 1C0

= ce

together with 2-cells
λ, ρ ∈ H (C1, C1)

satisfying the following conditions,

cod (λ) = 1C1
= cod (ρ)

ON PSEUDOCATEGORIES IN A CATEGORY WITH A 2-CELL STRUCTURE 113

dλ = 0d = dρ

cλ = 0c = cρ

λe = 0e = ρe

and furthermore it is equipped with a morphism

m : C2 −→ C1

uniquely determined by
me1 = u , me2 = v

and a 2-cell α ∈ H (C3, C1), uniquely determined by

αi1e1 = −ρu , αi2e1 = −uλ + λu , αi2e2 = λv

where v = dom (λ) and u = dom (ρ).

Note that this result reflects the striking fact that, in this case,

5.10 + 5.11 + 5.12⇒ 5.8 + 5.9,

and if α, λ, ρ are natural then the description above is in fact a pseudocategory.
The second example describes pseudocategories in Groups, and it gives the

notion of crossed module with the freedom to choose an element δ in the centre of
X.

If considering the category of Groups with the 2-cells structure given by deriva-
tions as in 3.2 then an internal pseudocategory is completely determined by a group
homomorphism

X
∂
−→ B,

an action of B in X (denoted by b ·x) and a distinguished element in X, δ satisfying
the following conditions

∂δ = 0

x = δ + x− δ

∂ (b · x) = b∂ (x) b−1

∂ (x) · x̄ = x + x̄− x.

Where the objects are the elements of B, the arrows are pairs (x, b) : b −→ ∂x + b
and the composition of (x′, ∂x + b) : ∂x+b −→ ∂x′+∂x+b with (x, b) : b −→ ∂x+b
is (x′ + x− λ + b · λ, b) : b −→ ∂x′ +∂x+ b. The isomorphism between (0, ∂x + b)◦
(x, b) = (x, b) ◦ (0, b) and (x, b) is the element (δ, 0) ∈ X ⋊ B. Associativity is satis-
fied, since (x′′, ∂x′ + ∂x + b)◦((x′, ∂x + b) ◦ (x, b)) = ((x′′, ∂x′ + ∂x + b) ◦ (x′, ∂x + b))◦
(x, b) .

In the case of an additive category A with kernels and a 2-cell structure given
by an Ab-functor

H : Aop ×A −→Ab

and a natural transformation

D : H −→ homA

and using the notation
[x, y] = D (x) y − xD (y)

a pseudo category is completely determined by

A
h
−→ B

114 N. MARTINS-FERREIRA

λ, ρ ∈ H (A, A)

η ∈ H (B, A)

hλ = 0

hρ = 0

hη = 0

where α is given by (5.9) , (5.10) and (5.11) and (5.8) translates to

(1−Dρ) [ρ, ρ] = 0

Dλ [ρ, ρ] = Dρ [λ, ρ] + (1−Dρ) [ρ, λ]

(1−Dλ) [λ, ρ] + Dλ [ρ, λ] = Dρ [λ, λ] + (1−Dρ) [ρ, η]h

(1−Dλ) [λ, λ] = (1−Dλ) [λ, η]

(1−Dρ−Dλ) [λ, η] = (1−Dρ−Dλ) [ρ, η]

which is trivial as soon as we introduce (5.12).
The pseudocategory thus determined is of the form (see [5])

A⊕A⊕B
m
−→ A⊕B

(0 1)
−−→
(0

1)
←−−−→
(δ 1)

B

m =

(

f g h
0 0 1

)

g = 1−D (λ)

f = 1−D (ρ)

h = −D (η)

α =

(

α1 α2 α3 α0

0 0 0 0

)

α1 = −fρ

α2 = λ + gρ− ρ− fλ

α3 = gλ− fηδ

α0 = gη − fη

λ =

(

λ η
0 0

)

ρ =

(

ρ η
0 0

)

.

In particular the category of abelian chain complexes is of this form.
Another example of this form is the case of TAG, Topological Abelian Groups.
Let C = TAG the category of topological abelian groups with the 2-cell struc-

ture given by

H (X, Y) = {α : I ×X −→ Y | α is continuous, α (0,) = 0 and α (t,) is a homomorphism} / ∼

where I is the unit interval and the equivalence ∼ is defined by

α ∼ β

ON PSEUDOCATEGORIES IN A CATEGORY WITH A 2-CELL STRUCTURE 115

if and only if α (1,) = β (1,) = h, there is Φ : I × I ×X −→ Y , continuous and
such that

Φ (0, ,) = α

Φ (1, ,) = β

Φ (s, 0,) = 0

Φ (s, 1,) = h

and Φ (s, t,) is a homomorphism.
The natural transformation D : H −→ hom is given by

D ([α]) = α (1,)

with

(g[α]f) (t, x) = g (α (t, f (x))) .

We have

[α]D ([β]) = D ([α]) [β]

because

αD (β) ∼ D (α) β ⇔ α (t, β (1, x)) ∼ α (1, β (t, x))

and there is

Φ (s, t, x) = α
(

t(1−s), β (ts, x)
)

.

¿From [5] we now conclude that a pseudocategory in TAG (with the 2-cell
structure as above) is given by a morphism in TAG

k : A −→ B,

together with

λ, ρ : I ×A −→ A

in H (A, A) and also

η : I ×B −→ A

in H (B, A) satisfying

kρ (t,) = 0, kλ (t,) = 0, kη (t,) = 0.

The objects in the pseudocategory are the points in B while the pseudomorphisms
are pairs (a, b) with domain b and codomain k (a) + b; the composition of

b
(a,b) // b′

(a′,b′) // b′′

is given by the following formula

(a− ρ (1, a) + a′ − λ (1, a′)− η (1, b) , b) .

In particular, if we consider that A is the space of paths in B starting at zero

A = {x : I −→ B | x continuous and x (0) = 0}

with

k (x) = x (1)

116 N. MARTINS-FERREIRA

and choose representatives of λ, ρ and η as

λ (s, x) (t) =

{

x (st)− x (2st) if t 6 1
2

x (st)− x (s) if t > 1
2

ρ (s, x) (t) =

{

x (st) if t 6 1
2

x (st)− x (2st− s) if t > 1
2

η = 0

then we obtain the usual composition of paths

y + x =

{

x (2t) if t 6 1
2

y (2t− 1) + x (1) if t > 1
2

.

References

[1] Crans, S.E: A tensor product for Gray-categories, Theory and Applications of Categories,
Vol.5, No.2, 1999, pp.12-69.

[2] Gray, J.W.: Formal Category Theory: Adjointness for 2-categories, Lecture Notes in Math-
ematics, Springer-Verlag, 1974

[3] Leinster, T.: Higher Operads, Higher Categories, London Mathematical Society Lecture

Notes Series, Cambridge University Press, 2003 (electronic version).
[4] MacLane, S.: Categories for the working Mathematician, Springer-Verlag, 1998, 2nd edition.
[5] Martins-Ferreira, N.: Internal Weak Categories in Additive 2-Categories with Kernels, Fields

Institute Communications, Volume 43, p.387-410, 2004.
[6] Martins-Ferreira, N: Pseudo-categories, JHRS, Vol.1(1), 2006, pp.47-78.
[7] Martins-Ferreira, N.: The (tetra)category of pseudocategories in additive 2-categories with

kernels, Applied Categorical Structures (published in Online First, and to appear in print),
2008.

[8] Martins-Ferreira, N.: Weakly Mal’cev categories, Theory and Applications of Categories, Vol.
21, No. 6, pp 91-117, 2008.

[9] Martins-Ferreira, N.: Low-dimensional internal categorical structures in weakly Mal’cev
sesquicategories, PhD Thesis, 2008.

[10] Street, R.H.: Cosmoi of internal categories, Trans. Amer. Math. Soc. 258, 1980, 271-318
[11] Street, R.H.: Fibrations in Bicategories, Cahiers Topologie et Géométrie Diferéntielle

Catégoriques, 21:111-120, 1980.
[12] Street, R.H.: Handbook of Algebra, chapter Categorical Structures, pages 529–577. Elsevier

Science, 1996.

[13] Bourn, D., ”Another denormalization theorem for the abelian chain complexes”, J. Pure and
Applied Algebra 66, 1990, 229-249.

[14] Brown, R. and Higgins, Ph.J., ”Cubical Abelian Groups with Connections are Equivalent to
Chain Complexes”, Homology, Homotopy and Applications vol. 5(1), 2003, 49-52.

Polytechnic Institute of Leiria

E-mail address: nelsonmf@estg.ipleiria.pt

URL: http://www.estg.ipleiria.pt/~nelsonmf

Two Denotational Interpretations of Proofs in

Classical Logic

François Lamarche and Novak Novaković

LORIA and INRIA Nancy – Grand Est

Abstract. In this paper we present and compare two interpretations
of classical logic proofs in a category of posets and relations, and relate
their behavior to proof nets, extracting meaningful invariants of proofs.
We show that at least one of these interpretation cannot have anything
to do with the Curry-Howard correspondence.

1 Introduction

In this paper we will interpret a minor variation of the Gentzen sequent calcu-
lus for classical logic (obtained by adding the Mix rule of linear logic to LK)
into a certain category whose objects are posets and whose morphisms relations
between them. Although they are very similar these two interpretations have
quite different good and bad points, that we will discuss. We will show that
the interpretations of proofs they allow contain meaningful information about
these proofs, and that this information is closely related to the kind of proof
net which is presented in [LS05b,LS05a]. Some computations we will make will
alow us to conclude that these interpretations cannot follow the Curry-Howard
correspondence.

We have taken pains to make our presentation very elementary; for instance,
although some terminology of category theory is used (and the whole of the
paper is based on a category-theoretical methodology), someone who has only
the barest knowledge of what a category is should be able to read this.

2 The general framework

The starting point for our work is an observation made by several people inde-
pendently, that the well-known interpretation of linear logic in sets and relations
could be extended to one where the sets are generalized to posets; thus there
exists a notion of “relation between posets”, that Lambek once called compar-
isons [Lam94].

Let (M,≤), (N,≤) be posets. A comparison f : M → N is a subset f ⊆
M × N which is down-closed to the left, and up-closed to the right, i.e.,

m f n, m′ ≤ m implies m′ f n

m f n, m ≤ n′ implies m f n′.

117

118 François Lamarche and Novak Novaković

Composition of these maps is the ordinary composition of relations: given F :
M → N and g : N → P

m gf p, if (∃n ∈ N) m f n, n g p′.

The reader should check that this defines a category, that we will denote Cmp.
In other words that composition of comparisons is associative and that every
poset M is equipped with an identity comparison, that acts as a left- and right-
unit, namely IdM = { (m, m′) | m ≤ m′ }—this definition is surprising at first,
but then the “ordinary” identity relation (diagonal) is not a comparison! Or the
reader can look at [Lam07]. In the present paper, we restrict our attention to
the multiplicative fragment of linear logic, since it suffices for our purposes.

We will follow the convention of using the roman typeface for syntactical
objects, say a,A,Γ . . . and ordinary math italics for their semantical counter-
parts (here: posets), like a, A, Γ . . . As for the connectives/operations, we do not
make distinctions between syntax and semantics in notation. This convention
on notation will suffice for purposes of distinguishing between syntactical and
semantical objects, since the only types we will be dealing with are obtained
from primitive types for variables and the operations for connectives.

So the interpretation of formulas goes as:

– as usual, units 1 and ⊥ are interpreted as a (“the”) one-element set {∗}
– each atomic a is interpreted as a chosen poset a;
– for two formulas A,B, tensoring is taking the cartesian product, i.e., the

interpretation of A ⊗ B is A × B, which naturally we will also sometimes
write A⊗B. Notice that this operation is (bi)functorial, in other words, given
comparisons f :A → A′ and g:B → B′ there is a well-defined f ⊗g:A⊗B →
A′ ⊗B′ obtained by taking the cartesian product f × g (and permuting the
order of the posets a little in the product).

– If A interprets the formula A then the interpretation of A⊥ is inverting the
order, i.e. A⊥ = Aop. This is also functorial, but contravariantly so this time:
given f :A → B there is f⊥:B⊥ → A⊥

– par is, therefore, computed as follows: the interpretation of A O B is the
same as that of (A⊥ ⊗ B⊥)⊥, which is

(Aop × Bop)op = A × B = A ⊗ B.

In other words, both tensor and par are cartesian product. There is some
degeneracy, but we are interested in the interpretation of proofs, not prov-
ability.

– the reader should check that we do indeed have the standard (natural) bi-
jection

A ⊗ B → C

A → B⊥
O C.

which defines an adjunction. Going down this “invertible rule” is called currying,
and going up uncurrying. Readers who are knowledgeable about this know we
have shown that Cmp is a ∗-autonomous category [Bar79].

Two Denotational Interpretations of Proofs in Classical Logic 119

Remark 1. Naturally a proof of a formula A is interpreted by a map 1 → A,
which is a certain subset of {∗} × A. But it is only natural to drop the first
factor, and simply think of the denotation of a proof as an up-closed subset of
A. We will do this all the time. Notice that in this view, a proof of A⊥

O B is
just an up-close subset of Aop×B, which is the same as a map A → B according
to our definition.

Let us use these definitions to interpret the one-sided sequent calculus for
multiplicative linear logic (as a matter of fact we also need the Mix rule). Every-
thing in what follows is dictated by the definitions we just gave, provided that
we think of a map A → B as a proof of ⊢ A⊥,B.

⊢ a⊥, a Ida = {(x, y) ∈ a × a | x ≤ y}

⊢ Γ,A,B

⊢ Γ,A O B
O

do nothing

⊢ Γ,A ⊢ B,Σ

⊢ Γ,A ⊗ B,Σ
⊗

given f for Γ × A and g for B × Σ, take f × g

for Γ × A × B × Σ

⊢ Γ,A ⊢ A⊥,Σ

⊢ Γ,Σ
Cut

given f for Γ × A and g for A⊥ × Σ, take
{(γ, δ) | ∃x ∈ A : (γ, x) ∈ f, (x, δ) ∈ g} for Γ × Σ

⊢ Γ ⊢ Σ
⊢ Γ,Σ

Mix
given f for Γ and g for Σ, take f × g

for Γ × Σ.

Notice that in the definition for Cut, the variable x is seen as belonging both
to the poset a and its opposite aop, and the same goes for the Axiom rule. Also
notice that the Mix rule would be presented in the style of the previous section
as a map A ⊗ B → A O B. Naturally since here the tensor coincides with the
par, it is just identity for us.

Some remarks: We will work under the implicit assumption of associativity
of cartesian product, i.e., we will not distinguish between things like (x, (y, z))
and ((x, y), z), even though the corresponding types would actually differ. Con-
sequently, the associativity of the connectives and of the comma in sequents
is implicit. Also, the permutations of the formulas within a sequent, sometimes
made explicit through the Exchange rule of the calculus will not be subject of our
concern. The reason is the fact that we always have at our disposal the obvious
natural isomorphism that permutes formulas within a sequent and commutes
the arguments of a connective. As is usual in semantics, Cuts are automatically
eliminated.

Some notation: we will be using At(X) and At(Γ) to denote set of occurrences
of atoms and negatoms in a formula or a sequent, respectively. When we need
to denote different occurrences of a same atom or formula, we use superscripts,
e.g. a1, a2, . . . while subscripts will be used in the usual way.

The following is easy and will be left to the reader:

120 François Lamarche and Novak Novaković

Proposition 1. The interpretation of any sequent Γ is (
∏

a)a∈At(Γ).

Let us now turn to classical logic. The calculus LC we will use is the same as
in [LS05b]; it can be seen either as the one-sided version of Gentzen’s LK with
Mix added, or as MLL + Mix + Weakening + Contraction.

⊢ Γ,A,A

⊢ Γ,A
Contr

⊢ Γ
⊢ Γ,A

Weak

Having Contraction in the calculus clearly requires the presence of a map ∇A :
AOA → A, with the interpretation of the derivation above just post-composition
with that map. As for Weakening a map ∐A :⊥→ A will clearly do the job. We
add the standard condition that these maps have to obey the same kind of
of associativity, commutativity and identity that we associate to commutative
monoids. To illustrate what this means, look at the two derivations:

⊢ Γ, a1, a2, a3

⊢ Γ, a4, a3
Contra1,a2

⊢ Γ, a5
Contra4,a3

⊢ Γ, a1, a2, a3

⊢ Γ, a3, a4
Contra2,a3

⊢ Γ, a5
Contra3,a4

where the a1, a2, a3 are different occurrences of the same atom. The two deriva-
tions differ in the order the contraction rules have been applied, and it is natural
to want these two proofs to have the same interpretation—what’s the point of
semantics if we can’t get rid of that ugly bureaucracy? This means, we want to
have ∇◦ (∇O Id) = ∇◦ (IdO∇) for every type. Notice that strictly speaking the
types do not agree exactly here; we are applying our rule of not bothering with
the issues related to the not-really-strict associativity of the cartesian product.

Suppose that M is an ordinary set and that m:M ×M → M is an ordinary
binary operation. Instead of the usual equation in x, y and z we could always
write the associativity of m as m◦(m×Id) = m◦(Id×m). The advantage of doing
so is that we can define a monoid using greatly generalized notions of Cartesian
product, to suit our needs, for example replacing ordinary Cartesian product by
O (in the present case it seems that O is still the Cartesian product, but actually
this is not strictly true because the maps are different in Cmp). Thus we can
define a notion of commutative O-monoid, using well-chosen equations between
maps. They are usually presented as commutative diagrams, and the reader can
consult [FP05,FP04,LS05a] and countless other papers for a full display of these
diagrams.

Thus in our model of classical logic every interpretation of a type will come
equipped with a commutative O-monoid structure. Since proofs are defined by
induction, it will suffice to define the monoid structure for the atomics a,b . . .

and negatomics (which, to signal the fact that we are entering classical logic,
will be denoted ā, b̄, . . .) and to give a way to construct a new monoid structure
after applying the connectives. Because of the linear rules we already have, the
poset for A ∧B will obviously be A⊗B = A×B and the one for A ∨B will be
A O B = A × B.

Two Denotational Interpretations of Proofs in Classical Logic 121

Given the O-monoid structure on A and B, we define ∇A∨B : (AOB)O (AO

B) → A O B as the composition:

(A O B) O (A O B)
∼

// (A O A) O (B O B)
∇AO∇A

// A O B.

The isomorphism here is the obvious associativity/permutation isomorphism of
Cartesian products. As for ∐A∨B :⊥→ A ∨ B, we take:

⊥
∼

// ⊥ O ⊥
∐AO∐B

// A O B.

We do the same for conjunction, since here both tensor and par are interpreted
by the Cartesian product. But naturally in general this is not the case, and then
there is no ready-made way to go from (A⊗B)O(A⊗B) to A⊗B. This is solved
by requiring the presence of a natural map (A⊗B)O(A⊗B) → (AOA)⊗(BOB),
which is called Medial. It is natural to make it explicitly part of the logic, and it
actually first appeared as a deduction rule for Deep Inference calculi in classical
logic [Brü03]. For the category-theoretical treatment of the map, independently
of classical logic, the reader can look at [Lam07].

Our interpretation already has negation for atomics, by definition. For a com-
posite formula the O-monoid structure on its negation is obtained recursively,
using de Morgan duality: A ∧ B = A ∨ B and A ∨ B = A ∧ B.

There is some advantage to considering the combined monoid structures
on A,A as a single algebraic structure on the object A. Notice that a map
∇:A O A → A can also be seen, by duality, as a map ∆:A → A ⊗ A, and the
same goes for ∐:⊥→ A, which becomes Π: A → 1. The associativity, commu-
tativity and unit laws can be translated in this “reversed” contexts by duality;
for decades algebraists have called these laws coassociativity, cocoummutativity
and co-unit, while the resulting structure (A,∆,Π) is called a (cocommutative)
comonoid., and the full thing (A,∆,Π,∇,∐) is called a (commutative, cocom-
mutative) bimonoid with ∆ being the diagonal, ∇ the co-diagonal, Π the co-unit
or the projection, ∐ the unit or the co-projection.

Thus, given an object X in an interpretation of linear logic, turning it into
an interpretation of a classical formula amounts to finding a bimonoid structure
on it.

We can finally define the interpretation of Weakening and Contraction (the
reader should keep in mind our convention to identify the proofs with up-closed
subsets):

⊢ Γ
⊢ Γ,A

Weak
given f for Γ take
{(γ1, . . . , γn, ǫ) | (γ1, . . . , γn) ∈ f and ǫ ∈ ∐A} for Γ × A

⊢ Γ,A,A

⊢ Γ,A
Contr

given f for Γ × A × A, take

{(γ, x) | ∃x1, x2 ∈ A : (γ, x1, x2) ∈ f and (x1, x2) ∇A x}
for Γ × A

122 François Lamarche and Novak Novaković

Diagrammatically, the defined maps for Contraction and Weakening can be seen
as compositions

1
f

// Γ
∼

// Γ× ⊥
IdΓ ×∐A

// Γ × A and 1
f

// Γ × A × A
IdΓ ×∇A

// Γ × A.

Before we state the following, easy to prove proposition, notice that the inter-
pretation for the Cut rule we gave before corresponds to the composite

1
f×g

// Γ × A × A⊥ × Σ
IdΓ ×CA×IdΣ

// Γ × Σ

where CA : A ⊗ A⊥ →⊥ is the map {(x, y, ∗) | x ≤ y} which is dual to the
identity 1 → A⊥

O A.

Proposition 2. Let X be a formula and {a1, . . . , an} = At(X). Then the fol-
lowing diagrams commute:

X1 × X2
∇X

// (a3
1 × · · · × a3

n) = X

(a1
1 × · · · × a1

n) × (a2
1 × · · · × a2

n)
∼

// (a1
1 × a2

1) × · · · × (a1
n × a2

n).

∇a1
×···×∇an

OO

Γ × X × X × Σ
CX

// Γ × Σ

Γ × (a1 × · · · × an) × (a1 × · · · × an) × Σ
∼

// Γ × (a1 × a1) × · · · × (an × an) × Σ.

Ca1
×···×Can

OO

Notice that the last diagram commutes modulo obvious isomorphisms that we
choose to omit.

Look at the following derivation:

⊢ a, a ⊢ a, a

⊢ a, a, a, a
Mix

⊢ a, a
2 × Cont.

Seen as a map, and using the equality of tensor and par, this derivation is the
composite ∇a ◦∆a. It is rather easy to construct semantics for which this map is
identity, but much more difficult to get ones for which it is not. The first partially
successful results on this are found in [Lam07]. The point is that we want to keep
track of resources, since this derivation can be seen as the superposition of two
axiom links, not just a single axiom link. In the aformentioned paper, for any
number n a bimonoid is constructed such that superpositions of 1, 2, . . . , n axiom
links (by iteration of the derivation just above) can be distinguished, but since
the bimonoids are finite, there is a ceiling where the count saturates. One aim
of this paper is to construct interpretations where there is no saturation.

Two Denotational Interpretations of Proofs in Classical Logic 123

Recall that a partition on a given set Q can be seen either as an equivalence
relation on Q or as a set R ⊆ P(X) of subsets of Q, whose elements are called
classes. Let Γ be a sequent, along with a proof q of it. By induction on the proof,
we define below a partition Prtq(Γ) on the set At(Γ). In that definition we do
not bother with keeping track explicitly of q:

– if Γ is ⊢ ā, a, then Prt(Γ) = {{ā, a}}
– if Γ has been obtained by application of the tensor or the Mix rule, Prt(Γ)

is the obvious “sum” partition on the disjoint union At(Σ1)⊎At(Σ2), where
Σ1,Σ2 are the premiss sequents of the rule application.

– supposing that A has been added to ⊢ Γ by Weakening, Prt(Γ,A) = Prt(Γ)⊎
{

{a} | a ∈ At(A)
}

, i.e., we add every (neg)atom of A as a singleton class.1

– supposing that ⊢ Γ,A has been obtained by contraction on ⊢ Γ,A1,A2, let

p:At(Γ,A1,A2) −→ At(Γ,A)

be the obvious surjection that identifies pairs of corresponding atoms in the
two occurences of A. Take Prt(Γ,A) to be the smallest partition generated
by the direct image sets { p(U) ⊆ At(Γ,A) | U ∈ Prt(Γ,A1,A2) }. It is
easy to see that if we define the binary relation p(U) ⌢ p(U ′) as p(U) ∩
p(U ′) 6= ∅ then the classes in Prt(Γ,A) are in bijective correspondence with
the connected components of the graph of ⌢ and every class is the union of
the sets in its corresponding component.

– if ⊢ Γ,Σ has been obtained by applying Cut on ⊢ Γ,A and ⊢ A,Σ, we define
Prt(Γ,Σ) as follows. First define an equivalence relation ∼ on At(Γ,A) ⊎
At(A,Σ) as the symmetric-transitive closure of the union of three binary
relations R,S, T , where

• R,S are the equivalence relations associated with the partitions
Prt(Γ,A),Prt(A,Σ) respectively,

• xTy when x = a is a (neg)atom in A and y = ā its corresponding
negation in A.

Prt(Γ,Σ) is then defined as the restriction of the partition determined by ∼
on the subset At(Γ,Σ) ⊆ At(Γ,A) ⊎ At(A,Σ)

This definition can be explained in terms of the proof nets given in [LS05b],
where axiom links are superposed when Contraction is applied, giving rise to a
relation on At(Γ) which is not the usual coupling of ordinary linear proof nets,
but a much more general kind of relation. Supposing first that neither Weakening
nor Cut has been used in a proof of Γ, then the partition Prt(Γ) corresponds
exactly to the set of connected components of the proof net graph associated to
that proof. If a proof contains Weakenings, in our case the atoms are added as
singletons in the graph, while they would simply be ignored in a proof net. It is
simpler for us to define Prt(Γ) that way, instead of as a subpartition (partition
of a subset) of At(Γ).

1 Notice the slight abuse of notation where a is used to denote negatomics as well as
atomics.

124 François Lamarche and Novak Novaković

Proposition 3. Let q be a proof of a sequent ⊢ Γ . Then if f ⊆ Γ =
∏

a∈At(Γ)

is the interpretation of q, there is a family (fU)U∈Prt(Γ) such that f decomposes
as a product of factors

f =
∏

U∈Prt(Γ)

fU where fU ⊆
∏

a∈U

a .

The proof is a quite straightforward induction, making use of Proposition 2.
The meaning of this is that the decomposition associated with the connected

components for a proof net in CL has a simple semantical counterpart, as a
product decomposition instead of a sum decomposition. This is syntactical in-
formation which is retained by the semantics.

The following well-known result (a proof is in [Lam07]) will turn out to be
useful for constructing classes of bimonoids.

Proposition 4. Let (M,≤, ·, e) be a poset which is equipped with a commutative
monoid structure (·, e) such that binary · is ≤-monotone. (A category theorist
would say: let M be a monoid in Poset.) Then if we define ∇ : M × M → M

and ∐ : {∗} → M in Cmp as

(m, n) ∇ p if m · n ≤ p, ∗ ∐ m if e ≤ m

we get a commutative ×-monoid (which is the same, remember, as a O-monoid).
Dually, if we define ∆ : M → M × M and Π : M → {∗} as

m ∆ (n, p) if m ≤ n · p, m Π ∗ if m ≤ e

we get a cocommutative ×-comonoid, i.e., a cocommutative ⊗-comonoid.

As a conclusion, a way to construct bimonoids in Cmp is to find posets
equipped with two monotone monoid structures.

3 An interpretation based on Z

The set Z of integers comes equipped with the two structures we are interested
in: poset (Z,≤) and commutative monoid (Z,+, 0).

So

we assign the poset Z to every atomic type a and thus a = Z.

We have to look for other monoid structures. Can we modify standard addi-
tion as little as possible, so as to keep calculations simple? Yes, since it is well
known that for any number c the operation (x, y) 7→ x + y − c defines a monoid
structure on Z, whose unit is c. As a matter of fact the choice of that unit is
all which is needed to define the rest: look at the order-isomorphic translation

Two Denotational Interpretations of Proofs in Classical Logic 125

x 7→ x+ c, which has inverse x 7→ x− c. We have only defined our new operation
(let us call it +c) by transporting addition along the first iso, i.e.

x +c y =
(

(x − c) + (y − c)
)

+ c . (1)

But this shows that our new monoid (Z,+c, c) is isomorphic to the one we started
with. It seems we haven’t progressed very much. But remember, we are looking
for a new monoid structure, as we already had one!

Let us define a poset-bimonoid to be just that: a sextuple (M,≤,+1, e1,+2, e2)
where (M,≤) is a poset and (+i, ei) two monotone monoid structures for it. It is
obvious what an isomorphism of poset-bimonoids should be: an isomorphism of
posets which is also a monoid isomorphism for both (+1, e1) and (+2, e2). Now
let us look at poset-bimonoids of the form (Z,≤,+e1

, e1,+e2
, e2), as in Equa-

tion (1) for any choice of e1, e2. We will call these translation bimonoids. The
following is very easy to show:

Fact 1 Given two translation bimonoids (Z,≤,+a1
, a1,+a2

, a2) and
(Z,≤,+b1 , b1,+b2 , b2), then they are isomorphic iff a2 − a1 = b2 − b1.

Now that we have this information, we can decide to look only at poset-bimonoids
of the form (Z,≤,+, 0,+c, c) since it gives us all the isomorphism classes of
translation bimonoids by varying c.

What we were interested in in the first place was bimonoids in Cmp.

Proposition 5. If a is a translation bimonoid, then ā is isomorphic to it.

Proof. Suppose for simplicity that c is positive. Then it is used for the co-unit
of the comonoid structure in the negation Z, which has reverse order Z

op, which
makes c the lesser of the two units in the poset-bimonoid, and if we map it to zero
by a translation the whole of the poset-bimonoid structure will be respected.

Thus we end up with an interpretation where atomics and negatomics will be
isomorphic (as in the relational model). But, interestingly, that isomorphism
cannot be an identity unless c = 0.

Let us recapitulate. Choose c, and define

(j, k) ∇a i if j + k ≤ i + c; ∗ ∐a i if c ≤ i.

i ∆a (j, k) if i ≤ j + k; i Πa ∗ if i ≤ 0;

And now Da = ∇ ◦ ∆ = {(x, y) | ∃i, j : x ≤ i + j, i + j ≤ y + c } = {(x, y) | x ≤
y + c }. Then it is easy to see that Dn

a = {(x, y) | x ≤ y + n · c }, and therefore
the composition of the doubling map with itself will never stabilize.

3.1 More computations

So computing proofs in this interpretation is rather easy. Again, choose one
atomic a along with an interpretation a = (Z,≤,+, 0,+c, c).

126 François Lamarche and Novak Novaković

We will make use of the fact that the relation x ≤ y in a is equivalent to
(−x) + y ≥ 0 and that x ≤ y in aop is equivalent to (−x) ≤ (−y) in a. This
allows us to work with a single order structure, the standard one in Z, and not
have to deal with its opposite, which is required in general, and makes things
very confusing when, as here, the ordering and its opposite are isomorphic.

Theorem 1. Let f be a proof of a sequent ⊢ Γ . Then every factor fj of the
decomposition

f = f1 × f2 × . . . × fN ,

of Proposition 3 is of the form

fj = {(x1, . . . , xn, y1, . . . , ym) ∈ an+m | (−x1)+. . .+(−xn)+y1+. . .+ym ≥ Mjc}

where a1, ā2, . . . , ān, a1, . . . , am is an enumeration of the (neg)atomics of the class
Uj ∈ Prt(Γ) and Mj an integer.

That integer M has to do with the number of contractions that were performed
in the proof q and the number of atoms that came into existence through Weak-
ening. A more detailed discussion of the relationship between M and q will be
provided in the journal version of the paper; right now we will content ourselves
with examples. But let us mention that singleton elements of Prt(Γ) are either
of the form {y ≥ c} for positive atoms or of the form {−x ≥ 0} for negative
ones.

Let us now try our hand at Church numerals. First, write the type (a ⇒
a) ⇒ (a ⇒ a) as the sequent ⊢ ā, a ∧ ā, a, where there cannot be any ambiguity
about the way the atomics are reordered.

The proofs we are dealing with are of the form

n × ∧

⊢ a, a
Ax

⊢ a, a
Ax

⊢ a, a ∧ a, a
∧

⊢ a, a
Ax

⊢ a, a ∧ a, a ∧ a, a
∧

⊢ a, a ∧ a, a
Contr

...
⊢ a, a ∧ a, a ∧ a, a

Contr
⊢ a, a

Ax

⊢ a, a ∧ a, a ∧ a, a
∧

⊢ a, a ∧ a, a
Contr

⊢ a, a
Ax

⊢ a, a ∧ a, a ∧ a, a
∧

⊢ a, a ∧ a, a
Contr

for encoding the numeral n.

Let us see what this gives in our interpretation.

Two Denotational Interpretations of Proofs in Classical Logic 127

Starting with a concrete numeral, say, n = 3

⊢ a0, a0 Ax
⊢ a1, a1 Ax

⊢ a0, a0 ∧ a1, a1
∧

⊢ a2, a2 Ax

⊢ a0, a0 ∧ a1, a1 ∧ a2, a2
∧

⊢ a0, a3 ∧ a3, a2 Contr
⊢ a4, a4 Ax

⊢ a0, a3 ∧ a3, a2 ∧ a4, a4
∧

⊢ a0, a5 ∧ a5, a4 Contr

its proof is computed as follows, following the leftmost branch in the proof tree:

{−x0 + y0 ≥ 0}
H

{−x0 + y0 ≥ 0} × {−x1 + y1 ≥ 0}
H

{−x0 + y0 ≥ 0} × {−x1 + y1 ≥ 0} × {−x2 + y2 ≥ 0}
H

{−x0 − x3 + y2 + y3 ≥ −c}
H

{−x0 − x3 + y2 + y3 ≥ −c} × {−x4 + y4 ≥ 0}
H

{−x0 − x5 + y4 + y5 ≥ −2c}

The third and the fifth transition require some comments. When contracting
a0∧a1, a1∧a2 two atomic contractions are conducted, one on the positive atoms
a0, a1, which is the one that adds c, and the other one on the negatoms a1, a2

whose contraction monoid is plain addition in Z, and thus does not modify the
constants M .

It is not difficult to conclude now that in general, given a positive n its Church
numeral is (where the use of superscripts naturally follows from above):

{−x0 − x2n−1 + y2n−2 + y2n−1 ≥ −(n − 1)c }.

Recall that if two Church numerals are seen as maps n, m: (a ⇒ a) → (a ⇒ a)
then multiplying them amounts to composing these two maps, i.e., is obtained
through a Cut. A simple computation will show that this operation will give the
numeral n + m − 1.

This is definite evidence that the interpretation we have built has nothing
to do with the Curry-Howard correspondence. A multiplication which acts addi-
tively as it does here shows that the interpretation of terms cannot correspond
to functional programs, since the Curry-Howard interpretation of a Church nu-
meral n is the iterator functional “compose an endofunction n times with itself”,
and composing the iterators for n and m can only give the iterator for nm.

3.2 Discussion

We had seen that in general an interpretation of a classical proof in Cmp could
be decomposed as a Cartesian product sets, each of which corresponds to a con-

128 François Lamarche and Novak Novaković

nected component Uj of the graph of axiom links of the associated proof net. We
now see that the information contained in our Z-interpretation consists in that
decomposition, along with a natural number Mj which is associated to every
connected component Uj , related to the Contractions and Weakenings that were
effected, and nothing else. This suggests a class of proof nets where the binary
relation determined by axiom links would be replaced by an undifferentiated
“blob”, just a set of atomics and negatomics of the same type, with a number
associated to it. There is no guarantee that such proof nets would have a correct-
ness criterion, and more research has to be done about this. Another research
problem which arises from this is to see if this numerical invariant associated to
blobs is a direct consequence of the fact that the bimonoid we have constructed
is actually a Frobenius algebra [Hyl04] (Frobenius algebras are a specific class of
bimonoids that usually live in categories of vector spaces, but nothing prevents
them from being defined in Cmp, in the same way we did for bimonoids).

It is also interesting to notice the incontrovertible evidence that there are
valid, normalizing semantics of proofs that have nothing to do with the Curry-
Howard correspondence.

3.3 Interpretations and Semantics

In what precedes we have used the word “semantics” a few times, but always
in the generic sense, as in “semantics of proofs”. But the actual constructions
were called “interpretations”. There is a reason for that. We ask of a semantics
to be something stronger than an interpretation. Although it is hard to pinpoint
exactly when an interpretation actually becomes a semantics, it should obey a
general principle to make the grade:

True semantical objects should exist independently of syntax.

Let us illustrate this principle by supposing that we have constructed a category
C and want to use it as a semantics for logic L. Then an immediate consequence
of the general principle is that

Every morphism f :A → B in C should be a proof of a theorem A ⊢ B.

Naturally this means that C will not in general be a pure model of L, in other
words that it will contain “non-logical” axioms. We have already seen a quite
strong example of this, since we have been accepting A ⊗ B ⊢⊣ A O B in our
models of linear logic. But despite the presence of such axioms (they are not
wanted by purists, but they can be a source of inspiration for creating logics)
this requirement puts strong constraints on the category C.

Keeping this general principle in mind, let us emphasize that there is a very
important difference between semantics and ordinary syntax. A syntactic object
exists to be written down, and the result of this is that in a formula like A⊗A,
we can distinguish between the first A and the second one, simply because we
write linearly and (westerners at least) read from left to right. But there is no
such information in A⊗A, if it is seen as an object of a category. It is equipped

Two Denotational Interpretations of Proofs in Classical Logic 129

with a non-trivial involution ρ:A ⊗ A → A ⊗ A, ρ ◦ ρ = Id corresponding to
exchanging both factors of the tensor. This means that there is no way to dis-
tinguish between “left factor” and “right factor” when we look at the result of
a commutative operation like tensor in a semantical category. Some additional,
extra-semantical information is required. This creates potential problems: sup-
pose in general that α:B → B is an isomorphism of an object onto itself—a
permutation—in a model of classical logic of the sort we have been discussing.
This is a very general definition: it is just saying that there is an inverse α−1 with
α◦α−1 = α−1◦α = IdB . Now look at the contraction (codiagonal) ∇:BOB → B

on B. Using α we can create a new contraction by using once again “transport
of structure”, i.e., defining ∇′ as α ◦ ∇ ◦ (α−1 ⊗ α−1). If we also do this for
weakening (i.e., ∐′ = α ◦ ∐) we will see that the new structure (B,∇′,∐′) will
obey all the equations that hold for (B,∇,∐), and in particular that it will be
a commutative bimonoid. Thus the “choice” problem pops up again, but now it
is much more serious: which of (∇,∐), (∇′,∐′) do we choose when we look at B

and want to interpret contraction on it? There is no way to distinguish them in
our category. Going back to our original example A⊗A with ρ as the permuta-
tion, some easy calculations show that in this particular case the original (∇,∐)
and its version transported with ρ will be identical. Thus this is not a problem
for this example, which can be easily generalized to all composite formulas. But
unfortunately there is a real problem with the atomics in our interpretation. The
maps of the category are the comparisons, and it is easy to see that an order iso
is a comparison—more correctly, can be seen as a comparison through the same
down-closure to the left, up-closure to the right process that we used for iden-
tities. It is easy to see that the order-automorphisms (monotone permutations)
on Z are exactly the translations, as defined above. And we know that given a
translation bimonoid of the form (Z,≤,+, 0,+c, c), which is used to interpret
atomics, and an arbitrary translation x 7→ x + d, then transporting the former
by the latter will give us the translation bimonoid (Z,≤,+d, c + d), which will
be an isomorphic but not identical bimonoid.

This means that there is a little something missing to allow us to declare that
the category of translation bimonoids, with comparisons as maps, is a semantics.
The reader may say “why not instead take a category of bimonoids, along with
some additional information? Say the category whose objects are all translation
bimonoids (Z,≤,+a1

, a1,+a2
, a2, the additional information being the tagging

of every such bimonoid with the pair (a1, a2)?” (we know this pair is enough to
uniquely define all the necessary equipment for contraction, weakening, etc.).

We admit this is a potential solution, but not a very satisfying one. It is
completely ad hoc, and will not help us for any other model we come up with.

4 A semantics based on N

The previous discussion tells us that one way to get that ideal of semantics
instead is to to ensure that all the bimonoids we construct are invariant with
respect to their order-automorphisms. One promising way to achieve this to try

130 François Lamarche and Novak Novaković

to model the atomics with posets that simply have no trivial automorphim. We
also need to work with infinite posets if we want to ensure that the doubling
map D can be iterated at will.

Let us consider the order on non-negative integers, N.

It is clear that the only order-authomorphism of it is the identity.
So first assign N to a fixed atomic type a, restricting our attention to a single

atomic variable.
Choose two natural numbers e1, e2 and let ◦ and ∗ be two binary operations

defined on N as follows:

i ◦ j =

i + j − e1, i, j ≥ e1

max(i + j − e1, 0), i, j < e1

min(i, j), i < e1 ≤ j or j < e1 ≤ i.

and

i ∗ j =

i + j − e2, i, j ≥ e2

max(i + j − e2, 0), i, j < e2

max(i, j), i < e2 ≤ j or j < e2 ≤ i.

Claim. Operations ◦ and ∗ are monotone, and define commutative monoids on
N, with e1 and e2 as units, respectively.

Proof. Commutativity of the operations is trivial to check. The fact that e1 and
e2 are the units also.

Since we have commutativity, the monotonicity of the operations can be
checked by showing that (−) ◦ j and (−) ∗ j are monotone functions, i.e., by
realizing that the following maps are obviously monotone:

for ◦, j ≥ e1 : i 7→

{

i + j − e1, i ≥ e1

i i < e1

for ◦, j < e1 : i 7→

{

max(i + j − e1, 0), i < e1

j i ≥ e1

for ∗, j ≥ e2 : i 7→

{

i + j − e2, i ≥ e1

j i < e1

for ∗, j < e2 : i 7→

{

max(i + j − e2, 0), i < e2

i i ≥ e2.

Associativity has to be checked by cases. For ◦: (i ◦ j) ◦ k = i ◦ (j ◦ k).
If all of i, j, k are not smaller than e1, both sides of the equality are equal to
i + j + k − 2e1. If one of them is smaller than e, both sides are equal to it; if
exactly two of them are smaller than e1, both sides of the equality are equal
to the maximum of 0 and their sum minus e1. Finally, if all three of i, j, k are
smaller than e1, both sides of the equality are equal to max(i + j + k − 2e1, 0).
As for ∗: (i∗j)∗k = i∗ (j ∗k), if all of i, j, k are greater than e2, both sides of the
equality are equal to i+j +k−2e2. If exactly one of them is larger than e2, both

Two Denotational Interpretations of Proofs in Classical Logic 131

sides are equal to it; if exactly two of them are greater than e2, both sides of
the equality are equal to their sum minus e2. Finally, if all three of i, j, k are not
greater than e2, both sides of the equality are equal to max(i + j + k − 2e1, 0).

From this and Proposition 4 follow the monoid structure (∆a,Πa) and the
comonoid structure (∇a,∐a):

x∆a(y, z) iff x ≤ y ◦ y; xΠa∗ iff x ≤ e1;

(y, z)∇ax iff y ∗ z ≤ x; ∗∐ax iff e2 ≤ x.

Let us now compute the doubling map, Da. So far, we made no assumptions
on the units e1 and e2 of ◦ and ∗. In order to simplify the computations, we will
require from now on that 0 < e1 < e2 < 2e1. We will denote e2 − e1 by δ. Notice
that 0 < δ < e1.

As usual, Da = ∇a◦∆a = {(x, y) | ∃i, j : x∆a(i, j), (i, j)∇ay} and this means
Da = {(x, y) | ∃i, j : x ≤ i ◦ j, i ∗ j ≤ y}. We compute all of the pairs (x, y) by
distinguishing cases depending on i, j.

1. i, j < e1. Then: x ≤ max(i + j − e1, 0) and y ≥ max(i + j − e2, 0). By
varying i and j within the range, one obtains {(x, y) | 0 ≤ x ≤ e1 − 2; y ≥
max(0, x − δ)}.

2. i < e1 ≤ j ≤ e2. This time: x ≤ i < e1 and y ≥ max(i + j − e2, 0). Again, by
varying i and j within the range, one obtains {(x, y) | 0 ≤ x ≤ e1 − 1; y ≥
max(0, x − δ)}.

3. i < e1 < e2 < j. In this case, x ≤ i < e1 and y ≥ j > e1. This time, the
resulting relation is {(x, y) | 0 ≤ x ≤ e1 − 1; y ≥ e2 + 1}.

4. e1 ≤ i ≤ j ≤ e2. Then, x ≤ i + j + e1 < e1 and y ≥ max(i + j − e2, 0). The
relation is {(x, y) | 0 ≤ x ≤ e2 + δ; y ≥ max(e1 − δ, x − δ}.

5. e1 ≤ i ≤ e2 < j. One has, x ≤ i + j + e1 and y ≥ j > e2. The relation is
{(x, y) | 0 ≤ x; y ≥ max(e2 + 1, x − δ}.

6. e1 < e2 < i ≤ j. Finally, x ≤ i + j + e1 and y ≥ i + j + e2, and the relation
is {(x, y) | 0 ≤ x; y ≥ max(e2 + 1, x − δ}.

The map Da is union of the sets obtained in 1-6, thus Da = {(x, y) | 0 ≤
x; y ≥ max(0, x − δ)}. Computing Dn

a is easy, Dn
a will be {(x, y) | 0 ≤ x; y ≥

max(0, x − n · δ)}. Looking at the coordinate system, Da corresponds to the
portion of N

2 above y = x−δ, while composing the doubling map with itself can
bee seen as the shifting of the y = x − δ to the right. It is clear that Dn

a never
stabilizes. The previous discussion considered only a single atomic type. We will
now show how to get an infinity of non-isomorphic atomic types.

To that purpose, let us assume that our positive atoms are enumerated:
(ak)k∈N; we can we assign the poset N

+k = {0 < 1 < 2 < . . . < ω + 1 < . . . <

ω + k}, with the obvious abuse of the ordinal notation. In other words ak is the
ordinal sum ω + k.

Notice that this choice for posets fulfills the abovementioned requirements,
i.e. it is clear that the only order isomorphisms between two of these posets

132 François Lamarche and Novak Novaković

Fig. 1. Graph of the doubling map iterated k times - Dk

a .

are identities, since they are canonical representatives of well-founded orders for
different countable ordinals.

The work done so far makes easy now to define the corresponding monoid
and comonoid maps.

Let

i ◦k j =

{

max(i, j), if i ≥ ω + 1 or j ≥ ω + 1,

i ◦ j, if i, j < ω + 1,

and

i ∗k j =

{

max(i, j), if i ≥ ω + 1 or j ≥ ω + 1,

i ∗ j, if i, j < ω + 1,

with
x∆ak (y, z) iff x ≤ y ◦k z; xΠak ∗ iff x ≤ e;

(y, z)∇ak x iff y ∗ z ≤ x; ∗∐ak
x iff e2 ≤ x.

The reader can check that ◦k and ∗k are commutative, associative, monotone
with e1 and e2 as units. This ensures that the monoid and comonoid diagrams
commute.

The doubling map for each of the newly defined bimonoids is not that differ-
ent from the previously analyzed case, i.e. we have

Dn
ak

= {(x, y) | 0 ≤ x < ω +1; y ≥ max(0, x−n · δ)}∪{(x, y) | ω +1 ≤ x; y ≥ x}.

In particular, the Dn
ak

map never stabilizes.
It is obvious that a type like ak∧ak will have a nontrivial order-automorphism,

since we can exchange the left and right side of the Cartesian product. But we
claim these are the only possible automorphisms of these product orders in
general. Since it is well-known that products of commutative-cocommutative bi-
monoids are invariant under these permutations of factors, we will have achieved
our goal of constructing a semantics and not just an interpretation.

Two Denotational Interpretations of Proofs in Classical Logic 133

Theorem 2. Suppose there is an order isomorphism α:X1 × · · · × Xn → Y1 ×
· · · × Ym where every Xi, Yj is either an order of the type ω + k as above or the
opposite of such an order. Then n = m, and there exists a permutation π of
{1, . . . , n} such that α decomposes as a product of isomorphisms Xi → Xπi.

The proof will be given in the final version.

5 Conclusion

In addition to being a real semantics and not just an interpretation, the previ-
ous construction has the advantage that it is much “roomier”, since it contains
many nonisomorphic types. It is also is a finer semantics from the point of view
of the decomposition in connected components, since the stucture it puts on
these components amount to more than just numbers. But the computations
are much more complicated than for the Z-based interpretation, and we are far
from knowing if meaningful proof invariants can be extracted.

In systems or semantics that have the Medial rule, since the Contractions
and Weakenings can be “pushed up” to the atomics, it makes a lot of sense to
consider a proof as a set of disjoint “blob with structure”, i.e. a collection of
sets of atomics and negatomics with some additional mathematical structure on
each such set. We intend to pursue that direction of enquiry.

References

[Bar79] Michael Barr. ∗-Autonomous Categories, volume 752 of Lecture Notes in Math-
ematics. Springer-Verlag, 1979.

[Brü03] Kai Brünnler. Deep Inference and Symmetry in Classical Proofs. PhD thesis,
Technische Universität Dresden, 2003.

[FP04] Carsten Führmann and David Pym. On the geometry of interaction for clas-
sical logic (extended abstract). In 19th Annual IEEE Symposium on Logic in
Computer Science (LICS), pages 211–220, 2004.

[FP05] Carsten Führmann and David Pym. Order-enriched categorical models of the
classical sequent calculus. J. Pure App. Algebra, 204(1):21–68, 2005.

[Hyl04] J. Martin E. Hyland. Abstract interpretation of proofs: Classical propositional
calculus. In Jerzy Marcinkowski and Andrzej Tarlecki, editors, Computer Sci-
ence Logic, CSL 2004, volume 3210 of LNCS, pages 6–21. Springer-Verlag,
2004.

[Lam94] J. Lambek. Bilinear logic in algebra and linguistics. In J.Y. Girard, Y. Lafont,
and L. Regnier, editors, Advances in Linear Logic, volume 222 of London Math.
Soc. Lec. Notes, pages 43–59. Cambridge University Press, 1994.

[Lam07] F. Lamarche. Exploring the gap between linear and classical logic.
submitted to Theory and Applications of Categories, 2007. available at
http://www.loria.fr/˜lamarche.

[LS05a] F. Lamarche and L. Straßburger. Constructing free boolean categories. In
LICS Proceedings. IEEE Press, 2005.

[LS05b] F. Lamarche and L. Straßburger. Naming proofs in classical logic. In
P. Urzyczyn, editor, TLCA Proceedings, volume 3461 of LNCS, pages 246–
261. Springer, 2005.

