
Noname manuscript No.
(will be inserted by the editor)

On the Weber facility location problem with limited

distances and side constraints

Isaac F. Fernandes · Daniel Aloise ·

Dario J. Aloise · Pierre Hansen · Leo

Liberti

Received: date / Accepted: date

Abstract The objective in the continuous facility location problem with lim-
ited distances is to minimize the sum of distance functions from the facility
to the customers, but with a limit on each of the distances, after which the
corresponding function becomes constant. The problem has applications in
situations where the service provided by the facility is insensitive after a given
threshold distance. In this paper, we propose a global optimization algorithm
for the case in which there are in addition lower and upper bounds on the
numbers of customers served.

Keywords facility location · global optimization · reformulation · decompo-
sition

1 Introduction

The continuous minisum single facility problem is one of the most fundamental
problems in location theory. The objective is to locate a single facility in the
plane so that the sum of distances from the facility to a set of demand points
is minimized. The problem is often referred to in the literature as the Weber
(or Fermat-Weber) problem [4,16,18]. It traces back to Fermat in the 17th

I. Fernandes, D. Aloise and D.J. Aloise
Universidade Federal do Rio Grande do Norte, Campus Universitário s/n, Natal-RN, Brazil,
59072-970
E-mail: isaac@syncsistemas.com, daniel.aloise@gerad.ca, aloise@pep.ufrn.br

P. Hansen
GERAD and HEC Montréal, 3000, Chemin de la Côte-Sainte-Catherine, Montréal, Québec,
Canada, H3T 2A7
E-mail: pierre.hansen@gerad.ca

L. Liberti
LIX, École Polytechnique, F-91128, Palaiseau, France
E-mail: leo.liberti@lix.polytechnique.fr

2 Isaac F. Fernandes et al.

century who posed a purely geometrical version of the problem with only three
points. Torricelli, in 1647, is credited to prove that the circles circumscribing
the equilateral triangles constructed on the sides of the triangle formed by
the three given points intersect in the fourth point sought (see [24,26] for a
historical survey).

Drezner, Mehrez and Wesolowsky investigated in [13] the Weber problem
for the case in which the distance functions are constant after given thresh-
old values, which they call the facility location problem with limited distances.
This problem has applications in situations where the service provided by the
facility is insensitive after a given threshold time/distance. For instance, con-
sider the problem of locating a fire station. In this context, each property has
a distance limit after which the service provided by the firemen is useless,
and the property is completely destroyed. An example of this operations re-
search application is provided in [13]. The authors suppose a situation where
a certain damage occurs in a property located in pi for i = 1, . . . , n at zero
distance from the fire station (located at y ∈ R

2), and that this damage lin-
early increases up to a distance λi where the damage is 100%. By denoting
d(pi, y) the distance between point pi and the facility located at y, and Ω
the proportion of damage at zero distance, the proportion of damage in pi is
given by Ω+(1−Ω)d(pi, y)/λi in the case d(pi, y) < λi, and 1 otherwise. The
corresponding facility location problem is then expressed as

min
y∈R2

n
∑

i=1

Ω + (1−Ω)
min{d(pi, y), λi}

λi
(1)

The first term of the summation is constant and (1−Ω) is irrelevant to the sec-
ond term. By introducing binary variables vi, that select between d(pi, y) and
λi, to the summation of the objective function, we end up with the following
minimization problem

min
y∈R2,v∈{0,1}n

n
∑

i=1

1

λi
(λi(1− vi) + d(pi, y)vi) . (2)

Real examples for the application of this location model also include other
types of emergency services (e.g. ambulances, police calls). For example, a
person suffering from a heart attack has more chances to survive if he/she is
quickly treated, and will certainly die if help does not come after a given period
of time. In the case of a police call, criminals would be likely untraceable after
a time limit.

In this work, we study the version of the problem for which there are lower
and upper bounds on the number of demand points that can be served within
the distance limits. This is indeed a natural extension to the model presented
in [13]. In practical applications, a lower bound in the number of served points
may be used to justify the installation of a facility (e.g. it is not reasonable to
construct a fire station that can save only a few properties nearby), while an
upper bound may express the capacity limitations of the service to maintain
an acceptable quality level.

Title Suppressed Due to Excessive Length 3

Another extension to the facility location problem with limited distances
formulated in [13] is presented by Drezner, Wesolowsky and Drezner in [15].
In this paper, the authors formulate a problem in which the distance function
from the demand point is equal to zero up to a first threshold value l, linear
between l and a second threshold distance value u, and constant after u. The
model is equivalent to that of [13] when l = 0. In one hand, the mathemat-
ical developments presented here cannot be used to help solving the global
optimization problem presented in [15], at least not straightforwardly. On the
other hand, adding the side constraints to the model of [15] would require a
considerable effort on investigating new lower and upper bounds to be used in
a specialized branch-and-bound. We decided to work on an extension to the
model of [13] by means of convex exact reformulations in the sense of [20].
This yielded an enumerative algorithm based only on the resolution of convex
problems.

An adjacent facility location problem to the one approached here is the
Maximal Covering Location Problem (MCLP) [8,9,21] which maximizes the
number of demand points covered within a specified critical distance or time
by a fixed number of facilities. Although these models also incorporate facility
distance limitations, they deal with a covering objective function which is
mathematically distinct from the minisum objective. Covering problems are a
chapter apart in the facility location theory (see [3,22,14] for a survey).

The mathematical formulation of the problem approached in this paper is
given in the next section. A global optimization algorithm for it is described
in Section 3. Computational results on synthesized instances and on a real-life
problem are reported in Section 4 and compared with those of the literature.
Finally, conclusion are given in the last section.

2 Problem definition

Let us denote ‖p1−p2‖q the ℓq-distance between points p1 and p2 in the plane.
Given n service points in the plane p1, p2, . . . , pn with threshold distances
λi > 0 and weights wi ≥ 0 for i = 1, . . . , n, the Limited Distance Minisum
Problem with Side Constraints (LDMPSC) can be expressed by:

min
y∈R2,v∈{0,1}n

n
∑

i=1

wi (λi(1− vi) + ‖pi − y‖qvi)

subject to

‖pi − y‖qvi ≤ λi for i = 1, . . . , n (3)

L ≤
n
∑

i=1

vi ≤ U.

The first set of constraints defines bounds L and U in the number of variables
vi which can be equal to 1. The second set of constraints assures that vi can
be equal to 1 only if the distance between pi and the facility located at y is

4 Isaac F. Fernandes et al.

inferior (or equal) to the distance limit λi. This avoids the attribution vi = 1
only to satisfy constraint

∑n
i=1

vi ≥ L. The objective function of (3) as well
as its feasible set are non convex which demands more sophisticated solution
methods.

The objective function of (3) can still be rewritten thereby removing its
constant terms. It is then expressed as

n
∑

i=1

wiλi +min

n
∑

i=1

wi(‖pi − y‖q − λi)vi. (4)

3 Optimization algorithm

From the formulation above, we have that for a given location y, vi may be
equal to 1 only if ‖pi − y‖q ≤ λi. If q = 2, this is geometrically equivalent
in the plane to the condition that vi may be equal to 1 only if y belongs to
a disc Di = {y|‖pi − y‖2 ≤ λi} (i.e., a disc with radius λi centered at pi).
Analogously, if q = 1, this is equivalent to the condition that vi may be equal
to 1 only if y belongs to a square Si = {y|‖pi − y‖1 ≤ λi} with sides making a
45 (or -45) degree angle with the axes (i.e., a 45 degrees rotated square with
diagonal 2λi centered at pi).

A branch-and-bound algorithm based on the vector v would consider im-
plicitly all 2n subproblems generated by branching on binary variables vi for
i = 1, . . . , n, while adding constraints ‖pi− y‖q ≤ λi and ‖pi− y‖q ≥ λi to the
resulting subproblems. Another possibility is to focus on components vi of v
which might be equal to 1 at the same time. When q = 2, these components
are directly associated to convex regions generated by intersections of discs
(see Figure 1). For instance, for the region indicated by the bullet in Figure 1,
only the components v1, v2 and v3 can be equal to 1.

Hence, we can solve (3) by solving subproblems of the following type:

min
y∈R2,v∈{0,1}|S|

∑

i∈S

wi(‖pi − y‖q − λi)vi

subject to

‖pi − y‖q ≤ λi ∀i ∈ S, (5)

L ≤
∑

i∈S

vi ≤ U

where S ⊆ {1, 2, . . . , n} is a non-empty set. Each one of the subproblems
of type (5) is associated to a distinct region in the plane. For instance, we
have a subproblem with S = {1, 2, 3} for the region indicated by the bullet
in Figure 1. The number of these convex regions for q ≥ 1 was proved to be
quadratically bounded in the number of points in [13].1

1 the proof omits a case. We completed the proof for q = 2 in [1].

Title Suppressed Due to Excessive Length 5

p6

λ2

λ6

λ3

λ4

λ
5

p3

p5

p4

p2

λ1
p1

Fig. 1 Intersection of discs.

Problem (5) contains (nonconvex) bilinear terms in the objective function,
so that its continuous relaxation is not necessarily easy to solve. To address
this issue we propose the following reformulation of (5): we add variables
zi ∈ [−λi, 0] for all i ∈ S, we replace the objective function with

∑

i∈S wizi,
and adjoin the following constraints:

∀i ∈ S ‖pi − y‖q − λi ≤ zi (6)

∀i ∈ S zi + λivi ≥ 0. (7)

We remark that the original constraints ∀i ∈ S (‖pi − y‖q ≤ λi) are also part
of the reformulation, as well as bound and integrality constraints on y, v. The
resulting reformulation:

miny∈R2,v∈{0,1}|S|

∑

i∈S

wizi

∀i ∈ S ‖pi − y‖q − λi ≤ zi
∀i ∈ S zi + λivi ≥ 0
∀i ∈ S ‖pi − y‖q ≤ λi

L ≤
∑

i∈S vi ≤ U
∀i ∈ S zi ∈ [−λi, 0].

(8)

is an exact reformulation of (5), i.e. the optima of (8) can be mapped surjec-
tively onto the optima of (5) [20], as shown in Prop. 1. We also remark that
(8) is a convex Mixed-Integer Nonlinear Program (MINLP), as it involves con-
tinuous and integer variables as well as nonlinear terms, and its continuous
relaxation is a convex Nonlinear Program (NLP). This is because: (i) all norms
are convex functions [7, p. 73], (ii) adding a linear function to a convex one

6 Isaac F. Fernandes et al.

results in a convex function, and (iii) bounding convex functions from above
defines a convex set.

Proposition 1 Prob. (8) is an exact reformulation of Prob. (5).

Proof Let (y∗, v∗, z∗) be an optimal solution of (8). For i ∈ S, if v∗i = 0 then,
because ‖pi−y∗‖q ≤ λi, the left hand side of (6) is nonpositive; hence, by (7),
z∗i ≥ 0 is the most stringent constraint. By the upper bound constraint on z, we
have z∗i = 0. If v∗i = 1, (7) implies z∗i ≥ −λi, which is redundant with respect to
the lower bound constraint on z. Hence, by (6), we have z∗i ≥ ‖pi − y∗‖q − λi,
and the objective function direction enforces z∗i = ‖pi − y∗‖q − λi. Thus,
the optimal objective function value of (8) is the same as that of (5) at the
optimum (y∗, v∗) of (5). As concerns surjectivity, it is easy to remark that for
each feasible (y, v) in (5) there exist a corresponding z such that (y, v, z) is
feasible in (8): simply define zi = (‖pi − y‖q − λi)vi. Hence, the projection
operator of the optima of (8) onto the variables of (5) is surjective on the
optima on (5) and certifies that the reformulation is exact.

For q = 1, Prob. (8) is a Mixed Integer Linear Program (MILP); this follows by
a classical exact reformulation of convex constraints involving absolute values
|x| ≤ r into pairs of constraints −r ≤ x ≤ r. For example, ‖pi − y‖1 =
|pi1 − y1|+ |pi2 − y2| ≤ λi is initially replaced by:

pi1 − y1 ≤ λi − |pi2 − y2| and pi1 − y1 ≥ |pi2 − y2| − λi.

Then, each of the constraints above is replaced by two others, yielding the
constraints:

y1 + y2 ≥ pi1 + pi2 − λi

y1 − y2 ≥ pi1 − pi2 − λi

y1 − y2 ≤ pi1 − pi2 + λi

y1 + y2 ≤ pi1 + pi2 + λi.

For q = 2, Prob. (8) is a convex MINLP. Due to the presence of the square
root term in the Euclidean norm, the problem is not everywhere differentiable.
Specifically, this sometimes causes floating-point errors in local NLP solvers,
but there exist practically efficient convex MINLP solvers for this type of
problems (e.g. Bonmin [5]).

Proposition 2 shows that the resolution of subproblems can still be further
simplified, allowing to solve simpler subproblems whenever their size (i.e., |S|)
is not greater than U .

Proposition 2 There exists a solution (y∗, v∗) optimal to (5) such that V ∗ =
{i|v∗i = 1} has cardinality equal to β = min{|S|, U}.

Proof The proof is done by construction. Let us assume y∗ as the optimal facil-
ity location and consider an initial solution (y∗, v∗) with V ∗ = {i|v∗i = 1} = ∅.
This solution can be improved by choosing an element i′ = argmini∈S{wi(‖pi−

Title Suppressed Due to Excessive Length 7

y∗‖q−λi)} and making v∗i′ = 1. Since ‖pi′ −y∗‖q−λi′ ≤ 0 and wi ≥ 0, the new
solution is better (or equal) than the initial one. This procedure can be con-
tinuously repeated by choosing a new element i′′ = argmini∈S,i/∈V ∗{wi(‖pi −
y∗‖q − λi)} until |V ∗| = |S| or |V ∗| = |U |. The final solution (y∗, v∗) con-
structed in this way is optimal since inserting elements to V ∗ is no longer
possible as well as removing elements from V ∗ is not profitable. ⊓⊔

Proposition 2 ensures that the optimal solution of (5), and its exact refor-
mulation (8), has all decision variables v equal to 1 whenever |S| ≤ U . In this
case, subproblems can be expressed by

min
y∈R2

∑

i∈S

wizi

subject to

zi ≥ ‖pi − y‖q − λi ∀i ∈ S (9)

‖pi − y‖q ≤ λi ∀i ∈ S

zi ∈ [−λi, 0] ∀i ∈ S

which is an LP for q = 1 and a convex NLP for q = 2.
Algorithm 1 enumerates the sets S corresponding to regions delimited by

convex figures (i.e., rotated squares when q = 1, discs when q = 2). This
algorithm executes in O(n2τ) time where τ is the time required for solving
each subproblem in steps 4 and 7. This time is larger when (8) is solved
instead of (9).

Algorithm 1
1. Enumerate all intersection points of convex figures in the plane as well

as all convex figures whose boundary does not intersect any other one. Let L1

and L2 be the corresponding lists.
2. For each intersection point p ∈ L1 defined by convex figures centered at

points pi and pj , find the set S of all k such that k 6= i, j and ‖pk − p‖q ≤ λk.
3. Consider the four sets: S, S ∪ {i}, S ∪ {j}, and S ∪ {i, j}.
4. For each one of these sets, if |S| ≥ L, solve the associated subproblem

of type (8) if |S| > U . Otherwise, solve subproblem of type (9).
5. Update the best solution if an improving one is found.
6. For each convex figure in L2 find the set S′ composed of its own index

and the indices of all convex figures containing it.
7. For each one of these sets S′, if |S′| ≥ L, solve the associated subproblem

of type (8) if |S′| > U . Otherwise, solve subproblem of type (9).
8. Update the best solution if an improving one is found.

Step 1 in Algorithm 1 relies on the solution of a geometric problem con-
sisting in enumerating all intersection points between pairs of convex figures
in the plane. For q = 1, a possible approach for enumerating the intersection
points of rotated squares is to use the popular sweep line algorithm [11], since
a square can be decomposed into four distinct linear segments. For q = 2, a

8 Isaac F. Fernandes et al.

pair of circles may intersect in a single degenerate point or in two distinct
points (two identical circles coincide in an uncountable number of points, but
this case occurs with probability 0 and is therefore omitted). An algorithm for
enumerating all the intersection points for a set of circles can be found at [12].
For q > 2, the delimited regions are convex, but finding the intersection points
for a pair of regions will involve the numerical solutions of a nonlinear system
of two equations.

We remark that for q = ∞, the convex regions defined by ‖pi − y‖∞ ≤ λi,
for i = 1, . . . , n are squares whose sides are orthogonal with the coordinate
axes, and subproblems (8) can be reformulated as:

min
y∈R2,v∈{0,1}|S|

∑

i∈S

wizi

subject to

zi ≥ ti − λi ∀i ∈ S

zi + viλi ≥ 0 ∀i ∈ S

ti ≤ λi ∀i ∈ S (10)

ti ≥ pi1 − y1 ∀i ∈ S

ti ≥ pi2 − y2 ∀i ∈ S

L ≤
∑

i∈S

vi ≤ U

zi ∈ [−λi, 0] ∀i ∈ S,

which is a a MILP problem.

4 Computational experiments

Our experiments are designed to assess the performance of Algorithm 1 on
random instances, as well as compare it with respect to existing state-of-the-
art nonconvex MINLP solvers, such as Couenne [2] and Baron [25]. These are
two different implementations of the spatial Branch-and-Bound (sBB) algo-
rithm [19]. Much like a Branch-and-Bound (BB) algorithm for MILPs, sBB
explores the feasible space exhaustively but implicitly, finding a guaranteed
ε-approximate solutions for any given ε > 0 in finite (worst-case exponential)
time. Unlike MILPs, whose continuous relaxation is a Linear Program (LP),
and unlike convex MINLPs, whose continuous relaxation is a convex NLP, the
continuous relaxation of a nonconvex MINLP is generally difficult to solve.
To address this issue, sBB algorithms form and solve convex relaxations of
the given MINLP (the most common approach to build such relaxations is by
using symbolic reformulation techniques [23]). The convexity gap between the
original MINLP and its convex relaxation therefore stems from two factors:
the relaxation of the integrality constraints, as well as the relaxation of the
nonconvex terms appearing in the MINLP. Accordingly, sBB algorithms may

Title Suppressed Due to Excessive Length 9

branch on both integer and continuous variables, when the latter occur in a
nonconvex term.

Algorithm 1 iteratively solves subproblems of form (8). For the case q = 2,
these are convex MINLPs, which we solve using Bonmin [5]. This is a software
framework for convex MINLP, which implements different types of algorithms
based on combining Outer Approximation (OA) with Branch-and-Bound tech-
niques [6].

Problem instances were artificially generated from an uniform distribution
in a square with sides equal to 1000, in order to evaluate the performance of
Algorithm 1. The instances so obtained were created by stochastically control-
ling the number of intersections among the convex figures associated to each
point pi, for i = 1, . . . , n. In ℓ2-norm, if there exists a pair of points pi1 and
pi2 for which ‖pi1 − pi2‖2 < 2λ, then their associated discs Di1 and Di2 inter-
sect. Consequently, if there is a disc Di associated to a point pi that does not
intersect any other disc Dj for j = 1, . . . , n, j 6= i, then no other point pj can
be generated inside the disc Di = {y|‖y − pi‖2 ≤ 2λ}. The area of Di is equal
to π(2λ)2 = 4πλ2. Hence, considering an uniform distribution, the probability
P that a region Di centered at pi does not intersect another region associated
to any of n− 1 points generated in a plane of dimension d× d is given by

(

d2 − 4πλ2

d2

)n−1

. (11)

Using the same reasoning in ℓ1-norm, the following probability formula is
obtained

(

d2 − 8λ2

d2

)n−1

. (12)

By means of equations (11) and (12), one can derive threshold distance
values for instances of (3) as a function of the desired probability of intersection
among discs, for q = 2, and squares, for q = 1.

Table 1 and 2 present the values of threshold distances λ obtained from
equations (11) and (12) for q = 1 and q = 2, respectively, considering different
values of P and different number of points n.

Table 1 Threshold distance values (λ) for q = 1

n = 10 n = 100 n = 1000
P = 10−3% 300.36 117.15 37.85
P = 10−6% 329.93 145.68 47.79
P = 10−9% 342.79 167.98 55.94

Eighteen different instance categories were generated based on the scenar-
ios presented in Tables 1 and 2; nine for q = 1 and nine for q = 2. For these
instance categories, the threshold distance values are taken from the values
presented in Tables 1 and 2 plus a perturbation obtained from a normal dis-
tribution with mean 0 and variance equal to 10, 5, and 2 for the instances

10 Isaac F. Fernandes et al.

Table 2 Threshold distance values (λ) for q = 2

n = 10 n = 100 n = 1000
P = 10−3% 239.66 93.47 30.19
P = 10−6% 263.25 116.24 38.13
P = 10−9% 273.51 134.03 44.63

with n = 10, 100, and 1000, respectively. They are named according to the
norm used, the number n of points and the probability P used to create each
one of them. Thus, ℓ1 10 10−3 refers to the category composed by instances
of 10 points, uniformly distributed in a 1000 × 1000 square with threshold
ℓ1-distances λi ∈ N (µ = 300.36, σ2 = 10), for i = 1, . . . , n.

Ten distinct instances were generated in each category, totalizing 18 · 10 =
180 instances. For this set of instances, all the points have unitary weights
(i.e., wi = 1, for i = 1, . . . , n). The instances used here can be found at
http://www.gerad.ca/∼aloise/publications.html.

Computational experiments were performed on a Pentium Quad Core Xeon
X3353 with a 2.66 GHz clock and 24 Gigabytes of RAM memory. Algorithm 1
was implemented in C++ and compiled by gcc 4.4. Table 3 presents the com-
putational results for the generated instances. Its first column contains the
category identifiers. The second and third columns present the lower (L) and
upper (U) bounds values used in the execution of each instance category. The
fourth column presents average optimum solution values of the 10 instances in
each category. The fifth, sixth, seventh and eighth columns report the average
and standard deviations of CPU times (in seconds) spent by Couenne and
Baron. The two solvers are executed in the same platform aforementioned, ex-
cept for Baron executions of instances with 1000 points, for which we used the
NEOS server [10] due to size limitation in our academic version. The platform
used in the NEOS server was a Xeon X5660 with 2.80 Ghz clock and RAM
memory capped to 3 Gigabytes per job. The ninth and tenth columns show,
respectively, average CPU times and standard deviations of CPU times spent
by Algorithm 1. Finally, the eleventh and twelveth columns report the average
and standard deviations of the number of subproblems (8) solved within Al-
gorithm 1. The subproblems were solved by CPLEX 12.1.0 for the case q = 1,
and by Bonmin [5] for q = 2.

Results in Table 3 show that the optimum solution values increase with the
threshold distances values λ (see Table 1). Let us consider two instances I1 and
I2 formed by the same set of points with distinct threshold distance values λ1

and λ2, respectively, for all of their points such that λ1 < λ2. Consequently, any
feasible solution for I1 is also feasible I2. Furthermore, that solution has greater
cost in I2, since for all terms i = 1, . . . , n for which vi = 0, the associated
contribution in the objective function is λ2(> λ1). For the terms i for which
vi = 1, the value of the associated contribution in the objective function (i.e.,
‖pi − y‖1) remains unchanged. Despite that, if two instances share the same
set of points, we cannot state that the one with the largest threshold distance

T
itle

S
u
p
p
ressed

D
u
e
to

E
x
cessiv

e
L
en

g
th

1
1

Table 3 Computational results of Algorithm 1, Couenne and Baron over the 180 generated instances.

Couenne Baron Algorithm 1
Category L U opt.value CPU time(s) std.dev. CPU time(s) std.dev. CPU time(s) std.dev. # subs std.dev.
ℓ1 10 10−3 2 5 2199.25 5.95 7.17 38.84 76.11 0.43 0.27 97.6 29.56
ℓ1 10 10−6 2 5 2389.11 7.90 10.52 35.04 68.49 0.49 0.21 120.4 26.75
ℓ1 10 10−9 2 5 2471.41 7.12 9.52 34.35 67.00 0.58 0.13 136.0 23.99
ℓ1 100 10−3 5 10 11140.50 40.88 9.82 244.18 154.89 4.67 1.71 1034.1 307.17
ℓ1 100 10−6 5 10 13766.76 56.94 12.66 274.71 172.39 14.73 5.96 2825.8 495.58
ℓ1 100 10−9 5 10 15787.32 74.82 22.55 453.34 306.70 28.70 11.99 4919.6 418.58
ℓ1 1000 10−3 10 20 34207.28 2022.68 183.83 17703.40 7169.93 0.84 0.27 110.11 59.27
ℓ1 1000 10−6 10 20 44037.39 3251.83 339.03 25896.00 1524.11 12.94 4.44 2737.8 1017.28
ℓ1 1000 10−9 10 20 52088.12 5148.95 846.75 27645.66 2511.78 67.48 13.72 14621.6 2901.73

ℓ2 10 10−3 2 5 1874.70 1.83 0.96 6.90 10.87 4.06 4.55 99.0 28.42
ℓ2 10 10−6 2 5 2026.11 1.88 0.67 1.55 1.14 5.97 7.96 116.0 26.02
ℓ2 10 10−9 2 5 2090.42 1.85 0.78 1.59 0.92 6.20 6.53 127.8 30.45
ℓ2 100 10−3 5 10 2199.25 66.85 31.10 92.34 19.67 104.31 51.29 1037.9 306.79
ℓ2 100 10−6 5 10 2389.11 144.10 410.03 94.21 26.26 269.85 84.04 2828.4 538.19
ℓ2 100 10−9 5 10 2471.41 379.02 334.88 90.80 24.78 542.75 169.91 4878.6 444.51
ℓ2 1000 10−3 10 20 29971.70 3016.79 859.24 8266.79 917.73 2.58 0.84 88.6 53.78
ℓ2 1000 10−6 10 20 37823.32 13916.58 3403.56 15898.89 2666.81 97.28 47.69 2654.8 991.75
ℓ2 1000 10−9 10 20 44243.26 30583.92 16320.27 18040.20 4351.75 515.68 162.04 14459.3 2995.86

12 Isaac F. Fernandes et al.

has the largest optimal solution value (the trivial case is an infeasible location
problem with λ1, which becomes feasible by using λ2).

The results in Table 3 also reveal that:

(i) Standard deviation values presented in the table are sometimes large. This
demonstrates that CPU times spent by the tested algorithms in a cate-
gory depend considerably on the distribution of points in the space. This
observation did not invalidate what observed in (ii)-(v).

(ii) Couenne outperforms Baron in the ℓ1-norm categories, and is outperformed
by the latter in the ℓ2-norm categories with larger λ values.

(iii) Algorithm 1 increases its execution time as the threshold distance value (λ)
increases. Indeed more CPU time is spent for instances with large values
of λ. This is due to the fact that when λ is large, more intersections of
convex regions are likely to exist in the instance, and consequently, more
subproblems have to be solved in order to optimize (3). Couenne execution
times also appear to be influenced by λ augmentation, though they increase
in a slower rate than Algorithm 1. Baron seems to be the algorithm affected
the least by λ, and for this reason, likely the best option when λ is large
and there are too many subproblems for Algorithm 1 to solve.

(iv) Algorithm 1 outperforms Couenne and Baron in all ℓ1-norm categories.
Particularly for category ℓ1 1000 10−9, Algorithm 1 is approximately 2000
times faster than Couenne and 20000 times faster than Baron.

(v) Algorithm 1 outperfoms Couenne and Baron in the ℓ2-norm categories with
1000 points, but is outperfomed by them in the ℓ2-norm categories with 100
points. As observed in (ii), CPU times spent by Algorithm 1 depend largely
on the number of subproblems to be solved. At first glance, this could not
be explained only by the values shown in Table 3. For example, the average
number of subproblems solved in category ℓ2 1000 10−9 is 14459.3 while the
average number of subproblems solved in category ℓ2 100 10−9 is 4878.6.
However, Algorithm 1 is, in average, approximately 26 faster in the first
category. The reason for this fact lies on the number of subproblems of
type (9) solved within Algorithm 1: in average, 344.5 for the instances in
category ℓ2 100 10−9, and 0.4 for those in category ℓ2 100 10−9.

Our next set of experiments focus on how parametes L and U influence
the performance of Algorithm 1. The number of subproblems solved within
Algorithm 1 is directly related to the lower bound value L in (3). Subproblems
with size smaller than L are not even considered for resolution since their
associated region cannot lodge the optimal facility location. Hence, as the
value of L increases, less CPU time is spent by Algorithm 1. As subproblem
resolution becomes more complex, the value of parameter L turns out to be
even more weighty for Algorithm 1 performance.

Tables 4 and 5 present computing times (in seconds) spent by Algorithm 1,
Couenne and Baron for solving 20 instances with 50 random points uniformly
distributed in a 1000 × 1000 square. The threshold distance values are made
the same for all points; λi = λ = 300, ∀i = 1, . . . , n for the ten ℓ1-norm in-
stances and λi = λ = 250, ∀i = 1, . . . , n for the other ten ℓ2-norm instances.

Title Suppressed Due to Excessive Length 13

The tables report, varying only the lower bound value L (in this set of exper-
iments U = +∞), the average and the standard deviation of the CPU time
spent by Algorithm 1, Couenne and Baron on solving the generated instances.
Regarding Algorithm 1, the tables also report the average and the standard
deviation of the number of subproblems solved.

Table 4 CPU times (in seconds) of Algorithm 1, Couenne and Baron as a function of lower
bound in ten ℓ1-norm distinct instances with 50 random points

Algorithm 1 Couenne Baron
L CPU time(s) std.dev. # subs std.dev. CPU time(s) std.dev. CPU time(s) std.dev.
5 8.57 1.67 3651.9 399.47 45.14 15.82 116.481 119.90

10 3.29 1.32 1374.0 544.96 41.87 7.64 125.83 120.57
15 0.35 0.73 133.2 263.26 26.08 9.91 35.86 16.83

Table 5 CPU times (in seconds) of Algorithm 1, Couenne and Baron as a function of lower
bound in ten ℓ2-norm distinct instances with 50 random points

Algorithm 1 Couenne Baron
L CPU time(s) std.dev. # subs std.dev. CPU time(s) std.dev. CPU time(s) std.dev.
5 392.80 116.01 3998.0 381.78 319.61 295.17 33.49 12.99

10 84.67 55.96 1799.0 586.56 264.92 299.82 33.85 12.89
15 5.38 10.60 224.6 313.11 105.25 224.00 30.10 8.39

We notice from Tables 4 and 5 that Algorithm 1 improves considerably
its performance as L augments and the number of subproblems decreases.
The same is also observed for Couenne, though in a smaller rate. For this
experiment, Algorithm 1 is clearly the best approach for the ℓ1 instances,
but became the best option for the ℓ2 instances only after L was increased
to 15 and the number of subproblems decreased enough. The reason for this
performance difference while solving ℓ1 and ℓ2-norm instances relies on the
complexity of the subproblems of type (8): linear for ℓ1-norm instances and
convex non-linear for ℓ2-norm ones. Furthermore, Baron does not appear to be
influenced by L as much as the other algorithms are. For the ℓ2-norm instances
with L = 5, 10, Baron outperforms Algorithm 1 and Couenne.

The last set of experiments addresses the influence of parameter U on Al-
gorithm 1 performance. For that purpose, the algorithm was used to solve the
same 20 instances of the last experiment, but this time for different combina-
tions of L and U values. Tables 6 and 7 report, the average computing times,
and its standard deviations, spent by Algorithm 1. Moreover, the average and
standard deviation of the number of subproblems of type (8) and (9) solved
within the algorithm are presented. The tables also present the average and

14 Isaac F. Fernandes et al.

the standard deviation of the CPU times spent by Couenne and Baron on
solving (3) for the 10 instances of each norm.

From these last results, we notice that the performance of Algorithm 1 is
improved as U augments. Whenever the size of a subproblem is smaller or equal
to U , a subproblem of type (9) is solved instead of a more difficult subproblem
of type (8). For example, when U increases from 15 to 20 in Table 7, the average
number of subproblems of type (8) that becomes solvable by model (9) within
Algorithm 1 is 135.1−4.1 = 131.1. Consequently, the average CPU time spent
by the algorithm drops from 145.49 to 86.55 seconds.

Furthermore, we observe from Table 7 that Algorithm 1 always outperforms
Couenne, but is outperformed by Baron with parameters L = 10, U = 15
and L = 10, U = 20. Indeed if the total number of subproblems is large, the
decomposition approach of Algorithm 1 may not be the best strategy to choose.
Although the subproblems solved by Algorithm 1 are smaller and require less
computing time, they may be too numerous so that the total time spent on
solving all them is greater than solving the original problem (3) directly. This
fact was not observed in the results of Table 6 because the ℓ1-subproblems are
easier to solve than those in the ℓ2 norm.

Finally, it is worthy mentioning that standard deviations of computing
times and the number of subproblems for Algorithm 1 and Couenne are due
to the presence of instances with different hardness degrees. In particular,
one instance was noticed to be much harder than the others for Algorithm 1
and Couenne. If the same was removed from the experiment with ℓ2-norm
instances, the average CPU time of Algorithm 1 would be 85.61 seconds with
parameters L = 10 and L = 15 (std.dev. 57.34), 68.49 seconds with L = 10 and
U = 20 (std.dev. 54.56), and 1.87 seconds with L = 15 and U = 20 (std.dev.
2.08). For Couenne, the corresponding average CPU times would be: 221.39
(std.dev. 161.95), 231.36 (std.dev 192.00), and 28.43 seconds (std.dev. 24.94).
This demonstrates that the points distribution in the space plays a key role
in the performance of our algorithm. Indeed it directly influences the number
and the type of the subproblems to be solved.

4.1 Application to a real-life problem

We report computational results obtained on a real-life problem provided by
the Natal Police Department in Brazil. The data consists of 586 sites in Natal,
Brazil where criminal activities were recorded in the period from 01/01/09 to
09/30/2009. It contains, for each site, its coordinates in UTM scale, which are
approximated to the Euclidean space, and the number of recorded crimes in
the analyzed period, which are used to weight the demand of that site for a
police station close-by. The objective for this problem is to locate a new police
station close to where the police demand is high, but also respecting lower
capacity constraints which are useful to better distribute the police coverage
over the city.

T
itle

S
u
p
p
ressed

D
u
e
to

E
x
cessiv

e
L
en

g
th

1
5

Table 6 CPU times (in seconds) of Algorithm 1, Couenne and Baron as a function of lower and upper bounds in ten ℓ1-norm distinct instances with
50 random points

Algorithm 1 Couenne Baron
L U CPU time(s) std.dev. # subs(6) std.dev. # subs(7) std.dev. CPU time(s) std.dev. CPU time(s) std.dev.
10 15 2.32 2.47 1374.0 544.96 76.2 193.29 63.19 24.69 63.19 24.69
10 20 1.58 0.68 1374.0 544.96 0.8 2.52 47.22 17.27 130.50 114.97
15 20 0.18 0.37 133.2 263.26 0.8 2.52 27.92 10.45 40.26 19.89

Table 7 CPU times (in seconds) of Algorithm 1, Couenne and Baron as a function of lower and upper bounds in ten ℓ2-norm distinct instances with
50 random points

Algorithm 1 Couenne Baron
L U CPU time(s) std.dev. # subs(6) std.dev. # subs(7) std.dev. CPU time(s) std.dev. CPU time(s) std.dev.
10 15 145.49 166.60 1799.0 586.56 135.1 254.10 658.99 1313.73 35.18 13.02
10 20 86.55 59.07 1799.0 586.56 4.1 12.96 431.68 579.25 35.18 9.27
15 20 7.13 16.06 224.6 313.11 4.1 12.96 136.64 332.98 26.83 9.74

16 Isaac F. Fernandes et al.

Our tests used λ = 1 kilometer (estimated in [17]) in ℓ1-norm for all sites.
Besides, no upper bound capacity U is used due to the nature of the applica-
tion. Two different scenarios were tested by varying the value of L: scenario
A uses L = 10, and scenario B uses L = 25. We solved the corresponding
LDMPSC problem using Algorithm 1, Couenne and Baron. The optimal so-
lutions in scenarios A and B are shown in Figure 2, where the problem is
geographically represented.

Fig. 2 Geographic distribution of criminal records in the city of Natal, Brazil from
01/01/2009 to 09/30/2009. The size of the plotted points is proportional to the number
of criminal records of the corresponding site. Thus, the smallest points represent sites where
the number of criminal records was between 0 and 50, and the largest points represent sites
where the number of records was greater than 1000. The optimal locations for positioning
a police unity in scenarios A and B are represented by a yellow and a red star, respectively.

Algorithm 1 outperforms Couenne and Baron in both scenarios. Algo-
rithm 1 solves scenario A in 102.30 seconds, Couenne is not able to solve
it within 1 hour, and Baron solves it in 1614.38. Regarding scenario B, Al-
gorithm 1 solves it in 10.72 seconds, Couenne is again not able to solve the
problem within 1 hour, and Baron solves it in 1715.37.

5 Conclusions

The introduction of side constraints while locating a facility in the plane with
limited distances may serve to justify its installation or to describe service

Title Suppressed Due to Excessive Length 17

limitations. Our work extends that of Drezner, Mehrez and Wesolowsky [13],
adapting it to the presence of side constraints. This approach leads to sub-
problems having products of the continuous location variable with assignment
binary variables. The subproblem model is then reformulated in order to ease
its resolution. In summary, the performance of the presented algorithm is in-
fluenced by:

(i) the complexity of the subproblems - e.g. subproblem (8) is a MILP if ℓ1-
distances are used, and a non-differentiable convex MINLP for ℓ2-distances;

(ii) the number of subproblems to be solved - this is linked with the threshold
distances values;

(iii) the lower bound of service - this allows to disregard the resolution of some
subproblems;

(iv) the upper bound of service - easier subproblems to solve due to removing
integer decision variables.

Finally, it is important to remark that the proposed algorithm can be
straightforwardly parallelized, since no dependence exists among the solved
subproblems.

Acknowledgements We are thankful to André Morais Gurgel and the Natal Police De-
partment for providing us the data for the real instance. We also thank two anonymous
referees for insightful remarks.

References

1. Aloise, D., Hansen P., Liberti, L.: An improved column generation algorithm for minimum
sum-of-squares clustering, Mathematical Programming, 131, 195–220 (2012).

2. Belotti, P., Lee J., Liberti L., Margot F., Wächter A.: Branching and bounds tighten-
ing techniques for non-convex MINLP, Optimization Methods and Software, 24, 597–634
(2009).

3. Berman, O., Drezner, Z., Krass, D.: Generalized coverage: New developments in covering
location models, Computers and Operations Research, 37, 1675–1687 (2010).

4. Brimberg, J., Chen, R., Chen D.: Accelerating convergence in the Fermat-Weber location
problem. Operations Research Letters, 22, 151–157 (1998).

5. Bonami, P., Lee J.: BONMIN user’s manual. Technical report, IBM Corporation (2007).
6. P. Bonami, L. Biegler, A.R. Conn, G. Cornuéjols, I.E. Grossmann, C.D. Laird, J. Lee,
A. Lodi, F. Margot, N. Sawaya, A. Wächter: An algorithmic framework for convex mixed
integer nonlinear programs, Discrete Optimization, 5, 186–204 (2008).

7. Boyd, S., Vandenberghe, L.: Convex Optimization, Cambridge University Press, Cam-
bridge 2004.

8. Church R., ReVelle C.: The maximal covering location problem. Papers of the Regional
Science Association, 32, 101–118 (1974).

9. Church, R., Roberts K.L.: Generalized coverage models and public facility location. Pa-
pers of the Regional Science Association, 53, 117–135 (1983).

10. Czyzyk, J., Mesnier, M., Moré, J.: The NEOS Server. IEEE Journal on Computational
Science and Engineering, 5, 68–75 (1998).

11. de Berg, M., van Krefeld, M., Overmars, M., Schwarzkopf, O.: Computational Geometry:
Algorithms and Applications, Springer (1997).

12. Drezner Z., Wesolowsky, G.O.: A maximin location problem with maximum distance
constraints, AIIE Transactions, 12, 249–252 (1980).

18 Isaac F. Fernandes et al.

13. Drezner Z., Mehrez A., Wesolowsky, G.O.: The facility location problem with limited
distances. Transportation Science, 25, 183–187 (1991).

14. Drezner, Z., Hamacher H.W.: Facility Location: Applications and Theory. Springer
(2004).

15. Drezner, Z., Wesolowsky, G.O., Drezner, T.: The gradual covering problem. Naval Re-
search Logistics, 51, 841–855 (2004).

16. Fekete, S.P., Mitchell, J.S.B, Beurer, K.: On the continuous Fermat-Weber problem.
Operations Research, 53, 61–76 (2005).

17. A.M. Gurgel: Melhoria da segurança pública: Uma proposta para a alocação de unidades
policiais utilizando o modelo das p-medianas e do caixeiro viajante. M.Sc. dissertation.
Universidade Federal do Rio Grande do Norte (2010).

18. Hansen, P., Mladenović, N., Taillard, É.: Heuristic solution of the multisource Weber
problem as a image-median problem”. Operations Research Letters, 22, 55–62 (1998).

19. Liberti, L.: Writing global optimization software, in Liberti, L., Maculan, N. (eds.),
Global Optimization: from Theory to Implementation, 211-262, Springer, Berlin (2006).

20. Liberti, L.: Reformulations in Mathematical Programming: Definitions and systematics.
RAIRO-RO, 43, 55–86 (2009).

21. Pirkul, H., Schilling, D.A.: The maximal covering location problem with capacities on
total workload. Management Science, 37, 233–248 (1991).

22. Schilling, D.A., Jayaraman V., Barkhi, R.: A review of covering problems in facility
location. Location Science, 1, 25–55 (1993).

23. Smith, E., Pantelides, C.: A symbolic reformulation/spatial branch-and-bound algo-
rithm for the global optimisation of nonconvex MINLPs, Computers & Chemical Engi-
neering, 23, 457-478 (1999).

24. Smith, H.K., Laporte, G., Harper, P.R.: Locational analysis: highlights of growth to
maturity. Journal of the Operational Research Society, 60, 140–148 (2009).

25. Tawarmalani, M., Sahinidis, N.V.: A polyhedral branch-and-cut approach to global
optimization. Mathematical Programming, 103, 225–249 (2005).

26. Wesolowsky, G.O.: The Weber problem: history and perspectives. Location Science, 1,
5–23 (1993).

