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Abstract

We survey theoretical, algorithmic, and computational results at the intersection of distance geometry prob-
lems and mathematical programming, both with and without adjacencies as part of the input. While mathematical
programming methods can solve large-scale distance geometry problems with adjacencies, they are severely chal-
lenged in the absence thereof.

Preface

This is one of many surveys we have co-authored about Distance Geometry (DG) [83, 64, 81, 18, 76, 44, 78, 70] over
the years: the reader might then wonder what we could possibly survey that we have not already surveyed eight times
in the last fifteen years.

In [83] we reviewed many continuous solution methods for the DG problem (which we define below) and a few
discrete ones, among which ABBIE [50] and Branch-and-Prune [79], the most prominent application of DG being that
of proteins. In [64] we surveyed several variants of the DG problem related to the Branch-and-Prune algorithm, the
only DG application being (again) proteins. In [81] we surveyed what we thought was most of the field of DG: many
problem variants, applications, theoretical results, and methods, among which the Branch-and-Prune and proteins.
When [34] was published, however, we discovered we had neglected a large part of DG field: the “unassigned” side
of things, where the weighted graph turned into a list of scalar weights. The survey [18], which was co-authored
by only one of us, discusses methods for assigned and unassigned DG problems, focusing on rigidity, coordinates
computation, nanostructures, and proteins. The survey [76] is at the opposite end of the “recent advances” survey
style, as it focuses on six deep theorems about DG in the history of mathematics, from Heron of Alexandria to Kurt
Gödel. The paper [44] reviews a very specific aspect of the Branch-and-Prune algorithm, namely the discretization of
the search space, but it also proposes new ideas, and so it is only partly a survey. In [78], we review those branches
of DG that lead to major open problems. Finally, [70], which was written by only one of us, surveys the interfaces
between DG and other fields of applied mathematics and theoretical computer science: mathematical programming,
linear algebra, computational complexity, natural language processing, artificial intelligence, machine learning, data
science, and statistics.

Like [18], this survey focuses on the interplay between assigned and unassigned DG problems, and considers
proteins as applications. Unlike [18], however, this survey explores mathematical programming formulations for
both problems, discusses the relationship between “unassigned” and “assigned” versions of the problem, and presents
a comparative computational benchmark for most of the proposed formulations. We hope that this unconventional
computational angle will make mathematical programming formulations come to life, instead of remaining purely
theoretical constructs.

The reader might also wonder why we are so keen on writing surveys. Aside from the odd one out [44], which
is not quite just a survey, one possible explanation is the following. As well as many of our co-authors, we have
had the good fortune to be invited to give talks in our careers. After delivering the talk, we were often asked (by
whomever had invited us) to write a survey. This happened with [83, 64, 76]. We were also approached by some
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Editors-in-Chief of journals (or book editors) that routinely commission surveys: this happened with [81, 18, 78, 70].
The current survey was invited by Meera Sitharam and Tony Nixon, who co-organized several thematic programs at
the Fields Institute. We could therefore answer “it’s not us, it’s them!”. But the truth is that writing surveys teaches
us a lot: by re-organizing the material in a way that makes sense for us (and, we hope, for the reader too) we see the
whole mountain, where previously we had only glimpsed at some peaks. So it is not quite them, it is really just us.
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1 Introduction

DG problems come in two broad forms: assigned and unassigned. Their input is always a set of distances, but the
word “distance” is ambiguous. On the one hand, “one meter”, or “two-point-six Ångström” are distances. On the
other hand, “there are 542 km between Toronto and Montreal” is also a distance. These two concepts are related, but
their formalization is very different. For the first, a positive scalar suffices. For the second, one also needs two distinct
points: more precisely, we assign the scalar (542) to an edge {Toronto,Montreal}. Since a set of edges defines a
graph, DG problems can be defined on a graph (distance scalars are assigned to edges) or without a graph (distance
scalars are “unassigned”).

The output of DG problems, however, is always the same: we ask for a set of points in a Euclidean space such that
each given distance appears exactly once as the Euclidean distance between two of the points. The points correspond
to vertices of the graph in the assigned form; in the unassigned form, the number of points n is given as part of the
input. This set of points is called realization.

Take the unassigned form. Once a realization is given that is compatible with the distance scalars, it is possible to
construct a graph, since each scalar is now the length of a segment between two points. This tells us that the assigned
form is easier than the unassigned one, since the graph is already given as part of the input. In the unassigned form
we have to compute an assignment of distance scalars to edges as well as constructing a realization compatible with
this assignment. This plays out in problem formulations as well: from each formulation of the assigned form, we can
derive a more complicated formulation of the unassigned form by adding some assignment variables.

1.1 Problem definitions

We now give the formal decision version of the two problem forms, with and without the graph. For an integer p we
let [p] = {1, . . . , p}. We recall that an assignment α : S→ T is an injective but not necessarily surjective function.

• DISTANCE GEOMETRY PROBLEM (DGP). Given an integer K > 0 and a simple undirected edge-weighted
graph G = (V,E,d), determine whether there exists a realization x : V → RK such that

∀{u,v} ∈ E ∥xu− xv∥2
2 = d2

uv, (1)

where duv is the weight of the edge {u,v} and xv ∈ RK is the position vector of vertex v.

• UNASSIGNED DISTANCE GEOMETRY PROBLEM (UDGP). Given two positive integers K,n and a list L =
(δℓ | ℓ≤m) of positive scalars, determine whether there exists an assignment α : [m]→ [n]× [n] and a realization
x : [n]→ RK such that:

∀ℓ≤ m ∥xαℓ1
− xαℓ2

∥2
2 = δ

2
ℓ , (2)

where α(ℓ) = (αℓ1 ,αℓ2) for all ℓ≤ m.

We remark that the UDGP is invariant with respect to the order of L (which is in fact a multi-set represented by
a list). We write Eq. (1)-(2) in squared form because they avoid the square root relative to the ℓ2-norm, which is
computationally problematic. We also note that, if an assignment α is given, any UDGP instance becomes a DGP
one, since the assignment allows the construction of a simple undirected graph edge-weighted by L.

As stated, the DGP and UDGP are decision problems having a single-bit (YES/NO) output, with a certificate for
YES instances. This certificate is a realization x for the DGP, and a couple (realization x, assignment α) for the
UDGP. DGP instances may be NO for two reasons: the given input is incompatible with any possible realization in
K dimensions, or the given input is incompatible with realizations in any dimensions (or with the metric axioms).
UDGP instances may be NO also because every assignment leads to an infeasible DGP instance.

We do not consider other distances than Euclidean in this survey, because our chosen application (molecules)
are based on Euclidean distances (but see [31]): accordingly, we dispense with the problem name “Euclidean DGP”
(EDGP), since there is no confusion. Nor do we consider imprecise versions of DGP and UDGP explicitly, where
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d and δ are real intervals instead of scalars [83, 44, 32], mainly because the solution methods we discuss — all
based on solving formulations with an off-the-shelf solver — already cater for this type of imprecision, also known as
“experimental error” [15], by turning the strict feasibility enforced by Eq. (1) into optimization by means of a penalty
function (see [83] for some formulations that explicitly cater for intervals, and [104] for a method to estimate missing
distance values in the presence of intervals).

In the following we shall encode realizations of the DGP or the UDGP as n×K real matrices (the K-vector of
the position of vertex v ∈ V encoded in the v-th row of the matrix): thus, a realization can be precise, imprecise,
approximate, random, or even wrong. In short, realizations will simply be whatever solution of the DGP/UDGP was
found by the solution algorithm at hand.

2 Background and context

In this section we provide auxiliary and complementary information that will improve the understanding of the sub-
sequent sections.

2.1 Complexity

The DGP (and, respectively, the UDGP) is the inverse problem of the following trivial problem: given a realization
x ∈ RnK compute a subset of distances adjacent to pairs of points (and, respectively, compute a subset of distance
values). While the direct problems are trivial, the inverse problems are NP-hard. The DGP is NP-hard (weakly, by
reduction from PARTITION to the case K = 1, and strongly, by reduction from 3SAT for any fixed K [105]). The
UDGP is NP-hard even when m = n(n− 1)/2 [66, Thm. 4.2], i.e. when all possibile distances are given, yielding a
complete graph with any assignment α: by contrast, the DGP is tractable on complete graphs [108, 4]. The fact that
NP-hardness of the DGP is proved on sparse graphs, while that of the UDGP is proved on instances corresponding
to complete graphs, may be indicative of the respective application settings: DGPs are often solved on (sparse) disk
graphs, while UDGPs on complete (or almost complete) lists of distance scalars1.

While the DGP is NP-hard, it is only known to be in NP (i.e., NP-complete) for K = 1. For K > 1, a wholly
integer input instance may give rise to a realization certificate that involves irrational components, which cannot be
represented exactly in the Turing machine computation model (for K = 1 this does not happen). Since these irrational
certificates are actually algebraic, a few attempts were made to employ different types of certificates, e.g. the minimal
polynomials of the algebraic components and a rational closest to the specific desired root, but to no avail [13].
This failure, however, does not prove that the DGP is not in NP, and hence the problem remains open [78]. By
contradiction, the UDGP has the same status. Suppose that the UDGP were in NP for all K: then every DGP arising
from the UDGP instance given the assignment α would also be in NP. Since this covers all DGP instances in the DGP
class, then the DGP would be entirely in NP for any K, which would settle the problem that is currently open.

2.2 Applications

The typical DGP applications are: synchronization of clocks in sensor network protocols [107] (K = 1), localization
of sensor networks [20] (K = 2), reconstruction of the shape of proteins from distance data [27, 24] (K = 3), control of
underwater autonomous vehicles [10] (K = 3), transformation of words and sentences into vectors in natural language
processing [71, 55] (any K).

The typical UDGP applications are: the “partial digest” methodology in DNA sequencing2 [110] (K = 1), also

1Even more-than-complete lists have been considered in solving UDGPs: in [54], some experiments have been conducted on a redundant
list of distance scalars, i.e. having length exceeding m.

2Here is a summary description of the partial digest problem. Suppose one wants to determine thes sites of a DNA strand at which a certain
sequence σ over A,C,G,T occurs. One employs a specific enzyme that breaks the strand at sites where σ appears, and measures the lengths of
the pieces. One then solves a UDGP problem in one dimension in order to retrieve the sites at which the DNA strand was broken: those are the
sites containing σ .
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known as “turnpike” or “beltway” problem depending on whether the strand is an open path or a loop [109, 30]; the
reconstruction of crystal structure from interatomic distances obtained from X-ray crystallography [102] (K ∈ {2,3});
the reconstruction of the shape of small inorganic molecules, such as e.g. nanostructures, from distance data [54, 18]
(K = 3); and the reconstruction of the shape of proteins from distance data [15, 22] (K = 3).

In these lists of DGP and UDGP applications, we note immediately the preponderance of molecular applications,
and the fact that the same application (shape of proteins) occurs in both. Molecular applications are frequent in DG
because “looking” at a molecule, given its nano-scale, means irradiating it and actually look at the diffraction of
the radiation as it passes through the molecule: either as a crystal, as in X-ray crystallography, or in solution, as in
nuclear Overhauser effect spectroscopy (NOESY), or frozen in a thin layer of ice, as in Cryo-EM. The result of the
analysis, the radiation spectrum, is represented as a multivariate function f in 1,2,3 or even more dimensions. Some
of the peaks of f indicate that two or more atoms of a certain type are at some given distance value (not all peaks are
meaningful, however [102]).

To clarify, let us take a spectrum function f (a,b) of two dimensions a,b. Supposing that a,b denoted atom IDs
(e.g. H9,C17), one could simply read a peak in f (a,b) as a distance between two well-defined atoms, with the distance
value proportional to the integral of f over a neighbourhood including the peak. Instead, peaks depend on other
entities that are correlated with distance values in more complicated ways.

• In the case of X-ray experiments on nanostructures, one can only obtain a probability of finding a certain
distance between two atoms (this probability function is called pair distribution function, or sometimes simply
PDF, in the relevant literature). Nonetheless, this yields unassigned but relatively precise and complete distance
value measurements in nanostructures, which is why nanostructures are a typical UDGP application.

• In the case of NOESY experiments on proteins in solution, distance values are implied by resonance effects
at some given frequencies specific to each atomic nucleus. These frequencies are known as the “chemical
shifts” of an atom: a peak in chemical shift space may denote the closeness of two atoms, and their distance
value can be estimated. The assignment of the values to atom pairs is also estimated, see Sect. 2.2.1 below.
These estimations yield considerable errors [15], which is why the determination of the shape of proteins is an
application of both the DGP and the UDGP [49, 117].

2.2.1 The case of proteins

Chemical shifts depend on the atom type and its environment. Unfortunately, many atoms in a protein have very close
chemical shifts, so that, for practical purposes, these atoms share the same chemical shift. This means that a single
peak p = (a,b) of intensity f (a,b) is assigned ambiguously to all of the atoms in the set Ap

a with the same chemical
shift a, and all of the atoms in the set Bp

b with the same chemical shift b at the peak p. The intensity also depends
on the number of bonds in Ap

a ×Bp
b that actually occur in the protein with distance d proportional to p, which further

complicates matters.

Luckily, though, proteins have a periodic backbone with a simple known structure. By a mixture of experimental
and algorithmic procedures, this structure makes it possible to derive an assignment of distance values to edges: this
justifies the appearance of proteins in the DGP applications list. These procedures are imperfect, however, and a
systematic assignment error still occurs [15]: this requires a re-assignment phase, which justifies the appearance of
proteins in the UDGP applications list.

2.3 Rigidity and flexibility

Rigidity theory likens a graph to a bar-and-joint structure, and follows the mechanical analogy mathematically. Ac-
cordingly, the graph plays a prominent part in rigidity theory, most of the results of which are rooted in the (assigned)
DGP.

Given a DGP instance (K,G) where G = (V,E,d), if the instance is YES it always has uncountably many different
realizations, since, if x ∈ RnK is a realization, φ(x) is a different realization for every nontrivial congruence φ of RK
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(translation, rotations, reflections). With respect to G, a congruence fixes every distance defined by the realization of
any pair of vertices:

∀φ ∈ E (K),(u,v) ∈V ×V ∥xu− xv∥2 = ∥φ(xu)−φ(xv)∥2, (3)

where E (K) is the group of congruences of RK . An isometry ψ with respect to the framework (G,x), on the other
hand, only fixes every distance corresponding to a graph edge:

∀{u,v} ∈ E ∥xu− xv∥2 = ∥ψ(xu)−ψ(xv)∥2. (4)

By Eq. (3)-(4), every congruence is an isometry, but the converse does not hold. Isometries are decomposable to
the form ψ ◦φ where φ is a congruence. If a certain isometry ψ can only be decomposed in such a way that φ is the
trivial congruence (identity), then ψ is irreducible. We consider the set I (G,x) of irreducible isometries, and among
these we identify the local ones: a subset Ψ⊂I (G,x) consists of local isometries of (G,x) if for an arbitrarily small
neighbourhood χ of x there is a nontrivial isometry ψ ∈Ψ with ψ(x)∈ χ . Local isometries may be partial translations
and rotations (i.e. they only rotate and/or translate the realization of a nontrivial subgraph of G). Partial reflections
[82, 32], on the other hand, are not local. A framework is rigid in RK if it has no local isometries in RK , and flexible
otherwise [7, §2]. This can be written formally in terms of the function that maps the realization x ∈RnK to the square
distance value vector:

fG,K(x) = (∥xu− xv∥2
2 | {u,v} ∈ E),

that is, the framework (G,x) is rigid iff there is an arbitrarily small neighbourhood χ of x such that:

f−1
G,K( fG,K(x))∩χ = f−1

ḠK( fḠ,K(x))∩χ,

where Ḡ is the graph completion of G, namely the complete graph over V . In other words, a framework is rigid if
it locally behaves like a complete graph under isometries. This justifies the definition since the only isometries of
complete graph frameworks are congruences.

The rigidity matrix RG(x) of the framework (G,x) is an |E|× |V |K matrix. Rows correspond to edges {u,v} (with
the convention that u < v) and columns to couples (w,k) of vertex and coordinate. The ({u,v},(w,k))-th entry of the
rigidity matrix is defined as follows:

∀{u,v} ∈ E,w ∈V,k ≤ K RG
uv,wk(x) =


xuk− xvk if w = u
xvk− xuk if w = v
0 otherwise.

(5)

A realization x of G is regular if its rigidity matrix RG(x) has maximum rank over all possible edge-weightings d of
G and their corresponding realizations [77, §7.3.2]. Moreover, (G,x) is rigid in RK if x is regular and the rank of
RG(x) is Kn− (K′+ 1)(2K−K′), where K′ is the dimension of the affine subspace spanned by x, and flexible if the
rank is less than the given value [7, §3]. Moreover, (G,x) is infinitesimally rigid iff x is regular and (G,x) is a rigid
framework.

It also turns out that frameworks of a given graph G are either almost all rigid, or almost all flexible [42]. This
happens because almost all matrices have the maximum rank afforded by their size (smaller ranks occur by linear
dependence, which occurs almost never). This allows us to treat rigidity and flexibility as properties of the graph rather
than of the framework, which leads to generically rigid or generically flexible graphs [8]. Usually, this genericity is
imposed by requiring that the components of x are algebraically independent on Q.

The main open problem in rigidity theory is that of obtaining an exact algorithm for determining graph rigidity
in RK based only on the graph structure G = (V,E), rather than on the edge weights [78]. Such algorithms exist for
K ∈ {1,2} [59, 88], but not for K ≥ 3.

Because rigid graphs do not allow for local isometries, their number of isometric incongruent realizations is finite.
Rigid graphs having a single realization (up to congruences) are known as globally rigid. This is particularly interest-
ing in those DGP applications where one must reconstruct a single configuration of points in space from (assigned)
distances: for example sensor network localization. Reconstructing the wrong network, even if it is consistent with
the observed distances, would be useless. If a graph is globally rigid, there is no such risk.
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2.3.1 Unassigned rigidity

It turns out that generic global rigidity was extended to the unassigned case in [45]: for a generic realization x of a
generically globally rigid graph G, let d = fG,K(x). If there is a graph H with a realization y such that fHK(y) is a
re-ordering of d, then H is isomorphic to G (i.e. H can be obtained from G by a vertex relabelling), and x = y up
to congruence. This result is valid for all K ≥ 2. If G is 3-connected, it is also valid for K = 1. The result also
implies that G,H have the same number of vertices and edges. This means that generic global rigidity depends on the
edge weights only, rather than on their incidence to vertices. The condition on genericity is crucial: for nongeneric
realizations there may exist cases where G,H are not isomorphic.

2.4 A mathematical programming primer

All of the methods we shall discuss in this survey are formulation-based. We are going to formulate the DGP and
UDGP in many different ways by means of Mathematical Programming (MP), a declarative formal language for
describing and solving optimization problems [115]. The general form of an MP formulation is:

min
x
{ f (x) | ∀i≤ p gi(x)≤ 0∧ x ∈ X}, (6)

where:

• x is an array of decision variables;

• the functions f (x) and gi(x) for each i ≤ p are represented by a mathematical expression based on a formal
grammar with the usual arithmetic operators, elementary functions, and brackets;

• f (x) is the objective function to be minimized;

• ∀i≤ p gi(x)≤ 0 are explicit constraints;

• X is a set of implicit constraints that may be hard or inconvenient to represent, but for which there exist conve-
nient computational methods.

We warn the reader that sometimes, to save space, MP formulations present some explicit constraints implicitly, when
the explicit form has already been discussed previously.

Once a problem is represented by a MP formulation, one may look at the type of implicit constraints (e.g. non-
negative orthant, integer lattice), variables (e.g. continuous, integer, binary, mixed, matrix) and terms (e.g. linear,
quadratic, polynomial, general nonlinear) involved in objective and constraints, and choose an off-the-shelf piece of
software called solver that caters to the formulation properties. When the solver is deployed on the formulation, given
sufficient time and assuming the formulation conforms to the theoretical assumptions assumed by the solver3, it will
provide one or more solutions to the problem, or report an error. Implicit constraints are handled by specific parts of
the algorithm implemented by the chosen solver.

The input of an MP formulation are the mathematical expressions f ,gi (for i≤ p) and possibly the choice of solver
given by X . The output is given by the values of the decision variables after the solution process, or the type of error
returned. MP formulations may turn out to be feasible or infeasible, and bounded or unbounded. An appropriate
solver may be able to prove feasibility/infeasibility, boundednes/unboundedness, and also provide a solution as an
output (values of the decision variables after the solver terminates).

Solvers are implemented algorithms for solving a certain subclass of MP formulations. The different existing
solvers yield a cover of the MP class by subclasses, which provide a taxonomy for MP. For the purposes of this sur-
vey, the taxonomy we make use of is: Linear Programming (LP), Semidefinite Programming (SDP), Mixed-Integer
LP (MILP), Quadratically Constrained Quadratic Programming (QCQP), convex QCQP (cQCQP), Nonlinear Pro-
gramming (NLP), convex NLP (cNLP), Mixed-Integer QCQP (MIQCQP), Mixed-Integer NLP (MINLP).

3Such assumptions, such as constraint qualifications in nonlinear problems, are sometimes computationally inefficient or impossible to
verify in the Turing machine model.
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Solvers may be local or global: a local solver requires a starting point (initial variable values) and reaches a close-
by local optimum. A global solver gives some kind of guarantee of global optimality. Usually, local solvers for purely
continuous problems are significantly faster than their global counterparts. If integer variables are involved, however,
most problems become NP-hard, and local solvers may be as slow as global ones (in fact, with integer variables, a
“local solver” often consists in running a global solver that is only allowed a given amount of computation time).

In the taxonomy above, LP is the only MP subclass in P, and the only subclass for which feasibility and bounded-
ness (or their converse) can be proved by the solver with a certificate that can be verified by a Turing Machine (TM).
Moreover, LP, SDP, and cQCQP are all convex MP formulations: if a local solver identifies a local optimum, it is
also global by convexity. The cQCQP and SDP subclasses, therefore, have similar characteristics to the LP subclass,
but within an ε > 0 precision limit. MILP, QCQP, MIQCQP, NLP, MINLP are all NP-hard; moreover, MIQCQP and
MINLP are undecidable [69].

The situation with cNLP is more complicated: many cNLPs are “tame”, in the sense that a local NLP solver will
usually identify a local optimum which, by convexity, is also global (the “usually” caters for the possibility of the
cNLP not conforming to constraint qualification). The cNLP class, however, also includes copositive reformulations
of the Motzkin-Straus formulation [96] of MAX CLIQUE, a famously NP-hard problem, showing that cNLP is also
NP-hard by inclusion [23]. In practice, no local NLP solver is able to deal with the implicit copositivity constraint.

An important feature of MP formulations is that they can be reformulated, i.e. symbolically changed, so that some
aspect of the formulation remains invariant. The most common invariants are (a) the set of global optima, (b) at least
one global optimum, (c) the globally optimal value, (d) a guarantee that the reformulation will yield a bound in the
optimization direction of the original formulation, (e) a general approximation guarantee [68]. The reformulation used
most frequently is linearization [73], which consists in replacing a mathematical expression f (x) with a new variable
y, then adjoin the defining constraint y = f (x) to the formulation. The resulting reformulation is exact, i.e. all global
optima of the reformulated problem can be mapped to global optima of the original problem. Linearizations are often
employed as a starting point for further reformulations, usually of the relaxation type, i.e. a reformulation yielding a
guaranteed bound in the optimization direction.

2.5 Solution methods

In this section we survey the most common solution methods for DGP and UDGP.

2.5.1 With the graph

Many DGP solution methods depend on further assumptions of rigidity. Sometimes it stems from the application,
e.g. the “molecular rigidity” assumption [90] is exploited in [62] to devise a vertex order leading to an algorithmic
approach. More often, certain classes of rigid graphs display an orderly structure that can be exploited algorithmically.

An example of this occurrence is given by trilateration, which refers to the determination of a single point at given
distances from three other points on the earth surface [39]. A trilaterative graph G = (V,E) is endowed with a vertex
order such that, for each vertex v having order rank > 3, there are at least three vertices u1,u2,u3, with rank less
than v, such that {u j,v} ∈ E for j ∈ {1,2,3} [38]. A K-laterative graph is analogous to a trilaterative one, where
3 is replaced by K [77]. The vertex order can be exploited in proofs by induction and in algorithms. For example,
K-laterative graphs are generically rigid in RK and generically globally rigid in RK−1. The proofs are as follows: in
K−1 dimensions each vertex v > K can be placed generically uniquely (if the DGP instance is YES); in K dimensions
each vertex can be placed generically in at most two distinct positions. The placement operation reduces to solving
a linear system in K− 1 dimensions, and an easy quadratic system in K dimensions [77, Ch. 3], but there are faster
methods for specific dimensions such as K = 3 in 3D [100, 44].

In sensor network localization, trilateration is exploited in 2D [9] to reconstruct a single network. The geometric
build-up algorithm [35] exploits trilateration with K = 4 in 3D, while the Branch-and-Prune (BP) [79, 75, 46, 97,
99, 65, 116, 43] exploits trilateration with K = 3 in 3D. With general graphs, decomposition in rigid components is
sometimes exploited [50, 28]. But once the rigid components have been individually realized, their synchronization
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is not straightforward, and prone to errors.

Thus, most solution methods for the DGP on general graphs are mostly MP-based, which allows the practitioner
to simply “model” the problem by an MP formulation, and call an appropriate solver (see Sect. 2.4 above). To aim
at solving large-sized instances, on the other hand, some hand-crafted MP-based solution algorithms for solving the
DGP as an NLP formulation have been devised and implemented in the past, e.g. [94, 51, 80, 87] (see [83] for more
details). Some of these methods gain considerable speed-ups from combinatorial considerations, such as for example
those based on facial reduction [21, 56, 57], which reduces the number of variables in conic programs such as SDP,
often used in solving DGP and UDGP as detailed below (Sect. 4).

An interesting alternative to hand-crafted MP-based methods is to deploy random projections [70, §7.3] on DGP
formulations [85]: this reduces the size of MP formulations for large DGP instances, which can therefore be solved by
an off-the-shelf solver. A solution retrieval process then provides an approximate solution to the original, large-sized
instance.

2.5.2 Without the graph

To the best of our knowledge, MP was only used for solving the UDGP in [30, 37, 22]. In [30], the 1-dimensional
UDGP (UDGP1) arising in the partial digest methodology was modelled as binary quadratic program, and solved
approximately using SDP, with the approximation being exact for some UDGP1 subclasses. The formulations in
Eq. (11)-(12) below represent the theoretical contribution of [37]. In [22], a MINLP was used to maximize the
number of satisfiable (interval) distance constraints while keeping the feasibility error of each infeasible constraint as
small as possible.

There are several algorithms for solving the UDGP in one dimension (the typical setting of the “partial digest”
methodology, see Sect. 2.2). The first two proposed in the literature are a pseudopolynomial algorithm and a practi-
cally faster exponential algorithms are given in [109]. An extension of the exponential algorithm to arbitrary dimen-
sions is given in [66], and a deployment of the exponential algorithm in the noisy setting afforded by the application
is given in [110]. Other papers about the partial digest problems focused on complexity, noisy data, bounds on the
number of solutions, and heuristic algorithms. The most recent paper about the UDGP in one dimension is [26], which
is based on the Lenstra-Lenstra-Lovász (LLL) basis reduction algorithm.

The “Tribond” algorithm was first proposed in [47]: the explanation is informal, and limited to 2D (so are the ex-
periments), but the algorithm is potentially applicable to any dimension: in particular, it was applied to 3D molecules
in [36]. Tribond is essentially a backtracking algorithm that starts from a subsequence of (K +2)(K +1)/2 distance
values forming a consistent K + 2 point structure (called “core”) in RK with a redundant edge (meaning that the re-
moval of an edge leaves the structure rigid in RK), and then iteratively attempts to increase the size of the structure
by looking for subsequences of K+1 distance values consistent with segments between K+1 already existing points
and a single new point added to the structure. Backtracking occurs both in the core construction phase, and in the
incremental phase. The algorithm terminates when the structure grows to the given number n of points. The “Liga”
algorithm is an extremely effective heuristic method based on growing, selecting, and combining substructures (in
a way similar to genetic algorithms) until a satisfactory structure emerges [54]. Both Tribond and Liga have been
conceived with the purpose of realizing small molecules for which it is possible to obtain a rich (sometimes complete
or even redundant) set of distances. While Tribond is exhaustive, and so provides some sort of guarantee, Liga is not.
Both, however, provided very convincing results of interest to the physical-chemical communities.

3 MP formulations for the DGP and the UDGP

All DGP formulations are either equivalent to, or derived from, Eq. (1), and similarly for UDGP formulations. By
turning the decision problem Eq. (1) into an optimization problem, most of our formulations (with the exception of
push-and-pull and variants, see Sect. 3.4) relax feasibility into optimality: specifically, the DGP instance is YES if
and only if the globally optimal objective function value is zero. Moreover, if the instance is NO because of slightly
imprecise distance data, any realization will yield an optimal objective function value that is “reasonably” small. This
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is why, in this survey, we chose to dispense from representing experimental measurement errors explicitly by intervals:
one may more simply cater to these errors by accepting realizations with objective values that are slightly larger than
zero, but within a given ε > 0.

With most DGP formulations, we can derive a corresponding UDGP formulation by means of the mapping DGP→
UDGP given by D→U< mentioned in Sect. 3.1 just before Example 3.4. This usually involves changing a few indices
and sets in the formulation, and adding the component relative to the assignment α .

All congruences (translations, rotations, reflections) applied to a valid realization produce another valid realization:
thus, all MP formulations of YES instances have in fact an uncountable number of global optima. We found that it
sometimes help solvers to fix at least the translations (fixing rotations and reflections at the formulation level is harder).
This can be achieved with a set of centroid constraints:

∀k ≤ K ∑
u∈V

xu = 0. (7)

For UDGP formulations, the quantification of the sum is on i≤ n.

3.1 Basic results

We make the statement about the the relative difficulty betwen UDGP and DGP (paragraph “Take the unassigned form
[. . . ]” in Sect. 1 on p. 3) more precise. In doing so, we shall introduce some notions and notations which will allow
us to derive reformulations in subsequent sections.

For a function f , dom f is the domain and ran f the range of f . Note that the sequence δ can be seen as a function
[m]→ R+.

3.1 Proposition
Let U = (K,n,L) be an instance of the UDGP, and α : [m]→ [n]× [n] be an assignment. Consider the graph Gα =
(V,E,d) where V = [n], E = ranα , d = δ ◦α−1 and the corresponding DGP instance Dα = (K,Gα). If U is YES,
then Dα is YES. If U is NO, Dα is NO for all possible α .

Proof. Assume U is YES. The graph Gα has [n] as vertex set V , and edges {u,v} for u < v ≤ n whenever there
is ℓ ≤ m with α(ℓ) = (u,v). Moreover, each edge {u,v} is weighted by δℓ such that α(ℓ) = {u,v}. By Eq. (2) and
the definition of Gα , x also satisfies Eq. (1), i.e. Dα is YES. Assume now that U is NO, and suppose, to aim at
a contradiction, that there is α such that Dα is YES: then it has a realization x for Gα , which, by Eq. (1) and by
definition of Gα , is also a realization of U , against the assumption. □

We note that Prop. 3.1 introduces a mapping from UDGP to DGP instances, namely (U ,α)→Dα . We also emphasize
the notation Gα in order to refer to the the graph corresponding to the assignment α from a UDGP instance, as in
Prop. 3.1.

3.2 Example
Consider the UDGP with input (K = 2,n = 3,L = (3,1,1)). Since K = 2 and n = 3 we want a triangle in the plane.
But since the distance scalars 3,1,1 violate the triangular inequality, the instance is infeasible. Observe that L is a list
rather than a set of scalars, since we may need to specify scalars with a multiplicity greater than one (this is often the
case in nanostructures). Moreover, by Prop. 3.1, no reconstructed graph Gα yields a feasible DGP instance. ■

3.3 Example
Consider the UDGP with input (K = 2,n = 3,L = (δ1,δ2,δ3)), which results in a triangle in the plane, with side
lengths δ1,δ2,δ3 and an underlying graph

T2 = ({1,2,3},{{1,2},{2,3},{1,3}}),

which is the complete graph on 3 vertices. The realization does not change if the point labels change, so all of the
possible assignments are valid:
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• α1 : δ1→{1,2},δ2→{2,3},δ3→{1,3}
• α2 : δ1→{1,2},δ2→{1,3},δ3→{2,3}
• α3 : δ1→{1,3},δ2→{2,3},δ3→{1,2}
• α4 : δ1→{1,3},δ2→{1,2},δ3→{2,3}
• α5 : δ1→{2,3},δ2→{1,2},δ3→{1,3}
• α6 : δ1→{2,3},δ2→{1,3},δ3→{1,2},

even though all are realized by the same triangle, but with permuted vertex labels. In general, if an assignment α is
computed for a UDGP instance, leading to a graph Gα , all isomorphic versions of Gα are admissible reconstructions.
If all possible distances are given for the number n of points (as e.g. in this example m = |L|= 3 = n(n−1)/2), all n!
vertex permutations lead to feasible assignments, i.e. to isomorphic copies of the 3-clique graph. ■

An inverse mapping from DGP to UDGP instances is constructed as follows: let D = (K,G = (V,E,d)) be a DGP
instance. Let < be any total order on E inducing the edge list (e1, . . . ,em). Then we can define δℓ = deℓ for all ℓ≤ m.
This yields a UDGP instance U< = (K, |V |,δ ) which is YES if D is YES. By contrast, U< may be YES even though
D is NO, as shown in Example 3.4.

3.4 Example
Consider the graph G given by the following weight function d12 = 3,d23 = 4,d13 = 5,d14 = 2,d24 = 2, shown in
Fig. 1 (top left) with the correct realization: Evidently, the DGP with K = 2 on G is YES. Now consider instead
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Figure 1: The same UDGP instance gives rise to (at least) three DGP instances (two YES, one NO).

the graph H defined by d12 = 3,d23 = 4,d13 = 5,d14 = 2,d34 = 2, where the distance value 2 previously assigned to
{2,4} is now assigned to {1,4}, shown in Fig. 1 (bottom left) with an incorrect realization. It is obvious that the DGP
instance defined on H is NO, since there is no triangular realization for the subgraph H[1,3,4] defined on distance
values 5,2,2: they do not satisfy triangular inequalities. Nonetheless, both DGPs are obtained from the same UDGP
instance U = (2,4,(2,2,3,4,5)) by means of different assignments:

αG : 1→{1,4},2→{2,4},3→{1,2},4→{2,3},5→{1,3}
αH : 1→{1,4},2→{3,4},3→{1,2},4→{2,3},5→{1,3}.

Another possible solution of U , found by a solver deployed on an MP formulation, is the assignment α ′ : 1→
{1,3},2→{3,4},3→{2,3},4→{1,2},5→{2,4} leading to the realization in Fig. 1 (right), where the triangle on
2,3,4 is flat. ■
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3.2 The quartic formulation

Minimizing the sum of squared differences of the two sides of a system of equations is the most common way to
solve such a system. This probably comes from the fact that, for a linear system, there exists a closed formula (linear
regression); moreover, for a linear system, the corresponding optimization problem is a “tame” cNLP. The application
of this technique to nonlinear systems, by contrast, gives rise to nonconvex NLPs in general, which is an NP-hard
class. When applied to the DGP system (1), this is to be expected in view of the fact that the DGP itself is NP-hard, but
it weakens the justification for choosing the minimization of the sum of squared differences to reformulate Eq. (1).
This formulation can be traced back to [111] (and perhaps even earlier). It was tested computationally as a DGP
formulation starting from [63] and in many more papers after it.

min
x∈RK ∑

{u,v}∈E

(
∥xu− xv∥2

2−d2
uv
)2
. (8)

The quartic formulation (8) is unconstrained. It minimizes a nonconvex multivariate polynomial of degree 4 (hence
the name quartic). It can be solved globally with a global NLP solver, or locally with a local NLP solver starting from
a given imprecise realization x′ of the weighted graph defined by {duv | {u,v} ∈ E}.

3.2.1 The unassigned quartic

We represent the unknown assignment α : [m]→ [n]× [n] by means of binary variables yi jℓ such that yi jℓ = 1 iff
α(ℓ) = (i, j). The assignment properties are that (i) it is a function:

∀ℓ≤ m ∑
i< j≤n

yi jℓ ≤ 1, (9)

and (ii) it is injective:
∀i < j ≤ n ∑

ℓ≤m
yi jℓ = 1. (10)

Since these assignment constraints will be repeated often in the following, we summarize them in the set A = {y ∈
{0,1}n2m | Eq. (9)-(10)}, and then use the implicit constraint y ∈ A to refer to the (explicit) constraints Eq. (9)-(10)
together with the implicit constraint y ∈ {0,1}n2m.

We now modify Eq. (8) so that each term in the objective is added to the sum only if the corresponding y variable
is set to 1:

min
x∈RnK
y∈A

∑
ℓ≤m

i< j≤n

yi jℓ
(
∥xi− x j∥2

2−δ
2
ℓ

)2
. (11)

The quartic UDGP formulation Eq. (11) is a constrained MINLP involving polynomial functions of degree 5, which
first appeared in [37]. It can be solved using a global MINLP solver. Because of the presence of the binary variables y,
local solutions may be achieved by giving a resource constraint (CPU time, iterations, number of nodes) to the global
solver. Using global solvers with resource constraints is referred to as “using a global solver locally”.

There is an interesting, and unexpected continuous exact reformulation of Eq. (11), yielding a nonconvex NLP
which can be solved locally or globally using a local or global NLP solver. This is based on the observation that,
under certain conditions, maximizing a sum of squared variables defined over [0,1] yields a binary vector.

min
x∈RnK

y∈A ,t∈R

t− ∑
ℓ≤m

i< j≤m

y2
i jℓ

∑
ℓ≤m

i< j≤n

yi jℓ
(
∥xi− x j∥2

2−δ 2
ℓ

)2
= t.

 (12)

The proof that this reformulation is indeed exact is given in [37, Thm. 2]. This formulation is enticing insofar as
it would allow one to solve it locally using local NLP solvers, which take a starting point and improve it (which is
usually much faster than using a global solver locally on a mixed-integer formulation). However, the theorem that
guarantees that the continuous y variables have binary values only applies at global optima. We also note that, at
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global optima, the objective function value is not zero but −m. Thus, it might be harder to claim that NO instances
with only slighly imprecise distances are recognizable by a slight variation on the objective function: in Eq. (12) the
“error” given by the objective value represents distance errors as well as assignment errors (since a non-binary y value
cannot be interpreted as an assignment).

3.3 The system formulation

The system formulation is almost equivalent to the quartic: it simply linearizes the differences under the square:

min
x∈RnK
s∈Rm

∑
{u,v}∈E

s2
uv

∀{u,v} ∈ E ∥xu− xv∥2
2 = d2

uv + suv.

 (13)

The system formulation is a nonconvex QCQP which can be solved locally or globally by local or global QCQP or
NLP solvers. This formulation probably first appeared in print in [70, Eq. (24)], but it was used in computational work
at least since 2014.

A variant of the system formulation is based on the ℓ1-norm to penalize the error, instead of the ℓ2-norm:

min
x∈RnK
s∈R2m

∑
{u,v}∈E

(s+uv + s−uv)

∀{u,v} ∈ E ∥xu− xv∥2
2 = d2

uv + s+uv− s−uv.

 (14)

This is actually a Quadratically Constrained Program (QCP) since the objective is linear. The QCP class is a subsclass
of QCQP (since all linear forms are also trivial quadratic forms). As regards DGP and UDGP formulations, there
is no substantial practical difference between the two classes, as there are no specific QCP solvers that cannot solve
QCQPs too.

3.3.1 The unassigned system formulation

We refer to Sect. 3.2.1 for the definition of the assignment constraint set A and the binary variables y. The unassigned
version of Eq. (13) is

min
x∈RnK

s∈Rm,y∈A

∑
ℓ≤m

i< j≤n

s2
ℓ

∀ℓ≤ m, i < j ≤ n −suv−M(1−yi jℓ)≤ ∥xi−x j∥2
2−δ 2

ℓ ≤ suv+M(1−yi jℓ),

 (15)

where M is a “big-M” constant that must be an upper bound to the diameter of any realization satisfying the DGP. A
very slack bound M = (∑ℓ≤m δℓ)

2 is provided in [22, Prop. 2.2].

The unassigned version of the ℓ1-norm variant in Eq. (14) is:

min
x∈RnK

s∈R2m,y∈A

∑
ℓ≤m

i< j≤n

(s+ℓ + s−ℓ )

∀ℓ≤ m, i < j ≤ n −s−uv−M(1−yi jℓ)≤ ∥xi−x j∥2
2−δ 2

ℓ ≤ s+uv+M(1−yi jℓ).

 (16)

In Eq. (15)-(16) the y variables are used to activate or deactivate the constraints according to whether the distance δℓ

is assigned to edge {u,v} or not. We note that the term on the objective need not be multiplied by y when y = 0 since
this is taken care of by the optimization direction.

The advantage of unassigned system formulations w.r.t other UDGP formulations is that they are MIQCQPs instead
of MINLPs, which allows one to deploy a larger set of solvers upon them. In fact, Eq. (16) is a Mixed-Integer QCP
(MIQCP). Eq. (16) was first used in [72].
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3.4 The push-and-pull formulation

The push-and-pull formulation of the DGP [32, 93] is as follows:

max
x∈RnK

∑
{u,v}∈E

∥xu− xv∥2
2

∀{u,v} ∈ E ∥xu− xv∥2
2 ≤ d2

uv.

}
(17)

It is a nonconvex QCQP with a concave objective (maximization of a convex function) and convex quadratic con-
straints. It can be solved locally or globally by local or global QCQP or NLP solvers. Its name is given by the
suggestion that the constraints push the realization points together, while the objective pulls them apart.

There is also a pull-and-push formulation that inverts the objective direction and the constraint senses:

min
x∈RnK

∑
{u,v}∈E

∥xu− xv∥2
2

∀{u,v} ∈ E ∥xu− xv∥2
2 ≥ d2

uv,

}
(18)

which is not quite as useful as Eq. (17) since it is usually (practically) easier, for many local NLP solvers, to decrease
a difficult objective than to satisfy difficult constraints. Nonetheless we shall see later that even Eq. (18) has a use.

It is not immediately obvious that Eq. (17) is an exact reformulation of Eq. (1). A proof of this fact is given in [93,
Prop. 2.8] (the proof for Eq. (18) is analogous).

3.4.1 The unassigned push-and-pull

We refer to Sect. 3.2.1 for the definition of the assignment constraint set A and the binary variables y. The unassigned
version of Eq. (17) is

max
x∈RnK
y∈A

∑
ℓ≤m

i< j≤n

yi jℓ∥xi− x j∥2
2

∀ℓ≤ m, i < j ≤ n ∥xi− x j∥2
2 ≤ δ 2

ℓ +M(1− yi jℓ).

 (19)

As in the unassigned system formulations, a value of M is given in [22, Prop. 2.2]. In Eq. (19) the y variables only
count assigned indices in the objective, and deactivate constraints for non-assigned indices.

Eq. (19) is not quadratic, since the objective is a cubic polynomial. It is therefore a MINLP, which can be solved
with a global MINLP solver, possibly used locally. A similar formulation to Eq. (19) was given in [22].

3.5 The cycle formulation

The cycle formulation for the DGP is presented in [74]. In its native form, it decomposes the DGP into two phases:
a constrained optimization problem and the solution of a linear system. The optimization problem constraint is
quantified over a basis B [6] of the cycle space of the input graph G:

min
z∈[−d,d]mK

∑
{u,v}∈E

(∥zuv∥2
2 − d2

uv)
2

∀C ∈B(G) ∑
{u,v}∈C

zuv = 0,

 (20)

where duv = (duv, . . . ,duv) ∈ RK and zuv = (zuv1, . . . ,zuvK) for each {u,v} ∈ E. The linear system is:

∀{u,v} ∈ E,k ≤ K xuk− xvk = zuvk. (21)

Once Eq. (20) is solved, Eq. (21) is a linear system of mK equations and nK unknowns, which can be solved (if z is
an optimum of Eq. (20)) to retrieve the realization x ∈ RnK .

The proof in [74] leading to the correctness of this decomposition is long but elementary. However, the fact that
the problem is decomposed in a hard part (Eq. (20)) and an easy part (Eq. (21)) does not improve computational
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performances by much. We therefore propose the following exact reformulation, which integrates Eq. (21) into
Eq. (20): this considerably shortens the correctness proof.

min
x∈RnK

z∈[−d,d]mK

∑
{u,v}∈E

(∥zuv∥2
2 − d2

uv)
2

∀C ∈B(G) ∑
{u,v}∈C

zuv = 0 (†)

∀{u,v} ∈ E xu− xv = zuv. (‡)

 (22)

3.5 Proposition
Eq. (22) is an exact reformulation of Eq. (1).

Proof. Let x by any solution of Eq. (1). By the linearization constraints (‡) we know that the objective function value
of Eq. (22) is zero. Moreover, for any k ≤ K and any cycle C = {1, . . . ,c} (wlog) in the graph we have:

(x1k− x2k)+(x2k− x3k)+ · · ·+(xck− x1k) =

= x1k− (x2k− x2k)− (x3k− x3k)+ · · ·− x1k = 0.

Since every cycle can be generated linearly from the cycle basis B(G), the cycle constraints (†) are also satisfied.
Conversely, let x′ be a global optimum of Eq. (22). By replacing zuv with xu− xv in the objective (which we can do
since x′ satisfies the linearization constraints (‡) in Eq. (22)), we see that x′ is also a global optimum of Eq. (8), which
is therefore a solution of Eq. (1). □

In fact, the proof of Prop. 3.5 also holds without the cycle constraints, which implies that the following formulation
is also correct:

min
x∈RnK

z∈[−d,d]mK

∑
{u,v}∈E

(∥zuv∥2
2 − d2

uv)
2

∀{u,v} ∈ E xu− xv = zuv.

 (23)

We also note that Eq. (23) is a trivial reformulation of Eq. (8) by linearization of the terms xu− xv by the variables
zuv. The point of the cycle formulation is that the cycle constraints (†) tighten any relaxation of Eq. (23), leading to
better performances with global NLP solvers based on spatial Branch-and-Bound (sBB) [14]. The performance of
local NLP solvers deployed on Eq. (23) is impacted less clearly by the cycle constraints: for this reason, Eq. (23)
deserves more in-depth study w.r.t. local NLP optimization.

We note that Eq. (20), (22), and (23) are all NLPs involving polynomials of degree 4. They can easily be reformu-
lated based on the system (resp. push-and-pull) formulation, yielding nonconvex QCQPs with nonconvex (resp. con-
vex) quadratic constraints. We write these reformulations for (23): the cycle constraints (†) may be added to Eq. (24)-
(26) to yield QCQP reformulations analogous to (22):

min
x∈RnK,s∈Rm

z∈[−d,d]mK

∑
{u,v}∈E

s2
uv

∀{u,v} ∈ E ∥zuv∥2
2 = d2

uv+suv

∀{u,v} ∈ E xu−xv = zuv

 (24)

max
x∈RnK

z∈[−d,d]mK

∑
{u,v}∈E

∥ zuv ∥2
2

∀{u,v} ∈ E ∥zuv∥2
2 ≤ d2

uv
∀{u,v} ∈ E xu−xv = zuv.

 (25)

Eq. (24)-(25) correspond to the ℓ2-norm error. Another exact reformulation of Eq. (24) can be written for the ℓ1-norm,
similarly to Eq. (14):

min
x∈RnK,s∈R2m

z∈[−d,d]mK

∑
{u,v}∈E

(s+uv + s−uv)

∀{u,v} ∈ E ∥zuv∥2
2 = d2

uv + s+uv− s−uv
∀{u,v} ∈ E xu− xv = zuv.

 (26)

3.5.1 The unassigned cycle formulation

The cycle formulations that include the cycle constraints (†) involve the knowledge of the underlying graph, which is
not available as part of the input in the UDGP. Therefore, we cannot derive unassigned formulations from Eq. (20)
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and (22). We can derive the unassigned versions of the simplified cycle formulations without cycle constraints (†),
namely Eq. (23)-(26). We limit our treatment to the one derived from Eq. (26) because it yields a MIQCQP instead
of a general MINLP, as explained in Sect. 3.3.1.

min
x∈RnK

s∈R2m ,y∈A

∑
ℓ≤m

i< j≤n

(s+ℓ + s−ℓ )

∀ℓ≤ m, i < j ≤ n −s−uv−M(1−yi jℓ) ≤ ∥zi j∥2
2−δ 2

ℓ ≤ s+uv +M(1−yi jℓ)
∀i < j ≤ n xi− x j = zi j.

 (27)

Eq. (27) is a MIQCQP that can be solved using a global MIQCQP solver (possibly used locally). To the best of our
knowledge, this formulation is new.

4 Matrix relaxations and approximations

In Sect. 3 we presented eleven MP formulations for the DGP and six for the UDGP. Among the DGP formulations,
seven are (MI)QC(Q)P. Among the UDGP ones, three are (MI)QC(Q)P. The interest of limiting the polynomial degree
to 2 is that one can directly derive SDP relaxations of the original formulation [19, 92, 57]. From these, one can then
derive further linear relaxations and approximations by means of Diagonally Dominant Programming (DDP) [33],
i.e. linear programming over the primal and dual cones of diagonally dominant (DD) matrices, which is in fact a
subclass of LP — for which there exist extremely fast solvers. The application of SDP/DDP to the UDGP yields
mixed-integer versions of the SDP/DDP formulations of the DGP. Since DDP ⊂ LP, we obtain Mixed-Integer SDP
(MISDP) relaxations, and MILP relaxations and approximations for the UDGP.

We shall limit the application of DDP reformulations to those formulations of Sect. 3 where the quadratic terms
only involve the realization variables x. These are: the ℓ1-norm system formulations Eq. (14) and (16), and the
push-and-pull/pull-and-push formulations Eq. (17)-(18).

The basic reformulation steps to obtain (MI)SDP relaxations and (MI)LP relaxations and approximations is the
same, as it applies term-wise to the expression ∥xu− xv∥2

2 and to the implicit constraints.

4.1 Constructing the SDP relaxation

Consider any DGP formulation in Sect. 3, and in particular the term ∥xu− xv∥2
2 for any {u,v} ∈ E. We have:

∥xu− xv∥2
2 = ∥xu∥2

2 +∥xv∥2
2−2⟨xu,xv⟩

= ⟨xu,xu⟩+ ⟨xv,xv⟩−2⟨xu,xv⟩
= Xuu +Xvv−2Xuv (28)

by linearization of any term ⟨xt ,xw⟩ (for t,w∈V ) with the additional variable Xtw. There may be up to n2 linearization
variables organized in a symmetric n× n matrix X . We can now replace the nonlinear term ∥xu− xv∥2

2 by the linear
term Xuu +Xvv−2Xuv in any DGP formulation, then add the defining constraint matrix

X = xx⊤. (29)

For any of the above DGP formulations of Sect. 3, the symbolic procedure just described provides an exact reformu-
lation. We note that such reformulations are not very convenient to solve, as satisfying Eq. (29) is a difficult task for
most solvers.

Now we rewrite Eq. (29) as X − xx⊤ = 0, then we relax this to X − xx⊤ ⪰ 0, which, using the Schur complement,
reads: (

1K x⊤

x X

)
⪰ 0. (30)

If every occurrence of x was eliminated by the linearization process, we can simplify Eq. (30) to

X ⪰ 0. (31)
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SDP formulations are tractable cNLPs the nonlinearity of which is exclusively in the implicit constraint X ⪰ 0. SDPs
can be solved using an SDP solver, which runs in polynomial time up to any desired ε > 0 precision. The issue
is practical, though: there are currently no SDP solvers to address SDPs with millions of variables and constraints,
which is the current situation for LP solvers.

The SDP relaxation of the DGP is a formulation that also describes the EUCLIDEAN DISTANCE MATRIX COM-
PLETION PROBLEM (EDMCP), which is equivalent to the POSITIVE SEMI-DEFINITE MATRIX COMPLETION PROB-
LEM (PSDMCP). Both are discussed extensively in [60]. Computational experiments on such formulations have been
obtained since the late 1990’s [5], mostly by using ad-hoc codes implementing primal-dual algorithms.

4.2 The DDP restriction

The practical inadequacy of current SDP solvers motivates the search for inner and outer polyhedral cones to approx-
imate the SDP cone. In this section we look at the cone of DD matrices. By Gershgorin’s theorem [41], every DD
matrix is also positive semidefinite (PSD), while the converse does not hold. Thus, if we replace the PSD constraint
X ⪰ 0 with “X is a DD matrix” we obtain an inner approximation of an SDP formulation. There remain two questions:
(i) how can we describe the DD cone explicitly, and (ii) how does the solution of a DDP help us solve the DGP?

The first question is easiest: an n×n symmetric matrix X is DD if it satisfies:

∀i≤ n ∑
j≤n
j ̸=i

|Xi j| ≤ Xii. (32)

Eq. (32) is a piecewise-linear (hence nonlinear) constraint. But a linear description exists for it [3, Thm. 3.9], based
on linearizing the nonlinear term |Xi j| by the components of a new matrix variable T :

∀i≤ n ∑
j≤n
j ̸=i

Ti j ≤ Xii (33)

−T ≤ X ≤ T. (34)

We let Dn = {X ∈ Sn; | ∃T Eq. (33)−(34)}, where Sn is the set of all n×n symmetric matrices, be the linear description
of the DD cone. The DDP corresponding to a given SDP can then be derived by replacing X ⪰ 0 with X ∈ Dn.

The second question depends on the output. Since Dn ⊊ S+
n = {X ∈ Sn | X ⪰ 0}, there may be feasible SDPs

where the corresponding DDP is infeasible: we can sometimes help this by relaxing some of the explicit constraints.
However, if the DDP is feasible, we obtain a PSD solution matrix X ′, which provides an interesting solution, since it
can be factored (we shall see the significance of this below). On the other hand, although the DDP is a restriction of
the corresponding SDP, we start from an SDP that is a relaxation of the original DGP formulation: we cannot directly
infer any relationship between the original objective function value and the optimal objective value of the DDP.

DDP formulations are LPs, which can be solved with any LP solver. DDP was extensively investigated by Amir
Ali Ahmadi and co-authors [91, 2, 1, 3]. These techniques were first applied to the DGP in [33].

4.3 The dual DDP relaxation

If C is a cone, its dual cone C∗ is defined as {ψ | ∀φ ∈C ⟨φ ,ψ⟩ ≥ 0}. It turns out that the dual DD cone D∗n of Dn is
finitely generated by the matrices:

E±i j = (ei± e j)(ei± e j)
⊤

for every i, j ≤ n, where e1, . . . ,en is the standard basis of Rn [11]. In other words, we have

D∗n = {X ∈ Sn | ∀i, j ≤ n tr(XE±i j )≥ 0}. (35)

Equivalently, since each E±i j is defined as the gram matrix of trivial linear combinations of basis vectors, we consider
∆ = {ei | i≤ n}∪{ei± e j | i < j ≤ n}, and describe D∗n as follows:

D∗n = {X ∈ Sn | ∀v ∈ ∆ v⊤Xv≥ 0}. (36)
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By Eq. (35), we can easily compute an explicit form for the constraints tr(XE±i j )≥ 0. We know that Eii = diag(ei)
for all i≤ n, and that:

• E+
i j has the single nonzero minor

(
1ii 1i j

1i j 1 j j

)
;

• E−i j has the single nonzero minor
(

1ii −1i j

−1i j 1 j j

)
.

By inspection we have:

∀i≤ n tr(XEii) = Xii

∀i, j ≤ n tr(XE+
i j ) = Xii +X j j +2Xi j

∀i, j ≤ n tr(XE−i j ) = Xii +X j j−2Xi j.

Therefore, we can define D∗n by explicit constraints as follows:

D∗n = {X ∈ Sn | diag(X)≥ 0 ∧ ∀i < j ≤ n Xii +X j j±2Xi j ≥ 0}. (37)

The representation of D∗n in Eq. (36) helps us prove that the dual DDP cone is an outer approximation of the PSD
cone: by Eq. (36) we have that X ∈ D∗n if v⊤Xv ≥ 0 for v ∈ ∆ ⊂ Rn. Since PSD matrices are all and those for which
v⊤Xv for all v ∈ Rn, the inclusion S+

n ⊊ D∗n follows.

Dual DDP formulations belong to the LP class: they can therefore be solved by any LP solver. As for DDP, these
formulations were investigated by Ahmadi and co-authors (see the citations at the end of Sect. 4.2). Their application
to the DGP can be found in [70, §6.1.4].

4.4 Matrix reformulations of the DGP and UDGP

Based on the sets S+
n , Dn, and D∗n, we can define SDP relaxations, DDP restrictions, and dual DDP relaxations for

the QCQP and MIQCQP formulations in Sect. 3 where the quadratic terms only involve the x variables. Some of the
DGP relaxations below have appeared in [33, 71, 70], while the rest is new. Some of the UDGP relaxations have been
used in [72].

4.4.1 From the system formulation

From the DGP system formulation in Eq. (14), for all X ∈ {S+
n ,Dn,D∗n} we derive the following DGP reformulations:

min
X∈X

s∈R2m

∑
{u,v}∈E

(s+uv + s−uv)

∀{u,v} ∈ E Xuu +Xvv−2Xuv = d2
uv + s+uv− s−uv.

 (38)

We remark that Eq. (38) (as well as all the formulations in this section) describes three different formulations depend-
ing on the symbol X that ranges in the PSD cone S+

n , the DD cone Dn, the dual DD cone D∗n: the first is an SDP
relaxation, the second an inner LP approximation of the SDP, and the third an outer LP relaxation of the SDP. Thus,
the formulations in Sect. 4.4 are actually meta-formulations: they become formulations only after fixing the meaning
of the symbol X.

From the UDGP system formulation in Eq. (16), for all X ∈ {S+
n ,Dn,D∗n} we derive the following UDGP refor-

mulations:
min

X∈X,y∈A

s∈R2m

∑
ℓ≤m

i< j≤n

(s+ℓ + s−ℓ )

∀
{

ℓ≤ m
i < j ≤ n −s−uv−M(1−yi jℓ)≤ Xii+X j j−2Xi j−δ 2

ℓ ≤ s+uv+M(1−yi jℓ).

 (39)

We recall that A describes the binary variables y and corresponding assignment constraints (see Sect. 3.2.1). The
three formulations described in Eq. (39) are a MISDP (for X = S+

n ) and two MILPs (otherwise).
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4.4.2 From push-and-pull formulations

From the DGP push-and-pull formulation in Eq. (17), for all X ∈ {S+
n ,Dn,D∗n} we derive the following DGP refor-

mulations:
max
X∈X

∑
{u,v}∈E

(Xuu +Xvv−2Xuv)

∀{u,v} ∈ E Xuu +Xvv−2Xuv ≤ d2
uv.

}
(40)

For the related pull-and-push formulation in Eq. (18) we derive:

min
X∈X

∑
{u,v}∈E

(Xuu +Xvv−2Xuv)

∀{u,v} ∈ E Xuu +Xvv−2Xuv ≥ d2
uv.

}
(41)

Eq. (41) with X = Dn is only motivation for the original formulation Eq. (18) (the constraints of which are concave,
and therefore hard to satisfy): because of the potential feasibility issues of solving DDPs (i.e. the DDP might be
infeasible even if the original SDP is feasible), Eq. (40)-(41) enlarge the feasible region both ≤,≥ constraint senses:
at least one of them must be feasible.

When X = Sn, we also propose a related formulation mentioned by Yinyu Ye in one of his course slides:

max
X⪰0

tr(X)

∀{u,v} ∈ E Xuu +Xvv−2Xuv = d2
uv.

}
(42)

The constraints of Eq. (42) are an SDP relaxation of Eq. (1). If the original DGP instance is NO because it has no
realization in RK , then Eq. (42) is feasible. On the other hand, if the original DGP instance is NO because the given
distances cannot be realized in any dimension, then Eq. (42) is infeasible. Obviously, if the DGP instance is YES then
Eq. (42) is also feasible.

For feasible cases of Eq. (42), using equations instead of inequalities (as in Eq. (40)-(41)) produces a tighter
relaxation. The objective function heuristically attempts to reduce the rank of the solution, as

tr(X) = tr(PΛP⊤) = tr(PP⊤Λ) = tr(Λ) = ∑
u∈V

λu,

where PΛP⊤ is an eigendecomposition of X , and minimizing the sum of eigenvalues should help decrease the rank of
X (we shall see why this is convenient in Sect. 4.5).

We do not derive UDGP versions from any of the formulations in this section, since it would yield a product
of variables (y and X) in the objective function, resulting in nonlinear programs with cone constraints (which are
impractical to solve).

4.5 DGP post-processing

In this section we assume that the problem being solved is a DGP. From matrix formulations we do not obtain a
realization x′ ∈ RnK as output, but a symmetric matrix X ′ ∈ Rn×n. If X ′ is PSD, as would happen for SDP and DDP,
then X ′ is a Gram matrix of a realization, so it can be written as X ′ = ξ ξ⊤, where ξ ∈ Rn×n: in general, ξ can be
interpreted as a realization in Rn instead of in RK . If X is the solution of a dual DDP, then ξ ∈ Cn in general. In both
cases, in order to find the “closest” realization in K dimensions, we must reduce the rank of the realization points (in
Rn or Cn) to obtain a realization matrix in x′ ∈ RnK .

In our past work we have considered two dimensionality reduction methodologies: Principal Component Analysis
(PCA) [52, 114] and Barvinok’s naive algorithm extended to K dimensions [12, 86]. PCA can be applied to the rows
of ξ (the point vectors) to reduce them to the K principal components (or possibly even fewer if X ′, as the solution of
a dual DDP, fails to be a PSD matrix). Barvinok’s naive algorithm can only be applied to solutions of SDPs and DDPs
(with dual DDPs one may simply hope for the best). PCA produces the K-dimensional realization x′ closest to the
solution of the SDP or DDP. Barvinok’s naive algorithm produces, with arbitrarily high probability, a K-dimensional
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realization x′ that is “reasonably close to” (or just “not too far from”) a realization of the original DGP. Comparative
computational experiments between these two rank reduction methods can be found in [86].

Once a matrix x′ ∈ RnK has been computed, it can be refined, i.e. its realization error can be reduced, by using x′

as a starting point on any one of the DGP formulations of NLP/QCQP type in Sect. 3 solved by a local NLP/QCQP
solver. This yields an approximate realization x∗ of the DGP.

4.5.1 A solution process for DGPs

In summary, we propose the following process for solving DGP instances too difficult or too large to be dealt with by
global NLP/QCQP solvers:

1. Solve an SDP/DDP/dual DDP reformulation of the DGP instance (this should be reasonably fast), obtain an
n×n symmetric matrix solution X , and factor it as ξ ξ⊤.

2. Reduce the rank of ξ to an n×K realization matrix x′ using various dimensionality reduction methods.

3. Improve the quality of the realization x′ by using it as a starting point in a local NLP solver, which will yield a
good-quality realization x∗ of the given DGP instance.

4.6 UDGP post-processing

Solving UDGPs poses the problem of graph reconstruction, as discussed in Sect. 3.1. Solving UDGPs globally is only
possible for tiny instances, in general. Thus, the MISDP/MILP matrix reformulations of the UDGP in Eq. (39) are
the only practically viable possibility to handle medium to large-sized UDGP instances. High-quality global MILP
solvers can be configured to find all (or many) solutions during the search. In general, one will find solutions (X ′,y′)
where X ′ is the matrix solution and y′ encodes the assignment α .

The first post-processing task to carry out is the reconstruction of the DGP graph Gα (see Sect. 3.1). The second
post-processing task is to work out a realization x∈RnK of the reconstructed graph. There are two possibilities: either
one considers the matrix solution X ′, or one discards it. Paired with the graph Gα , the solution X ′ can be used as
described in Sect. 4.5, i.e. rank reduction followed by refinement. If X ′ is discarded, the graph Gα defines a DGP,
which can be solved using the process given in Sect. 4.5.1. The second possibility was adopted in [72], since the first
gave poor quality realizations.

4.7 Two remarks over concave constraints

In this section we provide answers to two issues that arose during talks at the conference that these proceedings book
relate to. Both are relative to the concave constraint that imposes a lower bound to a square Euclidean norm. While
both answers are probably “folklore”, to the best of our knowledge they have never appeared in print.

In the context of the (assigned) DGP and matrix formulation, we ignore pairs u,v of vertices that are not edges
in the graph. A popular way to treat them is to add a “greater than or equal” constraints with respect to some upper
distance threshold d̄, whenever one is known, i.e.

∀{u,v} ̸∈ E ∥xu− xv∥2
2 ≥ d̄ (43)

in the case of vector formulations, or
Xuu +Xvv−2Xuv ≥ d̄2 (44)

in the case of matrix formulations. This might help avoid the typical “overclustering” effect of realization points
around the origin for weakly connected vertices. We do not consider these constraints for two reasons: the first,
and foremost, is that it assumes that all distances shorter than d̄ have been measured, which may not be the case for
proteins (and other molecules) — and even a single wrong constraint of this type is likely to change the resulting
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structure considerably. The second reason is that Eq. (43) is a concave constraint, which is hard to enforce for many
solvers (the linearized version in Eq. (44), by contrast, is simply a linear constraint).

It is well known that strict constraints cannot appear in MP formulations, since they yield open sets: and optima
over open sets may not exist. Typically, with an upper bound d̄ on distance values, mathematicians will want to
impose

∀{u,v} ∈ E ∥xu− xv∥2
2 ≤ d̄

and
∀{u,v} ̸∈ E ∥xu− xv∥2

2 > d̄,

which might make optima of any MP formulation including Eq. (4.7) in its contraints non-existent. One possible
reformulation of Eq. (4.7) models set openness by formulation unboundedness. We introduce an auxiliary variable
t ≥ 0 in the formulation, and rewrite Eq. (4.7) as:

∀{u,v} ̸∈ E ∥xu− xv∥2
2 ≥ d̄ + e−t . (45)

Unboundedness in t is only possible if ∥xu− xv∥2
2 is forced to be exactly equal to d̄, which can only happen if the

bound d̄ is too small. While Eq. (45) is nonconvex in general, its linearized version

∀{u,v} ̸∈ E Xuu +Xvv−2Xuv ≥ d̄ + e−t (46)

is a convex constraint, which is representable using an exponential cone. If the rest of the formulation is also a
conic program (such as e.g. SDP or DDP formulations), the whole problem can be solved efficiently using a conic
programming solver.

5 Computational evaluation

In this section we attempt to answer the following questions.

1. Up to what size can we solve DGP/UDGP instances to global optimality in an acceptable time on a laptop?

2. For DGP/UDGP instances of various types, is it better to run a simple stochastic matheuristics (see below)
around an exact formulation solved locally, or use the matrix formulation based solution process?

3. Is MP practically useful for solving realistic DGP/UDGP instances?

We shall answer the first question by finding size thresholds beyond which the exponential nature of global opti-
mization algorithms on our MP formulations becomes limiting.

The second question deserves an explanation. A matheuristic is a heuristic algorithm (i.e. that does not provide
exactness guarantees) based on a MP formulation. A stochastic algorithm uses an element of randomness during its
execution. The simplest stochastic matheuristic is MultiStart (MS) [106, 58], shown in Alg. 1. We shall answer the

Algorithm 1 MultiStart
initialize x̄ to NaN

while resource limit not reached do
sample random starting point x′

solve a MP formulation locally from x′, obtain x̄
if x̄ improves on previous optimum then

update x∗← x̄
end if
return x∗

end while

second question by means of a comparison between MS and the process described in Sect. 4.5.1 (for DGP) and 4.6
(for UDGP).

21



We propose to answer the third question by attempting to reconstruct protein shapes from distance data (both with
and without the graph).

Finally, we note that centroid constraints (Eq. (7)) have been added to all of our formulations. Although the results
in [86] report a computational advantage slightly in favour of Barvinok’s naive algorithm, we have chosen to use PCA
as a dimensional reduction method on matrix formulation solutions, simply because it is better known.

5.1 Instances

DGP instances are organized in three families.

• A set R of 28 random biconnected graphs of given sparsity and size, based on a vertex set of points in the
Euclidean plane R2, with edges generated by means of an Erdős-Renyi process over a starting Hamiltonian
cycle and weighted by Euclidean distance between the corresponding points, to be realized in K = 2 (all of
these instances are YES by construction). The set R is used to answer the first question, i.e. to what instance
size can we solve DGPs and UDGPs to guaranteed optimality?

• A collection G of 309 graphs of different types and sizes, some weighted some not (i.e., with unit weight), to be
realized in K = 2 (most of the randomly weighted versions of these instances are generically NO; some of the
others are YES). The set G is used to answer the second question, i.e. is it better to solve DGP/UDGP formula-
tions locally withing a MS algorithm (Alg. 1), or use matrix formulation based solution process (Sect. 4.4)?

• A set P of protein graphs simulating NOESY experiments with known covalent bonds and angles: in other
words a set of disk graphs (of radius 5.5Å) on a vertex set of points in R3 (all of these instances are YES by
definition). We use this set to answer the third question: are MP formulations actually useful in practice in
regard to the DGP/UDGP?

5.1.1 Random euclidean graphs

More precisely, the set R consists of 28 random biconnected graph generated with the Erdős-Renyi model for each
vertex set size n ∈ {5,8,10,12,15,18,20}, and for each sparsity parameter p ∈ {0.4,0.8,0.9,0.95}.

5.1.2 Different graph types

The set G is composed as follows:

1. 18 almost k-regular graphs on n vertices (9 randomly weighted and 9 unweighted),
2. 18 random graphs on n vertices with edge generation probability p (9 randomly weighted and 9 unweighted),
3. 18 bipartite graphs on n + n vertices with edge generation probability p (9 randomly weighted and 9 un-

weighted),
4. 18 tripartite graphs on n+n+n vertices with edge generation probability p (9 weighted and 9 unweighted),
5. 10 square meshes with n2 vertices (5 weighted and 5 unweighted),
6. 10 torus meshes with n2 vertices as a folded-up square mesh (5 weighted and 5 unweighted),
7. 10 triangular meshes with n vertices per side (5 weighted and 5 unweighted),
8. 126 clustered graphs with k clusters on n vertices with intra-cluster edge generation probability p and inter-

cluster edge generation probability q (63 weighted and 63 unweighted),
9. 6 power law graphs on n vertices where the degree of vertex i is ⌈nαi−τ⌉ with α ∈ (0,1),τ > 0 (3 weighted and

3 unweighted),
10. 18 chain of k-cliques on n vertices (9 weighted and 9 unweighted),
11. 10 chain of triangles on n vertices (5 weighted and 5 unweighted),
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12. 18 DMDGP [81] on n vertices with k contiguous adjacent predecessors (9 weighted and 9 unweighted),
13. 5 Beeker-Glusa graphs [13]: chains of triangles with specific edge costs (weighted only),
14. 6 local graphs on n vertices with edge threshold t: vertices are n points in the plane, edges exist if Euclidean

distance between two points shorter than t (weighted only),
15. 18 norm graphs on n vertices chosen as points in the plane with edge generation probability p, edges are

weighted by ℓ1 and ℓ∞ distances between points (weighted only).

5.1.3 Protein instances

The set P is composed of protein graphs constructed from the Protein Data Bank (PDB) [16] in such a way as to
roughly mimick the output of a NOESY experiment on an NMR machine. We selected a set of proteins (and pieces
thereof) that cover a reasonable spectrum size, from small to reasonably large (see Table 1). For each of these we
extracted the first available realization in the PDB and computed all of the inter-atomic distances, then we discarded
those with length larger than 5.5Å. The foremost difference between these instances and those actually obtained from
NOESY experiments followed by distance assignment processes is that there are no mis-assigned edges in the protein
graphs in P . We note that these graphs are sometimes disconnected. For example, tiny consists of a connected

Name |V | |E|
tiny 38 335
1guu-1 150 959
1guu-4000 150 968
C0030pkl 198 3247
1PPT 303 3102
1guu 427 955
100d 491 5741
3al1 681 17417
1hpv 1633 18512
il2 2098 45251
1tii 5691 69800

Table 1: Vertex and edge set sizes of protein instances in the class P .

component of 37 atoms and a single disconnected atom (an isolated vertex in the graph); and 1guu has 277 isolated
vertices (in fact it actually has only 150 connected atoms, like its kin instances 1guu-1 and 1guu-4000). We chose
to keep such occurrences because graphs occurring from applications are often atypical with respect to the usual
assumptions of connectedness: and benchmarks on these instances are supposed to verify the practical usefulness of
our formulations.

5.1.4 UDGP versions of R, G , P

All of our UDGP instances were derived from DGP ones by discarding the graph structure: we only keep K,n, and
the list L of distance values from the graph edges.

5.2 Hardware and software

All tests have been carried out on an Intel architecture server with: 2 Intel Xeon Platinum 8362 CPUs at 2.80GHz,
each with 32 cores with hyperthreading, for a total of 128 cores; and 2TB RAM.

The software system consists of a set of coordinated Python 3 [112] scripts, bash scripts, and AMPL [40] code.
This system calls LP, MILP, SDP, (local and global) NLP, MISDP, and MINLP solvers as follows: CPLEX 22.1.1 [53]
for LP, Gurobi 10.0.1 [48] for MILP, nonconvex NLP, and MINLP, IPOPT 3.4.11 [25] for solving NLP locally, SCS
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3.2.3 [101] for SDP, Pajarito [89] for MISDP (called from a Julia [17] script, and using Gurobi and Mosek [95] as
subsolver). The MILP/MINLP solver is deployed with a CPU time limit of 1800s. The LP, SDP, and MISDP solvers
are used without specific configurations. The local NLP solver is used within a MS algorithm limited to 5 iterations
unless specified otherwise. All solvers were run with their default configurations, aside from a more frequent display
and the time limit set to 1800s.

The scripts of our software system were run in parallel by means of the Slurm Workload Manager 20.11.9. The
number of CPUs employed in each run depends on the deployed solver (which is the most time-consuming task of
the script): among the above solvers only CPLEX and Gurobi use multiple CPUs by default, and they make their own
decisions on how many CPUs they employ. The rest of the solvers run on one CPU only (aside of course from solvers
that use CPLEX or Gurobi as subsolver). The CPU times we record in our experiments are wall-clock times recorded
by the Python scripts launching the solvers.

We remark that there is an option for providing IPOPT with a termination based on CPU time limit, but the
verification for this type of termination is only carried out in a certain outer phase of the algorithm. This means that
IPOPT can (and often does) exceed the given CPU time limit by arbitrary amounts. We therefore decided to refrain
from imposing a time limit on IPOPT in our computational experiments. This explains the fact that our reported CPU
times may dramatically exceed the default CPU time limit.

5.3 DGP tests and results

We have tested the following formulations:

1. cycle (Eq. (22)),
2. cyclesimple (Eq. (23)),
3. cycpushpull (Eq. (25) with cycle constraints (†)),
4. cycsimplepushpull (Eq. (25)),
5. cycsimplesys1 (Eq. (26)),
6. cycsimplesys2 (Eq. (24)),
7. cycsys1 (Eq. (26) with (†)),
8. cycsys2 (Eq. (24) with (†)),
9. pushpull (Eq. (17)),

10. pullpush (Eq. (18)),
11. quartic (Eq. (8)),
12. system1 (Eq. (14)),
13. system2 (Eq. (13)),

both by themselves, and used as refinement steps to:

1. an SDP matrix formulation, i.e. a variant of Eq. (42) with a modified objective

∑
{u,v}∈E

(Xuu +Xvv−2Xuv)+0.1 tr(X),

which was heuristically found to perform slightly better on protein instances4: we note that Eq. (42) is infeasible
on NO instances of the DGP where the graph cannot be realized in any dimension;

2. the corresponding DDP and dualDDP polyhedral approximations that replace the PSD cone S+
n with the DDP

and dualDDP cones Dn,D∗n; we also relaxed the equations Xuu +Xvv−2Xuv = d2
uv to ≥-inequalities in the DDP

to prevent an excessive number of infeasibilities.
4With the constraints of Eq. (42), the term ∑{u,v}∈E(Xuu +Xvv− 2Xuv) in the objective is actually equal to the constant ∑uv d2

uv, and so
it should be irrelevant. But not every SDP or local NLP solver always ensures feasibility at every step: this depends on the reformulations
and algorithms it implements. We think that this fact might give this formulation the slight empirical advantage we observed in previously
conducted experiments.
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We present our computational results grouped in various ways:

• by approximate vertex set size (graphs grouped by |V | closest to multiples of 10);

• by approximate edge set size (graphs grouped by |E| closest to multiples of 50);

• by approximate edge density |E|
V (V−1)/2 (graphs grouped by density values closest to multiples of 1/10);

• by graph type (only for the class G ), where randomly weighted graph types have their name prefixed by ‘W’);

• by formulation type.

The accuracy of our DGP results was described by mean distance error (mde), largest distance error (lde), and
the algorithmic performance by seconds of CPU time. For a realization x ∈ RnK of a DGP instance (K,G) where
G = (V,E,d), we have:

mde(x) = ∑
{u,v}∈E

∣∣∥xu− xv∥2
2−d2

uv

∣∣ (47)

lde(x) = max
{u,v}∈E

∣∣∥xu− xv∥2
2−d2

uv

∣∣. (48)

5.3.1 The Euclidean graph collection R

The point of this graph collection (Sect. 5.1.1) is to provide a testbed of small graphs (all of which are YES instances
of the DGP) for answering our first question concerning the DGP: how far can we go up in size and yet obtain a
DGP realization with an algorithmic guarantee that the realization is precise, at least up to an ε > 0 tolerance and in a
reasonable amount of time? We consider an optimality tolerance of 10−6, and a “resonable amount of time” to mean
1800s of CPU time. We solve these instances with the Gurobi solver.

We only consider the exact formulations cycle, cyclesimple, cycpushpull, cycsimplepushpull, cycsimplesys1, cyc-
simplesys2, cycsys1, cycsys2, pullpush, pushpull, quartic, system1, system2 (see Sect. 5.3). We do not consider any
of the matrix formulations (SDP, DDP, dual DDP) because none of them is exact.

We present average results grouped by approximate vertex cardinality, and its corresponding bar plot figure, in
Table 2. The results are shown in terms of mde, lde, CPU time. These data show that guaranteed globally optimal

≈ |V | mde lde CPU
10 0.0001 0.0003 192.63
20 0.3884 1.8223 1356.60

Table 2: Average results on approximate vertex cardinality and the corresponding bar plot for the graph class R (the
CPU time column was scaled by 1/300).

solutions may only be found in 1800s of CPU time up to |V |= 15.

In Table 3 (left), we present average results grouped by formulation type. The corresponding bar plot figure is
shown in Table 3 (right). These data show that guaranteed optimal solutions in 1800s are more likely to happen with
as few edges as possible: very likely with 50 edges, and very unlikely with 200.

In Table 4 (left), we present average results grouped by edge density. The corresponding bar plot figure is shown
in Table 4 (right). Guaranteed optimal solutions in 1800s are most likely with edge densities around 0.6-0.7.
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≈ |E| mde lde CPU
50 0.0085 0.0678 294.37
100 0.1711 0.9917 1162.36
150 0.3331 1.6304 1594.27
200 1.1886 4.9158 1794.13

Table 3: Average results on approximate edge cardinality and the corresponding bar plot for the graph class R (the
CPU time column was scaled by 1/300).

≈ density mde lde CPU
0.4 0.3945 2.3032 1532.25
0.5 0.3024 1.8276 1160.63
0.6 0.0001 0.0004 373.80
0.7 0.0000 0.0001 1062.62
0.8 0.3705 1.7659 1233.24
0.9 0.2539 0.9882 880.90
1.0 0.1654 0.7392 609.35

Table 4: Average results on approximate edge density and the corresponding bar plot for the graph class R (the CPU
time column was scaled by 1/300).

formulation mde lde CPU
cycle 0.0046 0.0197 806.88
cyclesimple 0.1074 0.4928 1042.94
cycpushpull 0.0007 0.0037 1256.00
cycsimplepushpull 0.0013 0.0067 1451.29
cycsimplesys1 0.0000 0.0002 276.27
cycsimplesys2 0.0861 0.3885 930.46
cycsys1 0.0000 0.0001 453.94
cycsys2 0.0447 0.3032 771.03
pullpush 2.2092 9.7720 668.97
pushpull 0.0001 0.0002 1353.12
quartic 0.2173 1.3483 808.64
system1 0.0000 0.0002 490.75
system2 0.2141 1.2033 840.52

Table 5: Average results on formulation types for the graph class R (the CPU time column was scaled by 1/300).

In Table 5 (left), we present average results grouped by formulation type. The corresponding bar plot figure is
shown in Table 5 (right). The formulations that were able to yield guaranteed optimal solutions in 1800s to precision
10−4 on average were: cycsimplesys1, pushpull, system1. The formulations cycpushpull and cycsimplepushpull went
up to precision 10−3 on average. We note that pullpush was the worst-performing formulation by far (this is consistent
with the observation below Eq. (18)).

We now restrict the analysis to the cases where the global nonconvex NLP solver reached termination within the
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≈ |V | CPU
10 82.91
20 276.23

≈ |E| CPU
50 108.30
100 181.33
150 438.50
200 1400.09

≈ dens. CPU
0.4 22.96
0.5 322.11
0.6 33.85
0.7 197.63
0.8 337.40
0.9 188.36
1.0 58.97

formulation CPU
cycle 163.99
cyclesimple 30.93
cycpushpull 398.56
cycsimple-
pushpull 369.86

cycsimplesys1 92.64
cycsimplesys2 59.92
cycsys1 83.10
cycsys2 199.12
pullpush 137.02
pushpull 403.17
quartic 64.25
system1 53.70
system2 120.11

Table 6: Average CPU time for naturally terminating (instance,formulation) pairs in R.

allotted time limit (1800s), which happened in 206 (instance, formulation) pairs. The average mde for these cases is
0.66×10−6, the average lde is 0.0002, the average CPU time is ≈ 140s. All of these pairs have mde and lde between
0 and 0.0006, which we do not report, as they are essentially zero, and indicate a correct realization. The average
CPU times grouped by vertex/edge cardinality, graph density, and formulation type are given in Table 6. While the
picture does not change too much for |V |, |E|, and edge density, the best performing formulations are different in this
test with respect to the previous test: the best performing formulation was cyclesimple, followed by system1, quartic,
and cycsimplesys2.

5.3.2 The 309-graph collection G

We use this graph collection (Sect. 5.1.2) to establish whether it is preferable to solve DGP instances with local NLP
solvers on non-matrix DGP formulations within a MS algorithm, or to use the matrix formulation solution process.
The test is such that we need only group results by formulation type.

In Table 7, we present average results grouped by formulation type. The corresponding bar plot figure is shown in
Fig. 2. The best performing formulations in terms of solution quality are sdp pca χ with

χ ∈ {quartic,cyclesimple,system2};

in terms of CPU time we have cyclesimple, quartic, system2, and dualddp pca χ with χ as above. An important
remark is that the best formulations in terms of CPU time are also very good in terms of solution quality. Among
these, six are matrix formulations of SDP and dualDDP types, and three are non-matrix. Our answer to the second
question in relation to DGP is therefore that the matrix formulation process is generally better, but the refinement step
is crucially important.

Since the instance family G contains many graph types, we also present average results grouped by formulation
type in Table 8 (left), and the corresponding bar plot figure in Table 8 (right).

5.3.3 The protein graph collection P

We attempt to reconstruct the shape of proteins from a partial set of inter-atomic distances with their adjacencies
(Sect. 5.1.3) by using the methods that appear more promising from earlier DGP experiments (Sect. 5.3.1-5.3.2),
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Figure 2: The bar plot for the graph class G corresponding to Table 7.

namely: the non-matrix formulations cyclesimple, quartic, system2 and the matrix formulations based on SDP and
dual DDP followed by PCA, with refinement step carried out using the non-matrix formulations above. Since SDP
solvers fail with larger instances (from 3al upwards, see Table 5.1.3), we replaced SDP by DDP in such cases. For
non-matrix formulations we used IPOPT within the MS algorithm (Alg. 1) with a 10 iterations limit.

We first present results about the best formulation per protein instance. By “best” we mean the best trade-off
between mde and lde. When no solution dominates the others over both measures the choice was made by the authors
of this survey, based on their past experience.

The results grouped by formulation type (independently of the instance) are given in Table 10. The best formula-
tion as regards solution quality (mde, lde) is system2, which is also the worst for CPU time (but CPU time is not a
crucial measure for the purpose of finding the structure of proteins). The formulation quartic is the closest competitor.
We note that, however, the variance of mde, lde over all of the tested formulations is small. The fastest formulation
is dualddp pca quartic, with ddp pca quartic the closest competitor. The CPU time variance is small for all formu-
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formulation mde lde CPU
cycle 0.8001 2.0958 0.19
cyclesimple 0.1128 0.6248 0.07
cycpushpull 0.8492 2.2438 0.72
cycsimplepushpull 0.1635 1.1107 0.15
cycsimplesys1 0.1088 0.8713 0.16
cycsimplesys2 0.1190 0.6669 0.13
cycsys1 0.5517 1.7059 0.56
cycsys2 0.8206 2.1401 0.18
ddp pca cycle 0.8278 2.1597 0.22
ddp pca cyclesimple 0.1157 0.6470 0.19
ddp pca cycpushpull 0.8269 2.2188 0.28
ddp pca cycsimplepushpull 0.1633 1.0303 0.24
ddp pca cycsimplesys1 0.1090 0.8762 0.21
ddp pca cycsimplesys2 0.1154 0.6478 0.20
ddp pca cycsys1 0.5578 1.7894 0.26
ddp pca cycsys2 0.8273 2.1707 0.20
ddp pca pullpush 0.3141 2.1826 0.22
ddp pca pushpull 0.1621 1.0275 0.20
ddp pca quartic 0.1143 0.6536 0.19
ddp pca system1 0.1084 0.8753 0.20
ddp pca system2 0.1207 0.6601 0.19
dualddp pca cycle 0.8348 2.1682 0.12
dualddp pca cyclesimple 0.1141 0.6480 0.10
dualddp pca cycpushpull 0.8297 2.2055 0.38
dualddp pca cycsimplepushpull 0.1614 1.0001 0.15
dualddp pca cycsimplesys1 0.1083 0.8970 0.15
dualddp pca cycsimplesys2 0.1136 0.6361 0.12
dualddp pca cycsys1 0.5596 1.7468 0.17
dualddp pca cycsys2 0.8235 2.1685 0.12
dualddp pca pullpush 0.3314 2.1606 0.14
dualddp pca pushpull 0.1616 0.9969 0.12
dualddp pca quartic 0.1104 0.6177 0.10
dualddp pca system1 0.1083 0.9467 0.12
dualddp pca system2 0.1206 0.6822 0.10
pullpush 0.2235 1.8404 0.29
pushpull 0.1516 0.9501 0.16
quartic 0.1042 0.6053 0.08
sdp pca cycle 0.2006 0.5890 1.08
sdp pca cyclesimple 0.0607 0.3683 1.06
sdp pca cycpushpull 0.2027 0.6268 1.08
sdp pca cycsimplepushpull 0.0773 0.5090 1.06
sdp pca cycsimplesys1 0.0705 0.4720 1.06
sdp pca cycsimplesys2 0.0625 0.3718 1.06
sdp pca cycsys1 0.1021 0.5414 1.09
sdp pca cycsys2 0.2004 0.6002 1.08
sdp pca pullpush 0.1215 0.6993 1.07
sdp pca pushpull 0.1744 0.6633 1.06
sdp pca quartic 0.0593 0.3524 1.06
sdp pca system1 0.0663 0.4607 1.06
sdp pca system2 0.0581 0.3515 1.06
system1 0.0986 0.8314 0.15
system2 0.1077 0.6118 0.13

Table 7: Average results on formulation types for the graph class G .

lations but quartic and system2, which took considerably longer to solve. The best trade-off overall between quality
and CPU time is ddp pca system2.
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graph type mde lde CPU
Walmostreg 0.0916 0.4283 0.15
Wbipartite 0.0008 0.0460 1.31
Wcliquechain 0.2607 0.9838 0.15
Wcluster 0.2021 0.7913 0.19
Wdmdgp 0.2680 1.0036 0.15
Wmesh 0.0106 0.1382 0.13
Wpowerlaw 0.0571 0.4401 0.11
Wrandom 0.0755 0.4857 0.14
Wtorus 0.0501 0.3761 0.10
Wtriangle 0.1551 0.6157 0.06
Wtrichain 0.0363 0.1330 0.04
Wtripartite 0.0086 0.1551 4.23
almostreg 0.0410 0.2685 0.14
beeker glusa 0.0000 0.0000 0.04
bipartite 0.0000 0.0000 0.88
cliquechain 0.2419 1.0672 0.17
cluster 0.1713 0.7952 0.18
dmdgp 0.2512 1.0721 0.17
local 0.1436 0.6596 0.26
mesh 0.0000 0.0000 0.09
norm 3.3560 12.0053 0.57
powerlaw 0.0086 0.2692 0.18
random 0.0464 0.2732 0.13
torus 0.0070 0.0659 0.08
triangle 0.0853 0.4461 0.06
trichain 0.0034 0.0269 0.04
tripartite 0.0000 0.0000 2.10

Table 8: Average results on graph types and the corresponding bar plot for the graph class G .

instance formulation mde lde CPU
tiny dualddp cyclesimple 0.00 0.00 0.19
1guu-1 dualddp system2 0.06 1.05 0.83
1guu-400 system2 0.08 0.97 2.70
C0030pkl dualddp cyclesimple 0.04 1.32 5.68
1PPT quartic 0.26 2.58 8.48
1guu sdp system2 0.05 0.87 8476.58
100d cyclesimple 0.33 3.06 13.50
3al1 system2 0.04 2.28 498.07
1hpv ddp quartic 0.40 3.62 214.49
il2 ddp quartic 0.03 4.36 1262.47
1tii dualddp quartic 0.43 4.10 2928.25

Table 9: Best formulations per instance of graph class P . The SDP formulation was replaced by the DDP formulation
in the lower half due to excessive size.

5.4 UDGP tests and results

We have tested the following exact formulations on the set of UDGP instances obtained as explained in Sect. 5.1.4:

1. ucycsimplesys1 (Eq. (27)),
2. upushpull (Eq. (19)),

30



formulation mde lde CPU
cyclesimple 0.2343 2.9293 532.43
quartic 0.1710 2.5200 2795.65
system2 0.1518 2.4399 6512.35
sdp cyclesimple 0.1777 2.1073 2593.07
sdp quartic 0.2339 2.1764 2738.82
sdp system2 0.1740 2.1560 2958.58
ddp cyclesimple 0.2859 3.9973 1280.88
ddp quartic 0.2460 4.1536 1024.87
ddp system2 0.2800 4.2591 2036.27
dualddp cyclesimple 0.2013 2.5855 437.30
dualddp quartic 0.2273 2.7961 370.53
dualddp system2 0.2334 2.7907 634.17

Table 10: Average results (over all instances) on formulation types for the graph class P .

3. uquartic (Eq. (11)),
4. uquarticcont (Eq. (12)),
5. usystem1 (Eq. (16)),
6. usystem2 (Eq. (15)),

and the approximate matrix reformulations:

1. misdp usystem1 (Eq. (39) with X = S+
n ),

2. middp usystem1 (Eq. (39) with X = Dn),
3. midualddp usystem1 (Eq. (39) with X = D∗n).

We present our computational results grouped in the same way as for the DGP results (Sect. 5.3). The quality of
the realization is measured by mde and lde, as in Sect. 5.3.

While there is no intrinsic measure of the assignment α , all our UDGP instances are generated from a DGP
one (by losing the graph and keeping the distance values), so we can evaluate the difference between the graph Gα

reconstructed from α and the original graph G that gave rise to the UDGP instance. This measure, called gphsim,
is based on an evaluation of label-independent topological similarity of graphs if G,Gα have the same number of
nodes, and on a comparison of the (zero-padded) spectra of the Laplacian matrices [29] of G,Gα otherwise (we let
spectrumLaplacian(G) be the vector of eigenvalues of the Laplacian matrix of G); it makes use of the normalized
adjacency matrix âdj(G) of a graph G, which is its adjacency matrix scaled by its matrix norm. The measure gphsim
is computed as in Alg. 2. It has values in [−1,1], with gphsim= 1 if G,Gα are isomorphic graphs.

Accordingly, for UDGP results we report mde, lde and gphsim. Only the first two measures attest to the success
of the solution algorithm (when close to zero), while a gphsim measure significantly lower than 1 might simply attest
to many different graphs compatible with the given distance values.

5.4.1 The Euclidean graph collection R

As mentioned in Sect. 5.3.1 for DGP instances, we use this benchmark to establish to what size we can hope to
solve UDGP instances to guaranteed optimality. Tolerance and time are as in the DGP case (10−6 and 1800s, see
Sect. 5.3.1). As in the DGP case, given that these tests aim at establishing the size for which we may be able to solve
such problems to optimality, we only tested the exact formulations ucycsimplesys1, upushpull, uquartic, uquarticcont,
usystem1, usystem2.
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Algorithm 2 The graph similarity measure gphsim
1: if |V (G)|= |V (Gα)| then
2: gphsim= 0
3: if G,Gα have matching degree sequences then
4: gphsim← gphsim+1
5: if G,Gα have matching triangle sequences then
6: gphsim← gphsim+1
7: if G,Gα have matching clique sequences then
8: gphsim← gphsim+1
9: if G,Gα are isomorphic then

10: gphsim← gphsim+1
11: end if
12: end if
13: end if
14: end if
15: gphsim← gphsim/4
16: if gphsim< 1 then
17: gphsim← 1

2gphsim+
1
2 tr(âdj(G) âdj(H))

18: end if
19: else
20: # assume |V (G)|< |V (Gα)| without loss of generality
21: sG = spectrumLaplacian(G) # eigenvalues in decreasing order
22: pad sG with V (Gα)−V (G) tailing zeros
23: sGα

= spectrumLaplacian(Gα)
24: normalize sG,sH

25: gphsim= ⟨sG,sGα
⟩

26: end if

≈ |V | mde lde CPU
5 0.1533 0.6015 1037.35
8 2.2117 5.6512 1059.07
10 1.6241 5.8019 1263.91
12 3.3561 9.8532 669.65
15 4.2756 13.3832 1000.90
18 4.1293 12.4107 1297.91
20 7.0485 19.2524 1443.99

Table 11: Average results on |V | for the graph class R on UDGP.

The results are shown in Tables 11-15. The only story they tell is that the realization errors are always large, even
when the reconstructed graph Gα is isomorphic to the original graph G (Table 14).

A more in-depth look at the results reveals that the global MINLP solver terminated naturally on 40 (instance,
MINLP formulation) pairs out of the 152 pairs tested. Of these, only 6 yielded mde and lde measures within O(10−3)
(involving the smallest instance sizes and mainly the upushpull formulation) and only 3 within O(10−5): (euclid-
5 0.9,upushpull), (euclid-8 0.4,upushpull), (euclid-8 0.4,system1).

In particular, the fact that a global MINLP solver terminates naturally on 40 (instances, formulation) pairs, but
only on 6 does it find an optimum that looks close enough to a global optimum, denotes a high level of degeneration
and a general lack of constraint qualification conditions in the local optimization algorithms implemented by the local
NLP subsolver(s) within the global MINLP solver [113, 67]. We therefore conclude that the current state of affairs
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≈ |E| mde lde CPU
50 1.6256 4.8607 1044.06
100 4.3829 13.6181 1000.95
150 4.5666 13.9273 1317.59
200 6.6131 16.7588 1406.54

Table 12: Average results on |E| for the graph class R on UDGP.

≈ density mde lde CPU
0.4 2.4903 8.0731 987.70
0.5 4.9176 15.1659 901.58
0.6 0.5023 2.1405 1088.01
0.7 4.3175 14.0233 790.11
0.8 3.4730 10.0472 1306.70
0.9 3.4126 9.6798 1231.16
1.0 2.8122 8.0143 1060.42

Table 13: Average results on edge density for the graph class R on UDGP.

≈ gphsim mde lde CPU
0.1 0.4060 3.0809 1804.01
0.2 3.0043 9.5707 755.69
0.3 3.2969 10.5904 1105.91
0.4 4.2320 12.1688 1278.52
1.0 2.1472 5.7603 1045.87

Table 14: Average results on graph similarity (gphsim) for the graph class R on UDGP.

with MINLP formulations and their global solvers is not mature enough for the UDGP. The only usable formulation
is continuous nonconvex NLP uquarticcont.

5.4.2 The 309-graph collection G

As in the DGP case (see Sect. 5.3.2), we use this benchmark to verify whether it is better to use the matrix formulation
process or not. This test, however, involves some differences with respect to the DGP case.

1. We established in Sect. 5.4.1 that non-matrix MINLP formulations of the UDGP are ill-behaved to the point of
being next to useless, even when the solver achieves a natural termination to what should be a global optimum
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formulation mde lde CPU
ucycsimplesys1 1.1592 5.0889 1620.06
upushpull 4.7066 12.3713 993.11
uquartic 5.5397 13.5655 1195.73
uquarticcont 0.2852 1.4838 59.50
usystem1 2.9467 11.0602 1368.15
usystem2 4.3407 12.0299 1301.94

Table 15: Average results on formulation type for the graph class R on UDGP.

(but which most of the times is not). This leaves uquarticcont as the only non-matrix formulation. We solve it
using a local NLP solver within the MS algorithm (Alg. 1), since a global nonconvex NLP solver would be too
time-consuming.

2. Local optima of MINLP may be as hard to find (both theoretically and practically) as global optima, which
prevents the use of “refinement” in practice. Again, this leaves uquarticcont (a nonconvex NLP) as the only
possible alternative in the area of non-matrix formulations of the UDGP: since quarticcont is continuous, local
optima can be found rapidly. The downside is that the y variables are likely to attain non-integral values at local
optima (X ′,y′), which prevents the construction of the graph Gα .

3. As mentioned in Sect. 4.6, we have two possible matrix formulation processes. The first uses the matrix solution
X ′ followed by rank reduction and refinement over the reconstructed graph Gα . The second discards X ′ and
solves the DGP instance (K,Gα). In the first case, refinement only involves a single call to a local NLP solver
from the starting point x′ obtained using rank reduction. In the second case we can use any NLP solver with
any DGP formulation. Given point 2. above, we focus on the second process: we use matrix formulations only
in order to reconstruct Gα , and then solve the resulting DGP instance.

The test we run therefore consists in comparing:

A. results on uquarticcont solved using a a local NLP solver (IPOPT) within MS, and

B. results from matrix formulations yielding a DGP instance (K,Gα) solved using the quartic formulation (chosen as
the best non-matrix formulation in Sect. 5.3.2) by means of the local NLP solver IPOPT within MS (5 iterations)
acting on the quartic formulation.

This comparison is reported in Table 16, with average performance measures aggregated by formulation type. We
denote the mixed-integer SDP (MISDP) formulation used in the UDGP by umisdp, the mixed-integer DDP (MIDDP)
matrix formulation by umiddp, and the mixed-integer dual DDP matrix formulation by umidualddp. The best perfor-
mance in both solution quality and CPU time is given by umiddp quartic.

We also look at other result aggregations: by vertex cardinality (Table 17), by edge cardinality (Table 18), and
by graph similarity (Table 19). We recall that the graph similarity score gphsim measures the success of the graph
reconstruction step from distance values in UDGPs (see Alg. 2).

As in Sect. 5.3.2, for G we also present results aggregations according to graph type in Table 20, obtaining results
close to those of Table 8.

5.4.3 The protein graph collection P

We attempt to reconstruct the shape of proteins from a partial set of inter-atomic distances without their adjacen-
cies (see Sect. 5.1.3 and 5.1.4) by using the methods that appear more promising from earlier UDGP experiments
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formulation mde lde CPU
umiddp 0.0360 0.2149 690.43
umidualddp 0.1387 0.6687 1791.72
umisdp 0.0914 0.4381 1862.70
uquarticcont 0.0889 0.3045 17416.50

Table 16: Average results on formulation type for the graph class G on UDGP.

≈ |V | mde lde CPU
3 0.0000 0.0000 8.82
4 0.0000 0.0000 8.84
5 0.0070 0.0140 8.85
6 0.0098 0.0471 9.53
7 0.0137 0.0325 9.11
9 0.0074 0.0304 11.54
10 0.0093 0.0447 10.26
15 0.0097 0.0671 462.55
16 0.0034 0.0333 238.49
20 0.0431 0.2903 395.46
21 0.0111 0.0784 486.29
25 0.0045 0.0339 331.86
28 0.0065 0.0605 681.86
35 0.1135 0.5495 1851.65
36 0.0032 0.0318 358.64
40 0.0000 0.0006 43.73
49 0.0049 0.0622 1886.85
50 0.1943 0.7452 7485.38
60 0.0005 0.0156 370.49
70 0.0012 0.0209 1420.22
100 0.0093 0.1128 17656.13
105 0.0114 0.1419 18530.49
150 0.0757 0.3191 227135.50

Table 17: Average results on |V | for the graph class G on UDGP.

(Sect. 5.4.1-5.4.2), namely: carrying out the graph reconstruction using the mixed-integer DDP and dual DDP matrix
formulations, and then solving the resulting DGP instance using IPOPT within the MS algorithm (Alg. 1) with a 5
iterations limit. IPOPT was deployed on the quartic formulation.

Some attempts with the usual time limit (1800s) imposed on the (matrix) MILP formulations only yielded solutions
for the tiny instance. We therefore removed the largest protein instances from our benchmark, and only focused on a
subset of six protein instances (from tiny up to 1guu in Table 1). We allowed Gurobi a maximum of 12h of CPU time.
Even so, with the exception of tiny, we only obtained solutions from the mixed-integer dual DDP formulation, which
therefore becomes, de facto, the only eligible formulation to successfully obtain approximate solutions of the UDGP
on protein instances.
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≈ |E| mde lde CPU
50 0.0055 0.0416 150.87
100 0.0108 0.0937 991.03
150 0.0279 0.2748 6839.26
200 0.0985 0.6401 3502.28
250 0.0238 0.1488 34620.31
300 0.0481 0.2441 26749.03
350 1.2046 6.4760 5869.55
400 0.0885 0.3493 12939.00
450 0.0449 0.1929 16695.82
500 0.0762 0.3332 21461.61
550 1.0753 4.1404 15175.19
650 2.4117 9.8750 39603.21
700 1.3523 7.3373 39099.54
1100 7.4280 22.6607 23115.13
1150 4.7297 13.1730 23067.89

Table 18: Average results on |E| for the graph class G on UDGP.

≈ gphsim mde lde CPU
0.0 0.0062 0.0530 3741.30
0.1 0.0149 0.1102 4205.63
0.2 0.1318 0.6932 6163.91
0.3 0.0074 0.1082 241.70
0.4 2.2244 7.6193 9435.18
0.5 0.0025 0.0075 18.30
0.6 0.0070 0.0943 25506.97
0.7 0.0000 0.0000 121338.65
0.8 0.0080 0.0995 9913.92
0.9 0.0113 0.0968 11824.05
1.0 0.0459 0.2785 1437.42

Table 19: Average results on graph similarity (gphsim) for the graph class G on UDGP.

We remark that, in [37], the uquarticcont formulation in Eq. (12) was successfully used to solve random UDGP
instances (generated similarly to [61]) with up to 400 atoms in just over 13h of CPU time by the Baron [103] solver.
But instances generated from PDB information (Sect. 5.1.3) are generally more difficult — the random instances from
[61] have more and better distributed solutions.

Given the dearth of instances of this benchmark there is no need for aggregated and averaged results. We give
full results in Table 21. The results in table 21 appear to indicate that the MIDDP formulations applied to proteins
are either infeasible or have few solutions that are hard to find. Instead, dual DDP relaxations are always feasible
whenever the originating SDP relaxation is feasible, and so are their mixed-integer counterparts, provided that the
given distance values are compatible with an ℓ2 metric: this may well be the reason that the umidualddp matrix
formulation is the only one that scores some success on protein instances.

And yet, dual DDPs (both continuous and mixed-integer) generally produce indefinite matrix solutions, which,
after dimensional reduction, contain considerable error. Even if we only employ the umidualddp formulation to
reconstruct the graph from the values of the assignment variables y, we would expect an indefinite matrix to carry
more reconstruction error than a PSD one. And, indeed, most of the larger instances have disappointingly large mde
and lde error measures. While a part of this error can be attributed to the MS algorithm configured with only 5
iterations, another is certainly due to poor graph reconstruction. That no instance displays a graph reconstruction
similarity (gphsim) value of exactly 1.0 (i.e., a perfect reconstruction) is to be expected: there will be many graphs
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graph type mde lde CPU
Walmostreg 0.0121 0.1218 1780.42
Wbipartite 0.0070 0.0895 9740.23
Wcliquechain 0.0361 0.2257 3281.06
Wcluster 0.0364 0.2062 4254.55
Wdmdgp 0.0360 0.2195 3533.00
Wmesh 0.0041 0.0558 729.02
Wpowerlaw 0.0077 0.0914 708.66
Wrandom 0.0114 0.1228 1669.00
Wtorus 0.0176 0.1138 1275.43
Wtriangle 0.0200 0.1250 638.01
Wtrichain 0.0074 0.0212 8.97
Wtripartite 0.0399 0.2537 63168.87
almostreg 0.0000 0.0000 283.50
beeker glusa 0.0110 0.0333 9.02
bipartite 0.0000 0.0000 3006.49
cliquechain 0.0000 0.0000 1377.71
cluster 0.0034 0.0107 2742.12
dmdgp 0.0000 0.0000 1909.70
local 0.0058 0.0476 707.85
mesh 0.0000 0.0000 113.17
norm 1.3154 5.6693 9234.31
powerlaw 0.0000 0.0000 116.94
random 0.0000 0.0000 256.40
torus 0.0000 0.0000 327.64
triangle 0.0000 0.0000 22.26
trichain 0.0000 0.0000 9.05
tripartite 0.0000 0.0000 42806.12

Table 20: Average results on graph types and the corresponding bar plot for the graph class G on UDGP.

instance formulation gphsim mde lde CPU
tiny umiddp 0.989 0.000 0.006 2257.76
tiny umidualddp 0.216 0.154 1.962 58.53
1guu-1 umidualddp 0.917 0.126 1.513 335825.94
1guu-4000 umidualddp 0.929 6.429 10.300 4143.67
C0030pkl umidualddp 0.891 7.912 11.704 25833.85
1PPT umidualddp 0.034 10.579 14.236 20248.91
1guu umidualddp 0.619 13.307 16.749 14289.60

Table 21: Results for (part of) the graph class G on UDGP.

compatible with the same distance values. But not all of these graphs will be realizable in K = 3 dimensions. We
can see this in the tiny instance, the only one that could be solved by both umiddp and umidualddp. The umiddp
solution has a gphsim score that is very close to 1.0, and almost zero mde and lde error measures. On the contrary,
the umidualddp solution has a gphsim score of 0.216 and considerably large error measures given the small instance
size (38 atoms).
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The only encouraging result is 1guu-1, the size of which is nontrivial (150 atoms). The umidualddp formulation
provided a gphsim score of 0.917, and IPOPT, taking over 92h of CPU time, was able to find a solution with tolerable
error measures. The rest of the results show error measures that denote bad graph reconstructions and realizations.

6 Conclusion

In this survey we have surveyed MP formulation-based methods for solving distance geometry problems, even when
the input is a list of distance values instead of a weighted graph (i.e., the distances are not assigned to graph edges).
The computational benchmarks established that while formulation-based methodologies are useful to solve even fairly
large DGP instances (derived from protein data) in 3D, similar methodologies are not able to solve UDGP instances
of the same size.
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[117] K. Wüthrich. NMR studies of structure and function of biological macromolecules (Nobel lecture). Angewandte
Chemie, 42:3340–3363, 2003.

43


