
An Easy Way to TeahInterior Point MethodsTam�as TerlakyFaulty of Information Tehnology and Systems,Department of Statistis, Stohasti and Operations ResearhDelft University of TehnologyP.O.Box 5031, 2600 GA Delft, The NetherlandsE-mail: t.terlaky�twi.tudelft.nlA modern mathematial proof is not very di�erent from amodern mahine, or a modern test setup: the simple fun-damental priniples are hidden and almost invisible undera mass of tehnial details. Weyl, Hermann (1885 - 1955)AbstratIn this paper the duality theory of Linear Optimization (LO) is built up based on ideasemerged from interior point methods. All we need is elementary alulus. We will embedthe LO problem and its dual in a self{dual skew{symmetri problem. Most duality results,exept the existene of a stritly omplementary solution, are trivial for this embeddingproblem. The existene of the entral path and its onvergene to the analyti enter ofthe optimal fae will be proved. The proof is based on an elementary, areful analysis of aNewton step.We show also that if an almost optimal solution on the entral path is known, then asimple strongly polynomial rounding proedure provides a stritly omplementary optimalsolution.The all-one vetor is feasible for the embedding problem and it is an interior point on theentral path. This way an elegant solution to the initialization of IPMs is obtained as well.This approah allows to apply any interior point method to the embedding problem whileomplexity results obtained for feasible interior point methods are preserved.Keywords: Linear optimization, interior-point methods, self-dual embedding, stritly om-plementary solution, strongly polynomial rounding proedure, polynomial omplexity.AMS Subjet Classi�ation: 90C051 IntrodutionInterior point methods (IPMs) are among the most eÆient methods for solving linear, and widelasses of onvex optimization problems. Sine the path-breaking work of Karmarkar [15℄, muhresearh was invested in IPMs. Many algorithmi variants were developed for Linear Optimiza-tion (LO). The new approah fored to reonsider all aspets of optimization problems. Notonly the researh on algorithms and omplexity issues, but implementation strategies, duality1



theory and researh on sensitivity analysis got also a new impulse. After more than a deadeof turbulent researh, the IPM ommunity reahed a good understanding of the basis of IPMs.Several books have been published in the last years that summarize and explore di�erent aspetsof IPMs. The seminal work of Nesterov and Nemirovskii [21℄ provides the most general frame forpolynomial IPMs for onvex programming. Den Hertog [11℄ gives a thorough survey of primaland dual path-following IPMs for linear and strutured onvex optimization problems. Jansen[12℄ disusses primal-dual target following algorithms for linear optimization and omplemen-tarity problems. Wright [31℄ also onentrates on primal-dual IPMs, with speial attention oninfeasible IPMs, numerial issues and loal, asymptoti onvergene properties. The volume[28℄ ontains 13 survey papers that over almost all aspets of IPMs, their extensions and someappliations. The book of Ye [34℄ is a rih soure of polynomial IPMs not only for LO, but foronvex optimization problems as well. He extends the IPM theory to derive bounds and ap-proximations for lasses of nononvex optimization problems as well. Finally, Roos, Terlaky andVial [25℄ present a thorough treatment of the IPM based theory { duality, omplexity, sensitivityanalysis { and wide lasses of IPMs for LO. This book provides the basis for our disussions inthis paper.Before going in a detailed disussion of our approah, some remarks are made on implemen-tations of IPMs and on extensions and generalizations.IPMs are implemented with great suess in reent years. It is now a ommon sense, thatfor large sale, sparse, strutured LO problems, IPMs are the method of hoie. All leadingoptimization software systems, like CPLEX, XPRESS-MP and OSL ontain implementations ofIPMs. The reader an �nd thorough disussions of implementation strategies in the followingpapers: [2, 16, 18, 32℄. The books [25, 31, 34℄ devote also a hapter to that subjet.Some of the earlier mentioned books [11, 12, 21, 28, 34℄ disuss extensions of IPMs for lassesof nonlinear problems. In reent years the majority of researh is devoted to IPMs for Semidef-inite Optimization (SDO). SDO has a wide range of interesting appliations not only in suhtraditional areas as ombinatorial optimization [1℄, but also in ontrol, and di�erent areas ofengineering, more spei�ally strutural [8℄ and eletrial engineering [30℄. For surveys on algo-rithmi and omplexity issues the reader may onsult [5, 6, 7, 4, 21, 22, 24, 27℄.Teahing Interior Point MethodsAfter years of intensive researh a deep understanding of IPMs is developed. There are easy tounderstand, simple variants of polynomial IPMs. The self-dual embedding strategy [13, 25, 35℄provides an elegant solution for the initialization problem of IPMs. It is also possible to buildup not only the omplete duality theory of [25℄ of LO, but to perform sensitivity analysis[12, 14, 20, 25℄ on the basis of IPMs. We also demonstrate that IPMs not only onverge toan optimal solution (if it exists), but after a �nite number of iterations also allow a stronglypolynomial rounding proedure [19, 25℄ to generate exat solutions. This all requires only theknowledge of elementary alulus and an be taught not only in a graduate, but at an advanedundergraduate level as well. Our aim is to present suh an approah, based on the one presentedin [25℄.The paper is strutured as follows. First, in Setion 2 we briey review the general LO problemin anonial form and disuss how Goldman and Tuker's [3, 29℄ self-dual and homogeneousmodel is derived. In Setion 3 the Goldman-Tuker theorem, i.e. the existene of a stritlyomplementary solution for the skew-symmetri self-dual model will be proved. Here suh basiIPM objets, as the interior solution, the entral path, the Newton step, the analyti enterof polytopes will be introdued. We will show in Setion 3.6 that the entral path onvergesto a stritly omplementary solution, and in Setion 3.7 that an exat stritly omplementary2



solution for LO, or a erti�ate for infeasibility an be obtained after a �nite number of iterations.Our theoretial development is summarized in Setion 4. Finally, in Setion 5 a general shemeof IPM algorithms is presented.NotationIRn+ will denote the set of nonnegative vetors in IRn. Throughout, we shall use k�kp (p 2f1; 2;1g) to denote the p-norm on IRn, with k�k denoting the Eulidean norm k�k2. E willdenote the identity matrix, e will be used to denote the vetor whih has all its omponentsequal to one. Given an n-dimensional vetor x, we denote by X the n�n diagonal matrix whosediagonal entries are the oordinates xj of x. If x, s 2 IRn then xT s denotes the dot produtof the two vetors. Further, xs, x� for � 2 IR and maxfx; yg will denote the vetors resultingfrom oordinatewise operations. For any matrix A 2 IRm�n, Aj denotes the j-th olumn of A.Furthermore, �(A) := nYj=1 kAjk:For any index set J � f1; 2; : : : ; ng, jJ j denotes the ardinality of J and AJ 2 IRm�jJj thesubmatrix of A whose olumns are indexed by elements in J . Moreover, if K � f1; 2; : : : ;mg,AKJ 2 IRjKj�jJj is the submatrix of AJ whose rows are indexed by elements in K.2 The Linear Optimization ProblemWe onsider the general LO problem (P ) and its dual (D) given in anonial form:(P ) minnTu : Au � b; u � 0o ;(D) maxnbT v : AT v � ; v � 0o ;where A is an m � k matrix, b; v 2 IRm and ; u 2 IRk. It is well known that by using onlyelementary transformations, any given LO problem an easily be transformed into a \minimal"anonial form. These transformations an be summarized as follows:� introdue slaks in order to get equations (if a variable has a lower and an upper bound,then one or these bounds is onsidered as an inequality onstraint);� shift the variables with lower or upper bound so that the respetive bound beomes 0 and,if needed replae the variable by its negative;� eliminate free variables;� use Gaussian elimination to transform the problem into a form where all equations havea singleton olumn (i.e. hoose a basis and multiply the equations by the inverse basis)while dependent onstraints are eliminated.The weak duality theorem for the anonial LO problem is easily proved.Theorem 1 Let us assume that u 2 IRk and v 2 IRm are feasible solutions for the primalproblem (P ) and dual problem (D), respetively. Then one hasTu � bT v3



where equality holds if and only if(i) ui(�AT v)i = 0 for all i = 1; � � � ; k and(ii) vj(Au� b)j = 0 for all j = 1; � � � ;m.1Proof: Using primal and dual feasibility of u and v we may write(�AT v)Tu � 0 and vT (Au� b) � 0with equality if and only if (i), respetively (ii) holds. Summing up these two inequalities wehave the desired inequality0 � (�AT v)Tu+ vT (Au� b) = Tu� bT v:The theorem is proved. 2One easily derives the following suÆient ondition for optimality.Corollary 2 Let a primal and dual feasible solution u 2 IRn and v 2 IRm with Tu = bT v begiven. Then u is an optimal solution of the primal problem (P ) and v is an optimal solution ofthe dual problem (D). 2The Weak Duality Theorem 1 provides a suÆient ondition to hek optimality of a feasiblesolution pair. However, it does not guarantee that, in ase of feasibility, an optimal pair withzero duality gap always exists. This is the ontent of the so-alled Strong Duality Theorem thatwe are going to prove in the next setions by using only simple alulus and basi onepts ofIPMs.As we are looking for optimal solutions of the LO problem with zero duality gap, we need to�nd a solution of the system formed by the primal and the dual feasibility onstraints and byrequiring that the dual objetive is at least as large as the primal one. By the Weak DualityTheorem 1 we know that any solution of this system is both primal and dual feasible with equalobjetive values. Thus, by the orollary, they are optimal. By introduing appropriate slakvariables the following inequality system is derived.Au� z = b; u � 0; z � 0AT v + w = ; v � 0; w � 0bT v � Tu� � = 0; � � 0:By homogenizing, the Goldman-Tuker model [3, 29℄ is obtained.Au ��b �z = 0; u � 0; z � 0�AT v +� �w = 0; v � 0; w � 0bT v �Tu �� = 0; � � 0; � � 0:This homogeneous system admits the trivial zero solution, but that has no value for our dis-ussions. We are looking for some spei� nontrivial solutions of this Goldman-Tuker system.1These onditions are in general referred to as the omplementarity onditions. Using the oordinatewisenotation we may write u( � AT v) = 0 and v(Au � b) = 0. By the weak duality theorem omplementarity andfeasibility imply optimality. 4



Clearly any solution with � > 0 gives a primal and dual optimal pair (u� ; v� ) with zero dualitygap, hene � must be zero if � > 0. On the other hand, any optimal pair (u; v) with zero dualitygap is a solution of the Goldman-Tuker system with � = 1 and � = 0.One easily veri�es that if (v; u; �; z; w; �) is a solution of the Goldman-Tuker system then�� > 0 annot hold. Indeed, if �� would be positive then the we would have0 < �� = �bT v � �Tu = uTAv � zT v � uTAT v � wTu = �zT v � wTu � 0yielding a ontradition.Finally, if the Goldman-Tuker system admits a feasible solution (�v; �u; �� ; �z; �w; ��) with �� = 0and �� > 0, then we may onlude that either (P ), or (D), or both of them are infeasible. Indeed,�� = 0 implies that A�u � 0 and AT �v � 0. Further, if �� > 0 then we have either bT �v > 0, orT �u < 0, or both. If bT �v > 0, then by assuming that there is a feasible solution u � 0 for (P )we have 0 < bT �v � uTAT �v � 0whih is a ontradition, thus if bT �v > 0, then (P ) must be infeasible. Similarly, if T �u < 0,then by assuming that there is a dual feasible solution v � 0 for (D) we have0 > T �u � vTA�u � 0whih is a ontradition, thus if T �u > 0, then (D) must be infeasible.Summarizing the results obtained so far, we have the following theorem.Theorem 3 Let a primal dual pair (P ) and (D) of LO problems be given. The following state-ments hold.1. Any optimal pair (u; v) of (P ) and (D) with zero duality gap is a solution of the orre-sponding Goldman-Tuker system with � = 1.2. If (v; u; �; z; w; �) is a solution of the Goldman-Tuker system then either � = 0 or � = 0,i.e. �� > 0 annot happen.3. Any solution (v; u; �; z; w; �) of the Goldman-Tuker system, where � > 0 and � = 0, givesa primal and dual optimal pair (u� ; v� ) with zero duality gap.4. If the Goldman-Tuker system admits a feasible solution (�v; �u; �� ; �z; �w; ��) with �� = 0 and�� > 0, then we may onlude that either (P ), or (D), or both of them are infeasible. 2Our interior point approah will lead us to a solution of the Goldman-Tuker system, whereeither � > 0 or � > 0, avoiding the undesired situation when � = � = 0.Before proeeding, we simplify our notations. Observe, that the Goldman-Tuker system anbe written in the following ompat formMx � 0; x � 0; s(x) =Mx; (1)where x = 0BBBB� vu� 1CCCCA ; s(x) = 0BBBB� zw�1CCCCA and M = 0BBBB� 0 A �b�AT 0 bT �T 01CCCCA5



is a skew-symmetri matrix, i.e. MT = �M . The Goldman-Tuker Theorem [3, 25, 29℄ saysthat system (1) admits a stritly omplementary solution. This theorem will be proven in thenext setion.Theorem 4 (Goldman, Tuker) There is a stritly omplementary feasible solution x of (1),i.e. for whih x+ s(x) > 0.Observe, that this theorem ensures that either ase 3 or ase 4 of Theorem 3 must our whenone solves the Goldman-Tuker system of LO. This is in fat the strong duality theorem of LO.Theorem 5 Let a primal and dual LO problem be given. Exatly one of the following statementshold:� Either problem (P ), or (D), or both are infeasible.� (P ) and (D) are feasible and there are optimal solutions u� and v� suh thatTu� = bT v�.Proof: Theorem 4 implies that the Goldman-Tuker system of the LO problem admits astritly omplementary solution. Thus, in suh a solution, either � > 0, and in that ase item 3of Theorem 3 implies the existene of an optimal pair with zero duality gap. On the other hand,when � > 0, item 4 of Theorem 3 proves that either (P ) or (D) or both are infeasible. 2Our next goal is to give an elementary onstrutive proof of Theorem 4. When this projetis �nished, we have the omplete duality theory for LO.3 The skew-symmetri self-dual model3.1 Basi properties of the skew-symmetri self-dual modelFollowing the approah in [25℄ we make our skew-symmetri model (1) a bit more general. Thusour prototype problem is (SP ) min nqTx : Mx � �q; x � 0o ;where the matrix M 2 IRn�n is skew symmetri and q 2 IRn+. The set of feasible solutions of(SP ) is denoted by SP = fx : x � 0; Mx � �q g:By using the assumption that the oeÆient matrix M is skew-symmetri and the right-hand-side vetor �q is the negative of the objetive oeÆient vetor, one easily veri�es that the dualof (SP ) is equivalent to (SP ) itself, i.e. the problem (SP ) is self-dual. Due to the self-dualproperty the following result is trivial.Lemma 6 The optimal value of (SP ) is zero and (SP) admits the zero vetor x = 0 as a feasibleand optimal solution.Given (x; s(x)), where s(x) =Mx+ q we may writeqTx = xT (s(x)�Mx) = xT s(x) = eT (xs(x));6



i.e. for any optimal solution eT (x(s(x))) = 0 implying that the vetors x and s(x) are omple-mentary. For further use, the optimal set of (SP ) is denoted bySP � := fx : x � 0; s(x) � 0; xs(x) = 0g:A useful property of optimal solutions is given by the following lemma.Lemma 7 Let x and y be feasible for (SP). Then x and y are optimal if and only ifxs(y) = ys(x) = xs(x) = ys(y) = 0:Proof: Beause M is skew-symmetri we have (x � y)TM(x � y) = 0 whih implies that(x � y)T (s(x) � s(y)) = 0. Hene xT s(y) + yT s(x) = xT s(x) + yT s(y) and this vanishes if andonly if x and y are optimal. 2Thus, optimal solutions are omplementary in the general sense, i.e. they are not only om-plementary w.r.t. their own slak vetor, but omplementary w.r.t. the slak vetor for anyother optimal solution as well.All of the above results, inluding to �nd a trivial optimal solution were straightforward for(SP ). The only nontrivial result what we need to prove is the existene of a stritly omple-mentary solution.First we prove the existene of a stritly omplementary solution if the so-alled interior pointondition holds.Assumption 8 (Interior Point Condition (IPC)) There exists an x0 2 SP suh that(x0; s(x0)) > 0:Before proeeding, we show that this ondition an be assumed without loss of generality. Ifthe reader is eager to know the proof of the existene of a stritly omplementary solution forthe self dual model (SP ), he/she might temporarily skip the following subsetion and return toit when all the results for the problem (SP ) are derived under the IPC.3.2 IPC for the Goldman-Tuker modelReall that (SP ) is just the abstrat model of the Goldman-Tuker problem (1) and our goalis to prove Theorem 4. In order to apply the results of the oming setions we need to modifyproblem (1) so that the resulting equivalent problem satis�es the IPC.Self-dual embedding of (1) with IPCDue to the seond statement of Theorem 3, problem (1) annot satisfy the IPC. However, beauseproblem (1) is just a homogeneous feasibility problem, it an be transformed into an equivalentproblem (SP ) whih satis�es the IPC. This happens by enlarging, i.e. embedding the problemand de�ning an appropriate nonnegative vetor q.Let us take x = s(x) = e. These vetors are positive, but they do not satisfy (1). Let usfurther de�ne the error vetor r obtained this way byr := e�Me; and let � := n+ 1:7



Then we have 0B� M r�rT 01CA0B� e11CA+0B� 0�1CA = 0B� Me+ r�rT e+ �1CA = 0B� e11CA :Hene, the following problem(SP ) min8><>:�# : �0B� M r�rT 0 1CA0B�x#1CA+0B� s�1CA = 0B� 0�1CA ; 0B�x#1CA ; 0B� s�1CA � 09>=>;satis�es the IPC beause for this problem the all-one vetor is feasible. This problem is in theform of (SP ), whereM = 0B� M r�rT 01CA ; �x = 0B�x#1CA and �q = 0B� 0�1CA :We laim that �nding a stritly omplementary solution to (1) is equivalent to �nding a stritlyomplementary optimal solution to problem (SP ). This laim is valid, beause (SP ) satis�esthe IPC thus, as we will see it admits a stritly omplementary optimal solution. Beause theobjetive funtion is just a onstant multiple of #, this variable must be zero in any optimalsolution, by Lemma 6. This observation implies the laimed result.Conlusion: Every LO problem an be embedded in a self-dual problem (SP ) of the form(SP ). This an be done in suh a way that �x = e is feasible for (SP ) and �s(e) = e. Having astritly omplementary solution of (SP ) we either �nd an optimal solution of the embedded LOproblem or that the LO problem does not have an optimal solution.After this intermezzo, we return to the study of or our prototype problem (SP ) by assumingthe IPC.3.3 The level sets of (SP )Let x 2 SP and s = s(x) be a feasible pair. Due to self duality, the duality gap for this pair istwie the value qTx = xT s;however, for the sake of simpliity, the quantity qTx = xT s itself will be referred to as the dualitygap. First we show that the IPC implies the boundedness of the level sets.Lemma 9 Let the IPC be satis�ed. Then, for eah positive K, the set of all feasible pairs (x; s)suh that xT s � K, is bounded.Proof: Beause the matrix M is skew-symmetri, we may write0 = (x� x0)TM(x� x0) = (x� x0)T (s� s0)= xT s+ (x0)T s0 � xT s0 � sTx0:From here we get xjs0j � xT s0 + sTx0 = xT s+ (x0)T s0 � K + (x0)T s0:8



The proof is omplete. 2In partiular, this lemma implies that the set of optimal solutions SP � is bounded as well.23.4 Central path, optimal partitionFirst we de�ne the entral path [9, 10, 17, 26℄ of (SP ).De�nition 11 The set of solutionsf(x(�); s(x(�))) : Mx+ q = s; xs = �e; x > 0 for some � > 0gis alled the entral path of (SP ).If no onfusion is possible, instead of s(x(�)) the notion s(�) will be used. Now we are readyto present our main theorem. This in fat establishes the existene of the entral path. At thispoint our disussion deviates from the one presented in [25℄. The proof presented here is moreelementary beause it does not make use of the logarithmi barrier funtion.Theorem 12 The next statements are equivalent.(i) (SP) satis�es the interior point ondition;(ii) For eah � > 0 there exists (x(�); s(�)) > 0 suh thatMx+ q = sxs = �e:(iii) For w > 0 there exists (x; s) > 0 suh thatMx+ q = sxs = w:The solution of these systems are unique.Before proving this highly important result we introdue the notion of optimal partition andpresent our main result. The partition (B;N) of the index set f1; :::; ng given byB : = fi : xi > 0; for some x 2 SP �g:N : = fi : s(x)i > 0; for some x 2 SP �g:is alled the optimal partition. By Lemma 7 the sets B and N are disjoint. Our main result saysthat the entral path onverges to a stritly omplementary optimal solution, and this resultproves that B [N = f1; :::; ng. When this result is established, the Goldman-Tuker Theorem4 for the general LO problem is proved beause we use the embedding method presented inSubsetion 3.2.2The following result shows that the IPC not only implies the boundedness of the level sets, but the onverseis also true. We do not need this property in developing our main results, so this is presented without proof.Corollary 10 Let (SP ) be feasible. Then the following statements are equivalent:(i) the interior point ondition is satis�ed;(ii) the level sets of xT s are bounded;(iii) the optimal set SP � of (SP ) is bounded. 2 9



Theorem 13 If the IPC holds then there exists an optimal solution x� and s� = s(x�) of problem(SP ) suh that x�B > 0, s�N > 0 and x� + s� > 0.First we prove Theorem 12.Proof: We start the proof by demonstrating that the systems in (ii) and (iii) may have atmost one solution. Beause (ii) is a speial ase of (iii), it is suÆient to prove uniqueness for(iii).Let us assume to the ontrary that for a ertain w > 0 there are two vetors (x; s) 6= (�x; �s) > 0solving (iii). Then using that the matrix M is skew-symmetri, we may write0 = (x� �x)TM(x� �x) = (x� �x)T (s� �s) = Xxi 6=�xi(x� �x)i(s� �s)i:Due to xs = w = �x�s we have xi < �xi () si > �sixi > �xi () si < �si:By onsidering these sign properties one easily veri�es that the relation0 = Xxi 6=�xi(x� �x)i(s� �s)i < 0should hold, but this is an obvious ontradition. As a result, we may onlude that if thesystems in (ii) and (iii) admit a feasible solution, then suh a solution is unique.The Newton stepIn proving the existene of a solution for the systems in (ii) and (iii) our main tool will be toanalyze the Newton step when applied to the nonlinear systems in (iii).3Let a vetor (x; s) > 0 with s = Mx + q be given. For a partiular w > 0 one will �nd thedisplaements (�x;�s) that solve M(x+�x) + q = s+�s(x+�x)(s+�s) = w:This redues to M�x = �sx�s+ s�x+�x�s = w � xs:This equation system is still nonlinear. When we neglet the seond order term �x�s theNewton equation M�x = �sx�s+ s�x = w � xs3Observe that no preliminary knowledge on any variants of Newton's method is assumed. We just de�ne andanalyze the Newton step for our partiular situation. 10



is obtained. This is a linear equation system and the reader easily veri�es that the Newtondiretion �x is the solution of the nonsingular system of equations4(M +X�1S)�x = x�1w � s:When we perform a step in the Newton diretion with step-length �, for the new solutions(x+; s+) we havex+s+ := (x+ ��x)(s+ ��s) = xs+ �(x�s+ s�x) + �2�x�s= xs+ �(w � xs) + �2�x�s:This relation lari�es that the loal hange of xs is determined by the vetor w � xs. Lukilythis vetor is known in advane when we apply a Newton step, thus for suÆiently small � weknow preisely whih oordinates of xs will derease loally (preisely those for whih the relatedoordinate of w�xs is negative) and whih oordinate of xs will inrease loally (preisely thosefor whih the related oordinate of w � xs is positive).The equivalene of the three statements in Theorem 12.Clearly (ii) is a speial ase of (iii) and the impliation (ii)! (i) is trivial.It only remains to be proved that (i), i.e. the IPC, ensures that for eah w > 0 the nonlinearsystem in (iii) is solvable. To this end, let us assume that an x0 2 SP with (x0; s(x0)) > 0 isgiven. We will use the notation w0 := x0s(x0). The laim will be proved in two steps.Step 1. For eah 0 < w < w 2 IRn the following two sets are ompat:Lw := fx 2 SP : xs(x) � wg andU(w;w) := fw : w � w � w; w = xs(x) for some x 2 Lwg:Let us �rst prove that Lw is ompat. For eah w > 0, the set Lw is obviously losed. In order toprove the boundedness of Lw �rst we observe that if 0 � x 2 Lw; s(x) � 0; then xT s(x) � eTw.Further, we have 0 = (x� x0)T (s� s0) = xT s+ (x0)T s0 � xT s0 � sTx0;whih in partiular implies that for eah 1 � j � n,xjs0j � xT s0 + sTx0 = xT s+ (x0)T s0 � eTw + (x0)T s0:The last relations demonstrate that Lw is bounded, thus ompat.By de�nition the set U(w;w) is bounded. We only need to prove that it is losed. Let aonvergent sequene wi ! ŵ; wi 2 U(w;w); i = 1; 2; � � � be given. Then learly w � ŵ � wholds. Further, for eah i there exists xi 2 Lw suh that wi = xis(xi). Beause the set Lw isompat, there is an x̂ 2 Lw and a onvergene subsequene xi ! x̂ (for ease of notation thesubsequene is denoted again the same way). Then we have x̂s(x̂) = ŵ, proving that U(w;w) islosed, thus ompat.Observe, that for eah w 2 U(w;w) by de�nition we have an x 2 SP with w = xs(x). Dueto w > 0 this relation implies that x > 0 and s(x) > 0.Step 2. For eah ŵ > 0, the system Mx+ q = s, xs = ŵ, x > 0 has a solution.If we have ŵ = w0 = x0s(x0), then the laim is trivial. If ŵ 6= w0 then we de�ne w :=4Although it is not advised to use for numerial omputations, the Newton diretion an be expressed in thelosed form �x = (M +X�1S)�1(x�1w � s). 11



maxfŵ; w0g, � = kwk1 + 1, w := minfŵ; w0g and � = 12 miniwi. Then �e < ŵ < �e and�e < w0 < �e. Due to the last relation the set U := U(�e; �e) is nonempty and ompat. Wede�ne the nonnegative funtion d(w) : U ! IR asd(w) := kw � ŵk1:The funtion d(w) is ontinuous on the ompat set U , thus it attains its minimum~w := argminw2Ufd(w)g:If d( ~w) = 0, then ~w = ŵ and hene by de�nition there is an x 2 SP satisfying xs(x) = ŵ andthe laim is proved.If d( ~w) > 0 then we will show that a damped Newton step from ~w towards ŵ gives a pointw(�) 2 U suh that d(w(�)) < d( ~w), ontraditing the fat that ~w minimizes d(w). Thissituation is illustrated on Figure 1.
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Figure 1: The situation when ŵ 6= ~w. A damped Newton step from ~w to ŵ is getting loser toŵ. For illustration three possible di�erent ~w values are hosen.The Newton step is well de�ned, beause for the vetor ~x 2 SP de�ning ~w the relations ~x > 0and ~s = s(~x) > 0 hold. A damped Newton step from ~w to ŵ with suÆiently small � results ina point loser (measured by d(�) = k � k1) to ŵ, beausew(�) = x(�)s(�) := (~x+ ��x)(~s+ ��s) = ~x~s+ �(ŵ � ~x~s) + �2�x�s= ~w + �(ŵ � ~w) + �2�x�s:This relation implies that w(�) � ŵ = (1� �)( ~w � ŵ) + �2�x�s;i.e. for � small enough5 all nonzero oordinates of jw(�) � ŵj are smaller than the respetiveoordinates of j ~w � ŵj. Hene, w(�) is getting loser to ŵ, loser than ~w. Due to �e < ŵ < �e5The reader easily veri�es that any value of� < minn ~wi � ŵi�xi�si : ( ~wi � ŵi)(�xi�si) > 0osatis�es the requirement. 12



this result also implies that for the hosen small � value the vetor w(�) stays in U . Thus ~w 6= ŵannot be a minimizer of d(w), whih is a ontradition.The proof is omplete. 2Now we are ready to prove our main theorem, the existene of a stritly omplementarysolution, when the IPC holds.Proof of Theorem 13.Let �t ! 0 (t = 1; 2; � � �) be a monotone dereasing sequene, hene for all t we have x(�t) 2 L�1e.Beause L�1e is ompat the sequene x(�t) has an aumulation point x� and without loss ofgenerality we may assume that x� = limt!1x(�t). Let s� := s(x�). Clearly x� is optimal beausex�s� = limt!1x(�t)s(x(�t)) = limt!1�te = 0:We still have to prove that (x�; s(x�)) is stritly omplementary, i.e. x� + s� > 0. LetB = fi : x�i > 0g and N = fi : s�i > 0g. Using that M is skew symmetri, we have0 = (x� � x(�t))T (s� � s(�t)) = x(�t)T s(�t)� x�T s(�t)� x(�t)T s�;whih, by using that x(�t)is(�t)i = �t, an be rewritten asXi2B x�i s(�t)i +Xi2N s�ix(�t)i = n�tXi2B x�ix(�t)i +Xi2N s�is(�t)i = n;By taking the limit as �t goes to zero we obtain thatjBj+ jN j = n;i.e. (B;N) is a partition of the index set. Hene (x�; s(x�)) is a stritly omplementary solution.The proof of Theorem 13 is omplete. 2As we mentioned earlier, this result is powerful enough to prove the strong duality theoremof LO in the strong form, inluding strit omplementarity, i.e. the Goldman-Tuker Theorem4 for SP and for (P ) and (D).Our next step is to prove that the aumulation point x� is unique.3.5 Convergene to the analyti enterIn this subsetion we prove that the entral path has only one aumulation point, i.e. itonverges to a unique point, the so-alled analyti enter [26℄ of the optimal set SP �.De�nition 14 Let �x 2 SP �, �s = s(�x) maximize the produtYi2B xi Yi2N siover x 2 SP �. Then �x is alled the analyti enter of SP �.13



Theorem 15 The limit point x� of the entral path is the analyti enter of SP �.Proof: The same way as in the proof of Theorem 13 we deriveXi2B �xix�i +Xi2N �sis�i = n:Now we apply the arithmeti-geometri-mean inequality to derive Yi2B �xix�i Yi2N �sis�i ! 1n � 1n  Xi2B �xix�i +Xi2N �sis�i ! = 1:Hene, Yi2B �xi Yi2N �si � Yi2B x�i Yi2N s�iproving that x� is the analyti enter of SP �. The proof is omplete. 23.6 Identifying the optimal partitionThe ondition numberIn order to give bounds on the size of the variables along the entral path we need to �nd aquantity that in some sense haraterizes the set of optimal solutions. For an optimal solutionx 2 SP � we have xs(x) = 0; and x+ s(x) � 0:Our next question is about the size of the nonzero oordinates of optimal solutions. Followingthe de�nitions in [25, 34℄ we de�ne a ondition number of the problem (SP ) whih haraterizesthe magnitude of the nonzero variables on the optimal set SP �.De�nition 16 Let us de�ne�x := mini2B maxx2SP �fxig �s := mini2N maxx2SP �fs(x)ig:Then the ondition number of (SP ) is de�ned as� = minf�x; �sg = mini maxx2SP �fxi + s(x)ig:To determine the ondition number � is in general more diÆult then to solve the optimizationproblem itself. However, we an give an easily omputable lower bound for �. This bounddepends only on the problem data.Lemma 17 (Lower bound for �:) If M and q are integral6 and all the olumns of M arenonzero, then � � 1�(M) ;where �(M) = Qni=1 kMik.6If the problem data is rational, then by multiplying by the least joint multiple of the denominators anequivalent LO problem with integer data is obtained. 14



Proof: The proof is based on Cramer's rule and on the estimation of determinants by usingHadamard's inequality. Let (x; s) be an optimal solution. Without loss of generality we mayassume that the olumns of the matrixD = (�M;E) orresponding to the nonzero oordinates of(x; s) are linearly independent. If they are not independent, then by using Gaussian eliminationwe an redue the solution to get one with linearly independent olumns. Let us denote this indexset by J . Further, let the index set K be suh that DKJ is a nonsingular square submatrix of D.Suh K exists, beause the olumns in DK are linearly independent. Now we have DKJxJ = qK ,and hene, by Cramer's rule, xj = det�D(j)KJ�det (DKJ) ; 8j 2 J;where D(j)KJ denotes the matrix obtained when the j-th olumn in DKJ is replaed by qK .Assuming that xj > 0 then, beause the data is integral, the numerator in the quotient givenabove is at least one. Thus we obtain xj � 1det(DKJ ) . By Hadamard's inequality7 the lastdeterminant an be estimated by the produt of the norm of its olumns, what an further bebounded by the produt of the norms of all the olumns of the matrix M . 2The ondition that none of the olumns of the matrixM is a zero vetor is not restritive. Forthe general problem (SP ) a zero olumn Mi would imply that si = qi for eah feasible solution,thus the pair (xi; si) ould be removed. More important is that for our embedding problem(SP ) none of the olumns of the oeÆient matrix0B� M r�rT 01CAis zero. By de�nition we have r = e�Me nonzero, beause eT r = eT e� eTMe = n. Moreover,if Mi = 0, then by using that the matrix M is skew symmetri we have ri = 1, thus the i-tholumn of the oeÆient matrix is again nonzero.The size of the variables along the entral pathNow, by using the ondition number � we are able to derive lower and upper bounds for thevariables along the entral path. Let (B;N) be the optimal partition of the problem (SP ).Lemma 18 For eah positive � one hasxi(�) � �n i 2 B; xi(�) � n�� i 2 N;si(�) � n�� i 2 B; si(�) � �n i 2 N:Proof: Let (x�; s�) be optimal, then by orthogonality we have(x(�)� x�)T (s(�)� s�) = 0;x(�)T s� + s(�)Tx� = n�;x(�)is�i � x(�)T s� � n�; 1 � i � n:7Hadamard's inequality: Let G be a nonsingular n� n matrix. Then the inequalitydet(G) � nYi=1 kGikholds. 15



Sine s�i � � and xi(�)si(�) = �, for i 2 N , we havexi(�) � n�s�i � n�� and si(�) � �n; i 2 N:The proofs of the other bounds are analogous. 2Identifying the optimal partitionThe bounds presented in Lemma 18 make it possible to identify the optimal partition (B;N),when � is suÆiently small. We just have to alulate the � value that ensures that the o-ordinates going to zero are ertainly smaller than the oordinates that onverge to a positivenumber.Corollary 19 If we have a entral solution x(�) 2 SP with� < �2n2then the optimal partition (B;N) an be identi�ed.The results of Lemma 18 and Corollary 19 an be generalized to the situation when a vetor(x; s) is not on, but just in a ertain neighborhood of the entral path. In order to keep ourdisussion short, we do not go in those details. The interested reader is referred to [25℄.3.7 Rounding to an exat solutionOur next goal is to �nd a stritly omplementary solution. This ould be done by moving alongthe entral path as � ! 0. Here we show that we do not have to do that, we an stop ata suÆiently small � > 0, and round o� the urrent \almost optimal" solution to a stritlyomplementary optimal one. We need some new notation. Let the optimal partition be denotedby (B;N), let ! := kMk1 = max1�i�nPnj=1 jMij j and � := �(M) = Qni=1 kMik.Lemma 20 Let M and q be integral and all the olumns of M be nonzero. If (x; s) :=(x(�); s(x(�))) is a entral solution withxT s = n� < �2n 32 (1 + !)2� ; whih ertainly holds if n� � 1n 32 (1 + !)2�3 ;then by a simple rounding proedure a stritly omplementary optimal solution an be found inO(n3) arithmeti operations.Proof: Let x := x(�) > 0 and s := s(x) > 0 be given. Let we simply set the small variables xNand sB to zero. Then we will orret the so reated error and estimate the size of the orretion.For (x; s) we have MBBxB +MBNxN + qB = sB ; (2)but by rounding xN and sB to zero the error q̂B = sB �MBNxN ours. Similarly, we haveMNBxB +MNNxN + qN = sN (3)but by rounding xN and sB to zero the error q̂N = �MNNxN ours.16



Let us �rst estimate q̂B and q̂N by using the results of Lemma 18. For q̂B we havekq̂Bk � pnkq̂Bk1 � pnksB �MBNxNk1 � pnk(E;�MBN )k1  sBxN 1� pn(1 + !)n�� = n 32 �(1+!)� : (4)We give a bound for the in�nity norm of q̂N as well:kq̂Nk1 = k �MNNxNk1 � kMNNk1kxNk1 � !n�� : (5)Now we are going to orret these errors by adjusting xB and sN . Let us denote the orretionby � for xB and by � for sN , further let (x̂; ŝ) be given by x̂B := xB + � > 0, x̂N = 0, ŝB = 0and ŝN := sN + � > 0.If we know the orretion � of xB , then from equation (3) the neessary orretion � of sNan easily be alulated. Equation (2) does not ontain sN , thus by solving the equationMBB� = q̂Bthe orreted value x̂B = xB � � an be obtained.First we observe that the equation MBB� = q̂B is solvable, beause any optimal solution x�satis�es MBBx�B = �qB, thus we may writeMBB� = MBB(xB � x�B)= �qB + sB �MBNxN + qB= sB �MBNxN = q̂B :This equation system an be solved by Gaussian elimination. The size of � obtained this wayan be estimated by applying Cramer's rule and Hadamard's inequality, the same way as wehave estimated � in Lemma 17. If MBB is zero, then we have qB = 0 and MBNxN = sB, thusrounding xN and sB to zero does not produe any error here, hene we an hoose � = 0. IfMBB is not the zero matrix, then let MBB be a maximal nonsingular square submatrix of MBBand let �qB be the orresponding part of q̂B. By using the upper bounds on xN and sB by Lemma18 we have j�ij = jdet(M (i)BB)jjdet(MBB)j � jdet(M (i)BB)j � k�qBk jdet(MBB)j � n 32�(1 + !)� �;where (4) was used in the last estimation. This result, due to kxBk1 � �n , implies that x̂B =xB + � > 0 ertainly holds if n� < �2n 32 (1+!)� .Finally, we simply orret sN by using (3), i.e. we de�ne � := �q̂N �MNB�. We still mustensure that ŝN := sN � q̂N �MNB� > 0:Using again the bounds given in Lemma 17, the bound (5) and the estimate on �, one easilyveri�es thatkq̂N+MNB�k1 � k(E;MNB)k1  q̂N� 1 � (1+!)max(!n�� ; n 32�(1 + !)�� ) = n 32�(1 + !)2�� :17



Thus, due to ksNk1 � �n , the vetor ŝN is ertainly positive if�n > n 32�(1 + !)2�� :This is exatly the �rst inequality given in the lemma. The seond inequality follows by observingthat �� � 1, by Lemma 17.The proof is ompleted by noting that the solution of an equation system by using Gaussianelimination, some matrix-vetor multipliations and vetor-vetor summations, all with a dimen-sion not exeeding n, is needed to perform our rounding proedure. Thus the omputationalomplexity of our rounding proedure is at most O(n3). 2Note, that this rounding results an also be generalized to the situation when a vetor (x; s) isnot on, but just in a ertain neighborhood of the entral path. For details the reader is referredagain to [25℄.84 Summary of the theoretial resultsLet us return to our general LO problem in anonial form(P ) minnTu : Au� z = b; u � 0; z � 0o(D) maxnbT v : AT v + w = ; v � 0; w � 0o ;where the slak variables are already inluded in the problem formulation. In what follows wereapitulate the results obtained so far.� In Setion 2 we have seen that to solve the LO problem it is suÆient to �nd a stritlyomplementary solution to the Goldman-Tuker modelAu ��b �z = 0�AT v +� �w = 0bT v �Tu �� = 0v � 0; u � 0; � � 0; z � 0; w � 0; � � 0:� This homogeneous system always admits the zero solution, but we need a solution forwhih � + � > 0 holds.� If (u�; z�) is optimal for (P ) and (v�; w�) for (D) then (v�; u�; 1; z�; w�; 0) is a solution forthe Goldman-Tuker model with the requested property � + � > 0. See Theorem 3.� Any solution of the Goldman-Tuker model (v; u; �; z; w; �) with � > 0 yields an optimalsolution pair (sale the variables (u; z) and (v; w) by 1� ) for LO. See Theorem 3.8This result makes lear that when one solves an LO problem by using an IPM, the iterative proess an bestopped at a suÆiently small value �. At that point a stritly omplementary optimal solution an easily beidenti�ed. 18



� Any solution of the Goldman-Tuker model (u; z; v; w; �; �) with � > 0 provides a erti�ateof primal or dual infeasibility. See Theorem 3.� If � = 0 in every solution (v; u; �; z; w; �) then (P ) and (D) have no optimal solutions withzero duality gap.� The Goldman-Tuker model an be transformed into a skew-symmetri self-dual problem(SP ) satisfying the IPC. See Setion 3.2.� If problem (SP ) satisfy the IPC then{ the entral path exists (see Theorem 12);{ the entral path onverges to a stritly omplementary solution (see Theorem 13);{ the limit point of the entral path is the analyti enter of the optimal set (seeTheorem 15);{ if the problem data is integral and a solution on the entral path with a suÆientlysmall � is given, then the optimal partition (see Corollary 19) and an exat stritlyomplementary optimal solution (see Lemma 20) an be found.� These results give a onstrutive proof of Theorem 4.� This way, as we have seen in Setion 2, the Strong Duality Theorem 5 is proved.The above summary shows that we have ompleted our projet. The duality theory of LO isbuilt up by using only elementary alulus and fundamental onepts of IPMs.In the rest of the paper a generi IP algorithm is presented.5 A general sheme of IP algorithmsIn this setion a glimpse of the main elements of IPMs is given. We keep on working with ourmodel problem (SP ). In Setions 2 and 3.2 we have shown that a general LO problem an betransformed into a problem of the form (SP ), and that problem satis�es the IPC. Some notes aredue to the linear algebra involved. We know that the size of the resulting embedding problem(SP ) is more than doubled omparing to the size of the original LO problem. In spite of the sizeinrease the linear algebra an be organized so that the omputational ost of an IPM iterationstays essentially the same.Let us onsider the problem (f. page 7)(SP ) min8><>:�# : �0B� M r�rT 01CA0B�x#1CA+0B�s�1CA = 0B�0�1CA ; 0B�x#1CA ; 0B�s�1CA � 09>=>; ; (6)where r = e�Me, � = n+1 and the matrix M is given by (1). This problem satis�es the IPC,beause the all one vetor (x0; #0; s0; �0) = (e; 1; e; 1) is a feasible solution, moreover it is alsoon the entral path by taking � = 1. In other words, it is a positive solution of the equation
19



system �0B� M r�rT 01CA0B�x#1CA+0B�s�1CA = 0B�0�1CA ; 0B�x#1CA ; 0B�s�1CA � 00B�x#1CA0B�s�1CA = 0B��e�1CA ; (7)whih de�nes the entral path of problem (SP ). As we have seen, for eah � > 0, this systemhas a unique solution. However, in general this solution annot be alulated exatly. Thereforewe are making Newton steps to get approximate solutions.Newton step:Let us assume that an interior point (x; #; s; �) > 0 is given. We want to �nd the solution of (7)for a given � � 0, in other words we want to determine the displaements(�x;�#;�s;��)so that �0B� M r�rT 01CA0B�x+�x#+�#1CA+0B�s+�s� +��1CA = 0B�0�1CA ; 0B�x+�x#+�#1CA ; 0B�s+�s� +��1CA � 00B�x+�x#+�#1CA0B�s+�s� +��1CA = 0B��e�1CA :By negleting the seond order terms �x�s and �#��, and the nonnegativity onstraints, theNewton equation system is obtained (f. page 10)�M�x �r�# +�s = 0rT�x +�� = 0s�x +x�s = �e� xs��# +#�� = �� #�: (8)We start by making some observations. For any vetor (x; #; s; �) that satis�es the equalityonstraints of (6) we have xT s+ #� = #�:Applying this to the solution obtained after making a Newton step we may write(x+�x)T (s+�s) + (#+�#)T (� +��) = (#+�#)�:By rearranging the terms we have(xT s+ #�) + (�xT�s+�#��) + (xT�s+ sT�x+ #�� + ��#) = #�+�#�:As we mentioned above, the �rst term in the left hand side sum equals to #�, while from (8) wederive that the seond sum is zero. From the last equations of (8) one easily derives that the20



third expression equals to �(n+1)�xT s�#� = ���#�. This way the equation ���#� = �#�is obtained, i.e. an expliit expression for �#,�# = �� #is derived. This value an be substituted in the last equation of (8) to derive the solution�� = �# � � � �(�� #)# ;i.e. �� = �(1� �)# :On the other hand, �s an be expressed from the third equation of (8) as�s = �X�1e� s�X�1S�x;where X and S are the diagonal matries ontaining the oordinates of the vetors x and s intheir respetive diagonals. Finally, substituting all these values in the �rst equation of (8) wehave M�x+X�1S�x = �X�1e� s� (�� #)r;i.e. �x is the unique solution of the positive de�nite system9(M +X�1S)�x = �X�1e� s� (�� #)r:Having determined the displaements, we an make a (possibly damped) Newton step toupdate our urrent iterate: x : = x+�x# : = #+�# = �s : = s+�s� : = � +��:We have seen that the entral path is our guide to a stritly omplementary solution. However,due to the nonlinearity of the equation system determining the entral path, we annot stay onthe entral path with our iterates, regardless that our initial interior point is perfetly entered.For this reason we need some entrality, or with other words proximity, measures that enable usto ontrol and keep our iterates in an appropriate neighborhood of the entral path.Proximity measuresLet the vetors �x and �s be omposed from x and #, and from s and � respetively. Note thaton the entral path all the oordinates of the vetor �x�s are equal. This observation indiatesthat the proximity measure Æ(�x�s) := max(�x�s)min(�x�s) ;9Observe, that although the dimensions of problem (SP ) are larger than problem (SP ), to determine theNewton step for both systems requires essentially the same omputational e�ort.Note also, that the speial struture of the matrix M (see (1)) an be utilized when one solves this positivede�nite linear system. For details the reader is referred to [2, 25, 31, 35℄.21



where max(�x�s) and min(�x�s) denotes the largest and smallest oordinate of the vetor �x�s, is anappropriate measure of entrality. In the literature of IPMs various entrality measures weredeveloped (see the books [11, 12, 25, 31, 35℄). Here we present just another one, extensivelyused in [25℄: Æ0(�x�s; �) := 12 � �x�s� � 12 � � ��x�s� 12  :Both of these proximity measures allow us to design polynomial IPMs.Generi Interior Point Newton AlgorithmInput:A proximity parameter �;an auray parameter " > 0;a variable damping fator �;update parameter �; 0 < � < 1;(�x0; �s0), �0 � 1 s.t. Æ(�x0�s0;�0) � �.begin�x := �x0; �s := �s0; � := �0;while (n+ 1)� � " dobegin� := (1� �)�;while Æ(�x; �s;�) � � dobegin�x := �x+ ���x;�s := �s+ ���s;endendendThe following ruial issues remain: how to hoose the entrality parameter �, how to update� and how to damp the Newton step when needed.To onlude our disussions, three sets of parameters are presented that ensure that theresulted IPMs are polynomial. The proofs of omplexity an e.g. be found in [25℄. Reall that(SP ) admits the all one vetor as a perfetly entered initial solution with � = 1.The �rst algorithm is a primal-dual logarithmi barrier algorithm with full Newton steps,studied e.g. in [25℄. This IPM enjoys the best omplexity known to date. Let us make thefollowing hoie:� Æ(�x�s; �) := Æ0(�x�s; �), this measure is zero on the entral path;� �0 := 1;� � := 12pn+1 ;� � = 1p2 ;� (��x;��s) is the solution of 8;� � = 1. 22



Theorem 21 (Theorem II.52 in [25℄) With the given parameter set the full step Newtonalgorithm requires not more than �2pn+ 1 log n+ 1" �iterations to produe a feasible solution (�x; �s) for (SP ) suh that Æ0(�x�s; �) � � and (n+1)# � ":The seond algorithm is a large update primal-dual logarithmi barrier algorithm, studied alsoe.g. in [25℄. Among our three algorithms, this is the most pratial. Let us make the followinghoie:� Æ(�x�s; �) := Æ0(�x�s; �), this measure is zero on the entral path;� �0 := 1;� 0 < � < n+1n+1+pn+1 ;� � = pR2p1+pR , where R = �pn+11�t ;� (��x;��s) is the solution of 8;� � is the result of a line searh, when along the searh diretion the primal-dual logarithmibarrier funtion �xT �s� (n+ 1) n+1Xi=1 log �xi�siis minimized.Theorem 22 (Theorem II.74 in [25℄) With the given parameter set the large update primal-dual logarithmi barrier algorithm requires not more than266661� 2666620�1 +s�pn+ 11� t 1A437777 log n+ 1" 37777iterations to produe a feasible solution (�x; �s) for (SP ) suh that Æ0(�x�s; �) � � and (n+1)# � ":When we hoose � = 12 , then the total omplexity beomes O �n log n+1" �, while the hoie� = Kpn+1 , with any �xed positive value K gives O �pn log n+1" � omplexity.Other versions of this algorithm were studied in [23℄, where the analysis of large updatemethods was based purely on the use of the proximity Æ0(�x�s; �).The last algorithm is the Dikin step algorithm studied in [25℄. This is one of the simplestIPMs, with an extremely elementary omplexity analysis. The prize for simpliity is that thepolynomial omplexity result is not the best possible. Let us make the following hoies:� Æ(�x�s; �) := Æ(�x�s), this measure is always larger than or equal to 1;� �0 := 0, this implies that � stays equal to zero, thus � is irrelevant;� � = 2;� (��x;��s) is the solution of (8) when the right hand sides of the last two equations arereplaed by �x2s2k�x�sk and � #�k�x�sk , respetively;23
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