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Definitions

Mathematical programming formulation:
mine /() }[P] )

A point z* Is feasible In P if g(z*) < 0;
F(P) = set of feasible points of P

A feasible z* is a local minimum if 3B (x*, ¢) S.1.
Ve € F'(P)N B(x*,¢) we have f(z*) < f(x)

A feasible x* Is a global minimum If Vx € F'(P) we have
f(z*) < f(z)

Thm.: if f and F'(P) convex, any local min. is also global

If g;(z*) = 0 for some 1, g; is active at * o



LP Canonical form

P Is a linear programming problem (LP) If f : R" — R, T
g : R" — R™ are linear forms

LP In canonical form:

min, c'x )
st. Az <b ;|[C] (2)
x>0 )

Can reformulate inequalities to equations by adding a
non-negative slack variable x,.1 > 0:

n

n
Za]‘x]‘ <b = Zaja:j+:cn+1:b N Tpt1 2> 0

Can reformulate maximization to minimization by J
max f(r) = —min — f(x)
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LP Standard form
B B

# LP in standard form: all inequalities transformed to

eguations
min, (¢)'z )
st. Alz=10b ;|S] (3)
x>0 )
® where z = (z1,...,%n, Tntt, - Tntm),
A= (A1), d =(c0,...,0)
N——
m

# Standard form is useful because linear systems of
equations are computationally easier to deal with than
systems of inequalities

# Used in simplex algorithm



e

© o o @

Diet problem |
-

Consider set M of m nutrients (e.g. sugars, fats,
carbohydrates, proteins, vitamins, ...)

Consider set N of n types of food (e.g. pasta, steak,
potatoes, salad, ham, fruit, ...)

A diet is healthy if it has at least b; units of nutrient: € M
Food j € N contains a;; units of nutrient ¢ € M

A unit of food j € N costs ¢;
Find a healthy diet of minimum cost



e

Diet problem Il
-

Parameters: m x n matrix A = (a;;), b = (b1,...,bm),
c=(c1,...,Cn)

Decision variables: x; = quantity of food j in the diet

CjLy
1

Objective function: min
xr
J

n

n
Constraints: Vi € M ) a;;x; > b;
j=1

Limits on variables: Vj € N z; > 0
Canonical form: min{c'z | — Az < —b}

Standard form: add slack variables y; = surplus
quantity of i-th nutrient, get min{c'z | — Az + I,y = —b}J
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Optimality Conditions |

~» If we can project improving direction —V f(z') on an
active constraint g, and obtain a feasible direction d,
point z’ is not optimal

2

\\ 92

B ~V(a')
%7 /% Sy
7 7®

e
g1 / X1
X C

Vagi(z')
® Implies —V f(2') € C (cone generated by active constraint

\_ gradients) J
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OLE
POLYTECHNIQUE

=

# Geometric intuition: situation as above does not happen

Optimality Conditions |

-

when —V f(z*) € C, «* optimum

Z2

7

7
%
7
0

A
.
Ay
A
.

/\\
4
4
é

1

# Projection of —V f(2*) on active constraints IS never a

feasible direction

o



Optimality Conditions Il

1. z* is a local minimum of problem
P =min{ f(z) | g(x) < 0},

2. I 1s the index set of the active constraints at x*,
l.e. Vi e I (gi(z*) =0)

3. Vgr(x*) ={Vyg;(z*) | i € I} Is a linearly independent
set of vectors

# then —V f(z*) Is a conic combination of Vg (z*),
i.e. 3y € Rl such that
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Karush-Kuhn-Tucker Conditions

POLYTECI

-

® Define

L(z,y) = f(x) + ) vigi(x)
1=1

as the Lagrangian of problem P

o KKT: If z* is a local minimum of problem P and Vg(z*)
IS a linearly independent set of vectors, dy € R™ s.t.

Vi<m (y;gi(x") 0)
Vi<m (y; > 0)



Weak duality

= min L(z,y) and z* be the global optimum
reF(P)

of P. ThenVy >0 L(y) < f(z*).
Proof
Since y > 0, If x € F(P) then y,;9;(x) < 0, hence

L(x,y) < f(x); result follows as we are taking the mini-
mum over all z € F(P).

# Important point: L(y) is a lower bound for P for all y > 0

# The problem of finding the tightest Lagrangian lower
bound

max min L(x,
y=>0 xeF(P) ( y)

\_ IS the Lagrangian dual of problem P J
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Dual of an LP |

-

® L(x,s,y)=c'ov—s'z+y'(b— Ax) where s € R"?, y ¢ R™

# Consider LP P in form: min{c'z | Az > b Az > 0}

# Lagrangian dual:

in (yb+ (c' —s—yA
&rr;%ménﬁ}gj)(y (¢’ —s—yA)z)

# KKT: for a point = to be optimal,

T

¢ —s—yA 0 (KKT1)
Vi <n(sjz; =0), Vi <m (y;(b; — Aiz) 0) (KKT2)

L’ Consider Lagrangian dual s.t. (KKT1), (KKT3): J
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Dual of an LP Il

OLE
POLYTECHNIQUE

=

o Obtain:
.
max yb
S,y
st. yA+s = ¢' ¢
s,y > 0 )

# Interpret s as slack variables, get dual of LP:

min c'z myax yb

x

st. Az > b [Pl — st yA < ¢! e [ D]
r 2 y =2 )
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= Alternative derivation of LP dual

POLYTECI

-

# Lagrangian dual = find tightest lower bound for LP
minc'z s.t. Az >bandz >0

# Multiply constraints Az > b by coefficients v, ...,y 10
obtain the inequalities y; Ax > y;b, valid provided y > 0

® Sumoveri: ) y;Ar > > yib=yAxr > yb

#® Look for y such that obtained inequalities are as
stringent as possible whilst still a lower bound for c¢'x

® = yb<yArand yb<c'w

°

Suggests setting yA = ¢' and maximizing yb
o Obtain LP dual: maxyb s.t. yA =c' and y > 0.
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Strong Duality for LP

Thm.

If  Is optimum of a linear problem and y is the optimum
of its dual, primal and dual objective functions attain the
same values at = and respectively y.

Proof
# Assume x optimum, KKT conditions hold

# Recall (KKT2) Vj < n(sjz; = 0),
Vi < m (y;(b; — Ajx) = 0)

® Gety(b— Ax) =sx = yb = (yA + s)x
By (KKT1) yA +s ="
# Obtain yb=c'z

°
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. Strong Duality for convex NLPs |

OLE
POLYTECH|

~» Theory of KKT conditions derived for generic NLP o

min f(x) S.t. g(x) <0, independent of linearity of f, g
# Derive strong duality results for convex NLPs

# Slater condition 32’ € F(P) (g(x') < 0) requires
non-empty interior of F'(P)

® let f* =min,.,,)<o f(z) be the optimal objective
function value of the primal problem P

® Letp* = max,>o min,cppy L(z,y) be the optimal
objective function value of the Lagrangian dual

Thm.

If f, g are convex functions and Slater’s condition holds,
then f* = p*.

o



. Strong Duality for convex NLPs Il

OLE
POLYTECI

rProof T
-Let A={(\0) | Fz (A >glz) At > f(z)}, B={(0,t) |t < f*}

A =set of values taken by
constraints and objectives

A N B = ( for otherwise f* not .

optimal N
P is convex = A, B convex \\

=- 4 separating hyperplane N

A t =« S.t.
UA + 1 Q 3 \\

VAT € A(ud+ut > a) (4) A
V(A t) € B (uh+ut <a) (5

\—- Since A, ¢t may increase indefinitely, (4) bounded below = u > 0, > 0 J
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Proof

. Strong Duality for convex NLPs Il

COLE
POLYTECH|

Since A=0in B, (5) =Vt < f* (ut < «a)
Combining latter with (4) yields

Vi (ug(x) + pf(z) = pf)

Suppose © = 0: (6) becomes ug(x) > 0 for all feasible x; by Slater’s
condition 9z’ € F(P) (g(«’) < 0), so u < 0, which together with . > 0
implies v = 0; hence (u, u) = 0 contradicting separating hyperplane

theorem, thus ¢ > 0

Setting py = w in (6) yields Yz € F(P) (f(z) + yg(z) > f*)
Thus, for all feasible x we have L(x,y) > f*

In particular, p* = max, min, L(z,y) > f*

Weak duality implies p* < f*

Hence, p* = f~*

(6)
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The dual of the Diet Problem
-

Recall diet problem: select minimum-cost diet of n
foods providing m nutrients

Suppose firm wishes to set the prices y > 0 for m
nutrient pills

To be competitive with normal foods, the equivalent in
pills of a food ; < n must cost less than the cost of the
food ¢;

Objective: max > b;y;
1<m
Constraints: Vj <n > a;;y; < ¢;

1<m

Economic interpretation:
at optimum, cost of pills = cost of diet J
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. Examples: LP dual formulations

OLE
POLYTECHNI

=

-

# Primal problem P and canonical form:

) )

max I+ X2 —min —I1 — X2
L1,T2 L1,T2
St. x1+ 219 <2 > — St. —x1 —2x9 > —2 \
201 + 19 < 2 —2r1 — X9 > —2
x>0 ) x>0 )
# Dual problem D and reformulation:
—max —2Yy1 — 2y9 \ min 2y + 2y
Y1,Y2 Y1,Y2
St —y1 —2y2 < -1 , = St y1+2y2>1 \
—2y1 —y2 < —1 21 +y2 > 1

o y >0 , y >0 )



Rules for LP dual

g
)
oy
ECOLE
POLYTECHNIQUE

-

Primal Dual
min max
variables x constraints

constraints
objective coefficients c
constraint right hand sides b

A@'QS Z bz'
AiCIZ S bi
AZ'SL“ — bz'

:Ifj Z 0

xj § 0

z; unconstrained

constraint right hand sides ¢

variables y

objective coefficients b
y; = 0

Y <0
y; unconstrained
ij < Cj
ij > Cj

ij = Cj

LAi: i-th row of A

AJ: j-th column of AJ
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. Example: Shortest Path Problem
=

SHORTEST PATH PROBLEM.

Input:  weighted digraph G =
(V,A,c),and s,t € V.

Output: & minimum-weight path
In G from s to ¢.

(8=
min Z CuvLuyv \
>0 (u,v)eA
1 V=S8 \ [P]
VoeV X mwu— X tw = ( —1 v=t
(v,u)eA (u,v)eA 0 othw.
y



Shortest Path Dual

cols | (1,2) (1,3) (4,1)
rows\c | 2 2 4 b
1 1 1 -1 0|y
2 -1 0 0 0 | yo
3 0 -1 0 0 | ys3
4 0 0 1 O | ya
S 0 0 0 1 | ys
t 0 0 0 1|y,
T2  T13 T41
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SP Mechanical Algorithm

KKT2 0on [D] = V(u,v) € A(Tuw(Yo — Yu — Cuw) =0) =
V(u,v) c A (xuv =1 =y, —yy = Cuv)

o |
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Sensitivity analysis |

f.o Suppose we solved an LP to optimality, get x* T

#® Ask the question: if b Is varied by a certain “noise”
vector ¢, how does the objective function change?
# |n practice, this addresses the problem of stability:

s we found an optimal solution with lowest associated
cost f*

o all coefficients deriving from real world carry some
measurement uncertainties (suppose b are
uncertain)

s SO x* may not be optimal for the practical application
s however, there may be a “close” feasible solution

s Wwe hope the “real” optimal cost doesn’t change too
much from f*

s canwe say by how much? o
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o o

Sensitivity analysis Il

-

Consider an LP with primal optimal solution x* and dual
optimal solution y*

Perturb b coefficients to b + ¢
The objective function value becomes y(b+¢) = yb + ye

Suppose ||¢]| iIs small enough so that the optimal
solution does not change

c'z* = y*b (strong LP duality) implies the optimal
objective function value for the perturbed problem is
cla* 4+ y*e

In other words: y* is the variation of the objective function
with respect to a unit variation in b

|
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Interior point methods

Simplex algorithm is practically efficient but nobody everT
found a pivot choice rule that proves that it has
polynomial worst-case running time

Nobody ever managed to prove that such a rule does
not exist

With current pivoting rules, simplex worst-case running
time is exponential

Kachiyan managed to prove in 1979 that LP € P using a
polynomial algorithm called ellipsoid method
(http://www.stanford.edu/class/msande310/ellip.pdf )

Ellipsoid method has polynomial worst-case running
time but performs badly in practice

Barrier interior point methods for LP have both
polynomial running time and good practical o
performances
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IPM |: Preliminaries

%
)
oy
ECOLE
POLYTECHNIQUE

® Consider LP P In standard form:
min{c'z | A =bAx >0}

# Reformulate by introducing “logarithmic barriers”:

P(f) : min{c'z — ﬁz logz; | Az = b}

7=1
—flog(z) ® The term —3log(z;) is a
“penalty” that ensures that
k z; > 0; the “limit” of this
reformulation for 5 — 0 should
\gﬁ 5 ensure that z; > 0 as desired
decreasin

#® Notice P(3) Is convex V3 > 0
- ) -
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IPM II: Central path
-

Let x*(3) the optimal solution of P(3) and =* the optimal
solution of P

The set {z*(3) | B > 0} Is called the central path

ldea: determine the central path by solving a sequence
of convex problems P(3) for some decreasing
sequence of values of g and show that z*(5) — z* as

g —0

Since for 8 > 0, —3log(z;) — +o0o for z; — 0, z*(3) will
never be on the boundary of the feasible polyhedron
{x > 0| Az = b}; thus the name “interior point method”



IPM I1I: Dual feasibility

Thm.

For all 3 > 0, z* () determines a dual feasible point y for P.
Proof
The Langrangian of P is

Li(z,y,v) =c'aw — Zijj v(Ax —b), (7)

1<n

where y € R? (corresponds to constraints —z < 0) and v € R™ (A Is
m x n). The Lagrangian of P(j3) is

Lo(z,v)=c'z — Z Blog(z;) + v(Ax — b). (8)

J<n

Derive KKT1 (VL = 0) for Ly, Ls:

Vi <n(c; —y; +vA =0) A (]—§+VA=7=0)
j

Letting vy, = % shows that x*(3) yields a point (y, ) feasible in the dual
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IPM lll: Convergence

Thm.

z*(f) — z* as [ — 0.

Proof

Notice first that «*(5) determines a converging sequence for
each sequence of values of 3 that converges to 0, because
P(B) is not unbounded for any 5 > 0; let the limit be «’. By
previous thm., for each x*(3) there Is a dual feasible point

(y(8),v(B)) st. Vj < n (y;(B) = %(5)). This also shows

that any sequence y(() Is convergent for 5 — 0; let the limit
be y*. Since Vj < n (z3(8)y;(8) = B), as § — 0 we have

7% (B)y;(8) — 0. But since x%(8)y(8) — z%y;, then 2%y = 0.
By the KKT complementarity conditions, z/, y* are a pair of
primal/dual optimal solutions, so =’ = z*.

Operations researc h courses -
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IPM IV: Optimal partitions

An LP may have more than one optimal solution (try
solving maxx1 + 22 S.t. 1 + 29 < 1and x > 0)

If this happens, all the solutions are on the same face ¢
of the feasible polyhedron

The simplex method fails to detect this situation

In this case, the barrier IPM gives a strictly complementary
solution (i.e. (z*)'y* = 0 and z* + y* > 0) in the interior
of the face ¢

This solution can be used to determine the optimal
partition (B, N) suchthat B = {j <n |z >0} and
N ={j<n|y >0}

The optimal partition is unique and does not depend on
the optimal solution used to define it — thus it provides J
a well-defined characterization of optimal faces
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IPM V. Strict complementarity

Thm.
(x*,y*) Is a strictly complementary primal-dual optimal solution of P.

Proof

Let 2/ = x*(0), v = y(B), v = v(B) for some 5 > 0 and v* be the
limit of the sequence v(3) as 8 — 0. x*(3),z* are both primal feasible
(hence A(z* — 2’) = 0), and (y*,v*), (¢, ") are both dual feasible (hence
(v* — V')A = y* —9/). In other words, z* — z’ is in the null space of A
and y* — ¢/ in the range of AT. Thus, the two vectors are orthogonal:
hence 0 = (z* — :z;’)T(y* —qy') = (x*)Ty* + (x’)Ty’— (a:*)Ty— (:U’)Ty*. Since
(z)'y* = 0and (') 'y’ = 2, B = n3, we obtain (z*) 'y +(a') 'y* = nB.

>|<

We now divide throughout by 3 = =/, obtaining >~ ( j + Z—z’) — n.

J

_ . 2 1 ifz¥>0 .
Notice that limg_.g 25 = J and similarly for y. So for
RO 0 otherwise

each j < n exactly one of z%, y~ Is zero and the other Is positive.
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IPM VI: Prototype algorithm

-

1. Consider an initial point z(3,) feasible in P(j3), a
parameter o < 1 and a tolerance ¢ > 0. Let k = 0.

Solve P(/3) with initial point z(3;) to get a solution z*.
If n3,. < e, stop with solution x*.
Update 5.1 = B, 2(Bk+1) = 2* and k «— k + 1.

G~ WD

Go to step 2.
Since Li(zy,y,v) = c'z}, — nB, the duality gap is ng, (i.e. x, is

never more than nG,-suboptimal). Each problem P(3) can
be solved by Newton’s method.

N .



IPM VII: Newton’s method

The Newton descent direction d for an unconstrained problem T
min f(x) at a point z is given by

d=—(V*f(z))"'Vf(2) (9)
If V2f(z) is positive definite, we obtain
(V@) d= (V@) (Vf(@) Vi@ <0,
so d is a descent direction

Direction d needs to be feasible (i.e. Ad = 0), thus solve for (d, v)

vif@ AT\ (4 \ (Vi@
A 0 T 0

Step 4 in the alg. becomes z(8x11) = x(8k) + vd, where ~ is the
result of a line search

v = argmin . f(Z + sd) (10)J
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IPM VIII: Example
- .

# Consider the LP in canonical form (P is the
corresponding standard form problem)

min X1 — I )
—r1+x2 < 1
r1+x9 < 3 >
r1,r2 = 0
# with associated P(():
4 \
min r1—x2 — () logz;
T1,T2,T3,T4 i=1 >
—x1+x9+23 = 1
L x1+x2o+x4 = 3 ) J
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IPM IX: Example

f.o The constraint matrix A is T

—1 1 1 0
1 1 0 1
# The objective function gradient is

T
(1_£7_1_£7_57_5)7

L1 L2 L3 L4

® The Hessian is

ﬁﬁﬁﬁ

ok 2)°
1 372 L3 Ty

dlag(

L (hence it Is positive semidefinite) J
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IPM X: Example

f.’ The Newton system to be solved is: T
(& EEAVERANNEES
- 1+ 5
P
2 T4
~1 1 0 V1 0
\ 1 1 0 1 J\w/) \ o

# We can now write a Matlab (or GNU Octave) code to
Implement the IPM algorithm
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IPM XI: Code

|7function [xstar, ystar, k, B] = ipm(c, A, b, beta, xfeas, alph a, epsilon)—‘
%% initialization
OPTIONS = [ |
[m, n] = size(A);
Ineq = A(;, 1 : n-m);
nx = size(xfeas);
if nx < n
S = b - Ineq =*xfeas;
x = [ xfeas ; s |;

ECOLE

xfeas;

X
I

J = zeros(n, 1);

H = zeros(n, n);

d = zeros(n, 1);

nu = zeros(m, 1);
termination = O;

counter = 1;

o |
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IPM XIlI: Code

%% iterative method
while termination ==
fori =1 :n
J@i) = c(i) - beta / x(i);
H(i,i) = beta/x(i)"2;
end
N =1 H, A; A zeros(m, m) |;
bN = [ -J; zeros(m, 1) |;
direction = N \ bN;
d = direction(1 : n, 1);
nu = direction(n + 1 : n + m);
lambda = fminbnd(’linesearch’, 0, 1,
xstar = x + lambda * d;

OPTIONS,

C, X, d, beta)

|
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ECOLE
POLYTECHNIQUE

if n * beta < epsilon

termination = 1;
k = counter;
ystar = beta ./ xstar;
B = zeros(l, n);
fori =1 :n
if xstar(i) > ystar(i)
B@i) = 1;
end
end
end
beta = alpha * beta;
X = Xstar;
counter = counter + 1;
end
%end function

function y = linesearch(lambda, c, x, d, beta)
y = c*(x + lambda =*d) - beta =*sum(log(x + lambda

IPM XIllI: Code

xd),1);

|
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IPM XIlII: Solution

#® Code parameters: 51 =1, a = 0.5, ¢ = 0.01

® Problem parameters: ¢' = (1,—-1,0,0), b = (1,3) and
z* (1) = (1,1)

# Running the example:

pm(1 -1 00 ], [(1110;110 1]
1, 3], 1, [1; 1], 0.5, 0.01)

# Solution (approximated to 10~2):
r* = (0.58,1.58,0.00, 0.85)
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IPM XI1V. Solution

%
)
oy
ECOLE
POLYTECHNIQUE

he central path:

determines a solution z* = (0.58.1.58, 0, 0.85) whose optimal
partitionis B = {1,2,4} and N = {3}.

o |
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=IPM XV: Comparison with Simplex
-

The solution found by the simplex method is z* = (0, 1,0, 2)
and y* = (0,0, 1,0), which is not strictly complementary, as
i1 +y; =04+0=0.

-



History of LP |

1788; Optimality conditions for equality-constrained o
programs (Lagrange)

1826: Solution of a system of linear equations (Gauss)

1873: Solution of a system of linear equations with
nonnegative variables (Gordan)

1896. Representation of convex polyhedra (Minkowski)

1936: Solution of a system of linear inequalities
(Motzkin)

1939: Optimality conditions (Karush, Kuhn & Tucker)

1939-45: Blackett’s Circus, UK Naval Op. Res. , US Navy
Antisubmarine Warfare Op. Res. Group, USAF
Op. Res., Project RAND

1945: The diet problem (Stigler) J
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History of LP I

1947: The simplex method (Dantzig) T
1953: The revised simplex method (Dantzig)

1954:; Cutting planes applied to TSP (Dantzig,
Fulkerson, Johnson)

1954: Max flow / min cut theorem (Ford & Fulkerson),
declassified 1999

1954
1954
1955:
1956.
1958
1958.

Dual simplex method (Lemke)

Branch anc
Stochastic

Bound applied to TSP (Eastman)
programming (Dantzig & Beale)

Dijkstra’s a

gorithm (Dijkstra)

Cutting planes for integer programming (Gomory)

Dantzig-Wolfe decomposition (Dantzig & Wolfe) J
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°

History of LP Il

1962. Benders’ decomposition (Benders) T
1963: Linear programming and extensions (Dantzig)

1970: Lagrangian relaxation for integer programming
(Held & Karp)

1971: NP-completeness (Cook, Karp)

1972. Simplex method is not polynomial (Klee & Minty)
1977 Bland'’s rule for simplex method (Bland)

1979: Kachiyan proves LP<P using ellipsoid method

1982: Average running time of simplex method
(Borgwardt)

1984: Interior point method for LP (Karmarkar)
1985: Branch-and-cut on TSP (Padberg& Grotschel) J
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