

Duality in Mathematical Programming

Leo Liberti

LIX, École Polytechnique
liberti@lix.polytechnique.fr

Lecture material

Website:

http://www.lix.polytechnique.fr/~liberti/teaching/mpri/07/

Lecture notes:

http://www.lix.polytechnique.fr/~liberti/ teaching/mpri/06/linear_programming.pdf

 S. Boyd and L. Vandenberghe, Convex Optimization, CUP, Cambridge, 2004

http://www.stanford.edu/~boyd/cvxbook/

- J.-B. Hiriart-Urruty, Optimisation et analyse convexe, PUF, Paris 1998 (Ch. 5)
- C. Papadimitriou, K. Steiglitz, Combinatorial Optimization: Algorithms and Complexity, Dover, New York, 1998

ÉCOLE POLYTECHNIQUE

Definitions

Mathematical programming formulation:

$$\begin{array}{cc}
\min_{x} & f(x) \\
\text{s.t.} & g(x) \le 0
\end{array} \right\} [P] \tag{1}$$

- A point x^* is *feasible* in P if $g(x^*) \le 0$; F(P) = set of feasible points of P
- A feasible x^* is a *local minimum* if $\exists B(x^*, \varepsilon)$ s.t. $\forall x \in F(P) \cap B(x^*, \varepsilon)$ we have $f(x^*) \leq f(x)$
- A feasible x^* is a global minimum if $\forall x \in F(P)$ we have $f(x^*) \leq f(x)$
- ullet Thm.: if f and F(P) convex, any local min. is also global
- If $g_i(x^*) = 0$ for some i, g_i is active at x^*

ÉCOLE POLYTECHNIQUE

LP Canonical form

- f extstyle extstyle P is a *linear programming problem* (LP) if $f: \mathbb{R}^n o \mathbb{R}$, $g: \mathbb{R}^n o \mathbb{R}^m$ are linear forms
 - LP in canonical form:

$$\begin{array}{cc}
\min_{x} & c^{\mathsf{T}} x \\
\text{s.t.} & Ax \le b \\
 & x \ge 0
\end{array} \right\} [C] \tag{2}$$

• Can reformulate inequalities to equations by adding a non-negative slack variable $x_{n+1} \ge 0$:

$$\sum_{j=1}^{n} a_j x_j \le b \implies \sum_{j=1}^{n} a_j x_j + x_{n+1} = b \land x_{n+1} \ge 0$$

• Can reformulate maximization to minimization by $\max f(x) = -\min -f(x)$

LP Standard form

LP in standard form: all inequalities transformed to equations

$$\begin{array}{c}
\min_{x} \quad (c')^{\mathsf{T}} x \\
\text{s.t.} \quad A' x = b \\
x \ge 0
\end{array} \right\} [S] \tag{3}$$

- where $x = (x_1, \dots, x_n, x_{n+1}, \dots, x_{n+m})$, $A' = (A, I_m)$, $c' = (c, \underbrace{0, \dots, 0}_{m})$
- Standard form is useful because linear systems of equations are computationally easier to deal with than systems of inequalities
- Used in simplex algorithm

Diet problem I

- Consider set M of m nutrients (e.g. sugars, fats, carbohydrates, proteins, vitamins, . . .)
- Consider set N of n types of food (e.g. pasta, steak, potatoes, salad, ham, fruit, . . .)
- A diet is healthy if it has at least b_i units of nutrient $i \in M$
- **●** Food $j \in N$ contains a_{ij} units of nutrient $i \in M$
- ullet A unit of food $j \in N$ costs c_j
- Find a healthy diet of minimum cost

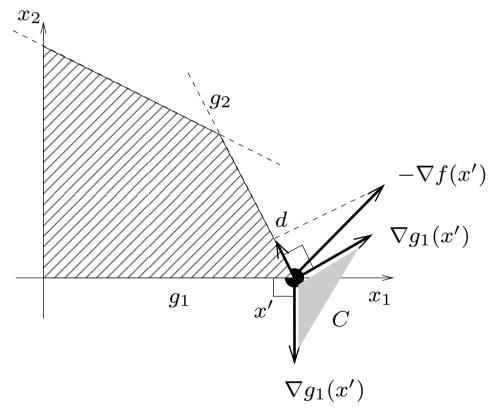
ÉCOLE POLYTECHNIQUE

Diet problem II

- Parameters: $m \times n$ matrix $A = (a_{ij}), b = (b_1, \dots, b_m),$ $c = (c_1, \dots, c_n)$
- Decision variables: $x_j = \text{quantity of food } j$ in the diet
- Objective function: $\min_{x} \sum_{j=1}^{n} c_j x_j$
- Constraints: $\forall i \in M \sum_{j=1}^{n} a_{ij} x_j \geq b_i$
- Limits on variables: $\forall j \in N \ x_i \geq 0$
- Canonical form: $\min\{c^{\mathsf{T}}x \mid -Ax \leq -b\}$
- Standard form: add slack variables $y_i = \text{surplus}$ quantity of i-th nutrient, get $\min\{c^{\mathsf{T}}x \mid -Ax + I_m y = -b\}$

Optimality Conditions I

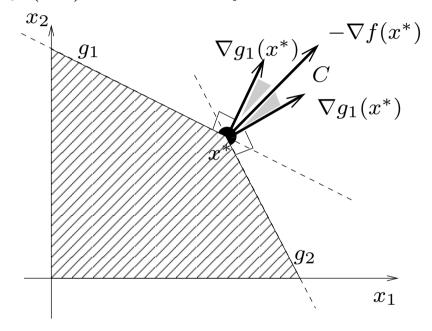
• If we can project improving direction $-\nabla f(x')$ on an active constraint g_2 and obtain a feasible direction d, point x' is not optimal



■ Implies $-\nabla f(x') \notin C$ (cone generated by active constraint gradients)

Optimality Conditions II

● Geometric intuition: situation as above does not happen when $-\nabla f(x^*) \in C$, x^* optimum



• Projection of $-\nabla f(x^*)$ on active constraints is never a feasible direction

Optimality Conditions III

- If:
 - 1. x^* is a local minimum of problem $P \equiv \min\{f(x) \mid g(x) \leq 0\},\$
 - 2. I is the index set of the active constraints at x^* , i.e. $\forall i \in I \ (g_i(x^*) = 0)$
 - 3. $\nabla g_I(x^*) = {\nabla g_i(x^*) \mid i \in I}$ is a linearly independent set of vectors
- then $-\nabla f(x^*)$ is a conic combination of $\nabla g_I(x^*)$, i.e. $\exists y \in \mathbb{R}^{|I|}$ such that

$$\nabla f(x^*) + \sum_{i \in I} y_i \nabla g_i(x^*) = 0$$

$$\forall i \in I \ y_i \ge 0$$

Karush-Kuhn-Tucker Conditions

Define

$$L(x,y) = f(x) + \sum_{i=1}^{m} y_i g_i(x)$$

as the Lagrangian of problem P

▶ KKT: If x^* is a local minimum of problem P and $\nabla g(x^*)$ is a linearly independent set of vectors, $\exists y \in \mathbb{R}^m$ s.t.

$$\nabla_{x^*} L(x, y) = 0$$

$$\forall i \le m \quad (y_i g_i(x^*) = 0)$$

$$\forall i \le m \quad (y_i \ge 0)$$

ÉCOLE POLYTECHNIQUE

Weak duality

Thm.

Let $\bar{L}(y)=\min_{x\in F(P)}L(x,y)$ and x^* be the global optimum of P. Then $\forall y\geq 0$ $\bar{L}(y)\leq f(x^*)$.

Proof

Since $y \ge 0$, if $x \in F(P)$ then $y_i g_i(x) \le 0$, hence $L(x,y) \le f(x)$; result follows as we are taking the minimum over all $x \in F(P)$.

- Important point: $\bar{L}(y)$ is a lower bound for P for all $y \ge 0$
- The problem of finding the tightest Lagrangian lower bound

$$\max_{y \ge 0} \min_{x \in F(P)} L(x, y)$$

is the Lagrangian dual of problem P

Dual of an LP I

- Consider LP P in form: $\min\{c^{\mathsf{T}}x \mid Ax \geq b \land x \geq 0\}$
- $L(x, s, y) = c^{\mathsf{T}}x s^{\mathsf{T}}x + y^{\mathsf{T}}(b Ax)$ where $s \in \mathbb{R}^n$, $y \in \mathbb{R}^m$
- Lagrangian dual:

$$\max_{s,y\geq 0} \min_{x\in F(P)} (yb + (c^{\mathsf{T}} - s - yA)x)$$

KKT: for a point x to be optimal,

$$c^{\mathsf{T}} - s - yA = 0$$
 (KKT1)
 $\forall j \leq n \ (s_j x_j = 0), \ \forall i \leq m \ (y_i (b_i - A_i x) = 0)$ (KKT2)
 $s, y \geq 0$ (KKT3)

Consider Lagrangian dual s.t. (KKT1), (KKT3):

Dual of an LP II

Obtain:

Interpret s as slack variables, get dual of LP:

Alternative derivation of LP dual

- Lagrangian dual \Rightarrow find tightest lower bound for LP $\min c^{\mathsf{T}}x$ s.t. $Ax \ge b$ and $x \ge 0$
- Multiply constraints $Ax \ge b$ by coefficients y_1, \ldots, y_m to obtain the inequalities $y_i Ax \ge y_i b$, valid provided $y \ge 0$
- Sum over $i: \sum_i y_i Ax \ge \sum_i y_i b = yAx \ge yb$
- Look for y such that obtained inequalities are as stringent as possible whilst still a lower bound for $c^{\mathsf{T}}x$
- $\Rightarrow yb \leq yAx \text{ and } yb \leq c^{\mathsf{T}}x$
- Suggests setting $yA = c^{\mathsf{T}}$ and maximizing yb
- Obtain LP dual: $\max yb$ s.t. $yA = c^{\mathsf{T}}$ and $y \ge 0$.

Strong Duality for LP

Thm.

If x is optimum of a linear problem and y is the optimum of its dual, primal and dual objective functions attain the same values at x and respectively y.

Proof

- Assume x optimum, KKT conditions hold
- Recall (KKT2) $\forall j \leq n(s_i x_i = 0)$, $\forall i \leq m \ (y_i(b_i A_i x) = 0)$

- Obtain $yb = c^{\mathsf{T}}x$

Strong Duality for convex NLPs I

- Theory of KKT conditions derived for generic NLP $\min f(x)$ s.t. $g(x) \le 0$, independent of linearity of f, g
- Derive strong duality results for convex NLPs
- Slater condition $\exists x' \in F(P) \ (g(x') < 0)$ requires non-empty interior of F(P)
- Let $f^* = \min_{x:g(x) \le 0} f(x)$ be the optimal objective function value of the primal problem P
- Let $p^* = \max_{y \ge 0} \min_{x \in F(P)} L(x, y)$ be the optimal objective function value of the Lagrangian dual

Thm.

If f, g are convex functions and Slater's condition holds, then $f^* = p^*$.

ÉCOLE POLYTECHNIQUE

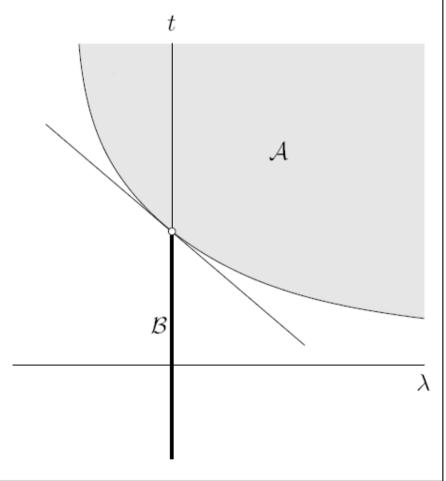
Strong Duality for convex NLPs II

Proof

- Let $\mathcal{A} = \{(\lambda, t) \mid \exists x \ (\lambda \geq g(x) \land t \geq f(x))\}, \ \mathcal{B} = \{(0, t) \mid t < f^*\}$
 - A =set of values taken by constraints and objectives
 - $\mathcal{A} \cap \mathcal{B} = \emptyset$ for otherwise f^* not optimal
 - P is convex $\Rightarrow A, B$ convex
 - $\Rightarrow \exists$ separating hyperplane $u\lambda + \mu t = \alpha$ s.t.

$$\forall (\lambda, t) \in \mathcal{A} \ (u\lambda + \mu t \ge \alpha)$$
 (4)

$$\forall (\lambda, t) \in \mathcal{B} \ (u\lambda + \mu t \le \alpha)$$
 (5)



- Since λ, t may increase indefinitely, (4) bounded below $\Rightarrow u \geq 0, \mu \geq 0$

Strong Duality for convex NLPs III

Proof

- Since $\lambda = 0$ in \mathcal{B} , (5) $\Rightarrow \forall t < f^* \ (\mu t \leq \alpha)$
- Combining latter with (4) yields

$$\forall x \ (ug(x) + \mu f(x) \ge \mu f^*) \tag{6}$$

- Suppose $\mu=0$: (6) becomes $ug(x)\geq 0$ for all feasible x; by Slater's condition $\exists x'\in F(P)\ (g(x')<0)$, so $u\leq 0$, which together with $u\geq 0$ implies u=0; hence $(u,\mu)=0$ contradicting separating hyperplane theorem, thus $\mu>0$
- Setting $\mu y = u$ in (6) yields $\forall x \in F(P) \ (f(x) + yg(x) \ge f^*)$
- Thus, for all feasible x we have $L(x,y) \geq f^*$
- In particular, $p^* = \max_y \min_x L(x, y) \ge f^*$
- Weak duality implies $p^* \leq f^*$
- Hence, $p^* = f^*$

The dual of the Diet Problem

- Recall diet problem: select minimum-cost diet of n foods providing m nutrients
- Suppose firm wishes to set the prices $y \ge 0$ for m nutrient pills
- To be competitive with normal foods, the equivalent in pills of a food $j \le n$ must cost less than the cost of the food c_j
- Objective: $\max \sum_{i \le m} b_i y_i$
- Constraints: $\forall j \leq n \sum_{i \leq m} a_{ij} y_i \leq c_j$
- Economic interpretation: at optimum, cost of pills = cost of diet

Examples: LP dual formulations

Primal problem P and canonical form:

Dual problem D and reformulation:

$$\begin{array}{ccc}
-\max & -2y_1 - 2y_2 \\
\mathbf{s.t.} & -y_1 - 2y_2 \le -1 \\
 & -2y_1 - y_2 \le -1 \\
 & y \ge 0
\end{array}
\right\} \Rightarrow \begin{array}{cccc}
\min & 2y_1 + 2y_2 \\
\mathbf{s.t.} & y_1 + 2y_2 \ge 1 \\
 & 2y_1 + y_2 \ge 1 \\
 & y \ge 0
\end{array}\right\}$$

Rules for LP dual

Primal	Dual
min	max
$\mathbf{variables} \ x$	constraints
constraints	${f variables}\ y$
objective coefficients c	constraint right hand sides c
constraint right hand sides b	objective coefficients b
$A_i x \ge b_i$	$y_i \ge 0$
$A_i x \le b_i$	$y_i \leq 0$
$A_i x = b_i$	y_i unconstrained
$ x_j \ge 0$	$yA^j \le c_j$
$ x_j \leq 0$	$yA^j \ge c_j$
x_j unconstrained	$yA^j = c_j$

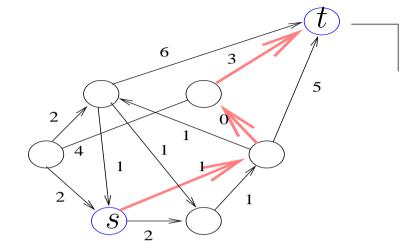
 A_i : i-th row of A

 A^j : j-th column of A

ÉCOLE POLYTECHNIQUE

Example: Shortest Path Problem

Shortest Path Problem. Input: weighted digraph G=(V,A,c), and $s,t\in V$. Output: a minimum-weight path in G from s to t.

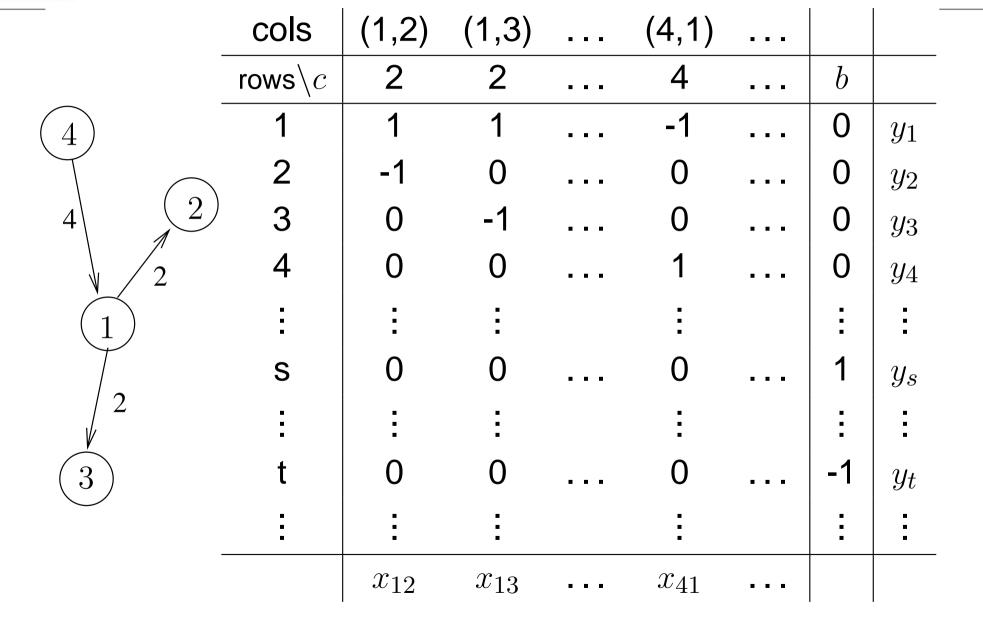


$$\min_{x \ge 0} \qquad \sum_{(u,v) \in A} c_{uv} x_{uv}$$

$$\forall v \in V \qquad \sum_{(v,u) \in A} x_{vu} - \sum_{(u,v) \in A} x_{uv} = \begin{cases} 1 & v = s \\ -1 & v = t \\ 0 & \text{othw.} \end{cases} [P]$$

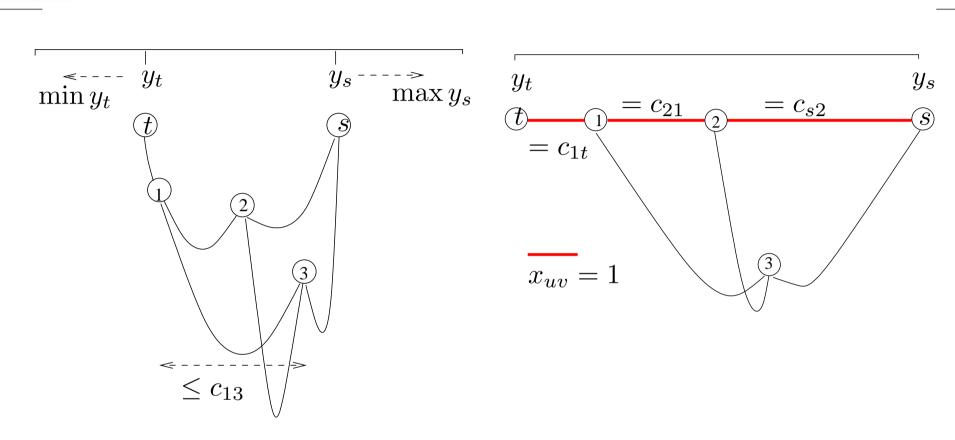
$$\max_{y} \quad y_s - y_t \\
\forall (u, v) \in A \quad y_v - y_u \leq c_{uv}$$

Shortest Path Dual



ÉCOLE POLYTECHNIQUE

SP Mechanical Algorithm



KKT2 on [D]
$$\Rightarrow \forall (u, v) \in A \ (x_{uv}(y_v - y_u - c_{uv}) = 0) \Rightarrow \forall (u, v) \in A \ (x_{uv} = 1 \rightarrow y_v - y_u = c_{uv})$$

Sensitivity analysis I

- Suppose we solved an LP to optimality, get x^*
- Ask the question: if b is varied by a certain "noise" vector ε , how does the objective function change?
- In practice, this addresses the problem of stability:
 - we found an optimal solution with lowest associated cost f^{\ast}
 - all coefficients deriving from real world carry some measurement uncertainties (suppose b are uncertain)
 - so x^* may not be optimal for the practical application
 - however, there may be a "close" feasible solution
 - we hope the "real" optimal cost doesn't change too much from f^{\ast}
 - can we say by how much?

Sensitivity analysis II

- Consider an LP with primal optimal solution x^{*} and dual optimal solution y^{*}
- Perturb b coefficients to $b + \varepsilon$
- **●** The objective function value becomes $y(b + \varepsilon) = yb + y\varepsilon$
- Suppose $||\varepsilon||$ is small enough so that the optimal solution does not change
- $c^{\mathsf{T}}x^* = y^*b$ (strong LP duality) implies the optimal objective function value for the perturbed problem is $c^{\mathsf{T}}x^* + y^*\varepsilon$
- In other words: y^* is the variation of the objective function with respect to a unit variation in b

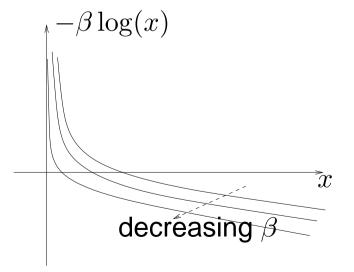
Interior point methods

- Simplex algorithm is practically efficient but nobody ever found a pivot choice rule that proves that it has polynomial worst-case running time
- Nobody ever managed to prove that such a rule does not exist
- With current pivoting rules, simplex worst-case running time is exponential
- ▶ Kachiyan managed to prove in 1979 that LP ∈ P using a polynomial algorithm called ellipsoid method (http://www.stanford.edu/class/msande310/ellip.pdf)
- Ellipsoid method has polynomial worst-case running time but performs badly in practice
- Barrier interior point methods for LP have both polynomial running time and good practical performances

IPM I: Preliminaries

- Consider LP P in standard form: $\min\{c^{\mathsf{T}}x \mid Ax = b \land x \ge 0\}.$
- Reformulate by introducing "logarithmic barriers":

$$P(\beta) : \min\{c^{\mathsf{T}}x - \beta \sum_{j=1}^{n} \log x_j \mid Ax = b\}$$



- The term $-\beta \log(x_j)$ is a "penalty" that ensures that $x_j > 0$; the "limit" of this reformulation for $\beta \to 0$ should ensure that $x_j \ge 0$ as desired
- Notice $P(\beta)$ is convex $\forall \beta > 0$

IPM II: Central path

- Let $x^*(\beta)$ the optimal solution of $P(\beta)$ and x^* the optimal solution of P
- The set $\{x^*(\beta) \mid \beta > 0\}$ is called the *central path*
- Idea: determine the central path by solving a sequence of convex problems $P(\beta)$ for some decreasing sequence of values of β and show that $x^*(\beta) \to x^*$ as $\beta \to 0$
- Since for $\beta > 0$, $-\beta \log(x_j) \to +\infty$ for $x_j \to 0$, $x^*(\beta)$ will never be on the boundary of the feasible polyhedron $\{x \geq 0 \mid Ax = b\}$; thus the name "interior point method"

ÉCOLE POLYTECHNIQUE

IPM III: Dual feasibility

Thm.

For all $\beta > 0$, $x^*(\beta)$ determines a dual feasible point y for P.

Proof

The Langrangian of P is

$$L_1(x, y, \nu) = c^{\mathsf{T}} x - \sum_{j \le n} y_j x_j + \nu (Ax - b), \tag{7}$$

where $y \in \mathbb{R}^n_+$ (corresponds to constraints $-x \leq 0$) and $\nu \in \mathbb{R}^m$ (A is $m \times n$). The Lagrangian of $P(\beta)$ is

$$L_2(x,\nu) = c^{\mathsf{T}}x - \sum_{j \le n} \beta \log(x_j) + \nu(Ax - b).$$
 (8)

Derive KKT1 ($\nabla L = 0$) for L_1, L_2 :

$$\forall j \le n \ (c_j - y_j + \nu A^j = 0) \land (c_j - \frac{\beta}{x_j^*} + \nu A^j = 0)$$

Letting $y_j = \frac{\beta}{x_j^*}$ shows that $x^*(\beta)$ yields a point (y, ν) feasible in the dual

IPM III: Convergence

Thm.

$$x^*(\beta) \to x^*$$
 as $\beta \to 0$.

Proof

Notice first that $x^*(\beta)$ determines a converging sequence for each sequence of values of β that converges to 0, because $P(\beta)$ is not unbounded for any $\beta > 0$; let the limit be x'. By previous thm., for each $x^*(\beta)$ there is a dual feasible point $(y(\beta), \nu(\beta))$ s.t. $\forall j \leq n \ (y_j(\beta) = \frac{\beta}{x_i^*(\beta)})$. This also shows that any sequence $y(\beta)$ is convergent for $\beta \to 0$; let the limit be y^* . Since $\forall j \leq n \ (x_i^*(\beta)y_j(\beta) = \beta)$, as $\beta \to 0$ we have $x_i^*(\beta)y_j(\beta) \to 0$. But since $x_i^*(\beta)y(\beta) \to x_j'y_j^*$, then $x_j'y_j^* = 0$. By the KKT complementarity conditions, x', y^* are a pair of primal/dual optimal solutions, so $x' = x^*$.

IPM IV: Optimal partitions

- An LP may have more than one optimal solution (try solving $\max x_1 + x_2$ s.t. $x_1 + x_2 \le 1$ and $x \ge 0$)
- If this happens, all the solutions are on the same face ϕ of the feasible polyhedron
- The simplex method fails to detect this situation
- In this case, the barrier IPM gives a *strictly complementary* solution (i.e. $(x^*)^\mathsf{T} y^* = 0$ and $x^* + y^* > 0$) in the interior of the face ϕ
- This solution can be used to determine the *optimal* partition (B, N) such that $B = \{j \le n \mid x_i^* > 0\}$ and $N = \{j \le n \mid y_i^* > 0\}$.
- The optimal partition is unique and does not depend on the optimal solution used to define it — thus it provides a well-defined characterization of optimal faces

IPM V: Strict complementarity

Thm.

 (x^*, y^*) is a strictly complementary primal-dual optimal solution of P.

Proof

Let $x' = x^*(\beta)$, $y' = y(\beta)$, $\nu' = \nu(\beta)$ for some $\beta > 0$ and ν^* be the limit of the sequence $\nu(\beta)$ as $\beta \to 0$. $x^*(\beta), x^*$ are both primal feasible (hence $A(x^*-x')=0$), and $(y^*,\nu^*),(y',\nu')$ are both dual feasible (hence $(\nu^* - \nu')A = y^* - y'$). In other words, $x^* - x'$ is in the null space of Aand $y^* - y'$ in the range of A^{T} . Thus, the two vectors are orthogonal: hence $0 = (x^* - x')^{\mathsf{T}}(y^* - y') = (x^*)^{\mathsf{T}}y^* + (x')^{\mathsf{T}}y' - (x^*)^{\mathsf{T}}y - (x')^{\mathsf{T}}y^*$. Since $(x^*)^{\mathsf{T}} y^* = 0 \text{ and } (x')^{\mathsf{T}} y' = \sum_{i \le n} \beta = n\beta, \text{ we obtain } (x^*)^{\mathsf{T}} y' + (x')^{\mathsf{T}} y^* = n\beta.$ We now divide throughout by $\beta = x_j' y_j'$, obtaining $\sum_{j \le n} (\frac{x_j^*}{x_i'} + \frac{y_j^*}{y_j'}) = n$. Notice that $\lim_{\beta\to 0}\frac{x_j^*}{x_j^*(\beta)}=\begin{cases} 1 & \text{if } x_j^*>0\\ 0 & \text{otherwise} \end{cases}$ and similarly for y. So for each $j \leq n$ exactly one of x_i^*, y_i^* is zero and the other is positive.

IPM VI: Prototype algorithm

- 1. Consider an initial point $x(\beta_0)$ feasible in $P(\beta)$, a parameter $\alpha < 1$ and a tolerance $\varepsilon > 0$. Let k = 0.
- 2. Solve $P(\beta)$ with initial point $x(\beta_k)$ to get a solution x^* .
- 3. If $n\beta_k < \varepsilon$, stop with solution x^* .
- 4. Update $\beta_{k+1} = \alpha \beta_k$, $x(\beta_{k+1}) = x^*$ and $k \leftarrow k+1$.
- 5. Go to step 2.

Since $L_1(x_k,y,\nu)=c^\mathsf{T} x_k-n\beta_k$, the duality gap is $n\beta_k$ (i.e. x_k is never more than $n\beta_k$ -suboptimal). Each problem $P(\beta)$ can be solved by Newton's method.

IPM VII: Newton's method

■ The Newton descent direction d for an unconstrained problem $\min f(x)$ at a point \bar{x} is given by

$$d = -(\nabla^2 f(\bar{x}))^{-1} \nabla f(\bar{x}) \tag{9}$$

• If $\nabla^2 f(\bar{x})$ is positive definite, we obtain

$$(\nabla f(\bar{x}))^{\mathsf{T}} d = -(\nabla f(\bar{x}))^{\mathsf{T}} (\nabla^2 f(\bar{x}))^{-1} \nabla f(\bar{x}) < 0,$$

so d is a descent direction

• Direction d needs to be feasible (i.e. Ad=0), thus solve for (d,ν)

$$\begin{pmatrix} \nabla^2 f(\bar{x}) & A^{\mathsf{T}} \\ A & 0 \end{pmatrix} \begin{pmatrix} d \\ \nu^{\mathsf{T}} \end{pmatrix} = \begin{pmatrix} -\nabla f(\bar{x}) \\ 0 \end{pmatrix}$$

• Step 4 in the alg. becomes $x(\beta_{k+1}) = x(\beta_k) + \gamma d$, where γ is the result of a line search

$$\gamma = \operatorname{argmin}_{s>0} f(\bar{x} + sd) \tag{10}$$

IPM VIII: Example

Consider the LP in canonical form (P is the corresponding standard form problem)

• with associated $P(\beta)$:

$$\min_{x_1, x_2, x_3, x_4} x_1 - x_2 - \beta \sum_{j=1}^4 \log x_j \\
-x_1 + x_2 + x_3 = 1 \\
x_1 + x_2 + x_4 = 3$$

IPM IX: Example

The constraint matrix A is

$$\begin{pmatrix} -1 & 1 & 1 & 0 \\ 1 & 1 & 0 & 1 \end{pmatrix}$$

The objective function gradient is

$$(1-\frac{\beta}{x_1},-1-\frac{\beta}{x_2},-\frac{\beta}{x_3},-\frac{\beta}{x_4})^{\mathsf{T}},$$

The Hessian is

diag
$$(\frac{\beta}{x_1^2}, \frac{\beta}{x_2^2}, \frac{\beta}{x_3^2}, \frac{\beta}{x_4^2})$$
.

(hence it is positive semidefinite)

IPM X: Example

The Newton system to be solved is:

$$\begin{pmatrix} \frac{\beta}{x_1^2} & & & -1 & 1\\ & \frac{\beta}{x_2^2} & & & 1 & 1\\ & & \frac{\beta}{x_3^2} & & 1 & 0\\ & & & \frac{\beta}{x_4^2} & 0 & 1\\ -1 & 1 & 1 & 0 & \\ 1 & 1 & 0 & 1 & \end{pmatrix} \begin{pmatrix} d_1\\ d_2\\ d_3\\ d_4\\ \nu_1\\ \nu_2 \end{pmatrix} = \begin{pmatrix} -1 + \frac{\beta}{x_1}\\ 1 + \frac{\beta}{x_2}\\ \frac{\beta}{x_3}\\ \frac{\beta}{x_4}\\ 0\\ 0 \end{pmatrix}$$

We can now write a Matlab (or GNU Octave) code to implement the IPM algorithm

IPM XI: Code

```
function [xstar, ystar, k, B] = ipm(c, A, b, beta, xfeas, alpha, epsilon)
  %% initialization
  OPTIONS = [ ];
  [m, n] = size(A);
  Ineq = A(:, 1 : n-m);
  nx = size(xfeas);
  if nx < n
    s = b - Ineq*xfeas;
    x = [xfeas; s];
  else
   x = xfeas;
  end
  J = zeros(n, 1);
  H = zeros(n, n);
  d = zeros(n, 1);
  nu = zeros(m, 1);
  termination = 0;
  counter = 1;
```

- - -

IPM XII: Code

. . .

```
%% iterative method
while termination == 0
  for i = 1 : n
      J(i) = c(i) - beta / x(i);
      H(i,i) = beta/x(i)^2;
  end
    N = [ H, A'; A, zeros(m, m) ];
  bN = [ -J; zeros(m, 1) ];
  direction = N \ bN;
  d = direction(1 : n, 1);
  nu = direction(n + 1 : n + m);
  lambda = fminbnd('linesearch', 0, 1, OPTIONS, c, x, d, beta);
  xstar = x + lambda * d;
```

. . .

IPM XIII: Code

. . .

```
if n * beta < epsilon
      termination = 1;
      k = counter;
      ystar = beta ./ xstar;
      B = zeros(1, n);
      for i = 1 : n
        if xstar(i) > ystar(i)
         B(i) = 1;
        end
      end
    end
    beta = alpha * beta;
    x = xstar;
    counter = counter + 1;
  end
%end function
function y = linesearch(lambda, c, x, d, beta)
  y = c*(x + lambda*d) - beta*sum(log(x + lambda*d),1);
```


IPM XIII: Solution

- Code parameters: $\beta_1 = 1$, $\alpha = 0.5$, $\varepsilon = 0.01$
- Problem parameters: $c^{\mathsf{T}}=(1,-1,0,0)$, b=(1,3) and $x^*(\beta_1)^{\mathsf{T}}=(1,1)$
- Running the example:

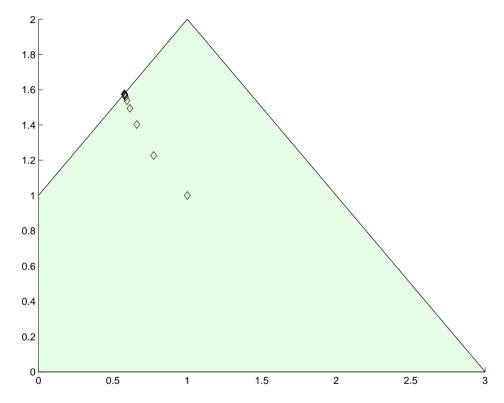
```
ipm([1 -1 0 0 ], [-1 1 1 0 ; 1 1 0 1], [1; 3], 1, [1; 1], 0.5, 0.01)
```

• Solution (approximated to 10^{-2}):

$$x^* = (0.58, 1.58, 0.00, 0.85)$$

IPM XIV: Solution

The central path:



determines a solution $x^* = (0.58.1.58, 0, 0.85)$ whose optimal partition is $B = \{1, 2, 4\}$ and $N = \{3\}$.

IPM XV: Comparison with Simplex

The solution found by the simplex method is $x^*=(0,1,0,2)$ and $y^*=(0,0,1,0)$, which is not strictly complementary, as $x_1^*+y_1^*=0+0=0$.

History of LP I

- 1788: Optimality conditions for equality-constrained programs (Lagrange)
- 1826: Solution of a system of linear equations (Gauss)
- 1873: Solution of a system of linear equations with nonnegative variables (Gordan)
- 1896: Representation of convex polyhedra (Minkowski)
- 1936: Solution of a system of linear inequalities (Motzkin)
- 1939: Optimality conditions (Karush, Kuhn & Tucker)
- 1939-45: Blackett's Circus, UK Naval Op. Res., US Navy Antisubmarine Warfare Op. Res. Group, USAF Op. Res., Project RAND
- 1945: The diet problem (Stigler)

History of LP II

- 1947: The simplex method (Dantzig)
- 1953: The revised simplex method (Dantzig)
- 1954: Cutting planes applied to TSP (Dantzig, Fulkerson, Johnson)
- 1954: Max flow / min cut theorem (Ford & Fulkerson), declassified 1999
- 1954: Dual simplex method (Lemke)
- 1954: Branch and Bound applied to TSP (Eastman)
- 1955: Stochastic programming (Dantzig & Beale)
- 1956: Dijkstra's algorithm (Dijkstra)
- 1958: Cutting planes for integer programming (Gomory)
- 1958: Dantzig-Wolfe decomposition (Dantzig & Wolfe)

History of LP III

- 1962: Benders' decomposition (Benders)
- 1963: Linear programming and extensions (Dantzig)
- 1970: Lagrangian relaxation for integer programming (Held & Karp)
- 1971: NP-completeness (Cook, Karp)
- 1972: Simplex method is not polynomial (Klee & Minty)
- 1977: Bland's rule for simplex method (Bland)
- 1979: Kachiyan proves LP∈P using ellipsoid method
- 1982: Average running time of simplex method (Borgwardt)
- 1984: Interior point method for LP (Karmarkar)
- 1985: Branch-and-cut on TSP (Padberg& Grötschel)