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Definitions

Mathematical programming formulation: o

min,
S.tL.

'z +dy
Arx+ By <b
z >0,y >0,
x e 2"

\

e [ P] (1)

/

The linear (Or continuous) relaxation Rp of P IS obtained by
P relaxing (i.e. removing) the integrality constraints

Let F'(P) be the feasible region of P: we have

F(P) < F(Rp)

Let (z*,y*) be the solution of P and (z, y) be the
solution of Rp;thenc'z +d'y < c'a* + d'y*: Rpis a
lower bounding problem w.r.t. P
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Simple example

fConsider example:
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Maximum flow problem

-

Given a network on a directed graph G = (V, A) with a
source node s, a destination node t, and integer capacities
u;; on each arc (¢, 7). We have to determine the maximum
amount of integral material flow that can circulate on the
network from s to ¢. The variables z;; € Z, defined for each

arc (i, j) in the graph, denote the number of flow units.

(s,i)€A \ /
<y ! - SN
(.)€ A (ji) €A / \

\V/(Z,]) c A 0 < Tij < Uy j

L V(i,j) € A Ti; € L ) gk J

Lecture 7/12/2006 — p. 5

-

=
Qo
e
S
S
3




Transportation problem

et z;; be the (discrete) number of product units

transported from plant : < m to customer 5 < n with
respective unit transportation cost ¢;; from plant : to

customer ;. We model the problem of determining «

minimizing the total cost, subject to production limits
plant  and demand d; at customer j, as follows:
)
min, Z Z CijTij
1=1 j7=1 T4
n
Vi<m Z:l?q;] < O g
j=1 ( T
m . J
Vi<n szj > d; Z
\— | 1=1
Vi, Ti; € Ly J

[; at
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Set Covering problem

- N

Let x; = 1 if a servicing facility will be built on geographical
region : < m and O otherwise. The cost of building a facility
onregion i is f;, and a;; = 1 If a facility on region i can serve
town 5 < n, and O otherwise. We need to determine

x € {0,1}™ so that each town is serviced by at least one

facility and the total cost is minimum.

m )
min, E fizi
1=1 a;; =1

- >
V]Sﬂ Zaija:i 1

1=1
Vi<m v, € Ly |

Vv
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Good and ideal formulations

- N

The smaller is F(Rp), the
d o o o o o bigger (better) is the lower
bound produced by Rp.
< As F(Rp,) C F(Rp,) and
F(Rpl) C F(RPQ), the for-
mulation P; Is better than P
o and Ps.

Here P; Is the best possible
(ideal) formulation.

2 Formally, Rp, defines the
convex hull of P.

P ={z!' ... 2'}, then conv(P) = {x :
| @= SN, S =1, >0 Vi=1,... t} B
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Uncapacitated Facility Location problem

. N

Similar to the Set Covering Problem, except for the addition
of the variable transportation costs c¢;;, which arise if the

demand of town j is fully served by faclility . Let y;; be the
fraction of demand of town j served by facility .

m m n )
Tgllyﬂi fiwe + ) ) cijyij

i=1 i=1 j=1

m
V) <n, Zyz'j =1
i=1

m .
\} <m, Z Yij < nx; } y23 = 0.5
j=1

L Vi<m, z¢c{0,1}. J
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UFL problem II
W

e can change constraints T
m
Vi <m, Zyij <nv; [R]
j=1

to constraints
Formulation Rs Is better than R, as F(R2) C F(R1). We can

verify it by showing F'(R2) C F(R;) and finding a point
(z,y) € F(R1) \ F(R2).

o |
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Rounding heuristic

fThere IS a strong relation

between an integer pro-

gram and its linear relax- T = (376/193,950/193)
ation. 5 {

But just rounding the so-
lution z of the LP relax-
ation does not always pro-
duce good results. Con-
sider the integer program:

max 1.00x1 4+ 0.64x9
50x1 + 31z < 250
3x1 — 229 > —4

L r1,T2 € Ly J
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Main algorithmic ideas

-

If we can say a priori that z € Z" then can solve P by
simply solving Rp (total unimodularity property).

Add constraints to get P’ such that z’ € Z" (cutting planes
algorithm).

Solve by “smart” enumeration of all solutions
(Branch-and-Bound algorithm).

Combine adding constraints and enumeration
(Branch-and-Cut algorithm).

Modern Integer Programming solvers (like Cplex) use
the Branch-and-Cut algorithm.

|
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Total unimodularity |

-

Consider system Bx = b where B = (b;;) IS invertible
nxnsSt b eZforall,j

Solve for z, get B~ b

From inverse matrix formula, infer B=! = ,Tac with C
Integral

If |1B| € {1,-1} thenx = B~'b = +Cb c Z"

A square invertible matrix B s.t. |B| = £1 IS unimodular

An m x n matrix A s.t. every square submatrix has
determinant in {—1,0, 1} IS totally unimodular (TUM)

Theorem: If Ais TUM, then for all b € R™, every vertex
of the polyhedron {x € R"” | Az < b} Is integral. Intuititively,
every vertex can be written as B~ lbfor B square submatrix of A J
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Total unimodularity I

f.o If Ais TUM, AT and (A|I) are TUM T

® TUM Sufficient conditions. AN m x n matrix A 1s TUM If:
1. forall i <m, j <n we have a;; € {0,1,—1};

2. each column of A contains at most 2 nonzero
coefficients;

3. there Is a partition R;, R, of the set of rows such that
for each column j, > .cp aij — > icp, aij = 0.

o Example: take Ry = {1,3,4}, Ry = {2}

oo\

1

I —1 1
-1 -1 0 0 0 1

0

-1 0 J
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Total unimodularity Il

Consider digraph G = (V, A) and a nonnegative flow T
z;; € R4 on each arc; the flow conservation equations

VieV Z Tij — Z Tji = 0 yleld a TUM matrix
(4,7)€A (J,i)eA

(which row partition?)

Maximum flow problem can be solved to integrality by
simply solving the continuous relaxation with the
simplex algorithm

Constraints of the transportation problem also form a
TUM matrix. Partition: R; = {2?;1 Tii < li}i<m

Ry = {32121 ®ij = dj}j<n.

Constraints of the set covering problem do not form a

TUM. To prove this, you just need to find a
counterexample. J
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Cutting planes: definitions |

-

A constraint C' = 7"z < 7 is valid for P if
V' e F(P) (T2’ < mp)

1

T

2

o |
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Cutting planes: definitions Il

-

Let P’ be problem P with the added valid constraint C. C'is
a cutting plane for P if F/(Rp/) C F(Rp)

-
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definitions

Cutting planes
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Convex hull

~» To have a description of the convex hull of F(P), we |
need a finite number of valid constraints for P.

o Computing the convex hull for F'(P) is in general harder
than solving P.

# The idea of the cutting plane algorithm is to add valid
cuts progressively and resolve the LP relaxation each
L time until we obtain an integer solution. Thus, we add J
only those cuts we need.
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Overall strategy:
1. Solve Rp, get relaxed solution z

2. If z € Z" problem is solved, exit

3.

4. Add the constraint C' to the formulation of P
5.

Cutting Plane Algorithm
-

Use solution z of Rp to construct a valid cut C for P

Go backto 1

The most important step of the algorithm: step 3
(separation problem).

Cutting Plane algorithms may depend on the particular
problem structure or be completely general.

Independent of problem structure: Gomory cutting planes.

Problem structure: Row generation for the TSP. J
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Row generation for TSP |

f.o TSP formulation has an exponential number of T
constraints (one for each proper subset of {1,...,n})

# Continuous relaxation solution becomes unmanageable
as n grows

# Try relaxing (i.e., removing) problematic constraints

VS C{L,....n} > ay <[5 -1
1£JES

® Obtain IP with a TUM matrix whose solutions are sets
of disjoint cycles

Relaxed solution: Optimal solution:
7 //} ®

(——06
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Row generation for TSP |l

Consider enforcing problematic constraints one by one T

In a Cutting Plane algorithm: how do we solve the
separation problem?

In example above, problematic constraint with S = {1, 2}

yields: x19 + 291 <1
The relaxed solution above has z19 = 291 =0

The constraint is valid but it Is not a valid cut (I.e.
current solution will not change when constraint is
added to the continuous relaxation of the problem)

Does not solve the separation problem
Generate valid cuts by identifying

Usually requires considerably fewer than 2" added
constraints

|
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Row generation for TSP ||
f.o In relaxed solution, S = {1, 3,5} Is a disjoint cycle T

VATNS

# Enforce constraint for S (at most |S| — 1 =2 arcs In
complete digraph on S):
r13 + 231 + 215 + T51 + 235 + 53 < 2

R

# In above relaxed solution, S = {4, 7} is a disjoint cycle,
enforce constraint 47 + z74 < 1

# Get optimal solution J
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Branch-and-Bound |

-

Here we use the “divide and conquer” approach. If we
cannot solve a problem, we break it into easier
subproblems. We do it using an enumeration tree.

-

U B, (heuristic)

Pruned

by by by \
optimality bound infeasibility o N
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Branch-and-Bound ||

. Initialize list problem L = { P}, best objective function value T

f* = o0, 2* = “Infeasible”

If L = (), terminate with solution z*

Select a subproblem @ from L and remove it from L
(Bound) Solve R to find solution z with objective value f
If R Is Infeasible, back to 2 (prune by infeasibility)

If f> f*, Q cannot contain optimal solution, back to 2 (prune
by bound)

If z is integral and f < f*: update z* = z, f* = f, back to 2
(prune by optimality)

(Branch) Select a fractional component z;, generate two
subproblems from  with added constraints z; < |z, | and J
r; > |z;| respectively, add them to L, then back to 2
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Branch-and-Bound Il|

How do we choose a subproblem @ from L (step 3)?

How do we select a fractionary component z; from z
(step 8)7

No “best answer”, depends on problem structure.

Choice of subproblem: associate LB = f to each
generated problem, then choose subproblem with
minimum LB.

Choice of fractionary component: choose the
component with fractionary value closest to 0.5.

|
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BB example |

fConsider simple example: T
min —2x1 — 3x9 )
r1+2x9 < 3 >
dor1 +4x0 < 9
r1,T2 € Ly |
2

Solution of Rp Is at ;
T = (3/2,3/4) with T Er N |
f=-21/4 BN

o R
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BB example Il
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Branch-and-Cut

-

In the Branch-and-Bound algorithm, before branching,

we generate valid cuts for the current fractional solution
T.

The cuts are generated until there is no much progress
on the value f of the objective function.

Cuts can be general or problem specific.
Solvers, like Cplex generate cuts by default.

Most used classes of general cuts: Gomory cuts,
(flow) cover cuts.

|
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Gomory Inequalities

-

Let X = PNZ", where P={zx € R} : Ar <b}, Alsan
m x n matrix with columns (aq, ..., a,), and v € R'".

n
Zuajxj < wubis valid for P as u > 0;
j=1

n
Ztuajjxj < ub is valid for P, as x > 0;
7=1

n
> |uaj|z; < |ub] is valid for X, as = is integer.
j=1
Using this procedure, we can generate all valid
Inequalities for an integer program.

|
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Cover inequalities

Let X = {33 S {O, 1}n ; 2?21 a;r; < b},

a; >0,V7<n,b>0,N={1,2,...,n}.

SetC C Nisacoverif) .. ,a; > 0.

If C' C N Is a cover, then the cover inequality
d z <O -1

jeC

IS valid for X.

|
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Course material

-

# C. Papadimitriou, K. Steiglitz, Combinatorial Optimization:
Algorithms and Complexity, Dover, New York, 1998

#® L. Wolsey, Integer Programming, John Wiley & Sons, Inc,
New York, 1998.

o |
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